Вопреки названию в этой главе вас ожидает рассказ о «несущих» колебаниях, о маятниках старинных часов, разноцветных солнечных зайчиках и радуге, ксиллофонах и кварцевых кристаллах, взаимовыручке друзей и отравляющем жизнь гвозде в ботинке, морской болезни, грузике на веревочке, а также о том, как часто простое устройство позволяет сделать очень важные выводы.

Регулярные сигналы

Давайте придумаем сигнал, не несущий никакой информации. Электрический сигнал, конечно. Вот два провода, источник тока и ключ. Если ключ не нажимать, то нет и сигнала, а значит и никакой информации. Другой случай: ключ нажат постоянно. Между проводниками линии действует напряжение источника. Оно не изменяется, следовательно, и информации никакой не передается.

Снятие напряжения размыканием ключа уже сигнал, смена состояний от «1» к «0». Этот случай не подходит. Значит, либо не изменяющееся состояние «0» (напряжения в линии нет), либо не изменяющееся состояние «1» (напряжение есть) информации не несут. Рассмотренные два случая тривиальны. Есть еще случай, когда напряжение в линии изменяется, а информации все равно не передается. Не догадываетесь пока? Напряжение должно изменяться периодически, по наперед заданному закону. Тогда наблюдатель на конце линии, противоположном источнику, сможет заранее предсказать все изменения сигнала. Информация о сигнале у него уже есть, и сам сигнал не приносит ему никакой новой информации. Таким образом, чтобы сигнал переносил информацию, в нем должен быть элемент случайности, неопределенности для получателя. Регулярные, полностью определенные и наперед заданные сигналы информации не несут.

На рисунке показаны примеры таких регулярных периодических сигналов. Первый сигнал — синусоидальный. Говоря другими словами, изменения напряжения подчиняются синусоидальному закону.

Примеры периодических сигналов.

Другой сигнал-тоже периодический, но прямоугольной формы. Он описывается так называемой функцией Уолша, принимающей только два значения: либо 0 и 1, либо — 1 и + 1. Третий пример — последовательность импульсов одинаковой формы, следующих через равные промежутки времени. Описанные сигналы могут быть переносчиками информации только в том случае, если их параметры изменяются в соответствии с передаваемым сигналом. Например, если в соответствии со знаками телеграфной азбуки включается и выключается переменное синусоидальное напряжение. Кстати, именно так устроены и любой тренажер для изучения телеграфной азбуки на слух, и детская игра «телеграф». Вот их упрощенная схема.

Колебания от генератора звуковой частоты через ключ подведены к громкоговорителю. Нажат ключ — слышен писк, не нажат — молчание. Из рисунка видно, как выглядит на графике передаваемая буква «А» (·―). Здесь уже не просто посылки тока, а посылки, заполненные синусоидальными колебаниями некоторой частоты. Они называются несущими колебаниями. В данном случае несущая манипулирована телеграфными посылками. Переход от простой передачи на постоянном токе к передаче на несущей даст много преимуществ.

Передача телеграфных посылок с помощью несущего колебания.

Например, становятся возможной многоканальная передача многих телеграфных и телефонных сообщений одновременно по одной и той же линии. В этом случае для разных сообщений используются несущие колебания с различными частотами. На приемной стороне они разделяются набором фильтров, настроенных на несущие частоты. На выходе каждого фильтра получается уже только один сигнал.

Такой способ многоканальной передачи, как мы уже говорили, называют частотным уплотнением. Несущую можно не только манипулировать дискретным сигналом, но и модулировать аналоговым сигналом. Модулировать — значит плавно изменять один из параметров несущей, например амплитуду. Вот, например, как осуществляется телефонная передача на несущей. К специальному устройству, модулятору, подводят звуковые колебания от микрофона и незатухающие колебания несущей частоты от генератора G. В модуляторе амплитуда несущей изменяется в соответствии со звуковым напряжением. На выходе устройства под действием модулятора получается амплитудно-модулированный (AM) сигнал. Сама по себе несущая информации не несет, но AM сигнал несет уже полную информацию о звуковых колебаниях, поступающих от микрофона.

Модуляция несущего колебания.

Передача сигналов на несущей частоте используется очень широко. Обычная телеграфная передача (посылки постоянного тока) происходит со скоростью не более 200 Бод. Такой телеграфный сигнал занимает полосу частот от нуля до примерно 300 Гц. Речевой телефонный сигнал занимает полосу частот 300… 3400 Гц, а высококачественный музыкальный сигнал — от 20 до 16000 Гц. Такие сигналы, разумеется, нельзя непосредственно излучать в эфир, поскольку названные частоты соответствуют очень длинным волнам.

Другое дело, когда передача ведется на несущей частоте, скажем, 3 МГц (мегагерц — это миллион, или 106 колебаний в секунду). Частота 3 МГц соответствует длине волны 100 м. Этот сигнал уже легко излучить в эфир, осуществив таким образом радиопередачу. Каждой радиостанции присваивается своя собственная несущая частота. Настраивая радиоприемник, полезно знать, что Киев следует искать на частоте 783 кГц, а Ленинград на частоте 801 кГц.

Самые распространенные несущие колебания — синусоидальные. Давайте их и рассмотрим подробнее.

Синусоидальные колебания

Часы с маятником изобрел великий оптик и механик Христиан Гюйгенс в 1657 году. Любопытно отметить, что в Голландии того времени уже существовала патентная служба, и патент на изобретение маятниковых часов был выдан Гюйгенсу 16 июня 1657 года. Создание часов не было для изобретателя самоцелью. Гюйгенс считал, что при проведении астрономических наблюдений (кроме часов он занимался и оптическими инструментами, и астрономией, и теорией светового излучения) совершенно необходим точный отсчет времени. Современная наука полностью подтвердила правильность этого мнения. Правда, при современных астрономических наблюдениях используют гораздо более точные часы атомные стандарты частоты, имеющие стабильность (точность хода) примерно 10-15. Это значат, что атомные часы уходят вперед или отстают на одну секунду более чем за тридцать миллионов лет!

Если к качающемуся маятнику приделать кисточку или перышко, а под маятником равномерно протягивать бумажную ленту, то кривая, которую вычертит перышко, будет синусоидальной. Следовательно, колебания маятника происходят по синусоидальному закону.

Запись колебаний маятника на бумажной ленте.

Теперь представим, что мы смотрим в очень сильный телескоп на далекую планету, обращающуюся по круговой орбите вокруг своей звезды «солнца». Если смотреть с направления, перпендикулярного плоскости орбиты (по стрелке А), то мы увидим, что планета движется по окружности. А если смотреть в плоскости орбиты, по стрелке В? Мы увидим, как планета пересекает диск «солнца», отходит на максимальное расстояние в одну сторону, затем возвращается, опять пересекает диск «солнца» и удаляется на такое же расстояние в другую сторону. Нам покажется, что планета совершает колебания около точки равновесия, совпадающей с центром ее «солнца». Эта колебания синусоидальны. Зачем ходить за примерами в космос возьмите шарик на ниточке и заставьте его совершать круговые движения. Если посмотреть на шарик сбоку, по направлению оси х, мы увидим синусоидальные колебания шарика.

Проекция кругового движения.

Если же посмотреть с другой стороны, в направлении оси у, мы опять увидим синусоидальные колебания, но происходящие со сдвигом на четверть оборота по отношению к первым. У нас получился маятник, качающийся одновременно в двух перпендикулярных направлениях (по осям х и у). Колебания одинаковы, но запаздывают друг относительно друга на четверть периода (оборота). Такое запаздывание соответствует сдвигу колебаний по фазе на π/2 [если полный период (оборот) соответствует углу 2π, то четверть оборота — π/2]. Получается, что движение по окружности — пример сложного колебательного движения, состоящего из двух простых, синусоидальных. Теперь ясно, что синусоида — это развернутая во времени проекция равномерно вращающейся точки на какое-либо фиксированное направление.

