В этой главе автор уподобляется тому нудному собеседнику, который на вопрос: «Как дела?» — подробно рассказывает о них. В ней автор напомнит читателю о мире, в котором мы с вами живем, и постарается показать, что он все больше становится миром электроники.
Как популярно рассказать об электронике?
Задал этот вопрос и задумался: с чего начать? Посмотрел на часы. Они показывали 21:18. Мерно мигали секундные точки. Выключился левый нижний сегмент у восьмерки и стало 21:19. В свете настольной лампы цифры на жидкокристаллическом индикаторе часов видны очень контрастно, а проводники, идущие к сегментам цифр, разглядеть трудно. Каким же тонким должен быть слой металла, напыленный на стекло, чтобы быть прозрачным! Пока разглядывал часы, снова включился левый нижний сегмент последней цифры и выключился средний. Получился нуль. Предпоследняя цифра из единицы превратилась в двойку — 21:20. Как же это все происходит? Об этом я и расскажу в одной из следующих глав.
А что сказать сейчас? Потянулся к стоящему на столе маленькому транзисторному приемнику. На средних волнах уже началось дальнее прохождение (днем его не бывает). Ленинград передавал классическую музыку, Киев-последние известия на украинском языке. Бухарест — рок-концерт, Анкара — лирические турецкие мелодии. В эфире жизнь била ключом!
Снова взялся за ручку. Написал несколько слов опять разбежались мысли. Может быть попробовать сначала диктовать текст в микрофон магнитофона? Достал магнитофон, благо, что они теперь маленькие, портативные. Поставил кассету. Пока размышлял над тем, что сказать, часы уже показывали 21:36. Кончилась программа «Время», передаваемая Всесоюзным телевидением, и начался художественный фильм. Домашние, которым совсем неведомы мои творческие муки, зовут смотреть телевизор. Все! Завтра звоню в редакцию, для этого достаточно нажать всего одну кнопку — телефон редакции давно записан в электронной памяти телефонного аппарата, и отказываюсь от книги.
Читателю, видимо, уже ясен вывод из написанного. Многое из того, что нас окружает, — электронные приборы или имеющие какое-то отношение к электронике. Но есть исключения (например, авторучка).
Много лет назад мне довелось прочесть научно-фантастический рассказ, в котором главный герой, пытаясь усовершенствовать авторучку, сначала снабдил ее запасом чернил на двести лет, затем перешел к диктофонам и, наконец, к аппарату, записывающему непосредственно мысли. И что же записал этот аппарат? Мысли автора, не имеющие никакого отношения к сочиняемому рассказу: как бы не село напряжение в сети, что и как надо усовершенствовать в конструкции аппарата и тому подобное. Значит, авторучка все-таки важна. Она служит как бы фильтром, пропускающим на бумагу не весь сумбур мыслей автора, а только то, что нужно именно для сочиняемого рассказа. Пожалуй, фильтрует все-таки не ручка, а сам автор, но ручка в немалой степени способствует этому процессу, благодаря своей ограниченной «пропускной способности», ведь она порой не поспевает за мыслью автора.
И фильтрация, и пропускная способность — термины, имеющие непосредственное отношение к радиоэлектронике. Благодаря фильтрам радиоприемник воспроизводит передачу только одной радиостанции, а не всех сразу, телевизор даст четкое изображение, передаваемое только по одной программе, а когда вы пользуетесь электробритвой, изображение не превращается в мешанину цветов и зигзагов.
Что? У вас именно так и происходит? Электробритва создаст помехи телевизионному приему? Искрит коллектор мотора в электробритве? Искры возбуждают электрические колебания, которые через проводку сети попадают в телевизор? Проверьте исправность фильтров в электробритве и телевизоре помеха наверняка будет устранена.
Но мы отвлеклись, сейчас разговор не о том, как отремонтировать телевизор (хотя это не менее важно и не менее интересно, и читатель, наверное, этому научится), а о том, как написать популярную книгу по радиоэлектронике.
