В этой главе мы не будем обращаться к истории, поскольку космическая эра продолжается всего три десятилетия, а расскажем о том, как радиоэлектроника, которой стало тесно на огромной Земле, завоевывает просторы Солнечной системы. О том, как «электронные глаза» смотрят на другие планеты, как «электронные руки» трогают их поверхность, как «электронный мозг» обрабатывает полученные сведения и «электронная почта» передает их нам, построившим и пославшим чудесных космических разведчиков к другим мирам. Расскажем также о создании космических радиомостов, космическом телевидении и о поиске полезных ископаемых на Земле с помощью космических аппаратов.

Оборудование космических аппаратов

Какое оно? Если попытаться охарактеризовать его одним словом, то это слово наверняка будет: «электронное». Вообще, выход в космос человечеству обеспечили два направления науки и техники: ракетостроение и радиоэлектроника. Отними первое, и окажется, что нечем вывести космический корабль на орбиту, отними второе, и окажется, что незачем! Любой космический аппарат будет мертв без электроники. Вспомним, что было на первом советском искусственном спутнике Земли (ИСЗ), открывшем космическую эру 4 октября 1957 года. Всего лишь два радиопередатчика на частотах 20 и 40 МГц. Они излучали непрерывно периодические сигналы: «бип…бип…бип». Весь мир слушал, затаив дыхание, эти сигналы. Ну а какова была практическая польза? Оказывается, огромная. Впервые коротковолновый излучатель был поднят на высоту слоя F ионосферы. Представилась уникальная возможность экспериментально изучить процессы распространения и преломления радиоволн в ионосфере. На первом спутнике не было систем ориентации, терморегулирования, телеметрии (кстати, все эти системы тоже электронные), тем не менее он жил, посылал радиосигналы и приносил полезную научную информацию.

Неотъемлемую часть радиоэлектронной аппаратуры каждого космического летательного аппарата (КЛА), будь то ИСЗ или исследовательский межпланетный корабль, составляют средства связи, управления, навигации и ориентации. К средствам связи прежде всего относятся телеметрическая и командная радиолинии. Они действуют обычно в дециметровом диапазоне радиоволн, беспрепятственно проходящих сквозь ионосферу Земли. По командной радиолинии с наземных станций управляют работой аппарата. Команды передаются, как правило, цифровым двоичным кодом с использованием фазовой манипуляции. Такой вид связи наиболее помехоустойчив. На КЛА имеется приемник, постоянно настроенный на волну командного передатчика, установленного на Земле. Выходные сигналы приемника передаются в блок управления КЛЛ.

Телеметрическая информация поступает с КЛЛ в наземные пункты слежения и позволяет узнавать состояние аппарата: напряжение бортовой сети, температуру внутри корпуса, а также отдельных деталей и механизмов, выявлять неполадки в работе различных систем и т. д. Датчиков в системе телеметрии много, а передатчик один, поэтому телеметрическая информация преобразуется в цифровую и «уплотняется», т. е. объединяется для передачи по одному каналу. Например, первый байт (слово) цифровой передачи несет информацию об одном параметре, второй — о другом, и т. д.

Но нет смысла заставлять работать телеметрический передатчик КЛА постоянно. Это привело бы к большому расходу электроэнергии. Чаще всего телеметрическую информацию записывают на цифровой бортовой магнитофон (запоминающее устройство) и «сбрасывают» на Землю лишь по команде из Центра управления полетом. Этот же магнитофон может накапливать и другую информацию от различных датчиков-магнитометров, счетчиков частиц и микрометеоритов, спектрометров и др. Особо возрастает роль радиоэлектронных устройств при выполнении точных и ответственных операций в космосе, например, таких, как стыковка космических кораблей на орбите. Взаимное расположение кораблей определяют с помощью специальных бортовых радиолокаторов. ЭВМ обрабатывает полученные данные и выдаст управляющие сигналы для систем коррекции орбиты.

Если космический корабль обитаемый, то на нем обязательно есть линия телефонной связи с Землей, а на больших обитаемых орбитальных станциях — еще и система космического телевидения. Эти системы оснащаются, как правило, несколькими передатчиками и приемниками, работающими в различных диапазонах волн. Для связи в любое время с ИСЗ, находящимся на низкой орбите, необходима коротковолновая линия связи. А для высококачественной связи без помех или для передачи телевидения лучше всего подходят сантиметровые и дециметровые волны, но работать эта линия будет только в пределах «радиовидимости» ИСЗ с наземного пункта связи. По этой причине пункты космической связи в нашей стране располагают но всей ее огромной территории. Их даже не хватает, и часто используют корабли с соответствующей аппаратурой, выходящие в Тихий, Атлантический и Индийский океаны.

Принцип работы дифференциального датчика Солнца:

1 — светочувствительные пластины; 2 — область тени; 3 — экран; 4 — поток солнечных лучей; 5 — Солнце

Особые линии связи нужны спутникам, передающим на Землю научную, метеорологическую или народнохозяйственную информацию. Она накапливается бортовым магнитофоном и передается в центр обработки по команде с Земли. Сколь выгодна передача этой информации по радиоканалу, можно понять на простом примере.

Если на ИСЗ установить аэрофотокамеру с запасом пленки и снимать поверхность Земли, а затем контейнер с пленкой «отстреливать» и спускать на Землю на парашюте, то каждый снимок обойдется очень дорого. Если же передавать такую же информацию по радиоканалу (как в телевидении, с разверткой изображения), то каждый снимок будет значительно дешевле. И чем дольше проработает спутник, тем дешевле станет и передаваемая им информация. Не по «собственной» стоимости, конечно, а по затратам на ее добывание и пересылку.

Ориентация КЛА в пространстве осуществляется по сигналам датчиков направления. Они могут ориентироваться либо на горизонт Земли или планеты, вокруг которой обращается КЛА (датчики горизонта), либо на Солнце, либо на заранее выбранную звезду (датчики астроориентации). Работа датчиков горизонта основана на приеме ИК излучения планеты. Кажущаяся температура космического пространства составляет всего около 4 К (четыре градуса по шкале Кельвина), а температура диска Земли около 260 К. В фокусе ИК оптической системы, направленной на горизонт, установлен ИК приемник, например терморезистор. Его сопротивление изменяется при попадании в поле зрения края диска планеты, и соответствующий сигнал подается на механизмы поворота КЛА.

Датчик астроориентации также представляет собой типичное оптоэлектронное устройство. Изображение светила проецируется телескопической системой линз на мозаику из нескольких фотоприемников. В зависимости от положения изображения на мозаике вырабатывается сигнал на коррекцию положения КЛА. В других системах используют один фотоприемник, механически сканирующий определенную часть небосвода. Вырабатываемый сигнал ошибки заставляет систему ориентации изменять положение КЛА так, чтобы изображение светила попадало в центр поля сканирования. Все задачи управления полетом решаются системой управления КЛА. Здесь и ориентация, и стабилизация осей КЛА в пространстве, и наведение, и маневрирование при встрече с другим космическим кораблем или объектом, и включение систем и механизмов по заданной программе, и многое-многое другое. Управляющее устройство должно сравнивать сигналы датчиков, характеризующие те или иные параметры полета, с эталонными, опорными сигналами и выдавать команды на необходимую коррекцию. С этой задачей лучше всего может справиться бортовая ЭВМ, выполненная на основе микропроцессора. Теперь она есть на каждом КЛА.

Оборудование системы ориентации метеорологического спутника:

1 — солнечная бленда ИК датчика; 2 — панель с солнечными элементами; 3 — ИК датчик горизонта; 4 — датчик Солнца; 5 — контактные кольца вала солнечных панелей;  6 — инерциальный диск; 7 — солнечный датчик системы ориентации панелей; 8 — вал солнечных панелей

Автоматические межпланетные станции

Наиболее сложным и многообразным радиоэлектронным оборудованием оснащены автоматические межпланетные станции (АМС), совершающие далекие «прогулки» в пределах нашей Солнечной системы. Автоматические межпланетные станции, как правило, уже не возвращаются на Землю, поэтому вся обширнейшая информация, которую они собирают в продолжение многомесячного полета, передается только по радио.

Научная аппаратура АМС рассчитана на исследование определенной планеты или нескольких планет, а также межпланетного пространства, проходимого АМС на пути к цели. Детальное исследование планеты осуществляют АМС с мягкой посадкой, продолжающие функционировать некоторое время еще и на поверхности планеты. В связи с большими трудностями осуществления мягкой посадки на далекую планету по командам с Земли большинство операций по сближению и посадке осуществляется в автоматическом режиме на основании сигналов многих датчиков и результатов работы большого количества сложной бортовой радиотехнической аппаратуры навигации и наведения.