Поясним примером и графиком. Пусть вектор А ― вращается вокруг начала координат, угол поворота обозначим Ф. Тогда проекция вектора А ― на вертикальную ось будет у = A·sin Ф. Если еще учесть, что при равномерном вращении угол Ф нарастает прямо пропорционально времени: Ф = ω·t, где ω — угловая скорость вращения, то получится широко известная формула

у = A·sin ωt,

описывающая простое, синусоидальное колебательное движение. Точно такой же формулой описывается и переменное электрическое напряжение, имеющееся, например, в электрической розетке.

Синусоида — проекция равномерно вращающейся точки.

Мне кажется, теперь вы легко сможете ответить на вопрос, почему переменное напряжение в электросети синусоидально. Ведь якорь генератора на электростанции вращается равномерно. А магнитное поле, нужное для генерирования тока, направлено перпендикулярно оси якоря. Оно задает ту самую ось, на которую проектируется вращение якоря. Впрочем, гораздо лучше устройство генератора описано в школьном учебнике физики. Итак, в нашей электрической розетке имеется напряжение

u = A·sin ωt.

Названия параметров, входящих в формулу, стали несколько другими: А — амплитуда напряжения, ω — угловая частота, t — это по-прежнему текущее время. Если известно, что сетевое напряжение 220 В, это не значит, что А = 220 В. В электротехнике, если нет специальной оговорки, пользуются действующими значениями напряжения или тока. Действующие значения соответствуют значениям постоянного тока, развивающего ту же мощность. Амплитудное значение напряжения или тока в √2 раз больше действующего. Поэтому при действующем напряжении в сети 220 В мгновенное напряжение изменяется от нуля до 311 В по закону синуса и А = 311 В.

Давайте обсудим, почему синусоидальная форма напряжения или тока является простейшей, в некотором смысле наилучшей формой. Как мы уже установили такую форму тока дает равномерно вращающийся якорь генератора. Но если какими-либо техническими ухищрениями сделать форму тока другой, например прямоугольной? Даст ли это какие-нибудь преимущества при передаче электроэнергии? Оказывается, нет!

Спектры

Синусоидальные колебания.

Прямоугольную волну тока можно представить как сумму простейших синусоидальных волн. На рисунке показано, как это делается. Сверху изображено синусоидальное колебание с частотой f 0 . Напомним, что угловая частота связана с обычной, циклической частотой простым соотношением ω = 2π·f. Частота тока электрических сетей в СССР выбрана равной 50 Гц, в США 60 Гц. Это соответствует частоте вращения якоря генератора 3000 и 3600 об/мин соответственно. Если к изображенному на рисунке основному колебанию с частотой f 0 добавить еще одно колебание с частотой 3f 0 (третью гармонику основного колебания), то форма суммарного колебания изменится. Добавим еще и пятую гармонику-колебание с частотой 5f 0 . Относительные амплитуды гармоник должны уменьшаться обратно пропорционально частоте. Результат суммирования трех колебаний с частотами f 0 , 3f 0 и 5f 0 и с амплитудами 1, 1/3 и 1/5 изображен на нижнем графике. Здесь мы видим поразительное приближение к прямоугольному колебанию.

Прямоугольное колебание можно представить суммой синусоидальных гармоник с амплитудами А n = A 1 / n (где n  = 1, 3, 5…)

Великий французский математик Ж. Фурье доказал, что любое периодическое колебание можно представить суммой простейших, синусоидальных колебаний с кратными частотами. Их набор называется спектром исходного колебания. Спектр можно изобразить графически, отложив по горизонтали частоты, а по вертикали относительные амплитуды гармоник. Точное приближение к исходной форме колебания дает чаще всего лишь бесконечный ряд гармоник. Например, для точного воссоздания симметричного прямоугольного колебания нужен бесконечный ряд нечетных гармоник основной частоты. Разумеется, передать такой сложный спектр по проводам электрической сети намного труднее, чем одну-единственную спектральную гармонику синусоидального колебания. Высшие гармоники неизбежно будут ослабляться по амплитуде, да и фаза их изменится, что приведет к искажению передаваемого прямоугольного колебания. Только синусоидальное колебание меньше всего подвержено искажениям при передаче.

Чем реже происходят колебания, тем больше их период (т. е. время совершения одного полного колебания) и тем ниже основная частота спектра этих колебаний. Спектральные линии на оси частот при этом располагаются гуще. Непериодический процесс тоже можно представить спектром, но спектр окажется уже не состоящим из отдельных спектральных линий, а сплошным. Соответствующая математическая операция называется интегральным преобразованием Фурье. Оно используется главным образом для импульсных сигналов. Характерна следующая закономерность: чем короче импульс, тем шире его спектр. Наивысшая частота спектра приблизительно обратно пропорциональна длительности импульса. Например, импульс длительностью 0,01 с имеет ширину спектра около 100 Гц, а импульс длительностью 1 мкс (10-6) — 1 МГц. Особый интерес представляют бесконечно короткие или, как их еще называют, дельта-импульсы (δ-импульсы). Оли обладают бесконечно протяженным равномерным спектром (см. рисунок).

Звук падения одной капли дождя — это слабый и очень короткий щелчок. Он содержит колебания всех возможных звуковых частот — от самых низких до самых высоких. Шум дождя вы, разумеется, слышали и прекрасно себе представляете. Он складывается из отдельных звуков падения множества капель. Спектр шума дождя равномерен — его интенсивность одинакова на всех звуковых частотах. В электронике есть отличный аналог шума дождя — дробовой шум радиоламп и полупроводниковых приборов. Пролет каждого элементарного носителя электрического заряда, электрона или иона, создает в цени короткий импульс тока. А сумма множества таких импульсов образует электрический дробовой шум, очень похожий на шум дождя, если его воспроизвести через громкоговоритель. Собственно, само название «дробовой шум» произошло от звука дроби, ссыпаемой в какой-либо сосуд.

Прямоугольное колебание и его спектр.

Не напомнило ли вам что-нибудь это очень знакомое слово «спектр»? Спектр солнечного света, спектр радуги, спектр, полученный на экране с помощью стеклянной призмы… Что здесь общего со спектром электрических колебаний? Очень много. Разложение колебаний в спектр есть разложение на элементарные, синусоидальные колебания. Свет — это электромагнитная волна, распространяющееся электромагнитное колебание. А белый свет — это сумма бесконечного множества колебаний с различными частотами. Вот почему радисты называют шум с равномерным спектром белым.

Частоты световых колебаний можно найти, воспользовавшись связью между частотой и длиной волны: f = с/λ, где с — скорость света в вакууме, равная 3-108 м/с, или 300000 км/с. Известно, что человеческий глаз реагирует на электромагнитные волны с длинами от 0,7 мкм (красный свет) до 0,4 мкм (синий свет). Частоты границ видимого диапазона составляют соответственно 4·1014 и 7,5·1014 Гц, т. е. 400 000 и 750 000 ГГц. Обратите внимание, насколько это больше частоты тока в электрической сети (50 Гц)! Оптики ввели понятие «монохроматическое колебание». Моно — значит единственный, хромос — цвет. Монохроматическое колебание имеет только одну, строго определенную частоту. Монохроматическая волна оптического диапазона воспринимается как густой, насыщенный цвет. Если вы когда-нибудь видели свет гелиево-неонового лазера (тонкий красный луч), обратили ли вы внимание на полную насыщенность цвета? Длина волны Не-Nе-лазера составляет 0,63 мкм, и его свет воспринимается как красный или красно-оранжевый. Других длин волн в излучении этого лазера нет. Если же электромагнитная волна имеет другую длину, она и воспринимается человеческим глазом как излучение другого цвета. Зеленый цвет соответствует длинам волн около 0,5 мкм, синий — 0,4 мкм.

