ВНУТРЕННЯЯ БАЛЛИСТИКА
Для более полноценной и качественной эксплуатации оружия снайпер обязан знать, какие огневые процессы происходят внутри его винтовки при выстреле. Четкое представление о течении этих процессов сможет объяснить непредвиденные погрешности в работе оружия и позволит избежать их.
УСТРОЙСТВО БОЕПРИПАСОВ
Боевой патрон для стрелкового оружия состоит из пули, порохового заряда, гильзы и капсюля (схема 107).
Схема 107. Боевой патрон
Гильза предназначена для соединения воедино всех элементов патрона, для предупреждения прорыва пороховых газов при выстреле (обтюрация) и для сохранения заряда.
Гильза имеет дульце, скат, корпус и дно (см. схему 107). В дне гильзы имеется капсюльное гнездо с перегородкой, наковальней и затравочными отверстиями (схема 108). Наковальня выступает в капсюльное гнездо, которое выполнено с наружной поверхности дна гильзы. На наковальне разбивается бойком ударный состав капсюля для его воспламенения, через затравочные отверстия пламя от капсюля проникает к пороховому заряду.
Капсюль предназначается для воспламенения порохового заряда и представляет собой чашечку-колпачок, на дне которого запрессован ударный состав, покрытый фольговым кружочком (см. схему 107). Для воспламенения пороха используют так называемые инициирующие вещества, которые обладают большой чувствительностью и взрываются от механического воздействия.
Колпачок, служащий для сборки элементов капсюля, вставляется в капсюльное гнездо с некоторым натягом с целью устранения прорыва газов между его стенками и стенками капсюльного гнезда. Дно колпачка делается достаточно прочным, чтобы оно не пробивалось насквозь бойком ударника и не прорывалось от давления пороховых газов. Колпачок капсюлей изготовляется из латуни.
Ударный состав обеспечивает безотказное воспламенение порохового заряда. На приготовление ударного состава идет гремучая ртуть, хлорат калия и антимоний.
Гремучая ртуть Hg(ONC)2 является инициирующим веществом в ударном составе. Достоинства гремучей ртути: сохранение своих качеств при длительном хранении, надежность действия, легкость воспламенения и сравнительная безопасность. Недостатки: интенсивное взаимодействие с металлом ствола, что способствует усилению коррозии канала ствола, амальгамирование (покрытие ртутью) колпачка капсюля, что приводит к самопроизвольному его растрескиванию и прорыву пороховых газов. Для устранения последнего недостатка внутреннюю поверхность колпачка лакируют.
Хлорат калия KClO3 является окислителем в ударном составе, обеспечивает полное сгорание компонентов, увеличивает температуру горения ударного состава и облегчает воспламенение пороха. Он представляет собой бесцветный кристаллический порошок.
Антимоний Sb2S3 является горючим в ударном составе. Он представляет собой черный порошок.
Ударный состав капсюля винтовочного патрона содержит: гремучей ртути 16%, хлората калия 55,5% и антимония 28,5%.
Фольговый кружок предохраняет капсюльный состав от разрушения при сотрясениях патронов (при перевозке, подаче) и от попадания влаги. Фольговый кружок лакируется шеллачно-канифольным лаком.
Капсюль запрессовывается в капсюльные гнезда с таким расчетом, чтобы фольга, прикрывающая капсюльный состав, ложилась без напряжения на наковальню (схема 109).
Схема 108. Схема капсюльного гнезда с капсюлем:
1 - наковальня
Схема 109. Капсюль:
1 - колпачок; 2 - ударный состав; 3 - фольговый кружок
Скорость горения бездымного пороха и качество выстрела в большой мере зависят от качества срабатывания капсюля. Капсюль должен образовывать факел пламени определенной длины, температуры и продолжительности действия. Эти качества объединяют термином "форс пламени". Но капсюли, даже очень хорошего качества, могут не дать необходимого форса пламени при плохом ударе бойка. Для полноценной вспышки энергия удара должна быть 0,14 кг м. Такую энергию имеют ударные механизмы современных снайперских винтовок. Но для полноценного воспламенения боевого вещества капсюля имеют значение также форма и величина бойка. При нормальном бойке и сильной боевой пружине вычищенного ударного механизма форс пламени капсюля постоянный и обеспечивает стабильное воспламенение порохового заряда. При заржавленном, загрязненном, изношенном спусковом механизме энергия удара по капсюлю будет различной, при загрязнениях выход бойка для удара будет мал, следовательно, форс пламени будет различным (схема 110), сгорание пороха будет неоднообразным, давление в стволе от выстрела к выстрелу будет меняться (больше - меньше - больше), и не удивляйтесь, если нечищеное оружие вдруг будет давать заметные "отрывы" вверх-вниз.
Схема 110. Форс пламени одинаковых капсюлей в разных условиях:
А - боек правильной формы и величины при необходимой энергии удара;
Б - очень острый и тонкий боек;
В - боек нормальной формы при малой энергии удара
Пороховой заряд предназначается для образования газов, выбрасывающих пулю из канала ствола. Источником энергии при выстреле являются так называемые метательные пороха, которые имеют взрывчатое превращение при сравнительно медленном нарастании давления, что позволяет использовать их для метания пуль и снарядов. В современной практике нарезных стволов применяются только бездымные пороха, которые делятся на пироксилиновый и нитроглицериновый порох.
Пироксилиновый порох изготавливается путем растворения смеси (в определенных пропорциях) влажного пироксилина в спиртоэфирном растворителе.