Процесс этот в общих чертах уже ясен: каждую фразу нужно сформулировать и отредактировать в уме, записать на бумагу, еще раз отредактировать и переписать в окончательном виде. Правда, когда «окончательный» вариант страницы будет готов, его, возможно, еще раз придется переделать или совсем выкинуть — процесс творчества нескончаем… Автоматизировать эту работу в настоящее время уже можно, разумеется, с помощью электроники. Более того, подобные устройства разработаны. Представьте себе небольшой телевизионный экран (дисплей), а перед ним клавиатуру. Дисплей заключен в металлический корпус, покрашенный неброской серой краской. Рядом стоит прямоугольная металлическая коробка, соединенная кабелем с дисплеем. Это микроЭВМ (электронно-вычислительная машина). Размеры последних моделей микроЭВМ невелики часто ее размещают в одном корпусе с дисплеем, и все устройство занимает объем немногим больше объема пишущей машинки. МикроЭВМ способна обработать и запомнить довольно много информации, например несколько страниц машинописного текста. Если нужно запомнить больше, к ЭВМ присоединяют обычный магнитофон, приспособленный для записи и воспроизведения цифровой информации.
Давайте поработаем на гаком устройстве. Включили. На экране дисплея появился светлый прямоугольник курсор. Он в левом верхнем углу. Нажимая клавиши, набираем первую фразу. Как легко они нажимаются! Под клавишами нет рычагов, как у механической пишущей машинки, а только небольшие электрические контакты.
Чуть дотронулся до клавиши и на экране появляется желаемая буква. А курсор сдвинулся на один шаг вправо и стал показывать место, где появится следующая буква. Кончилась строка — курсор автоматически перескакивает на следующую. Надо оставить место или пропустить строку — сдвиньте курсор в нужную сторону и печатайте. Быстро и бесшумно вы напечатали страницу. Весь текст в цифровой форме находится в памяти ЭВМ и воспроизводится на экране дисплея. Прочитали. Получилось плохо. Подводим курсор к букве или слову, которое надо стереть, и нажимаем кнопку стирания.
Букв как не было! Заполняем пустое место новым текстом. Не умещается? Пожалуйста, не беспокойтесь, пишите! Продолжение текста сдвинется вправо по строке, освободив место для вносимого исправления. Не уместилось на строке освободится другая. Наконец страница переделана, все исправления внесены. Пора перенести эту «электронную страницу» на бумагу. Ничего нет проще! Подключаем к ЭВМ буквопечатающее устройство, похожее на пишущую машинку без клавиатуры, вставляем в него лист бумаги и нажимаем кнопку вывода информации на печать. Пока все. Отдыхайте, если это вам удастся, потому что из печатающего устройства, или терминала, как часто называют самые разные оконечные устройства ЭВМ, раздаются «пулеметные очереди». Негромкие, но «скорострельные». Полминуты и страница отпечатана! Сочиняйте следующую! Вот так эту книгу можно было бы написать, пользуясь современными достижениями электроники.
Когда писались эти строки, персональных ЭВМ не было ни у автора, ни у кого-либо из его знакомых. Но успехи электроники стремительны, и положение может измениться уже к моменту выхода книги в свет!
Утро вечера мудренее
Расставшись с вечерними мыслями об электронике, утром я был в институте. Лаборатория, в которой я работаю, занимается физикой моря. Во время экспедиций мы измеряем соленость, температуру воды, потоки тепла между океаном и атмосферой, скорость ветра у поверхности воды и другие параметры. В остальное время анализируем результаты измерений. Это необходимо, и я кратко расскажу зачем. Наша планета Земля обогревается Солнцем. Но максимальный поток солнечного тепла попадает в экваториальные области. Там солнечные лучи падают отвесно и хорошо поглощаются, но не атмосферой, потому что атмосфера прозрачна, а океаном. Суша поглощает меньше тепла, так как, во-первых, ее площадь меньше площади океанов и, во-вторых, ее отражательная способность выше и часть лучистого потока отражается обратно в космос.
Итак, нагревается вода. От нее нагревается воздух, причем в атмосферу переносится и тепло, и водяной пар. Как говорят ученые, происходит энергомассообмен между океаном и атмосферой. Течения в океанах и ветры в атмосфере разносят тепло по всему земному шару. Так «делается погода». Стоит в Атлантическом океане теплому течению Гольфстрим повернуть чуть-чуть западнее, и у нас — суровая зима, чуть-чуть восточнее — дождливое лето. Только не примите данное высказывание за конкретную практическую рекомендацию! Это пример, показывающий влияние одного из факторов на климат. Для сколько-нибудь уверенного прогноза погоды необходимо учесть еще массу факторов: аномалии температуры, ветров, течений, барических полей (распределение давления атмосферы) и т. д.