Мы узнали, что спектр синусоидального колебания самый простой: он состоит всего из одной спектральной линии на «своей» частоте f 0 . Вот почему несущие колебания радиовещательных станций строго синусоидальны. Нельзя же допустить, чтобы одна и та же станция принималась одновременно на нескольких частотах! После такого заключения некоторые из наиболее любознательных читателей могут прийти к полному недоумению: при передаче сигналов по радио надо применять синусоидальное несущее колебание, которое никакой информации не несет! Но информация-то все-таки передается! Никакого противоречия здесь, разумеется, нет. Прежде всего надо заметить, что исходный сигнал, несущий информацию (телеграфный, речевой или музыкальный), занимает некоторый спектр частот. Мы уже говорили о его ширине, а теперь изобразим сигнал и спектр графически. Обратите внимание, что спектр теперь уже не линейчатый, а сплошной. Линейчатым спектром обладают только периодические процессы, регулярно повторяющиеся во времени. А передача информации — процесс случайный, вероятностный. В зависимости от текста телеграммы могут передаваться различные сочетания точек и тире. И им будут соответствовать различные спектры.

Импульсы и их спектры.

Но общей для них будет занимаемая полоса частот, указанная на графиках. Ширина ее обозначена буквой В. Наложим передаваемый сигнал на синусоидальную несущую. Излучаемый в эфир или передаваемый по линии модулированный сигнал уже не будет чисто синусоидальным: его амплитуда будет изменяться в такт с передаваемым сообщением. Спектр излучаемого сигнала станет таким, как показано на рисунке. Кроме спектральной линии на частоте f 0 — несущей — появятся боковые полосы. Это два зеркально-симметричных спектра по обе стороны от несущей. Форма их при амплитудной модуляции точно повторяет форму спектра исходного сигнала.

Спектр белого света.

Сигналы и их спектры.

Образование двух боковых полос в спектре AM колебания можно пояснить математически. Только удобнее вместо синусов взять четные функции косинусы (выражения при этом получаются проще и понятнее). А форма косинусоидального колебания точно такая же, как и синусоидального. Пусть несущая A·cos ωt промодулирована по амплитуде низкочастотным косинусоидальным колебанием с угловой частотой Ω. Вид получившегося сигнала показан на рисунке. Его максимальная амплитуда равна (1 + m)А, а минимальная - (1 — m)А. Параметр m называется коэффициентом модуляции.

При AM он не может быть больше единицы, поскольку уже при m = 1 минимальная амплитуда сигнала падает до нуля. Запишем выражение для AM сигнала:

u = А(1 + m·cos Ωt)·cos ωt,

где А — амплитуда несущей; ω — угловая частота несущей; Ω — угловая частота модулирующего колебания.

Это выражение легко преобразовать с помощью известного тригонометрического тождества

Раскрывая скобки и используя это тождество, получаем

Из этого выражения видно, что напряжение сигнала является суммой трех синусоидальных колебаний; несущей (первое слагаемое), нижней боковой частоты (второе слагаемое) и верхней боковой частоты (третье слагаемое). Эти три колебания и составляют спектр сигнала при AM синусоидальным сигналом. Если же в модулирующем сигнале содержится несколько низкочастотных ко-

 засада:( В источнике OCR отсутствуют стр. 52, 53

И устройство, вполне пригодное для этой цели, нам уже встречалось. Вспомните простейший датчик углового положения фюзеляжа самолета. Если жесткий отвес с грузом на конце заставить колебаться подобно маятнику, то с движка потенциометра можно будет снять синусоидальный электрический сигнал. Есть только два существенных «но», из-за которых подобные устройства не нашли практического применения.

Преобразователь колебаний маятника в электрический сигнал.

Первое «но» — частота генерируемых колебаний оказывается слишком низкой. Сколько раз в секунду может качнуться маятник?

Два, три, от силы десять, если маятник достаточно короткий. А нужны гораздо большие частоты. И второе «но» — однажды запущенный маятник покачается-покачается да и остановится. Колебания с постоянно уменьшающейся до нуля амплитудой называются затухающими. Обычно же требуются колебания с неизменной амплитудой, то есть незатухающие. Нельзя же, например, допустить, чтобы громкость приема радиостанции постепенно уменьшалась и сходила на нет. Следовательно, необходимо устройство, подталкивающее наш маятник в такт его собственным колебаниям. Такое устройство есть в любых часах. Масса гирь или сила пружины через анкерное колесо периодически подталкивают маятник, и часы не останавливаются. Воистину это гениальное изобретение — часы — является механическим аналогом электронного генератора незатухающих колебаний.

Чтобы повысить частоту, надо уменьшить размеры маятника. При этом удобнее использовать для возвращения маятника в исходное положение после каждого колебания не силу тяжести, а силу упругости. Так устроен пружинный маятник. Его частота повышается с увеличением упругости подвеса и уменьшением массы груза. Тогда можно и совсем отказаться от пружины — пусть работает упругость самого материала грузика! Образец такого маятника — упругий стерженек или пластинка, колеблющаяся по толщине. Остается открытым вопрос, как заставить пластинку колебаться. Можно ударом. Но колебания будут затухающими. Играли когда-нибудь на ксилофоне? Если даже и не играли, то представляете себе устройство этого музыкального инструмента. Удар молоточка по пластине вызывает звук, а высота тона соответствует частоте колебаний пластинки. Обратите внимание: чем меньше пластинка, тем выше частота создаваемых ею колебаний, тем выше и тон звучания. А частота колебаний упругой пластинки при размерах ее менее сантиметра будет лежать в неслышимом ультразвуковом диапазоне и может достигать десятков миллионов колебаний в секунду (десятков мегагерц). Как же построить анкерное колесо, пригодное для столь высоких частот? К счастью, природа сама позаботилась о том, чтобы изобретатели не выдумывали подобных «микроколес».

Пружинный маятник и колебания стержня по толщине.

Некоторые кристаллические вещества, в том числе кварц, сегнетова соль и ряд искусственных керамик, обладают пьезоэлектрическим эффектом. Если кристалл сжать, на его поверхности появятся электрические заряды. Растянуть — снова появятся заряды, но уже противоположного знака. Как это объяснить физически? Да очень просто, на житейском примере. Из подошвы вашего ботинка выступает гвоздь, и ходить стало больно при каждом шаге гвоздь колется. Вы вооружаетесь молотком и плоскогубцами, снимаете ботинок и… никакого гвоздя не обнаруживаете. Надели ботинок снова, наступили — колет! Причина очевидна: гвоздь выступает только под тяжестью ноги, сжимающей подошву, которая при этом деформируется, уменьшается по толщине. Пьезокристалл содержит решетку положительных ионов и такую же решетку отрицательных ионов, как бы вложенную в первую. При деформации кристалла положительные ионы выступают наружу, подобно гвоздям из подошвы, создавая на этой поверхности положительный заряд. А на противоположной поверхности выступают отрицательные ионы, создавая такой же заряд противоположного знака. Изменился знак деформации (сжали, вместо того чтобы растягивать) изменился и знак зарядов на поверхностях кристалла.

Колебания пьезокристалла.

При колебаниях пьезоэлемента (так называют пьезоэлектрическую пластинку, вырезанную из кристалла) на поверхности пластинки появляется переменный заряд, изменяющийся по синусоидальному закону с частотой ее колебаний. Заряд можно снять, усилить специальным усилителем электрических колебаний и снова подвести к пластинке. Вступит в действие обратный пьезоэффект при сообщении пластинке заряда она деформируется. Таким образом, в пластинке пьезоэлектрика можно поддерживать незатухающие колебания.

Особо высокой стабильностью к изменениям температуры и других параметров окружающей среды обладают кварцевые пьезоэлементы резонаторы. Поэтому генераторы с кварцевыми резонаторами широко используют для получения незатухающих колебаний высокой частоты. Видели кварцевые часы? Может быть, такие часы у вас уже есть? Их сердце-кварцевый генератор. Его высокочастотные колебания с помощью интегральных микросхем делят по частоте, получая таким образом секундные, минутные, часовые и другие импульсы. Они, в свою очередь, управляют ходом стрелки или показаниями цифрового индикатора. Нестабильность кварцевых часов, т. е. точность их хода, составляет около 3·10-6. Это значит, что кварцевые часы «уходят» менее чем на одну секунду за несколько дней. Вот так еще раз, уже в наши дни, подтвердилась прозорливость Христиана Гюйгенса, выбравшего эталоном времени период колебании маятника!