Нитроглицериновый порох изготавливается из смеси (в определенных пропорциях) пироксилина с нитроглицерином.
В бездымные пороха добавляются: стабилизатор - для предохранения пороха от разложения, флегматизатор - для замедления скорости горения и графит - для достижения сыпучести и устранения слипания зерен пороха.
Пироксилиновые пороха применяются главным образом в боеприпасах к стрелковому оружию, нитроглицериновые, как более мощные, - в артиллерийских системах и гранатометах.
При горении порохового зерна его площадь все время уменьшается, и соответственно уменьшается давление внутри ствола. Чтобы выровнять рабочее давление газов и обеспечить более-менее постоянную площадь горения зерна, пороховые зерна выполняются с внутренними полостями, а именно - в виде полой трубки или кольца. Зерна такого пороха горят одновременно и с внутренней, и с внешней поверхности. Уменьшение наружной поверхности горения возмещается увеличением внутренней горящей поверхности, так что общая площадь остается постоянной.
ОГНЕВОЙ ПРОЦЕСС В СТВОЛЕ
Пороховой заряд винтовочного патрона весом 3,25 г при выстреле сгорает примерно за 0,0012 с. При сгорании заряда выделяется около 3 калорий тепла и образуется около 3 л газов, температура которых в момент выстрела равна 2400-2900°С. Газы, будучи сильно нагретыми, оказывают высокое давление (до 2900 кг/см2) и выбрасывают пулю из ствола со скоростью свыше 800 м/с. Общий объем раскаленных пороховых газов от сгорания порохового заряда винтовочного патрона примерно в 1200 раз больше по объему, чем было пороха до выстрела.
Выстрел из стрелкового оружия происходит в следующем порядке, от удара бойка по капсюлю боевого патрона, запертого в патроннике, его инициирующее вещество, зажатое между жалом ударника и наковальней гильзы, воспламеняется, это пламя через затравочные отверстия выбрасывается к пороховому заряду и охватывает зерна пороха. Весь заряд пороха загорается почти одновременно. Образующееся при сгорании пороха большое количество газов создает высокое давление на дно пули и стенки гильзы. Это давление газов создает растяжение в ширину стенок гильзы (при сохранении их упругой деформации), и гильза плотно прижимается к стенкам патронника, препятствуя, как обтюратор, прорыву пороховых газов назад к затвору.
В результате давления газов на дно пули она сдвигается с места и врезается в нарезы. Вращаясь по нарезам, пуля продвигается по каналу ствола с непрерывно возрастающей скоростью и выбрасывается по направлению оси канала ствола.
Давление газов на противоположные стенки ствола и патронника также вызывает их незначительную упругую деформацию и взаимно уравновешивается. Давление газов на дно гильзы запертого затвором патрона вызывает движение оружия назад. Это явление называется отдачей. Согласно законам механики отдача возрастает с увеличением порохового заряда, веса пули и с уменьшением собственного веса оружия.
Во всех странах боеприпасы стараются делать очень высокого качества. Несмотря на это время от времени имеет место производственный брак или боеприпасы портятся от неправильного хранения. Иногда после удара бойком по капсюлю выстрела не последует или он происходит с некоторым запозданием. В первом случае имеет место осечка, во втором - затяжной выстрел. Причиной осечки чаще всего бывает отсыревание ударного состава капсюля или порохового заряда, а также слабый удар бойка по капсюлю. Поэтому необходимо оберегать боеприпасы от влаги и содержать оружие в исправном состоянии.
Затяжной выстрел является следствием медленного развития процесса воспламенения порохового заряда. Поэтому после осечки не следует сразу же открывать затвор. Обычно после осечки отсчитывают пять-шесть секунд и только после этого открывают затвор.
При сгорании порохового заряда только 25-30% выделяемой энергии затрачивается в качестве полезной работы на выброс пули. На совершение второстепенных работ - врезание в нарезы и преодоление трения пули при движении по каналу ствола, нагревание стенок ствола, гильзы и пули, перемещение подвижных частей в автоматическом оружии, выброс газообразной и несгоревшей части пороха - используется до 20% энергии порохового заряда. Около 40% энергии не используется и теряется после вылета пули из канала ствола.
Задача порохового заряда и ствола - разогнать пулю до необходимой полетной скорости и придать ей убойную боевую энергию. Процесс этот имеет свои особенности и происходит в несколько периодов.
Предварительный период длится от начала горения порохового заряда до полного врезания оболочки пули в нарезы ствола. В течение этого периода в канале ствола создается давление газов, необходимое для того, чтобы сдвинуть пулю с места и преодолеть сопротивление ее оболочки врезанию в нарезы ствола. Это давление называется давлением форсирования, оно достигает 250-500 кг/см2 в зависимости от геометрии нарезов, веса пули и твердости ее оболочки. Горение порохового заряда в этом периоде происходит в постоянном объеме, оболочка врезается в нарезы мгновенно, а движение пули по стволу начинается сразу же при достижении в канале ствола давления форсирования. Порох в это время еще продолжает гореть.