Вот, например, автоматическая лунная станция (АЛС), в задачи которой входило определение физических условий на поверхности Луны, измерение параметров и свойств лунного грунта, его химического состава на различной глубине, обзор и передача на Землю изображения лунной поверхности в районе посадки. Работой АЛС управляют две системы: командная, принимающая «указания» с Земли, и программная, руководствующаяся заранее заложенной в памяти программой. Такое «дублирование руководства» позволяет избежать ошибок, связанных с потерей связи и с изменением внешних условий в случае несоответствия запрограммированным ситуациям.

В состав АЛС входит до четырех телевизионных установок. Три из них передают на Землю изображения лунной поверхности вокруг АЛС, охватывая все 360° по азимуту и 65° по углу места. В то же время две установки могут быть повернуты в одну сторону для обзора одного и того же сектора. Это позволяет получать стереоскопическое изображение участка местности, по которому с помощью специальной обработки снимков на Земле приборами — стереокомпараторами можно узнавать размеры наблюдаемых предметов и их удаленность от АЛС. Четвертая телевизионная установка контролирует работу манипулятора станции — механической «руки», отбирающей пробы грунта и предметы на лунной поверхности.

На рисунке показано устройство одной из телевизионных камер. Собственно камера «смотрит» вертикально вверх, а выбор сцены производится поворотным зеркалом. Развертка изображения осуществляется на 200 (малая четкость) или 600 (высокая четкость) строк. Сигналы изображения с малой четкостью передаются на Землю всенаправленной антенной в относительно узкой полосе частот. Такой режим работы нужен при проверке функционирования аппаратуры сразу после посадки, а также в случае выхода из строя остронаправленной антенны или системы ее ориентации в сторону Земли. Сигналы изображения с высокой четкостью передаются остронаправленной антенной в широкой полосе частот. Когда объектив камеры сфокусирован на предметы, находящиеся на расстоянии 4 м, разрешающая способность системы в зависимости от изменяемого фокусного расстояния объектива может составить от 4 до 0,2 мм!

Обзорное телевизионное устройство АЛС:

1 — видикон; 2 — затвор; 3 — потенциометр диафрагмы; 4 — потенциометр фокусного расстояния; 5 — объектив с переменным фокусным расстоянием; 6 — мотор установки зеркала по азимуту; 7 — козырек; 8 — зеркало; 9 — мотор установки зеркала по углу места; 10 — турель со сменными фильтрами; 11 — радиоэлектронные устройства; 12 — кабели

2 января 1959 года была запущена первая советская АЛС «Луна-1», которая впервые в истории достигла второй космической скорости и навсегда покинула поле земного тяготения. В окололунном пространстве она выполнила обширную программу научных исследований и по радио сообщила результаты на Землю. Менее чем через год, в сентябре 1959 года, АЛС «Луна-2» впервые в мире достигла поверхности Луны, доставив туда вымпел с Гербом Советского Союза. Вслед за этим, в октябре того же года, АЛС «Луна-3» облетела Луну, сфотографировала обратную, невидимую с Земли сторону Луны и изображение передала по радио на Землю. Так человечество впервые получило возможность увидеть обратную сторону Луны.

18 июня 1965 года был осуществлен запуск многоступенчатой ракеты с автоматической станцией «Зонд-3». Она сфотографировала ту часть невидимой с Земли стороны Луны, которая осталась неохваченной при съемке 1959 года. Полученные снимки передавались на Землю не сразу, а спустя почти девять суток после съемки, когда расстояние до станции составляло около 2,2 млн. км. При этом отрабатывалась система передачи изображений на большие расстояния. Передача осуществлялась с малой скоростью, причем каждый кадр для большей достоверности передавался многократно. Передача одного кадра занимала 34 мин при числе строк разложения 1100. Каждая строка содержала 860 элементов изображения; таким образом, общее число элементов в кадре составляло около миллиона. Малая скорость передачи позволила резко сузить полосу частот радиоканала и тем самым увеличить отношение сигнал-шум на выходе наземного приемного устройства, что и обеспечило высокое качество изображения.

Первую мягкую посадку на поверхность Луны осуществила АЛС «Луна-9», запущенная 31 января 1966 года. Радиоэлектронные системы станции обеспечили прием команд и передачу телеметрической информации, измерение параметров движения ракеты-носителя, разгонного блока и самой станции на всех этапах полета, включающих вывод на орбиту ИСЗ, разгон в сторону Луны и торможение перед посадкой в заранее намеченной равнинной части Океана Бурь. На расстоянии 75 км от поверхности Луны по команде бортового радиовысотомера была включена тормозная двигательная ракетная установка. Автоматическая лунная станция с ювелирной точностью опустилась па поверхность, и через 250 с после посадки раскрылись антенны для передачи на Землю научной информации. Радиопередачи велись на частоте 183,538 МГц. Через некоторое время заработали телевизионные камеры и началась передача изображений поверхности в районе посадки.

Образцы лунного грунта доставила на Землю АЛС «Луна-16», а следующая АЛС, «Луна-17», отправила в путешествие по поверхности Луны первый в истории самодвижущийся исследовательский аппарат «Луноход-1». Произошло это 17 ноября 1970 года. Аппарат представлял собой восьмиколесную тележку с установленным на ней контейнером, содержащим научную аппаратуру, телекамеры, антенны, двигатели, энергетическую установку и прочее оборудование.

«Луноход-1» управлялся радиокомандами с Земли. Он передавал на наземный пункт управления телевизионные изображения поверхности, по которой двигался. Операторы, сидя в удобных креслах за пультом управления, порой забывали, что управляемый ими объект находится на громадном расстоянии в 380 тыс. км настолько чутко он реагировал на команды. К радиоэлектронной аппаратуре «Лунохода» предъявлялись особые требования: возможно меньшие масса и габаритные размеры, малое энергопотребление, стабильность параметров в широком диапазоне температур, при воздействии вибрации и ускорений, а также высокая надежность. Надежность и ресурс аппаратуры оказались настолько высокими, что «Луноход» проработал значительно дольше предполагаемого срока.

Автоматические межпланетные станции посылаются не только к Луне, но и к другим планетам Солнечной системы. Первый межпланетный полет АМС «Венера-1» происходил в то же самое время, когда в космос поднялся первый космонавт планеты Ю. А. Гагарин. Дата его полета, 12 апреля 1961 года, теперь отмечается как День космонавтики. Осенью следующего года отправилась в полет АМС «Марс-1». Эти АМС на входили в атмосферу планет. Облетая планету по вытянутой траектории, они передавали на Землю телевизионные изображения и показания приборов (магнитометров, детекторов, микрометеоритов, счетчиков частиц и т. д.). Так было положено начало комплексному исследованию планет Солнечной системы аппаратами, посланными людьми.

Трудности организации радиомоста АМС-Центр управления полетом огромны. Только задержка радиосигнала на пути к Марсу достигает 10 мин. Попробуйте, зная скорость распространения радиоволн (3·108 м/с), оценить длину радиотрассы!

Но расстояния в сотни миллионов километров — не препятствие для современной техники радиосвязи… да и не только радиосвязи. Прежде чем послать, например, к Венере АМС, необходимо очень точно определить параметры орбиты планеты и расстояние до нее. Эти вопросы были решены при радиолокации Венеры наземным радиолокатором, созданным Институтом радиотехники и электроники АН СССР совместно с рядом других организаций. Работы проводились под руководством вице-президента АН СССР В. А. Котельникова (его именем названа уже известная читателю теорема). Планетный радиолокатор был размещен в Крыму, на базе Центра дальней космической связи, где имелась эффективная антенная система. Она была выполнена из восьми связанных в общую конструкцию параболических зеркал. Но даже при такой большой площади антенны отраженный от Венеры сигнал оказывается чрезвычайно слабым: его уровень значительно ниже уровня собственных шумов приемника. Для выделения сигнала использовалась достаточно сложная обработка смеси сигнала и шума на ЭВМ.

В последующие годы для целей дальней космической связи, радиолокации планет и радиоастрономических исследований были построены еще более мощные антенные сооружения. Впечатляет, например, полноповоротная параболическая антенна диаметром 75 м, установленная в Подмосковье. Планетный радиолокатор позволил измерить расстояние до Венеры (около ста миллионов километров) с точностью в несколько сотен метров! Это позволило в 10000 раз уменьшить ошибку в определении астрономической единицы — среднего расстояния от Земли до Солнца. Без такого уточнения был бы невозможным вывод АМС на околовенерианскую орбиту и доставка спускаемых аппаратов в заданный район поверхности планеты.

Первую мягкую посадку на поверхность другой планеты осуществила АМС «Венера-7» в 1970 году. Вслед за ней на поверхность Венеры опустились станции «Венера-9» и «Венера-10». Переданные ими сведения поразили многих. Ранее ученые полагали, что условия на поверхности планеты должны быть близки к земным, но все оказалось не так. Громадное давление атмосферы и высокая температура поверхности сделали Венеру планетой малоподходящей для обитания живых организмов. Каменистая пустыня и затянутое ядовитыми облаками раскаленное венерианское небо — поистине такие условия могут выдержать только автоматы.