Пьезокварцевый генератор есть на любой радиовещательной станции. Его называют задающим, поскольку он определяет частоту излучаемого станцией сигнала. Стабильность радиочастотных кварцевых генераторов составляет 10-6… 10-7, а при термостабилизации кварца и особо тщательном проектировании всего задающего генератора может достигать 10-12. Кварцевые генераторы имеют много достоинств, но в то же время и один существенный недостаток — их нельзя перестраивать по частоте. На заре радиотехники пьезокварцевые резонаторы не использовались, да и соответствующей технологии производства их не было. Резонатором, т. е. устройством, совершающим колебания вполне определенной частоты, служил колебательный контур. Он и теперь очень широко применяется в любых радиотехнических устройствах: передатчиках, приемниках, резонансных усилителях и многих-многих других.

Колебательный контур состоит всего из двух элементов — катушки индуктивности L и конденсатора С. Поскольку у каждой из этих деталей всего по два вывода, логично соединить их между собой, как показано на рисунке. Получился параллельный колебательный контур.

Колебательный контур.

Конденсатор с катушкой очень дружны и действуют так. Если на конденсаторе оказывается некоторый заряд, он немедленно стекает через катушку, создавая в ней ток. Вокруг витков катушки возникает магнитное поле. Конденсатор отдал весь заряд, и ток в катушке достиг максимума. Но катушка в долгу не остается: возникшее магнитное поле поддерживает ток еще некоторое время (четверть периода колебаний) и этот ток перезаряжает конденсатор. Катушка тоже отдала все — энергия ее израсходована полностью, зато конденсатор снова зарядился и запас почти столько же энергии, сколько ранее отдал катушке. Снова он разряжается на катушку, формируя вторую полуволну, или второй полупериод колебания. Так взаимовыручка двух друзей, катушки и конденсатора, позволяет получать электрические колебания. Однако колебания будут затухающими из-за неизбежных потерь энергии на активном (т. е. действительном, реальном) сопротивлении проводов катушки, соединительных проводников, потерь в диэлектрике конденсатора и в материале, из которого изготовлен каркас катушки.

Энергия конденсатора отдается катушке и энергия катушки отдается конденсатору.

Для любого резонатора можно определить параметр, называемый добротностью и обозначаемый буквой Q (от англ. quality — качество, добротность). Чтобы долго не мудрствовать с использованием математики, определим добротность не совсем строго, зато физически просто и понятно: добротность численно равна числу колебаний, совершаемых резонатором в процессе их затухания. Если строже, то добротность равна числу колебаний, совершаемых до тех пор, пока их амплитуда не уменьшится примерно до 1/10 первоначального значения. Например, если механический маятник толкнули и он качнулся 15 раз, то его добротность и равна 15. Добротность механических маятников обычно составляет 10…200. Примерно такое же значение добротности может иметь и обычный радиочастотный колебательный LС-контур. А вот пьезокварцевые резонаторы обладают добротностью до нескольких сотен тысяч. Это, кстати, одна из причин, почему генераторы, стабилизированные кварцем, отличаются таким высоким постоянством частоты. Стабильность частоты генераторов, выполненных на LС-контурах, на несколько порядков хуже.

Скорость затухания колебаний в контуре зависит от добротности.

Скорость перезарядки конденсатора катушкой в колебательном контуре определяется их емкостью и индуктивностью, поэтому и период колебаний зависит только от этих величин. В соответствии с хорошо известной формулой Томсона

Т = 2π√(L·C).

Частота колебаний обратно пропорциональна периоду f = 1/Т.

Колебания в контуре происходят по синусоидальному закону так же, как и колебания механического маятника.

Частоту (говорят частоту настройки) колебательного контура можно изменять, изменяя емкость конденсатора или индуктивность катушки. Конденсатор переменной емкости есть в любом радиоприемнике. Вот как устроен сдвоенный блок конденсаторов переменной емкости (КПЕ) с воздушным диэлектриком.

Пакет статорных пластин неподвижен, а роторные пластины при вращении оси вдвигаются в зазоры между статорными, увеличивая таким образом емкость каждого из входящих в блок конденсаторов. Сдвоенным блоком КПЕ можно перестраивать по частоте одновременно два колебательных контура, что и делается в современных радиоприемниках. Настройка индуктивностью применяется значительно реже, главным образом потому, что индуктивность труднее изменять в широких пределах. Основной способ изменения индуктивности — это вдвигание внутрь катушки ферромагнитного сердечника.

Сердечник концентрирует и усиливает магнитный поток, увеличивая тем самым и индуктивность. Подстроечный винтовой сердечник есть почти в каждой катушке индуктивности. Он служит для первоначальной подгонки индуктивности при настройке и регулировке приемника или другого устройства. Нет блока КПЕ в автомобильных приемниках эти приемники традиционно настраивают индуктивностью. Не догадываетесь почему? Причина проста при движении по тряским дорогам пластины блока КПЕ вибрировали бы, сбивая настройку приемника!

При вибрации пластин воздушного конденсатора изменяется его емкость.

Итак, колебательный контур используют в радиоприемниках для настройки на частоту желаемой радиостанции. А где же еще? Во множестве различных устройств! В радиопередатчиках, например, кварцевый резонатор устанавливают только в задающем генераторе, определяющем частоту излучаемого сигнала радиостанции. Но после задающего генератора следуют каскады усиления мощности, и в них кварцевые резонаторы применить нельзя — кристалл рассыпался бы в пыль при тех мощностях высокочастотных колебаний, которые характерны для этих каскадов. А колебательный контур может работать при любых мощностях, лишь бы катушка была намотана достаточно толстым проводом да конденсатор имел достаточный зазор между пластинами (иначе в конденсаторе проскакивали бы искры!).

Колебательные контуры применяют и в усилителях высокочастотных колебаний. В отличие от низкочастотных, апериодических усилителей, высокочастотные усилители получили название резонансных. Они усиливают только колебания тех частот, на которые настроены их колебательные контуры. Еще лет десять — пятнадцать назад высокочастотный усилитель вообще нельзя было построить без колебательных контуров — активные элементы, лампы или транзисторы того времени не позволяли этого сделать. Но времена меняются, и с разработкой замечательных высокочастотных транзисторов стало возможным создать усилители, одинаково хорошо работающие в громадной полосе частот — от звуковых до сверхвысоких, например от 300 Гц до 300 МГц! Но такая широкая полоса частот отнюдь не всегда нужна, и тогда по-прежнему широко используют традиционные резонансные усилители с колебательными контурами в каждом каскаде.

Есть еще одно очень важное применение колебательных контуров, собственно, даже и не контуров, а некоторого числа катушек и конденсаторов, включенных по определенной схеме. Система этих элементов образует электрический фильтр. Поговорим о них подробнее, но прежде разберемся, что же общего характерно для всех описанных случаев применения колебательного контура? Ответ дан в заголовке следующего параграфа.

Каскад резонансного транзисторного усилителя.

Резонансные явления

Резонансные явления в радиоэлектронике характерны для всех цепей, включающих катушки индуктивности и конденсаторы, т. е. реактивные элементы. Реактивный элемент, в отличие от активного простого резистора, способен запасать и отдавать энергию, что и определяет возможность колебательных процессов. Колебательные контуры используют в радиоприемниках, передатчиках, усилителях, фильтрах — т. е. везде, где уже есть электрические колебания, а контур должен откликаться на них. От чего же зависит «мера отзывчивости» колебательного контура (давайте теперь называть его для краткости просто контуром) на внешние колебания? Применив наш испытанный метод аналогий, рассмотрим два примера.