Первый, или основной, период длится от начала движения пули до момента полного сгорания порохового заряда. В этот период сгорание пороха происходит в быстро изменяющемся объеме. В начале периода, когда скорость движения пули по каналу ствола еще не велика, количество газов растет быстрее, чем объем пространства между дном пули и дном гильзы (запульного пространства), давление газов быстро повышается и достигает наибольшей величины - 2800-3000 кг/см2 (см. схемы 111, 112). Это давление называется максимальным давлением. Оно создается у стрелкового оружия при прохождении пулей 4-6 см пути. Затем, вследствие быстрого увеличения скорости движения пули, объем запульного пространства увеличивается быстрее притока новых газов, давление в стволе начинает падать и к концу периода оно достигает примерно 3/4 искомой начальной скорости пули. Пороховой заряд сгорает незадолго до того, как пуля вылетит из канала ствола.
Схема 111. Изменение давления газов и нарастание скорости пули в стволе винтовки образца 1891-1930 гг.
Схема 112. Изменение давления газов и скорости пули в стволе малокалиберной винтовки
Второй период длится от момента полного сгорания порохового заряда до момента вылета пули из канала ствола. С началом этого периода приток пороховых газов прекращается, однако сильно сжатые и нагретые газы продолжают расширяться и, продолжая оказывать давление на пулю, увеличивают скорость ее движения. Спад давления во втором периоде происходит довольно быстро и у дульного среза составляет у винтовки 570-600 кг/см2.
Третий период, или период последействия газов, длится от момента вылета пули из канала ствола до момента прекращения действия пороховых газов на пулю. В течение этого периода пороховые газы, истекающие из канала ствола со скоростью 1200-2000 м/с, продолжают действовать на пулю и сообщают ей дополнительную скорость. Наибольшей, максимальной, скорости пуля достигает в конце третьего периода на удалении нескольких десятков сантиметров от дульного среза ствола. Этот период заканчивается в тот момент, когда давление пороховых газов на дно пули будет уравновешено сопротивлением воздуха.
Какое практическое значение имеет все вышеизложенное? Посмотрите на схему-график 111 по винтовке калибра 7,62 мм. Исходя из данных этого графика, становится понятным, почему длину винтовочного ствола практически не имеет смысла делать более 65 см. Если его делать длиннее, скорость пули возрастает очень незначительно, а габариты оружия бессмысленно увеличиваются. Становится понятно, почему трехлинейный карабин с длиной ствола 47 см и скоростью пули 820 м/с имеет практически такие же боевые качества, как и трехлинейная винтовка с длиной ствола 67 см и начальной скоростью пули 865 м/с.
Аналогичная картина наблюдается и у малокалиберных винтовок (схема-график 112) и особенно у оружия под 7,62-миллиметровый автоматический патрон образца 1943 года.
Длина нарезной части ствола автомата АКМ составляет всего 37 см при начальной скорости пули 715 м/с. Длина нарезной части ствола ручного пулемета Калашникова, стреляющего теми же патронами, - 54 см, на 17 см больше, а пуля разгоняется незначительно - начальная скорость пули 745 м/с. Но у винтовок и пулеметов ствол приходится делать удлиненным для большей кучности боя и для удлинения прицельной линии. Эти параметры обеспечивают повышенную точность стрельбы.
НАЧАЛЬНАЯ СКОРОСТЬ ПУЛИ
Начальная скорость является одной из важнейших характеристик боевых свойств оружия. При увеличении начальной скорости увеличивается дальность полета пули, дальность прямого выстрела, убойное и пробивное действие пули, а также уменьшается влияние внешних условий на ее полет. В частности, чем быстрее летит пуля, тем меньше она сносится в сторону ветром. Величина начальной скорости пули обязательно указывается в таблицах стрельбы и в боевых характеристиках оружия.
Величина начальной скорости пули зависит от длины ствола, веса пули, веса, температуры и влажности порохового заряда, формы и размеров зерен пороха и плотности заряжания.
Чем длиннее ствол, тем большее время на пулю действуют пороховые газы и тем больше (в известных технических пределах, см. ранее) начальная скорость.
При постоянной длине ствола и постоянном весе порохового заряда начальная скорость тем больше, чем меньше вес пули.
Изменение веса порохового заряда приводит к изменению количества пороховых газов, а следовательно, и к изменению величины максимального давления в канале ствола и начальной скорости пули. Чем больше пороха, тем больше давление и тем больше разгоняется пуля по стволу.
Длина ствола и вес порохового заряда балансируются согласно вышеприведенным графикам (схемы 111, 112) внутренних огневых процессов в винтовочном стволе при конструировании и компоновке оружия до наиболее рациональных размеров.
С повышением внешней температуры увеличивается скорость горения пороха, и поэтому увеличиваются максимальное давление и начальная скорость. При понижении внешней температуры начальная скорость уменьшается. Кроме того, при изменении наружной температуры изменяется и температура ствола, и нужно большее или меньшее количество тепла для его нагревания. А это в свою очередь влияет на изменение давления в стволе и соответственно на начальную скорость пули.
Один из старых снайперов на памяти автора в специально сшитом патронташе носил под мышкой десяток винтовочных патронов. На вопрос, какое это имеет значение, пожилой инструктор ответил- "Очень большое значение. Мы с тобой сейчас оба стреляли на 300 метров, но у тебя разброс шел по вертикали вверх-вниз, а у меня - нет. Потому что порох в моих патронах согрет до 36 градусов под мышкой, а твой в подсумке замерз до минус 15 (дело было зимой). Ты винтовку пристреливал осенью при плюс 15, итого разница 30 градусов. Ты стреляешь частым огнем, и у тебя ствол нагрелся, поэтому у тебя первые пули пошли ниже, а вторые - выше. А я все время стреляю порохом одинаковой температуры, поэтому у меня все летит, как положено".