Исследования Венеры продолжаются. С помощью АМС «Венера-15» и «Венера-16» в 1984 году проводилась радиолокационная съемка поверхности планеты. Автоматические межпланетные станции длительное время летали вокруг Венеры как ее спутники и при прохождении наиболее приближенных к поверхности участков траектории (высота около 1000 км) снимали радиолокационное изображение полосы местности длиной до 8000 и шириной 150 км. Один сеанс съемки продолжался 15 мин. На АМС использовались специальные радиолокаторы, созданные в Московском энергетическом институте под руководством академика АН СССР А. Ф. Богомолова. Изображения отдельных отснятых участков поверхности объединялись в общую радиолокационную карту поверхности Венеры. Полученные результаты интересны для нас не только с теоретической, но и с практической точки зрения. Знание эволюции Венеры помогает понять и историю развития Земли, облегчает поиск на Земле полезных ископаемых.

В прозрачной и очень разреженной холодной атмосфере Марса живым организмам, так же как и на Венере, существовать было бы очень трудно. Их там и не обнаружили, даже бактерий. Получается, что жизнь в Солнечной системе — явление уникальное, возникшее только на Земле, и тем с большей бережностью надо к ней относиться. Первая мягкая посадка на Марс осуществлена во время группового полета АМС «Марс-2» и «Марс-3» в 1971 году. Станции передали на Землю изображения планеты и некоторые сведения о ее поверхности.

Космические эксперименты продолжаются. Осуществлены полеты к дальним планетам Солнечной системы — Юпитеру и Сатурну. Автоматические межпланетные станции передали по радиоканалу изображения этих планет, полученные с близкого расстояния. А когда знаменитая комета Галлея приближалась к перигелию и под действием солнечного излучения распустила огромный газовый «хвост», навстречу ей отправились АМС, обогатившие науку новыми сведениями о структуре и происхождении комет. Предполагают, что кометы являются одними из самых старых обитателей Солнечной системы, они сформировались из первоначального газопылевого облака одновременно с планетами, и поэтому изучение комет проливает свет на тайны происхождения Солнечной системы. Без радиоэлектроники подобные исследования космоса были бы просто невозможны.

Электроника и космонавтика

Планомерное и широкое освоение космоса невозможно лишь одними автоматами — полеты людей в космос стали обыденным явлением. В Советском Союзе разработана длительно действующая орбитальная космическая станция «Салют», на которой может находиться постоянный или сменяемый экипаж из нескольких человек. В комплекс орбитальной станции входит собственно орбитальный блок, выводимый в околоземное пространство мощной ракетой-носителем, и транспортный корабль «Союз», на котором отправляются космонавты. Корабль стыкуется на орбите с орбитальным блоком. Кроме того, к станции могут пристыковываться транспортные грузовые корабли типа «Прогресс».

Вся станция представляет собой весьма внушительное сооружение: общая масса орбитального блока и корабля «Союз» составляет около 26 т, длина достигает 23 м, а поперечный размер по раскрытым солнечным батареям 11 м. Внутри станции оборудованы рабочие и спальные места для космонавтов, системы обеспечения их жизнедеятельности. Для проведения научных экспериментов, фотографирования и визуального наблюдения в отсеках станции предусмотрено 27 иллюминаторов.

Полеты космических кораблей и орбитальных станций были бы невозможны без обширного комплекса радиотехнических средств навигации и связи. Во время полета необходимо производить точные траекторные измерения для определения местонахождения корабля. Параметры орбиты измеряются с помощью двух бортовых приемопередатчиков-ответчиков, работающих в различных диапазонах волн. Они ретранслируют радиосигналы, передаваемые с наземных пунктов сложения и связи, и благодаря этому позволяют определять наклонную дальность, радиальную скорость и угловое положение станции относительно наземных пунктов, где и производятся измерения. Полученные данные передаются в координационно-вычислительный центр, обрабатывающий поступающую информацию и определяющий параметр орбиты. Наклонная дальность вычисляется по задержке ретранслированною радиосигнала. Радиальная скорость измеряется по доплеровским изменениям несущих частот передатчиков станции и наземных пунктов. Для определения углового положения станции служат специальные угломерные устройства, входящие в антенные и приемные системы наземных пунктов слежения.

Внимание, стыковка!

Очень важна роль командных радиолиний между станцией и наземными пунктами. Наземный комплекс посылает на борт команды в виде двоичных чисел (так называемые уставки). Бортовая аппаратура принимает и дешифрирует команды. Информация о работе бортовых систем передается на Землю двумя радиотелеметрическими линиями. Когда станция находится вне зоны радиовидимости наземных пунктов, телеметрическая информация, интересующая Землю, собирается и хранится бортовым запоминающим устройством. В дальнейшем эта информация «сбрасывается» при пролете станции над пунктом слежения.

Во время сеансов связи с космонавтами по КВ каналам передается также и оперативная телеметрическая информация об их состоянии. Вообще же система связи с космонавтами обеспечивает непрерывную двустороннюю телефонную связь на всем протяжении полета. В зоне радиовидимости наземных пунктов используется УКВ диапазон, позволяющий добиться устойчивой связи при прямой видимости между антеннами станции и наземного пункта, а на остальных участках траектории используется КВ диапазон. Связь при этом возможна благодаря преломлению радиоволн в ионосфере Земли.

Орбитальная станция «Салют» оснащена телевизионной системой, имеющей четыре передающие камеры. Две из них установлены внутри станции и позволяют операторам Центра управления полетом наблюдать за работой космонавтов. Две другие камеры расположены снаружи станции. Они нужны для контроля ориентации станции при орбитальном полете. На участке выведения на орбиту одна из внешних телекамер контролировала процесс отделения станции от последней ступени ракеты-носителя. Внешние камеры позволяют наблюдать за работой космонавтов при выходе в открытый космос и за стыковкой кораблей на орбите. Все телекамеры оборудованы передающими трубками типа «видикон» и развертывают изображение в соответствии с отечественным стандартом на 625 строк при 25 кадрах в секунду. Телевизионная информация поступает на видеоконтрольное устройство, расположенное на пульте управления станции, и на передатчики линии связи с наземными пунктами.

Многочисленная радиоэлектронная аппаратура станции потребляет немалую мощность. Ее поставляют панели солнечных элементов, подобно крыльям развернутые по бокам станции. Их общая площадь составляет несколько квадратных метров. Ток, вырабатываемый солнечными элементами, заряжает буферную никель-кадмиевую аккумуляторную батарею, обеспечивающую питание аппаратуры станции при пиковых нагрузках, а также при полете станции над теневой, ночной стороной Земли. Продолжительность нахождения станции в тени Земли достигает 40 % общего полетного времени.

По-иному решили проблему питания радиоэлектронной аппаратуры космических кораблей американские конструкторы. При осуществлении программы «Аполлон», завершившейся 16–24 июля 1969 года первой лунной экспедицией трех космонавтов, были разработаны специальные электрохимические источники тока топливные батареи. Вещество элементов этих батарей в процессе выработки электроэнергии не расходуется. Оно служит лишь катализатором реакции соединения водорода с кислородом. Эти газовые реагенты — топливо батарей — заправляются в баки при запуске корабля и расходуются в топливных элементах по мере надобности.

Побочным продуктом электрохимической реакции оказывается обычная вода, использовавшаяся для питья и других хозяйственных нужд космонавтов. Ежедневно каждому космонавту требуется около ведра воды, и для многодневного полета запас ее получается значительным. Топливные элементы избавляют от необходимости «везти» воду с Земли. К сожалению, вода, полученная из экологически чистых топливных элементов, оказалась не совсем «чистой». Она напоминала газированную, поскольку была насыщена водородом, что, по сообщениям космонавтов, было не очень приятно (обычная газированная вода насыщается углекислым газом). В дальнейшем научились с помощью специальных фильтров очищать воду, полученную из топливных элементов.

Кроме топливных элементов на кораблях «Аполлон-11» и «Аполлон-12», осуществлявших полет к Луне, имелись резервные батареи обычных аккумуляторов. Они, кстати говоря, позволили благополучно вернуться на Землю экипажу аварийного корабля «Аполлон-13», на котором взорвался кислородный бак системы электроснабжения. Общее энергопотребление космических кораблей и орбитальных станций достигает нескольких киловатт, и эту весьма значительную мощность обеспечивают описанные энергетические установки.

Мирное освоение космоса человечеством продолжается, и одной из наиболее ярких страниц международного сотрудничества явилась стыковка на орбите в июле 1975 года советского и американского космических кораблей «Союз» и «Аполлон». Совершая совместный полет, космонавты в буквальном смысле ходили друг к другу в гости! Но космическая электроника служит не только космонавтам — она немало помогает и в разрешении наших земных насущных проблем.