Первый пример — с кораблем. Если корабль накренить, а затем «предоставить самому себе», он не сразу вернется в вертикальное положение. По инерции он пройдет положение равновесия, качнется в другую сторону и, совершив несколько колебаний, примет наконец вертикальное положение. Не обязательно экспериментировать с большим кораблем — можно сделать опыт и с игрушечным корабликом в ванне с водой. Из опыта можно определить и период собственных колебаний, т. е. время, за которое совершается одно полное колебание. Для средних и больших кораблей (не игрушечных, а настоящих, разумеется) период собственных колебаний составляет обычно 5…10 с.

Теперь представьте, что корабль раскачивается набегающими волнами. Если волны мелкие и следуют часто, то большой корабль никак на них не реагирует. Волны лишь плещутся у бортов, не вызывая качки. Другой крайний случай: накатываются очень длинные волны и их период намного больше периода собственных колебаний корабля. Такими волнами могут быть, например, волны цунами. В открытом море их очень трудно, если не сказать вообще невозможно, заметить, настолько они длинны. Корабль очень плавно всплывает на очередную волну и также плавно опускается в ложбину между волнами, и происходит это совсем незаметно для находящихся на корабле. Но этого никак нельзя сказать о жителях побережья, ведь всем известно, какую громадную энергию несут волны цунами и какие разрушения вызывают они на берегу! Не зря же существует служба цунами, предупреждающая о приближении этих разрушительных волн. Получив предупреждение, корабли стараются отойти подальше в открытое море, а жители побережья — эвакуироваться подальше от берега на возвышенные места суши.

Ну а если период набегающих волн равен или близок к периоду собственных колебаний корабля? Вот тут-то все и начинается! Даже если волны не очень большие, корабль сильно раскачивает. Палуба медленно и «муторно» валится из-под ног куда-то вниз и вбок. И только ты приспособился к наклонному положению относительно стен каюты, надстроек, мачт и горизонта, как палуба вдруг подпирает снизу, несет тебя куда-то вверх (при этом внутри что-то сладковато-тошновато замирает), и ты снова без всякой надежды ждешь, когда же, наконец, кончится это изматывающее тело и душу движение! Надеюсь, что я не очень напугал вас, читатель, кратким описанием начинающейся морской болезни. Хотелось лишь подчеркнуть тот факт, что при совпадении периодов внешних и собственных колебаний отклик корабля максимален.

Качка корабля особенно сильна при резонансе.

Другой пример, и одновременно эксперимент. Возьмите грузик и привяжите его на нитку длиной 20…30 см. Держите нитку за свободный конец и покачивайте рукой из стороны в сторону, сначала очень медленно. Качание руки в этом опыте будет внешним воздействием. Следите, чтобы амплитуда внешнего воздействия во всех случаях была одинаковой — достаточно перемещать руку всего на 1…2 см в каждую сторону. При медленном перемещении руки грузик точно отслеживает внешнее воздействие, а нитка всегда остается вертикальной. Заметили этот результат? Теперь убыстряйте движение руки. Частота внешнего воздействия увеличивается, и амплитуда качаний маятника тоже увеличивается, хотя амплитуда внешнего воздействия осталась прежней! Наконец наступает момент, когда маятник раскачивается очень сильно. Амплитуда его колебаний намного превосходит амплитуду внешнего воздействия. Это явление называемся резонансом. Еще увеличьте частоту качаний руки. Амплитуда колебаний маятника заметно уменьшится, а если вы будете двигать рукой очень быстро, с высокой частотой, грузик будет оставаться практически на месте в силу своей инерции.

Экспериментальное наблюдение резонанса.

Проведя физический эксперимент, мы сделали только половину дела. Вторая половина, причем более важная, — осмысление и обработка результатов. Лучше и к тому же нагляднее изобразить результаты эксперимента графически, что мы сейчас и сделаем.

Отложим но горизонтальной оси частоту внешнего воздействия f, а по вертикальной оси — амплитуду колебаний маятника А. При очень низкой частоте внешнего воздействия (медленное движение руки) амплитуда колебаний А равна амплитуде внешнего воздействия В.

При резонансе, когда частота колебаний руки совпадает с собственной частотой маятника f 0 , амплитуда колебаний максимальна, что хорошо видно на графике. И наконец, когда частота внешнего воздействия намного больше частоты собственных колебаний f >> f 0 , амплитуда колебаний становится исчезающе малой. То, что мы получили на графике, называется кривой резонанса. Ее неоднократно экспериментально определяли для различных колебательных систем (маятников, мостов, кораблей, электрических цепей) и неоднократно рассчитывали теоретически.

Кривая резонанса.

Существует серьезная и весьма сложная наука теория колебаний, занимающаяся изучением различного рода колебательных движений в механике, гидроакустике, электронике и во многих других областях техники. Любопытно, что столь разнородные колебания описываются одними и теми же математическими уравнениями, что объясняется одинаковым (колебательным) характером движения. Разумеется, рассмотренный нами импровизированный маятник — грузик на ниточке — представляет для теории колебаний наипростейший случай.

Но мы опять увлеклись маятниками и чуть не забыли про электрический колебательный контур. Как в нем протекают процессы при воздействии внешнего напряжения? Да абсолютно так же!

Чтобы ввести в контур внешнее напряжение, придется разорвать один из проводов, соединяющих конденсатор с катушкой, и включить в этот разрыв источник внешней ЭДС В. Теперь у нас получился последовательный колебательный контур. Амплитуду колебаний будем наблюдать, измеряя напряжение А на конденсаторе контура. Это можно сделать с помощью осциллографа или вольтметра переменного тока. Собственная частота контура по-прежнему определяется индуктивностью и емкостью. Она рассчитывается по уже известной нам формуле Томсона

Колебательный контур с источником ЭДС.

Внимательный читатель скажет: «На странице 58 была другая формула!». На самом деле формула одна и та же, ведь частота колебаний обратно пропорциональна периоду f 0 = 1/Т. А вот частоту внешнего воздействия напряжения В — мы теперь будем изменять от нуля до очень больших значений. Нулевая частота означает отсутствие колебаний, т. е. постоянное напряжение. Естественно, что в этом случае напряжение на конденсаторе А в точности равно приложенному B, ведь катушка для постоянного тока представляет очень малое сопротивление, а конденсатор — очень большое. При нулевой частоте внешнего напряжения мы получаем начальную точку кривой резонанса. При частоте внешнего воздействия, близкой к собственной частоте контура, отклик контура максимален и переменное напряжение на конденсаторе имеет амплитуду, намного большую амплитуды внешней ЭДС. Это пик резонансной кривой. А при очень высоких частотах отклик контура стремится к нулю, что объясняется увеличением реактивного сопротивления катушки и уменьшением реактивного сопротивления конденсатора. Одним словом, резонансная кривая получается точно такой же, как и для механического маятника-грузика на веревочке.

Возникает естественный вопрос: а насколько же амплитуда колебаний при резонансе А рез больше исходной амплитуды внешнего воздействия В. Это зависит от одной очень важной характеристики колебательной системы — ее добротности Q. Добротность равна отношению А рез /B . Чем меньше потери энергии колебаний внутри системы — на трение в маятнике, на преодоление током омического сопротивления катушки в контуре, тем выше добротность. О добротности мы уже говорили; она примерно равна числу колебаний, совершаемых в системе, «предоставленной самой себе», т. е. числу свободных затухающих колебаний.

Резонансные кривые контуров с различной добротностью ( Q 1 > Q 2 > Q 3 )

На графике показаны резонансные кривые колебательных систем с разной добротностью — высокой Q 1 , умеренной Q 2 и малой Q 3 .

В радиотехнических колебательных контурах обычно стремятся получать максимальную добротность. Это выгодно в тех случаях, когда используется лишь верхний, самый острый участок резонансной кривой, например для настройки на частоту радиовещательной станции. У таких контуров определяют полосу пропускания 2Δf как расстояние (по частоте) между точками, где амплитуда колебаний падает до 0,7 резонансного значения. Полоса пропускания опять-таки связана с добротностью:

Например, чтобы контур, настроенный на частоту радиостанции второй Всесоюзной программы «Маяк» 549 кГц, имел полосу пропускания 11 кГц, его добротность должна быть равна 50. Здесь уместно отметить, что такая полоса пропускания контура обеспечивает передачу двух боковых полос АМ сигнала, соответствующих звуковым частотам до 5,5 кГц, что даст удовлетворительное воспроизведение музыкальных передач. Всегда ли надо стремиться получать столь высокую добротность контура? Оказывается, нет, и есть ряд электрических цепей, где высокая добротность вовсе не нужна. На них мы и остановимся.