Если бы еще Земля была неподвижной! Но она, как справедливо заметил Галилео Галилей, все-таки вертится. Поэтому ветер, задувший на восток, силой Кориолиса, возникающей из-за вращения Земли, отклоняется к югу. По этой же причине все реки в северном полушарии подмывают правые берега, а в южном левые, области низкого давления в атмосфере долго не могут заполниться ветры дуют по кругу, образуя гигантскую воздушную воронку-циклон.
Обыкновенный, не слишком глубокий циклон может, например, определять погоду доброй половины Европы.
Все это, конечно, очень интересно, но какое отношение имеет к радиоэлектронике? Так и я думал, приступая к работе в этой лаборатории. Сразу после создания лаборатории мы начали ее оборудовать. Были нужны приборы. Какие? Конечно, осциллографы, чтобы наблюдать на экране сигналы датчиков температуры, влажности и других параметров, затем — самописцы, чтобы эти сигналы регистрировать, и контрольно-измерительная аппаратура: генераторы сигналов, вольтметры, ампервольтомметры. а также источники питания. Получается стандартный набор радиоэлектронной аппаратуры!
Как измерить скорость ветра на высоте клотика мачты корабля?
Проще всего, казалось бы, подняться на мачту с анемометром. Сам прибор прост: крыльчатка-вертушка и циферблат, как у будильника. Крыльчатка вертится тем быстрее, чем сильнее ветер, стрелка бежит по циферблату. Засекаем по секундомеру промежуток времени, скажем 10 с, и отсчитываем по циферблату анемометра число оборотов крыльчатки за это время. Что может быть проще? Влезаем на мачту каждые 15 мин, поскольку измерения надо производить часто, держа в одной руке чашечный анемометр, в другой-секундомер. Отчаянности-то для этого может быть и хватит, но на мачте холодно, ветер пронизывает до костей, держаться за мачту нечем (руки заняты), а как записывать показания? Выход один: крыльчатку закрепить постоянно на мачте корабля, сделать вместо шестеренок «будильника» электрический датчик оборотов и провести вниз по мачте провода. А внизу, в тепле, в лаборатории «корабля погоды» установить индикатор скорости ветра, да не механический, а электронный с цифровым отсчетом, чтобы он сразу показывал скорость ветра в метрах в секунду.
Не буду утомлять читателя описанием других датчиков-датчиков температуры и влажности: теперь они тоже электронные и соединяются проводами с индикаторами, расположенными в лаборатории. И здесь электроника! Пойдем дальше — измерять параметры волн вблизи корабля очень плохо, даже если корабль лежит в дрейфе. Он качается и, качаясь, создает собственные волны. Они накладываются на набегающие, возникает интерференция волн, и полная картина волнового поля искажается до неузнаваемости.
Нужен буй с автономным волнографом, плавающий где-то вдали от корабля. На буе устанавливают и другие приборы. А как передать информацию на корабль? Конечно, по радио! А зачем тогда корабль? Действительно, вроде бы уже и не нужен. Недавние проекты сбора гидрометеопараметров предусматривают выбрасывание в море до тысячи свободно плавающих буев. Информацию о них собирает по радио специальный спутник. Да, да, искусственный спутник Земли, несколько раз в сутки пролетающий над этими буями и «снимающий» с них накопленную информацию, которая записана на магнитной ленте или в полупроводниковой «памяти» буя. Здесь уже сплошная радиоэлектроника.
Если любого зашедшего в нашу лабораторию спросить, чем здесь занимаются, он посмотрит на наши приборы и, не колеблясь, ответит: радиоэлектроникой. И будет прав. Хотя занимаемся-то мы физикой моря. Подобное вы можете увидеть и в любой другой научной лаборатории, работающей в любой области науки или техники.
И еще один важный момент (опять возвращаюсь в нашу лабораторию). Всю информацию, которую собирают корабли погоды, искусственные спутники Земли, наземные метеостанции, надо обработать. Осмыслить ее невозможно ни одному человеку, ни даже целому коллективу, так ее много. Ну, может быть, коллектив это и сделает недавно мы закончили обработку результатов позапрошлогодней экспедиции на Каспийское море, но погода с тех пор уже изменилась, и изменялась она каждый день, так что теперь наши данные пригодны лишь для научных выводов и обобщений, для чего, собственно, они и собирались. Текущую информацию надо обрабатывать быстро, только тогда результаты обработки будут иметь практическую ценность (например, в виде прогноза погоды). Сделать это может лишь сверхбыстродействующий электронный мозг, ЭВМ или компьютер. Здесь уже самая настоящая электроника!
Но может быть, в других областях науки и техники все иначе?
Давайте посмотрим.