Спутники связи

Когда вы смотрите телевизионные передачи о достижениях космической техники или работе и жизни отважных космонавтов на пилотируемой орбитальной станции, то, вероятно, не задумываетесь, каким путем приходит телевизионный сигнал к вашему приемнику. Этот путь часто включает и космический участок через спутник-ретранслятор. В удаленные районы Сибири и Дальнего Востока программы телевидения передаются только по космическому телевизионному мосту. Каковы же причины, приведшие к созданию космических телевизионных трасс? Одна из причин нам уже известна из главы о распространении радиоволн. Телевизионный сигнал занимает широкий спектр частот, и передавать его можно лишь в диапазоне УКВ. А ультракороткие волны распространяются по прямой, в пределах видимости между башней телецентра и приемной антенной вашего телевизора.

Примерно до 1967 года важная государственная задача охвата телевизионным вещанием всего населения страны решалась путем строительства мощных радиопередающих телевизионных центров (5…50 кВт) и ретрансляторов малой мощности (1…100 Вт). Пока эти станции строились в густонаселенных районах страны, ввод каждой из них означал значительный прирост числа телезрителей. На 1 января 1961 года в стране было построено 100 мощных телевизионных передатчиков и около 170 маломощных ретрансляторов, обеспечивавших телевизионным вещанием примерно 35 % населения. В последующие пять лет число мощных станций и ретрансляторов возросло соответственно до 170 и 480, а прирост числа телезрителей составил лишь 20 %. Стало ясно, что дальнейшее увеличение числа передающих телевизионных станций экономически нецелесообразно. Расчеты показали, что для охвата телевизионным вещанием 95 % населения страны потребовалось бы более 1000 мощных телецентров, многие тысячи километров кабельных и радиорелейных линий для обмена программами, что связано с огромными капитальными затратами.

Единственным реальным средством решения задачи стопроцентного охвата населения страны телевизионным вещанием в сжатые сроки оказалось использование спутниковых систем. 23 апреля 1965 года в Советском Союзе был произведен запуск спутника связи «Молния-1» на высокую эллиптическую орбиту с апогеем в северном полушарии и перигеем в южном. Начальный период обращения спутника был близок к половине суток и составил 11 ч 48 мин. Такой период обращения выбран не случайно: спутник должен появляться над обслуживаемой территорией всегда в одно и то же время, скажем в часы вечерних телепередач. На борту спутника была установлена ретрансляционная аппаратура для передачи программ телевидения и дальней двусторонней многоканальной телефонной, фототелеграфной и телеграфной радиосвязи. Первый прямой телевизионный обмен телевизионными программами между Москвой и Владивостоком состоялся!

Орбита ИСЗ «Молния-1».

На выборе орбиты спутника следует остановиться особо. Орбита представляет собой сильно вытянутый эллипс» в одном из фокусов которого находится центр Земли. Плоскость орбиты наклонена к плоскости экватора под углом около 65°, причем апогей орбиты — наиболее удаленная от Земли точка — находится в северном полушарии. Высота апогея составляет около 40000 км, а высота перигея — всего около 500 км. В соответствии с законами Кеплера, которым подчиняются все движущиеся небесные тела, спутник пролетает приближенную к Земле часть орбиты, включающую точку перигея, очень быстро. Ретранслятор спутника на этом отрезке орбиты, расположенном в южном полушарии, выключается. Зато удаленную от Земли часть орбиты, включающую точку апогея, спутник проходит медленно, он как бы «зависает» на несколько часов над Сибирью и Дальним Востоком. В это время и ведется ретрансляция телевизионных программ. Поскольку период обращения спутника равен 12 ч, в течение суток он совершает два витка вокруг Земли. На первом витке в течение девяти часов обеспечивается связь между любыми пунктами как на территории СССР, так и других стран Европы и Азии. Во время второго витка в течение трех часов возможна связь между европейской частью СССР и Центральной и Северной Америкой.

Корпус спутника связи «Молния-1» выполнен в виде цилиндра, на котором расположены шесть панелей с солнечными батареями и две направленные параболические антенны. Эти внешние устройства раскрываются после вывода спутника на орбиту. В торцах цилиндра расположены датчики ориентации и двигательная установка для коррекции орбиты. На внешней поверхности корпуса расположены также радиаторы системы терморегулирования. Работой спутника управляет программно-вычислительное устройство на основе сигналов командно-измерительной аппаратуры.

Устройство спутника « Молния-1 »:

1 — датчики ориентации; 2 — солнечные батареи; 3 , 4 — направленные антенны; 5 — корректирующая двигательная установка;  6 — радиатор-охладитель; 7 — датчик ориентации антенн на Землю

Основную полезную нагрузку спутника составляет ретранслятор. Принятые с Земли сигналы через приемную антенну поступают на входное устройство и далее — на преобразователь частоты. Основное усиление сигналов происходит на сравнительно низкой промежуточной частоте. Затем сигнал еще раз преобразуется по частоте и усиливается оконечным усилителем мощности, выполненным на лампе бегущей волны. Усиленный сигнал излучается передающей антенной в сторону Земли. Выходная мощность ретранслятора достигает 40 Вт. Столь большая мощность бортового передатчика позволила упростить оборудование наземных станций и повысить помехоустойчивость связи. Для повышения надежности на спутнике связи «Молния-1» установлено три ретранслятора один рабочий и два резервных.

Структурная схема ретранслятора связного спутника:

1 — приемник: 2 — первый гетеродин: 3 — первый преобразователь частоты; 4 — усилитель промежуточной частоты; 5 — второй гетеродин; 6 — второй преобразователь частоты; 7 — усилитель мощности на лампе бегущей волны

При разработке описанного ретранслятора, работающего в диапазоне частот около 1 ГГц, пришлось решить немало технических проблем. На столь высоких частотах дециметрового диапазона обычные лампы и транзисторы уже не могли обеспечить большой выходной мощности. А пригодные для этой цели лампы бегущей волны имели большие габаритные размеры и массу. Было предложено оригинальное решение отказаться от баллона лампы! Ведь космический вакуум более глубок, чем вакуум, создаваемый в земных условиях в баллонах радиоламп. В результате масса и габаритные размеры усилителя мощности значительно снизились.

В 1967 году, к 50-летию Великого Октября, вступила в регулярную эксплуатацию спутниковая телевизионная сеть, работающая со спутниками типа «Молния» и насчитывающая 20 наземных станций «Орбита». К 1983 голу число их приблизилось к сотне. Приемная станция «Орбита» представляет собой комплекс сооружений, состоящий из большой поворотной параболической антенны диаметром 12 м, установленной на круглом железобетонном здании, и приемного устройства, размещенного внутри здания. Зеркало антенны изготовлено из специального алюминиевого сплава, масса зеркала составляет 5,5 т, а вместе с опорно-поворотным устройством — около 50 т. Для уменьшения уровня внутренних шумов, а следовательно, и повышения чувствительности приемного устройства на его входе установлен малошумящий параметрический усилитель, охлаждаемый жидким азотом. Полученная на станции телевизионная программа передастся далее на местный телецентр или ретрансляционную станцию и излучается в эфир в стандартных телевизионных каналах.

С 1974 года основная часть станций сети «Орбита» переведена в диапазон 4 ГГц для работы с новыми поколениями спутников «Молния-2» и «Молния-3». Эти же станции могут работать и с геостационарными спутниками типов «Радуга» и «Горизонт», Что такое геостационарный спутник, следует пояснить особо. Его запускают на очень высокую круговую орбиту, расположенную в плоскости экватора Земли. Высота геостационарной орбиты составляет около 36000 км. при этом период обращения спутника вокруг Земли в точности равен одним суткам, т. е. совпадает с периодом собственного вращения Земли. Вращаясь в ту же сторону, что и вся планета, геостационарный спутник как бы зависает над одной и той же точкой экватора. Антенну наземной станции достаточно навести на геостационарный спутник один раз. Это очень удобно, затруднения возникают лишь в полярных районах, из которых геостационарный спутник «виден» слишком низко над горизонтом. Поэтому полярные районы по-прежнему обслуживаются спутниками, летающими по вытянутым эллиптическим орбитам.

Стоимость сооружения наземной станции «Орбита» довольно высока. Поэтому строительство их экономически оправдано лишь в крупных населенных пунктах с числом жителей не менее пятидесяти тысяч. Когда все такие пункты были оснащены приемными станциями, развитие сети «Орбита» приостановилось и была поставлена задача создания новых, гораздо более дешевых спутниковых систем телевизионного вещания.

Новая система спутникового телевизионного вещания «Экран» создавалась специально для охвата телевидением небольших поселков, сел и деревень, полевых станов и экспедиций, разбросанных по бескрайним просторам Сибири, Крайнего Севера и частично Дальнего Востока. Зона обслуживания системы достигает площади 9 млн. кв. км, что составляет около 40 % всей территории страны.

Телевидение проникает в отдаленные уголки страны.