Увеличение (уменьшение) начальной скорости вызывает увеличение (уменьшение) дальности стрельбы. Разности этих величин настолько существенны, что в практике охотничьей стрельбы из гладкоствольных ружей применяют летние и зимние стволы разной длины (зимние стволы обычно на 7-8 см длиннее летних) для достижения одной и той же дальнобойности выстрела. В снайперской практике обязательно делаются поправки дальности на температуру воздуха по соответствующим таблицам (см. ранее).
С повышением влажности порохового заряда уменьшается скорость его горения и соответственно падают давление в стволе и начальная скорость.
Скорость горения пороха прямо пропорциональна окружающему его давлению. На открытом воздухе скорость горения бездымного винтовочного пороха равна приблизительно 1 м/с, а в замкнутом пространстве патронника и ствола вследствие повышения давления скорость горения пороха увеличивается и достигает нескольких десятков метров в секунду.
Отношение веса заряда к объему гильзы при вставленной пуле (камеры сгорания заряда) называется плотностью заряжания. Чем больше "трамбуется" порох в гильзе, что происходит при передозировке пороха или глубокой посадке пули, тем больше возрастают давление и скорость сгорания. Это иногда приводит к резкому скачку давления и даже к детонации порохового заряда, что может привести к разрыву ствола. Плотность заряжания производится по сложным инженерным расчетам и для отечественного винтовочного патрона равна 0,813 кг/дм3. При уменьшении плотности заряжания уменьшается скорость горения, увеличивается время прохождения пули по стволу, что, как ни парадоксально, приводит к быстрому перегреву оружия. По всем этим причинам переснаряжать боевые патроны запрещается!
ОСОБЕННОСТИ СРАБАТЫВАНИЯ МАЛОКАЛИБЕРНЫХ (5,6 MM) ПАТРОНОВ БОКОВОГО ОГНЯ
Капсюльный заряд в патронах бокового огня запрессовывается изнутри в закраину гильзы (так называемый патрон Флобера), и удар бойком для выстрела осуществляется соответственно не по центру, а по закраине дна гильзы. У малокалиберных патронов, имеющих сплошную свинцовую безоболочечную пулю, пороховой заряд весьма незначителен и с малой плотностью заряжания (порох насыпан до половины объема гильзы). Давление пороховых газов незначительно и выбрасывает пулю с начальной скоростью 290-330 м/с. Это делается по той причине, что большее давление может сорвать мягкую свинцовую пулю с нарезов. Для спортивных целей и биатлона вышеуказанной скорости пули вполне достаточно. Но при пониженной внешней температуре воздуха при даже незначительной недосыпке пороха давление в малокалиберном стволе может резко упасть, при падении давления порох перестает гореть и нередки случаи, когда при минус 20°С и ниже пули просто-напросто застревают внутри ствола. Поэтому в зимнее время при отрицательных температурах рекомендуется применять патроны повышенной мощности "Экстра" или "Биатлон".
ТЕОРИЯ ПУЛИ
Пуля является поражающим элементом. Дальность ее полета зависит от удельного веса материала, из которого она сделана.
Кроме того, этот материал должен быть пластичным для врезания в нарезы ствола. Таким материалом является свинец, который применяется для изготовления пуль уже несколько столетий. Но мягкая свинцовая пуля при увеличении порохового заряда и давления в стволе срывается с нарезов. Начальная скорость сплошной свинцовой пули винтовки Бердана не превышала 420-430 м/с, и для свинцовой пули это был предел. Поэтому свинцовую пулю стали заключать в оболочку из более прочного материала, вернее, в эту прочную оболочку стали заливать расплавленный свинец. Такие пули раньше называли двухслойными. При двухслойном устройстве пуля сохраняла возможно больший вес и имела сравнительно прочную оболочку.
Оболочка пули, изготовленная из более прочного, чем наполнявший ее свинец, материала, не давала пуле срываться с нарезов при сильных давлениях внутри ствола и позволяла резко увеличить начальную скорость пули. Более того, при прочной оболочке пуля меньше деформировалась при попадании в цель и этим улучшалось ее пробивное (прошивное) действие.
Пули, состоящие из плотной оболочки и мягкого сердечника (свинцовой заливки), появились в 70-х годах XIX столетия вслед за изобретением бездымного пороха, обеспечивающего повышенное рабочее давление в стволе. Это был рывок в развитии огнестрельного оружия, что позволило в 1884 г. создать первый в мире и весьма удачный знаменитый пулемет "максим". Оболочечная пуля обеспечивала повышенную живучесть нарезных стволов. Дело в том, что мягкий свинец "наволакивался" на стенки ствола, забивал нарезы, что рано или поздно вызывало раздутие стволов. Для того чтобы этого не происходило, свинцовые пули заворачивали в просаленную плотную бумагу, и все равно это мало помогало. В современном малокалиберном оружии, стреляющем свинцовыми безоболочечными пулями, во избежание наволакивания свинца пули покрывают специальным техническим салом.
Материал, из которого изготавливается оболочка пули, должен быть достаточно пластичным, чтобы пуля могла врезаться в нарезы, и достаточно прочным, чтобы пуля при движении по нарезам с них не сорвалась. Кроме того, материал оболочки пули должен иметь как можно меньший коэффициент трения, чтобы меньше изнашивать стенки ствола и обладать стойкостью против ржавления.
Всем этим требованиям наиболее полно отвечает мельхиор - сплав 78,5-80% меди и 21,5-20% никеля. Пули с мельхиоровой оболочкой зарекомендовали себя в эксплуатации лучше, чем какие-либо другие. Но мельхиор был очень дорогим в массовом производстве боеприпасов.
