Мутант-5

Полканов Федор Михайлович

Глава 6. ГЕННАЯ ГЕОГРАФИЯ

 

 

Науку часто делают молодые

Ученому всегда важно правильно выбрать объект исследования. Представьте себе, что Мендель ставит эксперименты не на горохе, а на слонах или крупном рогатом скоте. В четырех поколениях гороха он изучил 20 тысяч потомков. Обследовать такое количество материала на слонах или сельскохозяйственных животных, разумеется, невозможно. Это потребовало бы не только колоссальных средств, но и слишком много времени.

До гороха Мендель экспериментировал на мышах, и на них он наблюдал явления расщепления. Однако мышам он предпочел горох, и это был великолепный, если не сказать — гениальный, выбор.

В девятисотых годах, когда генетика начала бурно развиваться, американский зоолог Томас Гент Морган тоже сделал великолепный выбор. В качестве объекта исследований он взял мушку дрозофилу. Это маленькое насекомое примечательно тем, что весь цикл его развития длится десять дней, и в одной пробирке может быть получено более двух сотен потомков. Кроме того, у дрозофилы всего лишь восемь хромосом, четыре пары, причем каждую пару легко отличить под микроскопом. Именно ей, дрозофиле, и обязаны генетики множеством блистательных открытий.

Но Морган не только сумел удачно выбрать объект исследования… Он обладал редкостным умением собирать вокруг себя талантливую молодежь.

Девятнадцатилетний студент-второкурсник Стертевант увлекался лошадьми, рылся в племенных книгах, пытаясь установить, как наследуется масть. Но работа не ладилась, и он отправился за разъяснениями к Моргану. Пришел — и остался в его лаборатории навсегда. Через год Стертевант открыл сцепление генов.

Бриджес вовсе не интересовался генетикой. Однокурсник и ровесник Стертеванта, он зашел к Моргану, чтобы узнать, нельзя ли немного подработать. Ему поручили мыть пробирки и помогать рассаживать мух. Не прошло и недели, а Бриджесу уже полюбились и генетика и дрозофилы.

Третий будущий классик генетики, Г. Меллер жил и учился в другом городе. И оттуда он регулярно отправлял в лабораторию Моргана толстенные письма, в которых содержались… теоретические разработки экспериментов. Морган был удивлен, когда узнал, что теоретику всего семнадцать лет и он совсем недавно поступил на первый курс.

Науку часто делают молодые. Вспомните Сеттона, который в девятнадцать лет открыл цитогенетический параллелизм.

Николай Петрович Дубинин, ныне академик, пришел в лабораторию шестнадцатилетним юношей. Через три года он создал блистательную центровую теорию гена.

Успехи нередко выпадают на долю тех, кто не засиживается на старте, а рвется в бой, пока ум гибок и силы в избытке.

 

Группы сцепления

Мы уже видели на многих примерах, что в скрещиваниях гены комбинируются независимо.

Нам также известно, что перемещения генов в скрещиваниях соответствуют перемещениям хромосом в процессе деления клеток. Однако глубоко ошибется тот, кто подумает, что для каждого гена есть отдельная хромосома. Именно такое заключение можно сделать из задач и примеров, которые приводились. Но все они специально подобраны, чтобы иллюстрировать генетические законы.

У дрозофилы восемь хромосом, четыре пары, а генов обнаружено более пятисот. У кукурузы в десяти парах хромосом описано 112 генов, есть и еще, но их пока не удалось «привязать» к той или иной хромосоме, хотя свое место они имеют. У рыбки гуппи 48 хромосом. Генов тут описано примерно столько же, но более тридцати находятся в половых хромосомах, то есть в одной-единственной паре.

Уже, вероятно, ясно, что независимое распределение генов должно наблюдаться не всегда, что многие гены должны быть сцепленными, так как они локализованы в одной хромосоме. Честь открытия групп сцепления принадлежит Бетсону, о котором уже много говорилось. Но окончательно теория была разработана лабораторией Моргана.

В хромосоме гены расположены вовсе не как попало, не навалом лежат, а выстроились в рядок, в цепочку, нанизаны точно бусы на нитке. Мало того, это линейное расположение генов позволяет точно установить не только порядок — кто за кем, но и расстояния между генами. А зная порядок расположения и расстояния, можно создать чертеж хромосомы с «нанизанными» на нее бусами-генами. Такой чертеж называется хромосомной картой.