Первый спутник «Экран» был запущен 26 октября 1976 года на геостационарную орбиту. К этому времени уже была развернута опытная сеть из 60 приемных установок. Для системы «Экран» был выбран диапазон частот около 700 МГц, что по расчетам обеспечивало минимум стоимости системы. В приемных установках этого диапазона можно использовать недорогие транзисторные усилители и простые многоэлементные антенны типа «волновой канал». Спутник «Экран» оснащен передатчиком с огромной выходной мощностью: 200 Вт, что позволило получить высокое качество изображения при использовании простых приемных установок. Огромная раскрывающаяся в космосе антенна спутника содержит 96 спиральных излучателей, формирующих требуемую диаграмму направленности. Высоконаправленная антенна решает и еще одну задачу: уменьшает до допустимого значения уровень сигнала на территории сопредельных государств, использующих диапазон 700 МГц для наземного телевизионного вещания, и таким образом устраняет взаимные помехи.

Энергетическая установка спутника «Экран» включает панели солнечных батарей большой площади, обеспечивающие мощность до 2 кВт. Специальная трехосная система стабилизации и ориентации спутника с высокой точностью удерживает его в заданном положении относительно Земли и обеспечивает ориентацию диаграммы направленности антенны на зону обслуживания.

Для системы «Экран» разработаны приемные установки двух типов. Более сложная установка, предназначенная для сравнительно больших населенных пунктов, комплектуется синфазной антенной системой из 32 антенн типа «волновой канал». Супергетеродинный приемник и устройство демодуляции принятых сигналов выполнены в виде одной стойки (небольшого шкафа) размерами 140х70х34 см. Вся аппаратура собрана на транзисторах. Демодулированный сигнал подается на местную телевизионную станцию или ретранслятор.

Установки второго типа заметно проще. Они предназначены для подачи телевизионного сигнала на маломощный ретранслятор, в кабельную сеть, подобную сети коллективной телевизионной антенны. В них применяются антенные системы, состоящие всего из четырех антенн типа «волновой канал» (каждая антенна содержит рефлектор, активный вибратор из 30 директоров). Малогабаритный транзисторный приемник переносит спектр сигнала с принятой частоты диапазона 714 ± 12 МГц на частоты одного из стандартных телевизионных каналов, а также преобразует частотную модуляцию сигнала, используемую в спутниковом телевидении, в амплитудную, которая применяется в обычном наземном телевизионном вещании. Как видим, приемное устройство спутникового телевидения получилось достаточно компактным.

Система «Экран» оказалась весьма эффективным средством телефикации Сибири и Крайнего Севера СССР. Но использование ее в других районах страны невозможно, так как привело бы к созданию недопустимо больших помех наземным телевизионным средствам соседних государств. В связи с этим потребовалось создать аналогичную по простоте спутниковую систему подачи программ телевизионного вещания на некоторые области Урала, Средней Азии и Дальнего Востока.

Такая система была разработана и в 1979 году введена в действие. Система «Москва» работает в диапазоне 4 ГГц (длина волны 7,5 см) с геостационарными спутниками серии «Горизонт». Бортовой передатчик мощностью 40 Вт в сочетании с высоконаправленной антенной создает достаточно высокую напряженность поля у поверхности Земли, а благодаря высокой направленности антенны ослабляются помехи на соседних с зоной обслуживания территориях. Для приема телевизионного сигнала со спутника «Горизонт» требуется наземная антенна со сравнительно небольшим диаметром зеркала (всего 2,5 м). На входе приемника устанавливают неохлаждаемый параметрический усилитель, а все остальное приемное оборудование размещают в одной небольшой стойке. Для его размещения не требуется строительства специальных зданий.

Система «Москва» позволяет передавать один канал изображения с высоким качеством и два канала звукового сопровождения. Для охвата всей территории страны в системе используется четыре геостационарных спутника «Горизонт», размещенные в разных точках. Чисто приемных пунктов системы уже превысило 300 и продолжает быстро увеличиваться. Высвободившиеся станции системы «Орбита» используют для приема второй Общесоюзной телевизионной программы, ретранслируемой спутниками «Молния» и «Горизонт».

Телевизионные сигналы на спутники-ретрансляторы подаются с наземного передающего пункта. Для спутника «Экран», например, наземный пункт, расположенный в Подмосковье, оборудован антенной диаметром 12 м и передатчиком мощностью 5 кВт. Передача на спутник ведется в диапазоне 6200 МГц методом частотной модуляции с девиацией частоты ±9 МГц. Наземный пункт связан радиорелейной линией с Общесоюзным телевизионным центром в Останкине.

Особый интерес представляет использование спутников для телефонной и телеграфной связи. Установлено, что объем информации, которую нужно передавать оперативно и с высокой достоверностью, возрастает примерно пропорционально квадрату объема промышленного производства. Число телефонных разговоров также катастрофически растет. Линии проводной связи давно уже не вмещают всей массы информации, на КВ ее тоже уже не передашь, остаются УКВ. Радиорелейные линии с ретрансляторами через каждые 30…50 км отчасти решают проблему, но тянуть радиорелейную линию до Владивостока очень дорого, а до Петропавловска-Камчатского — практически невозможно: надо огибать Охотское море по малонаселенным местам с первозданной природой и суровым климатом. Спутник связи ретранслирует передачу только один раз, и, пожалуйста, готова линия связи Москва — Петропавловск-Камчатский!

Внутрисоюзная система спутниковой связи обеспечивает магистральную связь между крупными промышленными, административными и культурными центрами, а также передачу центральных программ радиовещания и изображений газетных полос из Москвы в различные города и пункты страны. В системе используют те же спутники, что и для ретрансляции телевизионных программ: «Радуга», «Горизонт» и «Молния». Земная ость системы связи содержит базовые станции, оснащенные антеннами диаметром 25 м. Они расположены в районе Москвы и Комсомольска-на-Амуре. Через них организован «космический мост» емкостью 240 двусторонних телефонных каналов между западными и восточными районами страны. Телефонные сообщения передаются цифровыми методами с использованием импульсно-кодовой модуляции. Пропускная способность высокочастотного ствола спутникового ретранслятора составляет 40 Мбит/с, что соответствует примерно 600 телефонным каналам. Через один ствол может одновременно работать до 36 наземных станций. Большинство наземных периферийных станций организовано на базе приемных телевизионных станций системы «Орбита».

Некоторые земные станции связи работают через спутники «Горизонт» с использованием аппаратуры «Группа», обеспечивающей передачу в цифровой форме группы из восьми телефонных каналов со скоростью 512 кбит/с. При этом общее число групп, передаваемое в одном стволе, достигает 24, что соответствует пропускной способности ствола около 200 телефонных каналов. Спутник «Горизонт» позволяет работать одновременно в шести стволах.

Велики успехи нашей страны в области создания международных спутниковых систем связи. 15 ноября 1971 года представители девяти социалистических государств: Болгарии, Венгрии, ГДР, Кубы, Монголии, Польши, Румынии, Советского Союза и Чехословакии подписали соглашение о создании международной организации «Интерспутник». Она предназначена для удовлетворения потребности стран в обмене телевизионными и радиовещательными программами, телефонно-телеграфными сообщениями и другими видами информации с помощью системы космической связи. Впоследствии членами «Интерспутника» стали Социалистическая Республика Вьетнам, Народная Демократическая Республика Йемен и Демократическая Республика Афганистан.

Организация пока не имеет своих спутников. Она арендует на льготных условиях отдельные каналы и стволы спутников связи, принадлежащих Советскому Союзу. Земные же станции принадлежат построившим их странам. Первая за пределами СССР станция была сооружена на Кубе, вторая — в Чехословакии, под Прагой. Теперь такие станции имеют все страны, участвующие в соглашении.

В нашей стране сооружен Международный центр спутниковой связи «Дубна», предназначенный для работы в системах «Интерспутник» и «Интелсат» через геостационарные спутники Атлантического региона «Горизонт» и «Интелсат — IV А». Работа в системе «Интелсат» предполагает обмен телевизионными программами со странами Запада. Благодаря спутниковым системам налаживается телевизионный обмен в глобальном масштабе. Просмотр футбольного матча, состоявшегося, например, в Мексике, для москвичей стал обыденным явлением!

Как же видоизменялись и развивались спутники связи я странах Запада? Первый англо-американский спутник связи, запущенный в конце 50-х годов, «Эхо-1» был крайне прост. После вывода на орбиту крошечного неуправляемого спутника открывался клапан помещенного в нем баллончика со сжатым газом и надувалась пластиковая оболочка, покрытая тонким слоем алюминиевой пудры. Получался шар-отражатель диаметром 30 м. Никаких активных ретрансляторов на спутнике не было. Сигнал с Земли излучался мощными передатчиками с остронаправленными антеннами, и такими же огромными антеннами были оснащены сверхчувствительные приемники, охлаждаемые жидким азотом для уменьшения собственных тепловых шумов.