Пули с мельхиоровой оболочкой выпускались в дореволюционной России. Во время Первой мировой войны при отсутствии никеля оболочки пуль были вынуждены изготавливать из латуни. В гражданскую войну и красные, и белые делали боеприпасы из чего придется. Автору приходилось видеть патроны выпусков тех лет с оболочками пуль из латуни, толстой меди и мягкой стали.
В Советском Союзе пули с мельхиоровой оболочкой выпускали до 1930 г. В 1930 г. взамен мельхиора для изготовления оболочек начали применять малоуглеродистую мягкую сталь, плакированную (покрытую) томпаком. Таким образом, оболочка пули стала биметаллической.
Томпак представляет собой сплав 89-91% меди и 9-11% цинка. Его толщина в биметаллической оболочке пули составляет 4-6% от толщины стенки оболочки. Биметаллическая оболочка пули с томпаковым покрытием в основном удовлетворяла предъявляемым требованиям, хотя и несколько уступала оболочкам мельхиоровым.
В связи с тем, что изготовление томпакового покрытия требует дефицитных цветных металлов, перед войной в СССР освоили производство оболочек из холоднокатаных малоуглеродистых сталей. Оболочки эти покрывали тонким слоем меди или латуни электролитическим или контактным способом.
Материал сердечника в современных пулях обладает достаточной мягкостью для облегчения врезания пули в нарезы и имеет достаточно высокую температуру плавления. Для этого используется сплав свинца и сурьмы в соотношении 98-99% свинца и 1-2% сурьмы. Примесь сурьмы делает свинцовый сердечник несколько прочнее и повышает температуру его плавления.
Вышеописанная пуля, имеющая оболочку и свинцовый сердечник (заливку), называется обыкновенной. Среди обыкновенных пуль встречаются сплошные, например французская сплошная томпаковая пуля (схема 113), французская удлиненная сплошная алюминиевая пуля (4 на схеме 114), а также облегченные со стальным сердечником. Появление в обыкновенных пулях стального сердечника вызвано требованием удешевления конструкции пули путем уменьшения количества свинца и уменьшения деформации пули в целях увеличения пробивного действия. Между оболочкой пули и стальным сердечником находится свинцовая рубашка для облегчения врезания в нарезы.
Схема 113 Французская сплошная томпаковая пуля
Схема 114. Обыкновенные пули:
1 - отечественная легкая, 2 - германская легкая; 3 - отечественная тяжелая; 4 - французская сплошная; 5 - отечественная со стальным сердечником; 6 - германская со стальным сердечником; 7 - английская; 8 - японская А - кольцевой желобок - накатка для крепления пули в гильзе
До сих пор в применении встречаются пули старого изготовления. Имеются легкие пули образца 1908 г. с мельхиоровой оболочкой без кольцевой накатки для фиксации пули в гильзе (схема 115) и легкая пуля образца 1908-1930 гг. со сталь-вой, плакированной томпаком оболочкой, имеющая кольцевую накатку для лучшего закрепления пули в дульце гильзы при сборке патрона (А на схеме 114).
Схема 115. Легкая пуля образца 1908 г. без накатки
Материалы, из которых изготовлена оболочка пули, по-разному изнашивают ствол. Основной причиной износа ствола является механическое истирание, и поэтому чем тверже оболочка пули, тем интенсивнее износ. Практика показала, что при стрельбе из одного и того же образца оружия пулями с различными оболочками, изготовленными в разное время на разных заводах, живучесть ствола различна. При стрельбе пулей со стальной, не плакированной томпаком оболочкой выпуска военного времени износ ствола резко повышается. Ничем не покрытая стальная оболочка имеет склонность к оржавлению, что резко снижает точность стрельбы. Такие пули выпускали немцы в последние месяцы Второй мировой войны.
В конструкции пули различают головную, ведущую и хвостовую части (схема 116).
Схема 116. функциональные части пули образца 1930 г.:
А - головная, Б - ведущая, В - хвостовая обтекаемая
Головная часть современной винтовочной пули имеет коническую вытянутую форму. Чем больше скорость пули, тем
длиннее должна быть ее головная часть. Такое положение продиктовано законами аэродинамики. Вытянутый конический носик пули имеет меньшее аэродинамическое сопротивление при полете в воздухе. Для примера - оживальная тупоконечная пуля трехлинейной винтовки первого образца выпуска до 1908 года давала 42% понижения скорости на пути от 25 до 225 м, а остроконечная образца 1908 г. на том же пути - только 18%. В современных пулях длина головной части пули выбирается в пределах от 2,5 до 3,5 калибра оружия. Ведущей частью пуля врезается в нарезы.
Назначение ведущей части - придать пуле надежное направление и вращательное движение, а также плотно заполнить канавки нарезов канала ствола для того, чтобы устранить возможность прорыва пороховых газов. По этой причине пули по толщине выполняются большим диаметром, чем номинальный калибр оружия (табл. 38).
Таблица 38
Данные винтовочных патронов калибра 7,62 мм, производившихся в СССР в разное время
Как правило, ведущая часть пули - цилиндрическая, иногда для плавности врезания ведущей части пули придается незначительная конусность. Для лучшего направления движения пули по каналу ствола и для уменьшения вероятности срыва с нарезов выгоднее иметь большую длину ведущей части, к тому же при ее большей длине повышается кучность боя. Но с увеличением длины ведущей части пули увеличивается усилие, необходимое для врезания пули в нарезы. Это может привести к поперечному разрыву оболочки. В отношении живучести ствола, предохранения оболочки от разрыва и обеспечения лучшего обтекания воздуха в полете выгоднее более короткая ведущая часть.