Электрические фильтры

Принцип «чем больше, тем лучше» справедлив не всегда. Высокая добротность не нужна кораблю как колебательной системе. Иначе, попади он в резонанс с набегающими волнами, его раскачает так, что начнется черпание воды бортами, зарывание носом под воду и тому подобные неприятные явления. Следовательно, при проектировании обводов подводной части корабля надо стремиться получать не только минимальное сопротивление движению вперед, что обычно и делается, но и максимальное сопротивление качке. И уж совсем высокая добротность не нужна рессорной или пружинной подвеске автомобиля. Допустим на минуту, что она равна десяти. Тогда, проехав ряд выбоин на асфальте глубиной 5 см, автомобиль может подпрыгнуть на полметра! Это произойдет, если толчки от выбоин попадут в резонанс с собственными колебаниями автомобиля.

Высокая добротность подвески может стать причиной аварии.

Предоставим читателю самому оценить «прелести» такой езды, но обратим его внимание на то, что подвеска автомобиля не мыслится без амортизаторов — специальных устройств, поглощающих энергию колебаний и снижающих добротность подвески автомобиля примерно до 1…3. Ну вот, а теперь после такой «механической» подготовки обратимся к электронике. Допустим, необходимо пропустить к усилителю некоторый диапазон звуковых частот. Сигнал поступает от радиоприемника, или тюнера, как теперь часто называют собственно радиоприемник без усилителя звуковой частоты. Передача сопровождается помехой-свистом высокого тона. Свист, естественно, надо бы ослабить. В этом случае поможет фильтр нижних частот. Его амплитудно-частотная характеристика соответствует резонансной кривой контура очень низкой добротности, близкой к единице. Все частоты от самых низких до резонансной частоты пропускаются фильтром без ослабления, а более высокие ослабляются. Но как понизить добротность контура до единицы?

Взять очень плохую катушку индуктивности с большим омическим сопротивлением? Или конденсатор с плохой изоляцией между пластинами? Конечно, это не лучший выход из положения. Ведь энергия сигнала будет бесполезно теряться в проводах катушки или в диэлектрике конденсатора. Гораздо выгоднее подключить к контуру полезную нагрузку, в нашем примере — входное сопротивление усилителя звуковой частоты. Тогда и добротность контура понизится, а поглощаемая энергия колебаний направится туда, куда нужно. Это как раз тот редкий случай, когда «и волки сыты, и овцы целы».

На рисунке показана схема простейшего Г-образного фильтра нижних частот.

Г -образный фильтр нижних частот.

Конденсатор с катушкой по-прежнему дружно образует колебательный контур, в разрыв одного из соединительных проводов подается входной сигнал, а параллельно конденсатору присоединена полезная нагрузка, в нашем примере — входное сопротивление усилителя звуковой частоты. Приведем очень простые соотношения, позволяющие выбрать величины входящих в фильтр элементов. Добротность контура, который теперь называется уже звеном фильтра, определяется соотношением сопротивления нагрузки и реактивного сопротивления конденсатора или катушки.

Почему «или»? Потому что на резонансной частоте реактивные сопротивления конденсатора и катушки равны друг другу! Напомним, что емкостное сопротивление конденсатора Х с  = 1/2πf с C , а индуктивное сопротивление катушки X L  = 2πf с L . У фильтра резонансную частоту называют частотой среза. Когда частота входного сигнала равна резонансной частоте контура или, как говорят, частоте среза фильтра, X L = Х с . А добротность контура Q = R н /X L = R н /X с . Отсюда при Q = 1 получаем для фильтра L = R н /2πf с , С = 1/2πf с R н . Этими простыми формулами с успехом можно пользоваться при расчете фильтров.

Чтобы фильтр работал эффективнее, соединяют последовательно несколько простейших звеньев. Вспомните: если вам требуется хорошо профильтровать какую-либо жидкость, вы складываете марлю или фильтровальную бумагу в два-три слоя и уж только потом закладываете ее в воронку! Звенья фильтра соединяют так, чтобы можно было объединить соседние элементы. Например, так:

Два полузвена образуют П -образное звено.

Получилось П-образное звено. Или так:

Два полузвена образуют Т -образное звено.

Получилось Т-образное звено. Оба они состоят из двух Г-образных простейших звеньев и обеспечивают… Так и хочется сказать: вдвое большее ослабление. Это будет верно, но только в том случае, если ослабление считать в децибелах. А если просто, как мы привыкли, в «разах»? Например, сигнал с частотой в три раза выше частоты среза простое Г-образное звено ослабит примерно в десять раз. А два звена, думаете, в двадцать раз? Ничего подобного — в сто!

Коэффициенты передачи звеньев К перемножаются. Но тогда логарифмы этих величин должны складываться. Вот почему радиоинженеры так любят логарифмическую единицу ослабления или усиления децибел (дБ). В децибелах можно измерить отношение любых двух величин, например отношение выходного напряжения фильтра к входному, пользуясь соотношением

Но отношение выходного напряжения к входному и есть коэффициент передачи фильтра! В нашем примере для Г-образного звена он составляет — 20 дБ, а для двух Г-образных звеньев, соединенных последовательно, т. е. для П- или Т-образного звена, — 40 дБ. Знак «минус» указывает на то, что происходит ослабление сигнала (в случае усиления был бы знак «плюс»). Как видим, единица децибел действительно очень удобна, а чтобы это полностью оценить, к ней нужно просто привыкнуть. Люди, умеющие пользоваться логарифмической линейкой, редко отказываются от нее, а к микрокалькулятору обращаются лишь для выполнения особо точных расчетов.

Числа на линейке нанесены в логарифмическом масштабе, поэтому для умножения или деления двух чисел достаточно сложить или вычесть длины отрезков на линейке, соответствующие этим числам. Линейка обеспечивает точность расчетов не хуже 1 %. При необходимости большей точности пользуются таблицами логарифмов. Рассказывают о необыкновенном человеке, который соревновался с микрокалькулятором в умножении многозначных чисел. Его секрет объяснялся тем, что, выучив таблицу логарифмов, он вместо умножения мгновенно складывал в уме многозначные числа. С помощью логарифмической линейки или таблиц логарифмов очень удобно переводить отношение двух чисел в децибелы.

Многие читатели, вероятно, слышали, что в децибелах измеряют громкость звука, и теперь недоумевают, прочитав только что введенное определение. Никакого противоречия здесь нет. Если говорить строго, то в децибелах измеряют не силу звука, а отношение силы реального звука к силе звука, соответствующего пороговой чувствительности человеческого уха. Например, громкость оркестра оценивают в + 60 дБ, а рев реактивного двигателя — в + 120 дБ. Это значит, что амплитуда звуковых колебаний в первом случае в тысячу, а во втором в миллион раз больше, чем пороговая. Остается только удивляться необыкновенной способности человеческого уха воспринимать столь огромный диапазон громкостей! Ведь если амплитуда колебаний, различающихся на 120 дБ. отличается в миллион раз, то мощность, пропорциональная квадрату амплитуды, — в 1012 раз.

Громкость измеряется в децибелах.

Но вернемся к фильтрам. Добавив еще звенья, можно спроектировать фильтр с очень крутым спадом частотной характеристики и выделить слабый полезный сигнал на фоне очень сильного мешающего.

Амплитудно-частотные характеристики многозвенных фильтров нижних частот.