Спутник «Эхо-1» имел одно неоспоримое достоинство: пропускная способность его была неограниченна, ведь пассивному отражателю безразлично, сколько и каких сигналов от него отражается. Просуществовав на орбите недолгое время, легкая оболочка затормозилась даже в крайне разреженном газе верхней атмосферы и сгорела, войдя в более плотные слои.

С 1965 года страны Запада используют серию связных спутников «Интелсат», размещаемых на геостационарных орбитах над Тихим, Атлантическим и Индийским океанами. Спутники обслуживают систему глобальной связи между любыми двумя точками земной поверхности, за исключением полярных областей. Международный консорциум спутниковой связи «Интелсат». образованный в 1964 году, к 1972 году имел в эксплуатации 72 наземные станции, размещенные в 48 странах. А вот как примерно за те же годы изменялись параметры спутников. Первая цифра относится к спутнику «Интелсат-1», запущенному в 1965 году, а вторая — к спутнику четвертого поколения «Интелсат-4». Пропускная способность возросла с 240 телефонных каналов и одного телевизионного до 9000 телефонных и 12 телевизионных. Энерговооруженность спутника возросла с 46 Вт до полукиловатта, а срок активного существования увеличился с полутора до семи лет.

«Интелсат-4» представляет собой внушительное сооружение цилиндрической формы диаметром около 2,5 и высотой около 3 м. Масса его близка к полутора тоннам, включая заряд твердого топлива для собственного двигателя и 120-килограммовый запас гидразина для работы малых реактивных двигателей ориентации и коррекции орбиты. Для вывода в космос этого тяжелого спутника нужна мощная ракета-носитель «Атлас-Центавр». Но и она выводит его только на промежуточную эллиптическую орбиту с высотой в перигее 640 км и в апогее 35900 км. На конечную геостационарную орбиту спутник переходит с помощью собственного двигателя. Корпус спутника издали напоминает вращающийся зеркальный цилиндр. Вся цилиндрическая поверхность покрыта мозаикой из 45 000 солнечных элементов, каждый площадью около 2 см2. Может возникнуть вопрос: а почему солнечные элементы не расположены на плоских панелях, которые мы привыкли видеть на снимках многих КЛА? Дело в том, что «Интелсат» стабилизирован на орбите точно так же, как стабилизирован волчок, вертящийся на столе. Спутник вращается вокруг оси цилиндрического корпуса с частотой 1 об/с. Представьте, каково было бы там космонавтам! Но, по счастью, их на спутнике нет, а на работе аппаратуры вращение никак не отражается.

Ретрансляционная радиосистема спутника работает на прием в диапазоне частот 5932…6418 МГц, а на передачу — 3707…4193 МГц. Используемая ширина полосы ретранслируемых частот достигает 432 МГц. Поскольку сразу всю эту полосу передать трудно, система содержит двенадцать 750-канальных ретрансляторов, работающих в смежных частотных диапазонах с шириной полосы 36 МГц. Этой полосы как раз достаточно для передачи одного канала цветного телевидения. При телефонной связи для каждого канала отводится полоса частот 4 кГц. В телефонных каналах можно передавать и цифровую информацию.

Антенное хозяйство спутника «Интелсат» содержит шесть антенн. Тут уж действительно приходится говорить об антенном хозяйстве. Четыре рупорные антенны две передающие и две приемные — постоянно подключены к своим ретрансляторам. Диаграмма направленности рупорных антенн захватывает всю видимую со спутника поверхность земного шара. Еще две антенны с параболическими зеркалами-рефлекторами имеют более узкую диаграмму направленности с шириной луча около 4,5°. Они могут наводиться на определенный участок земной поверхности радиусом примерно 1600 км. Центры «освещаемых» участков могут находиться в любом месте видимой со спутника поверхности Земли. Таким образом, можно обеспечить ретрансляцию сигналов между двумя странами или двумя регионами одной страны. Разумеется, столь сложный и совершенный связной спутник недешев. Изготовление одного летного образца спутника обошлось в 13,5, а запуск — в 16 млн. долларов. Тем не менее программа «Интелсат» предусматривает запуск восьми ИСЗ. Но надо сказать, что затраты быстро окупаются платой за телефонные переговоры и за аренду телевизионных каналов.

Большие спутники-ретрансляторы с мощными передатчиками, например «Релей», «Синхом», «Телстар» и уже упомянутый «Интелсат», позволяют не только передавать огромную информацию на межконтинентальные расстояния, но решают и ряд других задач. Одна из важнейших — обеспечение постоянной и устойчивой связи с малыми подвижными объектами кораблями, самолетами или лаже геологической партией. Для решения этой задачи можно использовать УКВ, но только на малых расстояниях, в пределах прямой видимости. На УКВ работают, например, служба скорой помощи, такси. Но это в городах, где дальность связи не превышает 10…15 км. Как быть, скажем, в тайге или в океане? Раньше выход был один — короткие волны. Но условия прохождения их неустойчивы, помех много, нужны большие мощности и длинные антенны. Тут уж не до портативности. Сейчас передать сигнал па связной спутник можно с помощью карманной радиостанции с короткой штыревой антенной. Не верите? Мне самому трудно было поверить, пока я не послушал сигналы радиолюбительских станций, ретранслируемые через ИСЗ. Приемник был самодельным, размером чуть больше карманного фонарика, а антенной служил отрезок провода длиной 2,5 м.

Теперь свои спутники имеют даже радиолюбители. И аппаратуру для ретрансляции сигналов они изготовили сами в студенческих конструкторских бюро московских институтов и в лабораториях клубов ДОСААФ. Первые два спутника «Радио-1» и «Радио-2» были отправлены «попутным грузом» с очередным исследовательским ИСЗ «Космос-1045» и выведены на орбиту 26 октября 1978 года.

Доступ к ретрансляторам радиолюбительских спутников открыт для всех, кто имеет позывной и личную радиостанцию. Многие зарубежные радиолюбители не замедлили установить радиосвязи через наш спутник, точно так же, как и наши радиолюбители «работали» через американские спутники серии «Оскар». Читатели, которые захотят подробнее познакомиться с радиолюбительскими ИСЗ, могут прочесть о них в первых номерах журнала «Радио» за 1979 год. Радиолюбительство, это, конечно же, очень интересно, но ИСЗ решают и чрезвычайно важные народнохозяйственные задачи.

Другие профессии космической радиоэлектроники

Казалось бы, парадокс: чтобы найти полезные ископаемые, нужно копать землю; чтобы узнать степень созревания хлебов, надо сорвать колосок, а чтобы узнать погоду, следует выйти на улицу. Почему все эти совершенно земные дела надо делать со спутника? Смысл в этом, оказывается, очень большой. Возьмем в качестве примера погоду. Если сейчас небо затянуто тучами и идет дождь, то через полдня небо может расчиститься и засияет солнце, а может произойти и другое: тучи сгустятся еще сильнее и дождь зарядит на неделю. Как узнать, какая погода нас ожидает? А ведь знание погоды очень важно для правильного планирования сельскохозяйственных работ, строительства, навигации кораблей и самолетов. А сколько здоровья городским жителям сохранит правильный прогноз погоды! Но чтобы он был правильным, надо собрать информацию со многих тысяч метеорологических наблюдательных пунктов, обработать эти данные, составить карту погоды по всей территории страны, континента, полушария и уж только тогда заниматься прогнозом. Построить такую огромную сеть датчиков, непосредственно измеряющих параметры атмосферы, практически невозможно, особенно если учесть, что большая часть воздушного океана расположена над водной поверхностью. А наблюдения в отдельных точках дают пеструю, мозаичную картину с большими отклонениями от истинной погоды.

Проблему решают метеорологические спутники серий «Метеор» (СССР), «Нимбус» (США), и др. Взгляд сверху с большой высоты позволяет прежде всего получать совершенно точное распределение облачности по огромным территориям. Облачность очень хорошо отображает атмосферные процессы: фронты, циклоны, воздушные течения. Датчики ИК излучения, установленные на спутнике, дают картину теплового баланса планеты, что позволяет заранее обнаруживать очаги возникновения циклонов, ураганов, конфигурацию морских течений, «отапливающих» побережья. Подсчитано, что годовой выигрыш хозяйства страны только за счет долгосрочных прогнозов погоды для транспорта, контроля водных ресурсов, борьбы с паводками и наводнениями, своевременного получения штормовых предупреждений в четырнадцатикратном размере превышает расходы на создание и эксплуатацию метеорологических спутников.

Мы уже привыкли, слушая сводку погоды, встречать сообщения о том, что сведения получены со спутника «Метеор», и знаем, что сведения эти достоверные. В околоземном пространстве работает несколько метеорологических станций «Метеор-2», относящихся ко второму поколению спутников погоды. С их борта передаются данные о распределении облачности, ледового и снежного покровов на земном шаре, глобальные данные о температурных полях и высотах верхней границы облаков, температуре водной поверхности.