Длинная ведущая часть интенсивнее изнашивает ствол, чем короткая. При стрельбе старой русской тупоконечной пулей с большей ведущей частью живучесть стволов была вдвое меньше, чем при стрельбе новой остроконечной пулей образца 1908 г. с меньшей длиной ведущей части. В современной практике приняты пределы длины ведущей части от 1 до 1,5 размера калибра.
С точки зрения меткости стрельбы длину ведущей части невыгодно брать менее одного диаметра канала ствола по канавкам нарезов. Пули меньшей длины, чем диаметр канала ствола по нарезам, дают больший разброс.
Кроме того, уменьшение длины ведущей части ведет к возможности ее срыва с нарезов, к неправильному полету пули в воздухе и ухудшению ее обтюрации. При малой длине ведущей части пули образуются зазоры между пулей и дном канавки нареза. В эти зазоры с большой скоростью устремляются раскаленные пороховые газы с твердыми частицами несгоревшего пороха, которые буквально "слизывают" металл и резко увеличивают износ ствола. Пуля, идущая по стволу не плотно, а "гуляющая" по нарезам, постепенно "разбивает" ствол и ухудшает качество его дальнейшей работы.
Рациональное соотношение между длиной ведущей части пули и диаметром канала ствола по канавкам нарезов выбирается также в зависимости от материала оболочки пули. Пули с более мягким материалом оболочки, чем сталь, могут иметь длину ведущей части несколько большую, чем диаметр ствола по нарезам. Эта величина может быть не более чем на 0,02 калибра по нарезам.
Крепление пули в гильзе осуществляется путем завальцовки или обжима дульца гильзы в кольцевую накатку пули, которая делается обычно ближе к переднему концу ведущей части. Дульце стальных гильз, завальцованных в накатку, не будет "снимать стружку" и деформировать патронник при подаче в него патрона.
От крепления пули в гильзе зависит очень много. При слабом креплении не развивается давление форсирования, при очень плотном порох сгорает в постоянном объеме гильзы, что вызывает резкий скачок максимального давления в стволе, вплоть до разрыва. При стрельбе патронами с разной завальцовкой пули всегда будет разброс пуль по высоте.
Хвостовая часть пули может быть плоской (как у легкой пули образца 1908 г.) или обтекаемой (как у тяжелой пули образца 1930 г.) (см. схему 116).
БАЛЛИСТИКА ПУЛИ
При сверхзвуковых скоростях полета пули, когда основной причиной сопротивления воздуха является образование уплотнения воздуха перед головной частью, выгодны пули с удлиненным остроконечным носиком. За донной частью пули образуется разреженное пространство, вследствие чего появляется разность давлений на головную и донную части. Эта разность и обусловливает сопротивление воздуха полету пули. Чем больше диаметр дна пули, тем больше разреженное пространство, и, естественно, чем меньше диаметр дна, тем это пространство тоже меньше. Поэтому пулям придают обтекаемый конусообразный хвостовик, а дно пули оставляют возможно меньшего диаметра, но достаточного для того, чтобы залить ее свинцом.
Из внешней баллистики известно, что при скорости пули большей, чем скорость звука, форма хвостовой части пули оказывает сравнительно меньшее влияние на сопротивление воздуха, чем головная часть пули. При большой начальной скорости пули на дистанциях стрельбы 400-450 м общая аэродинамическая картина сопротивления воздуха у пуль и с плоской, и с обтекаемой хвостовой частью примерно одинакова (А, Б на схеме 117).
Схема 117. Баллистика пуль разной формы на разных скоростях:
А - баллистика пули с конусообразным хвостовиком на больших скоростях;
Б - баллистика пули без конусообразного хвостовика на больших и малых скоростях;
В - баллистика пули с конусообразным хвостовиком на малых скоростях:
1 - волна уплотненного воздуха; 2 - отрыв пограничного слоя; 3 - разреженное пространство
Влияние формы хвостовой части на величину силы сопротивления воздуха увеличивается с уменьшением скорости пули. Хвостовая часть в виде усеченного конуса придает пуле более обтекаемую форму, благодаря которой на малых скоростях уменьшаются область разреженного пространства и завихрения воздуха позади дна летящей пули (В на схеме 117). Завихрения и наличие области пониженного давления за пулей приводят к быстрой потере скорости пули.
Коническая хвостовая часть более целесообразна для тяжелых пуль, применяемых для стрельбы на большие дистанции, так как в конце полета на большую дальность скорость пули мала. В современных пулях длина хвостовой конической части лежит в пределах 0,5-1 калибра.
Общая длина пули ограничивается условиями устойчивости ее при полете. При нормальной крутизне нарезов устойчивость пули в полете обеспечивается при ее длине не более 5,5 калибра. Пуля большей длины будет лететь на пределе устойчивости и даже при естественных завихрениях воздушных потоков может пойти кувырком.
ЛЕГКИЕ И ТЯЖЕЛЫЕ ПУЛИ. ПОПЕРЕЧНАЯ НАГРУЗКА ПУЛИ
Поперечной нагрузкой пули называется отношение веса пули к площади поперечного сечения ее цилиндрической части.
an = q/Sn (г/см2),
где q - вес пули в граммах;
Sn - площадь поперечного сечения пули в см2.