Допустим, надо выделить слабый писк комара на фоне рева реактивного двигателя. Эти звуковые сигналы уже преобразованы в электрические с помощью микрофона. Нужен фильтр, пропускающий высокие частоты (писк) и ослабляющий низкие (рев). Уже известный нам фильтр нижних частот надо видоизменить — вместо катушек установить конденсаторы, а вместо конденсаторов — катушки. Получится фильтр верхних частот. Boт схемы П- и Т-образных звеньев такого фильтра:

Фильтры верхних частот.

Есть еще одна разновидность фильтров, широко используемая в радиоприемниках, — полосовые фильтры. Дело в том, что простой колебательный контур не слишком хорош для выделения сигнала нужной радиостанции. Ведь в полосу пропускания контура должны войти и несущая, и боковые полосы принимаемого сигнала. Это означает, что полоса пропускания не может быть меньше 6…12 кГц. Но рядом с нужной нам станцией работают и соседние, причем разнос их несущих частот составляет всего 9 кГц в диапазонах длинных и средних волн. Одиночный контур с указанной полосой пропускания будет очень мало ослаблять сигналы соседних по частоте станций. Простейший выход из положения связать друг с другом два колебательных контура:

Двухконтурный полосовой фильтр.

Если катушки двух контуров размещены достаточно близко друг к другу, то часть магнитного потока одной катушки пересекает витки другой и энергия колебаний передается из контура в контур. В этом случае и говорят, что контуры связаны. Теперь мы знаем, что не веревочкой, а магнитным полем катушек. Сигнал подают на один из контуров, а снимают с другого. Благодаря связи контуров их резонансные частоты несколько изменяются: одного понижается, а другого повышается, причем это изменение тем больше, чем сильнее связь. При определенной величине связи, называемой критической, сдвиг частот становится больше, чем ширина резонансной кривой каждого из контуров. В этом случае общая резонансная кривая двух контуров приобретает характерную «двугорбую» форму. А если связать несколько контуров? Резонансная кривая будет еще ближе к желаемой прямоугольной. При связи контуров больше критической общая частотная характеристика будет иметь столько «горбов», сколько контуров входит в полосовой фильтр (попробуйте вообразить себе многогорбого верблюда!). Подобные фильтры, называемые фильтрами сосредоточенной селекции, сокращенно ФСС, очень часто применяют в радиоприемниках всех классов сложности.

В полосовых фильтрах можно устанавливать не только параллельные колебательные контуры, но и последовательные. На рисунке приведены их схемы.

Параллельный и последовательный колебательные контуры.

Если сопротивление параллельного колебательного контура на резонансной частоте максимально, то последовательного — минимально. Здесь реактивные сопротивления конденсатора и катушки компенсируют друг друга, и остается лишь небольшое активное сопротивление провода катушки. При отклонении же частоты от резонансной реактивное сопротивление последовательного контура резко возрастает. На рисунке показана схема одного звена П-образного полосового фильтра, использующего и параллельные, и последовательный контуры. Все три контура настроены на одну и ту же частоту, которая и будет средней частотой полосы пропускания фильтра.

Полосовой фильтр и его характеристика.

Наконец, просто необходимо рассказать об одной из «изюминок» современной электроники — кварцевых и пьезокерамических фильтрах. Колебательные контуры в фильтре можно заменить кварцевыми кристаллами, являющимися превосходными резонаторами. Фильтр от этого только выиграет. Кварцевый фильтр позволяет получать почти идеальную частотную характеристику, близкую по форме к прямоугольной. Даже на весьма высоких частотах порядка единиц и десятков мегагерц кварцевые фильтры могут иметь полосу пропускания всего несколько килогерц. Это объясняется высокой добротностью кварцевых резонаторов. С обычными LC-контурами такие результаты недостижимы. Кварцевые фильтры широко применяют в высококачественной аппаратуре для радиосвязи.

На более низких частотах используют резонаторы более дешевые и с худшей добротностью. Их изготавливают из искусственной пьезокерамики. Во многих портативных радиоприемниках установлен восьмирезонаторный пьезокерамический фильтр сосредоточенной селекции (ПФ1П), схема и внешний вид которого показаны на рисунке.

Пьезокерамический фильтр.

И совсем ненапрасно на лицевой панели приемников с этим фильтром пишут слова: «высокая селективность». Кварцевым и пьезокерамическим фильтрам принадлежит большое будущее, поскольку все резонаторы фильтра можно выполнять на одном кристалле, используя ту же технологию, что и при производстве интегральных микросхем. Изготовленные таким образом фильтры называют монолитными, подчеркивая этим, что фильтр уже не содержит отдельных элементов, а выполнен как одно целое.

Еще одна интересная и перспективная разновидность монолитных фильтров появилась в связи с разработкой устройств на поверхностных акустических волнах, сокращенно ПАВ. Вот что это такое. «Бросая в пруд камешки, наблюдайте круги, образуемые ими», — говорил Козьма Прутков. От брошенного камня на поверхности воды расходятся волны. Подобным же образом и по поверхности пьезокристалла расходятся волны от точки, где эти волны возбуждаются. Скорость волн составляет несколько километров в секунду, она зависит только от упругих свойств материала, а длина волны на частотах радиодиапазона измеряется миллиметрами. Если расположить в ряд несколько возбуждающих электродов, то будет наблюдаться интерференция волн, излучаемых каждым из них. Гребенка электродов, показанная на рисунке, создаст волну в указанном стрелкой направлении только в том случае, если расстояние между электродами составляет половину длины волны. А длина волны зависит от частоты возбуждающего сигнала, следовательно, возбуждение волн возможно только на одной определенной частоте.

Возбуждение ПАВ решеткой электродов (знаками «+» и «—» обозначена мгновенная полярность напряжения, через половину периода полярность изменится на обратную, а гребни волны займут место впадин).

Подобным же образом действует и приемная решетка электродов. Она реагирует на волны только вполне определенной длины, а именно такой, при которой возбуждение всех электродов происходит в одной и той же фазе. Пластинка пьезоэлектрика с двумя парами гребенок электродов образует фильтр, настроенный на вполне определенную частоту. Изменяя геометрические размеры и конфигурацию электродов, можно получать требуемые параметры фильтра: частоту настройки, полосу пропускания и т. д. Фильтры на ПАВ уже широко используют в радиосвязи. В профессиональной аппаратуре они позволяют, например, получать полосу пропускания 3 кГц на частоте в несколько десятков мегагерц. Нашли применение эти фильтры и в телевизорах нового поколения. Там они более широкополосны имеют полосу пропускания в несколько мегагерц.

Теперь мы с вами знаем, как с помощью фильтров можно из oгромнoго числа различных электрических колебаний выделить только определенные, нужные нам. Эта задача первостепенной важности и в радиоприемнике, и в телевизоре, и в устройствах многоканальной связи, и во многих других приборах. Как говорят специалисты, фильтры осуществляют частотную селекцию сигналов.

Но прежде чем выделить сигналы нужной частоты, эту частоту надо знать и уметь измерить, а для этого нужен инструмент измерений.

Монолитный полосовой фильтр на ПАВ .

Эталоны времени и частоты

Представьте себе ситуацию: кварцевые кристаллы для фильтра изготавливались на разных заводах. На каждом кристалле имеется обозначение одной и той же частоты, скажем 10 МГц. Собрали фильтр… и ничего не вышло. Вместо требуемой почти прямоугольной характеристики с плавно скругленными скатами получился ряд каких-то зубцов. Проверили кристаллы — они оказались настроенными на разные частоты. Обратились на один завод, там отвечают: «Мы настраивали на 10 МГц». Обратились на другой — тот же ответ. Возникает естественный вопрос: а чем измеряли частоту? С чем ее сравнивали? С каким образцом или эталоном?

Мы рассмотрели совершенно немыслимый в современном производстве случай, когда каждый завод «на свой аршин меряет». Если бы все измеряли «своими аршинами», нельзя было бы из заводских деталей собрать ни станок, ни автомобиль, ни один подшипник не подошел бы к своему валу, ни одна гайка ни к одному винту, да что там говорить, произошло бы всеобщее и сокрушительное бедствие!