Передача ведется по двум радиолиниям. По одной из них, работающей в диапазоне 460…470 МГц, передается поток комплексной метеорологической и радиометрической информации, по другой, в диапазоне 137…138 МГц, ведется непосредственная передача локальных телевизионных изображений. Прием глобальной информации осуществляется на наземных центрах в Москве, Новосибирске и Хабаровске. Имеется и большая сеть автономных приемных пунктов, которые могут находиться в любом пункте страны и даже на судах в море. На них можно получить телевизионное изображение текущего состояния облачного, ледового и снежного покровов в режиме непосредственной передачи при пролете спутника через зону радиовидимости из данного приемного пункта. Все эти данные, разумеется, могут быть приняты и на зарубежных пунктах приема! Основные же массивы глобальной информации подвергаются обработке в наземных центрах. Обработка предусматривает коррекцию геометрических и других нелинейных искажений снимков, их географическую и временную привязку изображений к районам съемки. Изображения, полученные от точных сканирующих устройств с калибровочными сигналами, фотометрируются, преобразуются в цифровую форму и направляются в память ЭВМ.

После первичной обработки массивы информации объемом в сотни миллионов бит выдаются специалистам различных направлений для целевой или вторичной обработки. Метеорологи извлекают из нее данные для прогнозов погоды, гидрологи для контроля паводков, наполнения водохранилищ, определения границы таяния снегов, лесники для контроля за лесными пожарами, и т. д.

Метеорологические спутники непрерывно совершенствуются. Их аппаратура пополняется СВЧ устройствами для всепогодного наблюдения ледового и снежного покровов, определения влагосодержания облачности, обнаружения зон осадков, а также другими полезными приборами. Как же устроены столь полезные помощники метеорологов? На рисунке показан один из метеорологических спутников. Большие панели солнечных элементов устанавливаются перпендикулярно направлению на Солнце и обеспечивают электропитание аппаратуры и подзаряд аккумуляторов, включаемых в работу на ночной стороне Земли. Число элементов более 10000, а мощность энергетической установки около 0,5 кВт. В нижней части конструкции размещена платформа с аппаратурой. Система ориентации с ИК датчиками горизонта всегда разворачивает спутник так, чтобы платформа была обращена к Земле.

Метеорологический спутник:

1 — антенна; 2 — телевизионная камера; 3 — инфракрасный интерференционный спектрометр; 4 — радиометр, регистрирующий излучение от верхней части облаков; 5 — ультрафиолетовый спектрометр обратного рассеивания; 6 — радиометр для измерений над освещенной и теневой сторонами Земли; 7 — спектрометр с фильтром и фотометрическим клином; 8 — инфракрасный спектрометр; 9 — детектор ультрафиолетового излучения Солнца;  10 — радиометры с ограничителями избирательного действия

Спутник выводится на приполярную круговую орбиту высотой 1100 км и наклонением к плоскости экватора 80°. С этой орбиты спутник дважды за сутки «осматривает» практически всю поверхность Земли, ведь плоскость орбиты в пространстве сохраняет ориентацию, а Земля поворачивается в соответствии с суточным вращением вокруг оси.

Основное оборудование спутника — три телевизионные камеры с разрешающей способностью на поверхности Земли 900 м. Сигналы камер записываются на бортовой видеомагнитофон и передаются на Землю при пролете спутника в зоне радиовидимости со станции сложения. Четвертая телевизионная камера с худшей разрешающей способностью (3,2 км) непрерывно передает изображение Земли для любых возможных пользователей. В ночное время изображение облачного покрова Земли получают сканирующим ИК радиометром, работающим в диапазоне длин волн 3,4…4,2 мкм. Всего же на спутнике установлено 11 различных метеорологических приборов. Полный объем информации, «сбрасываемой» за один сеанс связи со спутником, может достигать 150 Мбит.

Расположение спутников системы « Метеор » на орбите (спутник слева ведет телевизионную, спутник справа инфракрасную съемку).

Перед прогнозом погоды в последних известиях по телевидению и радио иногда сообщают и о стихийных бедствиях, авариях судов и самолетов. Несмотря на наличие самых современных технических средств навигации, число аварий остается значительным: ежегодно в результате кораблекрушений, столкновений и пожаров гибнут сотни судов. Спасение терпящих бедствие остается важнейшей межгосударственной задачей. И здесь свой немалый вклад вносит космическая радиоэлектроника. Запуском советского ИСЗ «Космос-1383» 30 июня 1982 года завершился первый этап создания космической системы поиска аварийных судов и самолетов. Она названа по начальным буквам слов — КОСПАС. Параллельно в США, Канаде и Франции создана аналогичная спутниковая система САРСАТ. Оба проекта объединяются в совместную систему КОСПАС-САРСАТ. Как же действует эта система?

Спутники помогают в обнаружении кораблекрушений.

Каждое судно, самолет или другой объект оснащаются небольшими аварийными радиопередатчиками, работающими на специально отведенных для этой цели частотах 121,5 и 406 МГц метрового и дециметрового диапазонов волн. Передатчик включается в случае аварии и автоматически посылает сигнал бедствия на один из ИСЗ, периодически появляющихся в зоне радиовидимости из любой точки поверхности планеты. Принятый спутником сигнал некоторое время хранится в бортовом запоминающем устройстве и при пролете спутника над пунктом приема информации «сбрасывается» уже на частоте линии связи со спутником 1544.5 МГц. Пункты приема, оснащенные отечественной аппаратурой, развернуты в Москве, Архангельске, Владивостоке и Новосибирске. Пункты соединены каналами связи с координационным центром КОСПАС. В его функции входят обработка данных и оповещение поисково-спасательных служб соответствующих стран.

Одновременно с приемом сигнала с ИСЗ определяются и координаты терпящего бедствие объекта, что и обеспечивает быстрое и эффективное оказание помощи. Простейшие аварийные радиобуи АРБ-121,5 передают в эфир немодулированный сигнал на частоте 121,5 МГц. Таких буев установлено уже несколько сотен тысяч. Даже смодулированного сигнала достаточно, чтобы бортовая спутниковая аппаратура определила координаты буя с точностью до 20 км по доплеровскому сдвигу частот. Этого вполне достаточно, поскольку бортовые приемники-пеленгаторы поисковых судов и самолетов могут принять сигнал буя с расстояния в 30 км. Более совершенно устройство радиобуя АРБ-406. Он оснащен двумя передатчиками, один из которых на частоте 406 МГц посылает сигнал на спутник, а другой, работающий на частоте 121,5 МГЦ, служит «приводным маяком» для пеленгаторов спасательных средств. На радиобуе имеется и запоминающее устройство, хранящее основную информацию: название судна, государственную принадлежность, координаты, характер аварии. Эта информация передается на ИСЗ и далее — в координационный центр.

Сразу после запуска ИСЗ «Космос-1383» продемонстрировал высокую эффективность системы. Только за первые три месяца работы удалось спасти жизнь двенадцати гражданам Канады, США и Англии. Журнал «Тайм» писал о «чуде космического века». 24 марта 1983 года к первому советскому спутнику-спасателю присоединился второй, «Космос-1447», а 28 марта — американский ИСЗ NOAA-8. Через год на счету космической системы были сотни спасенных жизней, и более 20 стран выразили желание присоединиться к ней.

Немалую роль играют ИСЗ и в деле пополнения наших знаний о геологических, гидрофизических, агробиологических и многих других характеристиках поверхности Земли. Как вы думаете, что раньше было на месте пустыни Сахара? Сейчас — это огромное море песка, кое-где перемежаемого выходами коренных горных пород. Однажды с одной из АМС, удалившейся на расстояние нескольких десятков тысяч километров, было передано телевизионное изображение Земли. Мелких деталей на нем уже не было заметно, а только что упомянутые выходы горных пород оказались расположенными правильным кольцом и очерчивали контуры гигантского древнего горного цирка. О его существовании и не подозревали. Надо было удалиться в космос, чтобы увидеть это древнее геологическое образование. Аналогичные кольцевые структуры были обнаружены и на снимках, сделанных с орбитальных станций. Они помогли геологам найти новые месторождения меди. Снимки Ферганской долины, полученные нашими космонавтами на пилотируемых орбитальных станциях, помогли геологам правильно расположить разведочные буровые скважины, что сэкономило миллионы рублей, ведь каждая скважина обходится очень недешево!

Спутники помогают обнаруживать полезные ископаемые.

Имеется много других примеров чрезвычайной ценности космической информации о Земле. Когда густоту цвета на снимке Каспийского моря сопоставили с картой глубин, получили почти точное совпадение. А один снимок Аральского моря позволил сразу установить степень его обмеления из-за расхода воды рек Сыр-Дарьи и Аму-Дарьи на орошение поливных среднеазиатских земель. Один снимок заменил работу многих экспедиций!