Наиболее подробные хромосомные карты составлены для дрозофилы, кукурузы, курицы, кролика, мыши, рыбки гуппи. А в последние годы очень тщательно работают над картой мельчайших организмов — вирусов и бактерии кишечной палочки. Именно эти исследования ведут к анализу тонкой структуры гена.

 

Курчавоперость, розовидный гребень и белая Окраска

Чтобы не отвлекаться от примеров животноводческих, воспользуемся опытами профессора Ф. Хатта (США), поставленными с учебными целями. Хатт на практике показывал студентам, что такое сцепление генов.

Опыт проводился на курах. В первом варианте в качестве матерей использовались гетерозиготы по двум генам: курчавоперости и розовидному гребню. Отцом был петух, несущий два рецессива. Сорок шесть цыплят, полученных от этого скрещивания, составили четыре группы:

курчавоперые с розовидным гребнем — 13

курчавоперые с простым гребнем — 9

нормально оперенные с розовидным гребнем — 11

нормально оперенные с простым гребнем — 13

Легко подсчитать, что при отсутствии сцепления соотношение было бы 1: 1: 1: 1, то есть в каждой из групп оказалось бы по 11,5 потомка. Полученные результаты 13: 9: 11: 13 очень близки к ожидаемым. Таким образом, между генами курчавоперости и розовидного гребня сцепления нет.

Во втором варианте опыта были использованы гены курчавоперости и доминантной белой окраски, свойственной леггорнам. Отцом был петух, рецессивный по обоим признакам — с нормальным оперением и не белый. В первом поколении получились гетерозиготы по двум доминантам. Естественно, внешне они были курчавоперыми белыми. Кур из первого поколения Хатт скрещивал с петухом-родителем.

В результате, как и в первом варианте опыта, получились цыплята четырех типов. Однако численные соотношения между ними были уже иными:

курчавоперые белые — 13

курчавоперые окрашенные — 2

нормально оперенные белые — 4

нормально оперенные окрашенные — 12

В случае независимого распределения можно было бы ожидать в каждой из групп по 8,25 потомка. Как ни малы числа в этом учебном скрещивании, все же ясно, что ожидаемого соотношения 1: 1: 1: 1 не получилось. Доминантный ген курчавоперости имеет явную склонность наследоваться вместе с доминантным геном белой окраски, в то время как нормальное оперение связано с геном окрашенности.

Гены курчавоперости и доминантной белой окраски локализованы в одной хромосоме.

Тут кое-кто из читателей может возмутиться. Как так? В одной хромосоме — так пусть и наследуются вместе: курчавоперые всегда белые, нормально оперенные — окрашенные. Откуда же взялись курчавоперые окрашенные и нормально оперенные белые? Их немного, однако, как-никак — 18,2 процента!

Появление курчавоперых окрашенных и нормально оперенных белых объясняется явлением перекреста (кроссинговера). Уже говорилось: в процессе клеточных делений хромосомы скручиваются и могут при этом обмениваться участками. Вот на такие-то обменные участки и попали гены в случаях возникновения «незаконных» комбинаций.

Схема кроссинговера.

Чем дальше один ген расположен от другого, тем больше шансов, что между ними произойдет перекрест. Почти полные сцепления обнаруживают гены, которые расположены на хромосоме рядышком, и тем больше будет потомков-перекрестников, чем дальше один ген от другого. На это явление обратили внимание в лаборатории Моргана. Выяснили также и то, что число перекрестов между парой генов в разных опытах одинаково. А раз так — именно этим числом можно выражать на хромосомных картах расстояние между генами.

В нашем примере расстояние между генами курчавоперости и белой доминантной окраски равно 18,2 единицы перекреста.

Вот мы и нанесли на хромосомную карту курицы два первых гена.

Если в дальнейшем обнаружим третий ген из той же хромосомы, дающий с курчавоперостью перекрест, допустим, в 10 процентов случаев, то сможем предположить, что этот ген расположен на хромосоме в одной из двух точек: либо в 28,2 единицы перекреста от гена доминантной белой окраски, либо — в 8,2. Чтобы точно установить, где локализован ген, нужно поставить скрещивание с его участием и участием гена доминантной белой окраски.

Тогда мы сможем указать место расположения гена на хромосомной карте.

Хромосомные карты важны не только для теории, но и для селекционной практики.

Планируя скрещивания, селекционер может заранее представить себе, какое количество потомков ему следует получить, чтобы наверняка отобрать тех, у которых произошел перекрест между генами.