Чем больше вес пули при том же калибре, тем больше и ее поперечная нагрузка. В зависимости от величины поперечной нагрузки различают легкие и тяжелые пули. Обыкновенные пули, имеющие при нормальном калибре (см. далее) поперечную нагрузку более 25 г/см2 и вес более 10 г, называются тяжелыми, а пули нормального калибра, имеющие вес менее 10 г и поперечную нагрузку менее 22 г/см2, называются легкими (табл. 39).
Таблица 39
Основные данные легкой пули образца 1908 г. и тяжелой пули образца 1930 г.
Пули с большой поперечной нагрузкой имеют меньшую начальную скорость, чем легкие пули, при одном и том же максимальном давлении в стволе. Поэтому на малых дальностях стрельбы легкая пуля дает более настильную траекторию, чем тяжелая пуля (схема 118). Однако с увеличением поперечной нагрузки уменьшается ускорение силы сопротивления воздуха. А так как ускорение силы сопротивления воздуха действует в направлении, обратном скорости пули, то пули с большей поперечной нагрузкой медленно теряют скорость под влиянием сопротивления воздуха. Так, например, отечественная тяжелая пуля на дальности более 400 м имеет более настильную траекторию, чем легкая пуля (см. схему 118).
Схема 118. Траектории легкой и тяжелой пуль при стрельбе на различные дальности
Немалое значение имеет и то, что тяжелая пуля имеет конический хвостовик и ее аэродинамика на низких скоростях более совершенна, чем аэродинамика пули легкой (см. ранее).
По всем этим причинам при достижении дистанции 500 м легкая пуля образца 1908 г. начинает притормаживаться, а тяжелая - нет (табл. 40).
Таблица 40
Время полета пули, с
Практикой установлено, что тяжелые пули на дистанциях 400 м обеспечивают более кучный бой и сильнее действуют по цели, чем легкие пули. Из винтовок и пулеметов максимальная дальность полета тяжелой пули составляет 5000 м, а легкой - 3800.
Для обычных пехотных винтовок, из которых стрельба мало подготовленными стрелками, как правило, ведется на дистанциях до 400 м, стрельба легкими пулями будет практичной, ибо на этой дистанции траектория легкой пули будет более настильной, а следовательно, более результативной. Но для снайперов и пулеметчиков, которым надо достать цель на 800 м (а пулеметчикам и дальше), более целесообразна и результативна стрельба именно тяжелыми пулями.
Для лучшего уяснения процесса приведем баллистическое толкование схемы 118. Чтобы при стрельбе на дистанции 200 м тяжелая пуля попала в ту же точку, что и легкая, ей надо придать при выстреле больший угол возвышения, то есть "приподнять" траекторию практически на один-два сантиметра.
Если винтовка пристреляна легкими пулями на дистанции 200 м, тяжелые пули в конце дистанции пойдут сантиметра на полтора-два ниже (если прицел установлен для стрельбы легкими пулями). Но на дистанции 400 м скорость легкой пули уже падает быстрее, чем скорость пули тяжелой, которая имеет более совершенную аэродинамическую форму. Поэтому на дистанции 400-500 м траектории и точки попадания обеими пулями совпадают. На более дальних дистанциях легкая пуля еще более теряет скорость по сравнению с тяжелой. На дистанции стрельбы 600 м легкая пуля попадает в ту же точку, что и тяжелая, если ей при выстреле придать больший угол возвышения. То есть теперь надо поднимать траекторию уже при стрельбе легкой пулей. Поэтому при стрельбе из винтовки, пристреляной тяжелыми пулями, на дистанции 600 м легкие пули пойдут ниже (реально на 5-7 см). Тяжелые пули на дальностях стрельбы свыше 400-500 м имеют более настильную траекторию и большую кучность, поэтому они более предпочтительны для стрельбы по отдаленным целям.
Легкая пуля образца 1908 г. имеет поперечную нагрузку 21.2 г/см2. тяжелая пуля образца 1930 г. - 25,9 г/см2 (табл. 39).
Утяжеление пули образца 1930 г. выполнено за счет удлиненного носика и конусообразной хвостовой части (б на схеме 119). Легкая пуля образца 1908-1930 гг. имеет в хвостовой части коническое углубление- Наличие этого внутреннего конуса (а на схеме 119) создает выгодные условия для обтюрации пороховых газов, так как хвостовая часть пули от давления газов расширяется по диаметру и плотно прижимается к стенкам канала ствола.
Схема 119. Легкая и тяжелая пули:
а - легкая пуля; б - тяжелая пуля:
1 - оболочка: 2 - сердечник
Это обстоятельство позволяет увеличить срок службы ствола, потому что легкая пуля хорошо врезается в нарезы, прижимается к ним и получает вращательное движение даже при очень незначительной высоте нарезов. Таким образом, внутренний полый конус легкой пули при ее меньшей массе и инертности повышает живучесть стволов.
По этой же причине стрельба легкой пулей из старых винтовок с изношенными стволами получается точнее и результативнее, чем стрельба тяжелыми пулями. Тяжелая пуля при прохождении старого ствола "счесывается" неровностями раковин от ржавчины и разгара, как напильником, уменьшается в диаметре и при выходе из ствола начинает "гулять" в нем. Легкая пуля постоянно расширена в стороны своей конусной юбкой и во время работы в стволе прижата к его внутренним стенкам.