В сельском хозяйстве сразу оценили выгоду использования спутниковой информации. На обнаружение вспышек заболеваний сельскохозяйственных культур и их поражения вредителями исследовательская служба США тратит ежегодно 3 млн. долларов. Ту же работу можно выполнить гораздо дешевле, используя космические снимки. Поля изменяют цвет в зависимости от состояния культуры и степени ее созревания. Важно и то, что контроль ведется не выборочно, на отдельных участках полей, а сразу по всей площади. Правильное определение сроков созревания крайне важно, поскольку снижение потерь урожая только на 1 % выражается для США суммой в размере 75 млн. долларов. В одной только Калифорнии в 1970 году сэкономили 5 млн. долларов благодаря использованию космической информации для определения степени зрелости винограда.

С орбиты ИСЗ очень хорошо видны лесные пожары, а своевременное их обнаружение очень важно.

… пожары.

… степень зрелости сельскохозяйственных культур.

Столь очевидные выгоды привели к разработке специализированного спутника для изучения и исследования природных ресурсов. Такой спутник ERTS-1 был запушен в США в 1972 году. Это довольно тяжелый спутник весом около тонны, диаметром 3,05 и высотой 3,35 м. Конструкция его во многом напоминает уже описанный метеорологический ИСЗ, и орбита имеет похожие параметры.

Спутник ERTS-1 был оснащен тремя телевизионными камерами электронного телевидения RBV с видиконами в качестве фотоприемников и многоканальной оптико-механической телевизионной камерой MSS. Надо сказать, что электронное телевидение в космосе себя не оправдало, и камеры RBV вышли из строя сразу после запуска из-за пробоя высоковольтной изоляции. Зато система механического телевидения работала более года и буквально «засыпала» информацией центр обработки, с лихвой окупив все затраты. Надо отметить, что из-за обилия информации полностью удавалось обрабатывать всего лишь 20 % получаемых снимков.

Остановимся подробнее на системе механического телевидения MSS, которую часто называют сканером. Она «нацелена» в одну точку на поверхности Земли, но благодаря качающемуся зеркалу эта точка перемещается по строке поперек направления движения спутника. Ширина строки составляет на поверхности Земли 185 км (100 миль). «Сняв» одну строку, сканер «прочерчивает» следующую, но весь ИСЗ успевает за это время немного продвинуться вперед по орбите, осуществляя развертку кадра. Качающееся зеркало совершает 15,2 колебаний в секунду. Угол качания составляет всего ± 2,9°. Во время рабочего ход для большей плавности зеркало движется по инерции, а ударившись о демпферы, возвращается в исходное положение электромагнитом. Это эллиптическое зеркало с размерами 23 х 23 см было изготовлено из полированного бериллия с серебряным покрытием.

Свет, отраженный качающимся зеркалом, попадает в зеркальную телескопическую систему Касеегрена диаметром 23 см, которая фокусирует его на волоконно-оптическую систему, распределяющую свет по фотодетекторам. Каждое качание зеркала дает сразу шесть строк изображения, снимаемых шестью системами фотодетекторов. А каждая система содержит четыре фотодетектора, рассчитанные на разные диапазоны спектра: 0,5…0,6 мкм (сине-зеленый), 0,6…0,7 мкм (красно-желтый), 0,7…0,8 мкм (красный) и 0,8…1,1 мкм (инфракрасный). Таким образом, всего в камере 24 световода и 24 фотоприемника.

Видеосигналы камеры MSS преобразуются в цифровую форму бортовым мультиплексером со скоростью 15 Мбит/с. Используются шестиразрядные слова-байты. Каждый формат (как бы предложение) содержит 25 слов: первое для синхронизации, остальные 24 для передачи данных от фотоприемников. Видеосигналы в цифровой форме либо сразу передаются на Землю, либо записываются бортовым магнитофоном, чтобы быть переданными потом, при пролете над станцией слежения.

Механическая спутниковая телевизионная система MSS .

Описанная система позволила получить очень хорошее разрешение на местности: около 60..70 м. На снимках, которые воспроизводятся в виде квадратных кадров размером 100 х 100 миль, можно рассмотреть отдельные корабли в океане или стоящие у причалов, шоссейные и железные дороги, строения, отдельные группы деревьев. После геометрической коррекции искажений и привязки к опорным точкам на местности снимки вполне могут использоваться для целей картографии.

На спутнике установлена и еще одна интересная система сбора информации с наземных и морских платформ. Платформы устанавливают в удаленных и труднодоступных местах, и они регистрируют сейсмические колебания, а главным образом — метеорологические данные. С помощью морских плавающих платформ-буев собираются данные о ветре, волнении, прохождении катастрофических волн цунами, метеопараметрах атмосферы и т. д. Каждая платформа оборудована небольшими радиопередатчиком и дежурным приемником. Спутник, дважды в сутки пролетая над каждой платформой, посылает сигнал запроса, по которому включается передатчик, и накопленная информация в цифровом виде передается на спутник. Данные со всех платформ накапливаются и передаются спутником в центр обработки.

Если линия связи платформа-спутник узкополосна и имеет пропускную способность не более 0,1 кбит/с, работая на частоте 401,9 МГц, то линия передачи данных со спутника на центр обработки должна пропускать очень большой объем информации. Передача ведется на волнах десятисантиметрового диапазона со скоростью 15 Мбит/с. Полоса частот основного и резервного каналов связи достигает 20 МГц. Дополнительно спутник имеет командный служебный радиоканал, который предназначен для управления его системами и работает в диапазоне MB.

На этом закончим рассказ о первом (и самом простом) ИСЗ для исследования природных ресурсов. Сейчас разрабатываются и используются более сложные и совершенные спутники и системы. Сообщалось, например, о разработке сканера, работающего в 24 спектральных диапазонах от ультрафиолетовой по дальней инфракрасной области. Все шире используется всепогодная радиометрическая и радиолокационная аппаратура. Радиометр (приемник собственного теплового радиоизлучения Земли), работающий на сантиметровых волнах, позволяет обнаруживать очаги лесных пожаров и вулканической деятельности, составлять карты сельскохозяйственных угодий и определять влажность почвы. Он оказался незаменимым в ледовой разведке, ведь кажущаяся яркостная температура льда оказалась почти на 100° выше температуры открытой воды.

Еще большие возможности имеет радиолокатор бокового обзора с синтезированной апертурой. Облака для этих приборов не помеха.

Много аппаратуры для исследования природных ресурсов и решения других народнохозяйственных задач размещается на отечественных ИСЗ «Метеор — Природа», регулярно запускаемых и эксплуатируемых с 1978 года. Они созданы на базе метеорологического спутника «Метеор», но существенно отличаются от него составом аппаратуры, параметрами орбиты и другими данными.

Искусственные спутники Земли для исследования природных ресурсов запускают на синхронно-солнечные орбиты. При таких орбитах ИСЗ пролетает над каждой точкой земной поверхности в одно и то же местное время. Высота Солнца при съемке остается одной и той же. Это даст возможность наблюдать поверхность в одинаковых условиях и легко выявлять произошедшие изменения ее состояния (например, появление всходов, их созревание, изменение береговой линии рек, озер и водохранилищ и т. д.). Высота орбит составляет около 650 км при угле наклонения около 98°, т. е. спутник пролетает и через полярные области планеты.

Основной аппаратурой для съемки поверхности Земли остается многоспектральная телевизионная аппаратура с механическим сканированием. Но уже имеются разработки приборов и с электронным сканированием. В них используются линейка светоприемников и интегральное электронное устройство сканирования, выполненное на приборах с зарядовой связью. Принцип действия линеек состоит в том, что по мере поступления тактовых импульсов «считывается» заряд с каждой из последующих ячеек-фотоприемников и таким образом разворачивается строка изображения. Используют как системы низкого разрешения, позволяющие наблюдать крупномасштабные образования при ширине полосы обзора 2100…2400 км, так и системы среднего и высокого разрешений для получения детальных изображений.

Космическая информация широко используется в народном хозяйстве нашей страны. Созданы, например, геологические карты в масштабах 1:2500000 и 1:5000000, которые невозможно было бы создать в сжатые сроки другими методами. Немало народнохозяйственной аппаратуры устанавливают на орбитальных космических станциях. Вот, например, состав такой аппаратуры: многоспектральная аэрофотокамера; ИК спектрометр; многоканальный сканер; СВЧ радиометр и измеритель коэффициента отражения от земных покровов (скаттерометр) трехсантиметрового диапазона; СВЧ радиометр диапазона ДМВ.

Существуют и другие разработки. Например, метеорологический спутник на геостационарной орбите. Он не только каждые 20 мин получает и передает в центр обработки изображение облачного покрова видимой половины Земли, но служит еще и ретранслятором. Обработанные снимки снова передаются на спутник, а оттуда ретранслируются любым возможным пользователям информации.

Рассказ о спутниках и межпланетных станциях можно продолжать до бесконечности, но тогда и эта книга никогда не имела бы конца. Так что лучше вовремя остановиться, a те из читателей, кто заинтересуется космической электроникой, могут прочитать о ней в популярных или научных изданиях.