Вот как важны точные и стандартизованные измерения в современной индустрии. Этим занимается специальная наука метрология. В отношении же измерения частоты «аршин» теперь у всех один — эталонная частота атомного стандарта. Ну а где частоты, там и время.

Частота обращения Земли вокруг Солнца задает единицу времени — год. Частота вращения Земли вокруг оси — другую единицу — сутки. Сутки делятся на часы, часы на минуты и секунды. Долгие годы астрономическая секунда была единственным эталоном времени. Но требования науки и техники все возрастают, а астрономическая секунда оказалась недостаточно точна. Вращение Земли неравномерно, оно подвержено влиянию притяжения других планет, приливов и отливов, многих других факторов. Изменения частоты вращения Земли ничтожно малы, но для современных приборов весьма заметны. А время надо знать точно. Отсчет секунд перед стартом космического корабля должен вестись по одной шкале и на космодроме Байконур, и на удаленном дальневосточном наблюдательном пункте, и на корабле слежения, дрейфующем в Индийском океане. Только тогда сообщение наблюдателей, что через 78,35 с после старта «пошла телеметрия», будет иметь смысл.

Но не это главное. Например, надо очень точно измерить частоту принятого телеметрического сигнала, чтобы по ее доплеровскому сдвигу рассчитать и скорректировать орбиту вновь выведенного космического корабля.

Время нужно не только знать, его нужно хранить и беречь и в переносном, и в буквальном смысле. Когда участники экспедиции Витуса Беринга отправились на лошадях через всю Россию из Петербурга к берегам Охотского моря, они везли не только канаты, парусину, якоря и прочее оборудование, они везли с собой и хронометры. Тщательно упакованные хронометры держали на коленях в течение всего путешествия, чтобы нечаянным толчком не сбить, не нарушить отсчитываемый ими ход времени. «Привезя» в Охотск гринвичское время, удалось довольно точно определить долготу неизвестных ранее географических пунктов. Ведь долгота измеряется по разности местного, определяемого по солнцу, и гринвичского времени (напомню, что в Гринвиче, вблизи Лондона, находится обсерватория, через которую проходит нулевой меридиан).

Теперь все гораздо проще: гринвичское, да и любое другое время, можно узнать по радио. И не только по сигналам точного времени, передаваемым каждый час любой радиовещательной станцией. Есть и специальные станции, передающие эталонные частоты атомных стандартов. В европейской части СССР можно принять эталонную частоту 66,(6) кГц, передаваемую из Москвы, а в азиатской части 50 кГц, передаваемую из Иркутска. Передается ряд частот и из других мест, в том числе и в диапазоне коротких волн. С такой техникой долготу географических пунктов удается определять с точностью до малых долей угловой секунды. Этими же частотами синхронизируются вторичные эталоны Государственной службы времени и частоты.

Сказав о вторичных, надо рассказать и о первичном эталоне времени. Ведь эталоны нужны при любых измерениях. В СССР используется международная система единиц (СИ). Основными в этой системе являются: единица длины — метр, массы — килограмм и времени — секунда. Кроме того, к основным относятся: единица силы тока — ампер, температуры — кельвин и силы света — кандела. Все другие единицы — производные от основных.

Первичным эталоном килограмма является масса бруска из платиново-иридиевого сплава, мало подверженного коррозии и другим химическим воздействиям. Эталон с максимальными предосторожностями хранится в Международном бюро мер и весов в Севре, близ Парижа, и лишь изредка извлекается из хранилища для проверки (сличения) привозимых вторичных эталонов.

За эталон метра ранее считали 1/40 000 000 часть длины меридиана Земли, проходящего через Париж. Был и более реальный эталон — стержень метровой длины, изготовленный из инвара — сплава с малым температурным коэффициентом расширения. Точность этого эталона была невысока и определялась точностью и тщательностью геодезических измерений на поверхности Земли. Был выбран более точный, атомный стандарт. Метр определили как длину, равную 1 650 763, 73 длин волн в вакууме излучения, соответствующего одной из спектральных линий (оранжевой) атомов криптона-86. Длины волн спектральных линий атомного излучения очень стабильны и практически не зависят от внешних условий, поэтому у нового стандарта появилось важное достоинство — повторяемость и воспроизводимость в разных условиях.

Наконец, в самое последнее время предложен новый эталон. Длиной в один метр стали считать путь, проходимый световой волной в вакууме за 1/299792458 часть секунды. В основе нового эталона лежит фундаментальный факт постоянства скорости света в вакууме. Но теперь метр оказался связан с другой основной единицей СИ — секундой, и точное определение эталона времени приобрело особо важное значение. Здесь уместно отмстить, что измерение времени и частоты теперь научились выполнять намного точнее всех других физических измерений.

Основой любого эталона времени является элемент, который совершает (или в котором совершаются) колебания. В часах это маятник, в астрономическом эталоне — сама планета Земля, ведь ее вращение, как мы уже убедились, можно представить суммой двух колебаний с одинаковыми частотами, совершаемых в двух взаимно перпендикулярных направлениях. В электронных часах колебательным элементом служит кварцевый кристалл, а в атомном стандарте — электронные оболочки атомов рабочего вещества. Секунда сейчас определяется как время, за которое совершается 9192 631 770 периодов колебаний в излучении, соответствующем переходу между двумя сверхтонкими уровнями основного состояния атома цезия-133.

Вероятно, вы знаете, что атомы поглощают и излучают электромагнитную энергию порциями — квантами. В атоме любого вещества электроны располагаются не на каких попало, а на вполне определенных орбитах. Каждой орбите соответствует определенный уровень энергии атома. Если состояние электрона изменяется, то излучается или поглощается квант, энергия которого в точности равна разности энергий в новом и прежнем состоянии атома. Энергия кванта прямо пропорциональна его частоте, поэтому частоты переходов между энергетическими уровнями очень стабильны.

На частотах радиодиапазона энергия квантов очень мала, и для создания эталонов приходится подбирать атомы, имеющие сверхтонкую структуру энергетических уровней. Кроме цезия такую структуру уровней имеют и атомы водорода.

Атом водорода, наипростейший из всех известных, состоит из единственного протона, образующего ядро, и единственного электрона. Спектр излучения водорода содержит серии линий в областям ультрафиолетовых, видимых, и инфракрасных волн. Но есть одна особая линия. Электрон вращается вокруг ядра не только по своей орбите, но и вокруг собственной оси. Такое вращение назвали спином (от англ. spin — волчок, веретено). Спины электрона в ядре могут быть параллельны (вращение в одну сторону) и антипараллельны (вращение в разные стороны). Переход атома из одного состояния в другое соответствует сверхтонкой структуре энергетических уровней. При этом переходе излучается электромагнитная волна около 21 см, лежащая в радиодиапазоне.

Устройство атомного эталона рассмотрим на примере водородного стандарта частоты. В камере, из которой до глубокого вакуума откачан воздух, имеется «атомная пушка» — окно из губчатой платины, тоненькой струйкой пропускающее атомы водорода. Они подвергаются нагреву высокочастотным полем, которое возбуждает часть атомов, т. е. переводит их на уровень с большей энергией. Затем пучок атомов пропускают через фокусирующую систему — магнит с сильно неоднородным полем. Он «отсеивает» невозбужденные атомы, а возбужденные попадают в металлический цилиндр — объемный резонатор, где и отдают энергию в виде электромагнитных колебаний. Энергия отводится из резонатора коаксиальным кабелем. Метрологический водородный стандарт имеет очень хорошую долговременную стабильность и воспроизводимость частоты. Его частота равна 1420405751, 786 ± 0,001 Гц, а стабильность порядка 10-13. Выходной сигнал резонатора усиливают, многократно делят по частоте и получают стандартные интервалы времени 0,1; 1 с и т. д. Для повышения стабильности водородный стандарт тщательно термостатируют и экранируют даже от магнитного поля Земли.

Надо отметить, что колебания могут существовать не только в электрических цепях, но и в свободном пространстве. Этот особый вид колебаний называют электромагнитными волнами. О них мы поговорим в следующей главе.

Устройство водородного стандарта частоты.