Как найти область науки или техники, где не используется электроника?
Размышляя о книге и об электронике в метро на обратном пути с работы автор подумал: транспорт! Моторы, колеса, электрическая тяга… Это же не электроника, а электротехника! Стал присматриваться и прислушиваться, почитал в последующие дни специальную литературу — одним словом, собрал кое-какую информацию. И что же? В метро широко внедряются электронные автоматические системы управления подвижным составом. Этих систем много, например САММ (система автоведения Московского метрополитена), КСАУДП (комплексная система автоматического управления движением поездов). В эти системы входят датчики скорости и положения поездов, линии связи, управляющие ЭВМ. Машинисту поезда теперь не надо задумываться, в какой момент нажать рукоятку тормоза, чтобы остановить головной вагон в заданном месте. За него это сделает электроника. Обратите внимание, как теперь тормозят поезда метро. Точно, плавно, ошибка при остановке состава измеряется сантиметрами! При разгоне поезда надо последовательно замыкать секции пусковых реостатов и переключать обмотки двигателей. Это тоже делает электронная автоматика, при этом экономя электроэнергию. Что же остается делать машинисту? Наблюдать за посадкой пассажиров, закрывать двери. И обязательно вмешиваться в случае каких-либо неполадок в автоматических системах. Теперь поговаривают уже о полностью автоматическом вождении поездов.
Обратимся к железнодорожному транспорту. Вам никогда не приходилось стоять вечером на пешеходном мостике, перекинутом через большую железнодорожную станцию? Множество путей, прожекторов, море огней разноцветных светофоров, стрелки, пересечения, слияния, разветвления рельсов, кое-где стоят составы, движутся маневровые локомотивы, на большой скорости проносятся транзитные и скорые поезда. Как же во всем этом разобраться? Кажется, ошибись где-то на мгновенье — и строгий четкий порядок превратится в хаос. А ошибаться нельзя: ошибки на железнодорожном транспорте приводят к крушениям.
Всем хозяйством железнодорожной станции управляют маневровый диспетчер и дежурный по станции. Слышны переговоры диспетчерской связи с машинистами поездов. Горит разноцветными лампочками и линиями большой пульт-схема станции. Диспетчер на пульте «набирает» маршрут — определяет путь следования поезда по всему многообразию путей. В соответствии с его командами переводятся стрелки, переключаются огни светофоров, автоматически проверяется занятость путей, и так на всей огромной территории станции. Ошибок быть не должно, и их практически не бывает.
А если и ошибется диспетчер, его поправит автоматика. Она не позволит принять, например, приходящий поезд на занятый путь, не даст включить зеленый сигнал светофора сразу после того, как прошел поезд. Надо дать ему время уйти на безопасное расстояние.
Сведения об ушедшем поезде дежурный по станции передает своему коллеге на соседней станции, а движение поезда по перегону контролируют поездные диспетчеры, и так на всем многотысячекилометровом пути следования поезда.
Пока на действующих железных дорогах применяется электромеханическая релейная автоматика. Но уже полным ходом идут работы по замене громоздких и ненадежных реле маленькими и удивительно четко срабатывающими интегральными микросхемами. Думаю, что недалек тот день, когда вся железнодорожная автоматика превратится в электронную. Итак, если необходимо куда-нибудь ехать, мы идем за железнодорожным билетом на нужный скорый поезд.
Подходим к окошку кассы. Теперь в любой железнодорожной кассе Москвы можно купить билет на любой поезд. Поездов сотни, билетов сотни тысяч, но на каждое место в каждом поезде продают только по одному билету! Так кто же помнит, какие билеты проданы, а какие нет? Человеческого мозга для этого явно недостаточно. Все помнит электронный мозг ЭВМ. специально предназначенной для централизованной продажи билетов (системы «Стрела» и «Экспресс»). Вспомните, как поступил кассир, когда вы изложили ему свое скромное желание. Он куда-то (теперь мы знаем, что в ЭВМ) отправил эти сведения и стал ждать. В это время ЭВМ проанализировала запрос, установила наличие свободных мост и выдала ответ на терминал — аппарат, стоящий перед кассиром. Ответ вас устроил, вы сообщили об этом кассиру, он нажал кнопку, и печатающее устройство терминала затрещало, выдавая билет. Сведения о проданном билете отправились обратно в ЭВМ. Электронно-вычислительная машина одна, а кассовых терминалов у нее много, вот поэтому-то и можно купить билет ка любой поезд в любой кассе. Роль кассира свелась к тому, чтобы быть посредником между пассажиром и ЭВМ. Вот вам и нет электроники на железнодорожном транспорте!
Поехали. К сожалению, нельзя сходить на экскурсию в кабину машиниста, откуда открывается замечательный вид! Навстречу поезду бегут поля, перелески, деревеньки, полустанки, колоса грохочут по мостам и в туннелях. Электроники и в кабине машиниста предостаточно. На скоростных электропоездах ЭР200 силовые цепи тяговых электромоторов переключаются тиристорами. Тиристор — это полупроводниковый выключатель, способный либо пропускать, либо не пропускать ток, причем очень большой силы. Тиристоры появились сравнительно недавно благодаря успехам полупроводниковой электроники. Для управления тиристорами используются интегральные микросхемы. Электропоезд, оснащенный самой современной электронной техникой, пробегает путь от Москвы до Ленинграда за 4 часа 59 минут. Грузовые поезда водит электровоз ВЛ10у. Он имеет систему автоматического управления рекуперативным торможением. При рекуперативном торможении в контактную сеть возвращается часть электроэнергии, израсходованной на разгон поезда. В этом случае тяговые электродвигатели работают в режиме генераторов, вырабатывая электроэнергию и создавая необходимый тормозящий момент. Нет ли у вас знакомого, хвастающегося своими знаниями в области электротехники? Покажите ему полную принципиальную электрическую схему современного электровоза. Если он не окончил Институт инженеров железнодорожного транспорта, вряд ли он в ней разберется уж очень она сложна. Честно признаюсь, что я с первого взгляда в ней ничего не понял.
Ну хорошо, и на железных дорогах много электроники. А автомобильный транспорт? На полуторке 30-х годов действительно электроники было немного. Аккумулятор, генератор, фары, прерыватель-распределитель (трамблер) — все это относится к обычной электротехнике. Но заметьте, уже есть реле-регулятор, а это — элемент электронной автоматики. Обратимся к современным автомобилям. Электронная система зажигания, содержащая десяток транзисторов и полупроводниковых диодов, электронный регулятор напряжения, электронные указатели поворотов, электронные системы сигнализации. Электронная автоматика все шире используется на автомобиле. А недавно японцы и весь приборный щиток заменили одним жидкокристаллическим индикатором — дисплеем, подобным тому, что в электронных часах, только гораздо сложнее.
Зажиганием и другими системами автомобиля управляет микропроцессор. Он автоматически устанавливает угол опережения зажигания, подачу бензина и другие параметры в соответствии с дорожными условиями и нагрузкой автомобиля. Он одновременно считает и показывает на дисплее число оборотов двигателя, путь, пройденный автомобилем с момента выпуска и с сегодняшнего утра, скорость, расход бензина. Он сосчитает, сколько вам осталось проехать до следующей заправки, и многое другое. И вообще, если вы неэкономично поведете такую машину, дисплей на это укажет. Специалисты установили, что стоимость микропроцессора и сопутствующей электроники очень быстро окупается хотя бы за счет сэкономленного бензина. А уменьшение токсичности выхлопных газов — это уже прямая выгода, не менее важная.
Пусть вы никогда не были и не будете шофером, а к железнодорожному транспорту, кораблям и самолетам, буквально заполненным разнообразнейшей радиоэлектронной техникой, имеете отношение только как пассажир. Допустим, вы занимаетесь обработкой металлов. Вы слесарь, токарь или только собираетесь приобрести подобную специальность. Пока имеется еще немало чисто механических металлообрабатывающих станков, но пройдет немного времени, и первое, с чем вы столкнетесь на производстве, будет станок с числовым программным управлением. Что это такое? Станок как станок, только движение суппорта, подача резца и тому подобные операции на нем полностью автоматизированы. На станке или рядом с ним закреплен небольшой блок с микропроцессором. Контур изготавливаемой детали записан в память блока. Для получения максимальной точности сделано это в цифровой форме.
По мере изготовления детали положение резца сравнивается с данными, записанными в памяти, и вводится необходимая коррекция. Токарь, конечно, тоже может запомнить контур детали, но только приблизительно, с низкой точностью. А микропроцессор делает это абсолютно точно, с ошибкой, измеряемой микрометрами. Не нужно пользоваться штангенциркулем для частых замеров размеров детали. Это делают электронные датчики, причем гораздо точнее. В результате повышаются точность и чистота обработки, в значительной степени уменьшается брак. Нужно изготовить другую деталь? Пожалуйста. Изменяется только программа микропроцессора, записанная в цифровой форме, и, может быть, необходимый набор режущего инструмента.
Выплавка стали, добыча угля, руды, прокат металла, хозяйственная деятельность территориально-промышленных комплексов, регионов, республик, вся экономика страны контролируются и управляются большими ЭВМ, разумеется, не без участия людей, и везде-везде при сборе, передаче, обработке, хранении информации, в системах связи и управления используется электроника.
Пусть вы биолог, медик, врач и считаете себя человеком далеким от электроники. До поры до времени, уверяю вас. Это в прошлом веке врач обходился одним стетоскопом. Теперь медицина не мыслится без электроэнцефалографа, электрокардиографа, электростимуляторов, ультравысокочастотных терапевтических и тому подобных устройств. Ежегодно вы проходите флюорографическое обследование. Вспомните рентгеновские аппараты-шкафы, начиненные электроникой. Думаю, достаточно перечислять области науки и техники, где широко используется электроника. Она проникает всюду. Лично мне не удалось обнаружить ни одной отрасли народного хозяйства, где бы не использовалась электроника.
Сельское хозяйство, скажете вы? А искусственные спутники Земли, собирающие информацию о созревании сельскохозяйственных культур, о влажности почвы, составляющие карты сельскохозяйственных угодий? А машинно-тракторные агрегаты, строго по междурядьям двигающиеся вдоль поля, направляемые невидимым радиолучом? Фантастика? Уже нет. Такие агрегаты испытаны, есть соответствующие авторские свидетельства на изобретения и конструкторские разработки. Их широкое внедрение-только вопрос времени.
Рассказ о применениях электроники можно продолжать бесконечно, а мы здесь упомянули лишь их малую часть. Электронике отводится особая роль в каждой отрасли народного хозяйства, и роль эта сводится к управлению, регулированию, учету, передаче и накоплению данных, обработке информации и тому подобным функциям.
Теперь взглянем на самого себя. У человека есть энергетическая система, для которой пища, вода и кислород воздуха становятся источником жизненных сил, есть двигательные механизмы мышцы и конечности, есть органы чувств и, наконец, самое главное — голова.
Мозг перерабатывает всю информацию, поступающую и из внешнего мира, и от внутренних органов. Мозг управляет работой всех органов, определяет наше поведение во внешнем мире — одним словом, делает человека человеком. Опять автор излагает прописные истины — это же прекрасно всем известно!
Вернемся немного назад, к тем механизмам и машинам, которые мы уже упомянули. Электронику в станке, электровозе, системе управления производством, корабле, самолете справедливо называют электронным мозгом, думающей, управляющей частью любой машины.
Так что же самое главное в человеке? Разумеется, важны все органы, но главное мозг человека, его разум. Так и электроника по мере прогресса науки и техники становится самым главным, самым важным, точным и часто, можно сказать, разумным элементом любой машины, любого комплекса, любой установки.
Важны для человека и органы чувств, поставляющие нам информацию о внешнем мире. Главный из них — зрение. Глаза поставляют нам около 90 % информации. На втором месте — слух (еще примерно 9 %). И лишь мизерная часть приходится на долю обоняния, осязания и вкуса.
Посмотрим внимательнее, как электроника помогает нашему зрению и слуху. Электронное зрение — телевидение — показывает нам события, происходящие повсюду в мире, а не только в пределах прямой видимости при отсутствии тумана и дождя. Радио позволяет людям услышать друг друга на расстояниях в тысячи и десятки тысяч километров. Не зря же любого робота на научно-фантастических картинках рисуют с антеннами вместо ушей и телекамерами вместо глаз! Итак, вывод ясен: электроника — всему голова!
Возможно, это и слишком смелое высказывание, но пока все движется именно в этом направлении. А почему именно электроника? Может быть, есть и другие средства переработки, запоминания информации, использования ее для целей управления? Есть, конечно. Например, на некоторых двигателях в условиях высоких температур и вибраций успешно используют пневматические системы управления. Возникла и соответствующая область техники — пневмоника. Для хранения информации успешно использовали папирусы, кожаные и берестяные свитки, а тетради, книги, перфокарты и кинопленку широко применяют до сих нор. Но самые современные из этих средств либо органически дополняют электронику, либо просто не выдерживают конкуренции с ней. Чтобы разобраться, почему электронике сопутствует такой успех, посмотрим, что же такое управление, чем и как оно осуществляется и какие понятия ему сопутствуют.