Запомните: стрельба легкой пулей повышает живучесть стволов вдвое. Из новых стволов качество стрельбы (кучность боя) получается лучше при стрельбе тяжелой пулей. Из старых, изношенных стволов качество стрельбы получается лучшим при стрельбе легкой пулей с внутренним конусом хвостовой части.
Легкие пули имеют преимущество настильной траектории до дальности 400-500 м. Начиная с дальности 400-500 м и больше тяжелая пуля имеет преимущества во всех отношениях (энергия пули больше, рассеивание меньше и настильнее траектория). Тяжелые пули меньше отклоняются деривацией и ветром, настолько меньше, насколько больше они весят по сравнению с легкой пулей (примерно на 1/4). На дистанциях свыше 400 м вероятность попадания при стрельбе тяжелой пулей втрое больше, чем при стрельбе легкой пулей.
При пристрелке на дистанции 100 м тяжелые пули идут на 1-2 см ниже, чем легкие.
Носик (вершина) тяжелой пули образца 1930 года окрашивается в желтый цвет. Легкая пуля образца 1908 г. особых отличительных знаков не имеет.
ДЕЙСТВИЕ ПУЛИ ПО ЦЕЛИ. УБОЙНОСТЬ ПУЛИ
Поражение живой открытой цели при попадании в нее определяется убойностью пули. Убойность пули характеризуется живой силой удара, то есть энергией в момент встречи с целью. Энергия пули Е зависит от баллистических свойств оружия и вычисляется по формуле:
Е = (g x v2)/S
где g - вес пули;
v - скорость пули у цели;
S - ускорение свободного падения.
Чем больше вес пули и чем больше ее начальная скорость, тем больше энергия пули. Соответственно, энергия пули тем больше чем больше скорость пули у цели. Скорость пули у цели тем больше, чем совершеннее ее баллистические качества, определяемые формой пули и ее обтекаемостью. Для нанесения поражения, выводящего из строя человека, достаточна энергия пули, равная 8 кг м, и для нанесения такого же поражения вьючному животному необходима энергия около 20 кг м. Пули современных армейских образцов стрелкового оружия калибра 7,62 мм сохраняют убойность почти до предельной дистанции полета. Пули спортивных малокалиберных патронов очень быстро теряют скорость и энергию. Практически такая малокалиберная пуля теряет гарантированную убойность на дистанции более 150 м (табл. 41).
Таблица 41
Баллистические данные малокалиберной пули 5,6 мм
При стрельбе на обычные прицельные дистанции пули всех образцов боевого стрелкового оружия имеют многократный запас энергии. Например, при стрельбе тяжелой пулей из снайперской винтовки на дальность 2 км энергия пули у цели равна 27 кг м.
Эффект действия пули по живым целям зависит не только от энергии пули. Большое значение имеют такие факторы, как "боковое действие", способность пули к деформации, скорость и форма пули. "Боковое действие" - удар в стороны - характеризуется размерами не только самой раны, но и размером поражаемой ткани по соседству с раной. С этой точки зрения остроконечные длинные пули обладают большим "боковым" действием вследствие того, что длинная пуля с легкой головной частью начинает "кувыркаться" при попадании в живую ткань. Так называемые "кувыркающиеся" пули со смещенным центром тяжести были известны еще в конце прошлого столетия и неоднократно запрещались международными конвенциями по причине чудовищного воздействия: кувыркающаяся по организму пуля оставляет после себя канал сантиметров пять в диаметре, наполненный размозженным фаршем. В общевойсковой практике отношение к ним двойственное - эти пули, разумеется, убивают наповал, но в полете они идут на пределе устойчивости и нередко начинают кувыркаться даже от сильных порывов ветра. Кроме того, пробивное действие по цели кувыркающимися пулями оставляет желать лучшего. Например, при стрельбе такой пулей через деревянную дверь кувыркающаяся пуля проделывает в двери огромную дыру, и на этом ее энергия исчерпывается. Цель, находящаяся за этой дверью, имеет шанс уцелеть.
Способность пули к деформации увеличивает поражаемую область. Безоболочечные свинцовые пули при попадании в ткань живого организма деформируются в передней части и дают очень тяжелые ранения. В охотничьей практике для стрельбы по крупному зверю из нарезного оружия применяются так называемые экспансивные разворачивающиеся полуоболочечные пули. Ведущая часть этих пуль и немного головной части заключены в оболочку, а носик оставлен ослабленным, иногда просто из рубашки "выглядывает" свинцовая заливка, иногда эта заливка прикрыта колпачком, иногда в головной части выполняется встречный корпус (схема 120). Эти пули иногда разрываются на части при встрече с целью и поэтому в старину назывались разрывными (это неправильное название). Первые образцы таких пуль изготавливались в 70-х годах XIX столетия в арсенале Дум-Дум вблизи Калькутты, и поэтому название Дум-Дум прилипло к полуоболочечным пулям разных калибров. В армейской практике такие пули с мягким носиком не применяются из-за небольшого пробивного действия.
Схема 120. Разворачивающиеся пули:
1 - фирмы "Росе"; 2 и 3 - фирмы "Вестерн"
На убойное действие пули большое влияние оказывает ее скорость. Человек на 80% состоит из воды. Обыкновенная остроконечная винтовочная пуля при попадании по живому организму вызывает так называемый гидродинамический удар, давление от которого передается во все стороны, вызывая общий шок и сильные разрушения вокруг пули. Однако гидродинамический эффект проявляется при стрельбе по живым целям при скорости пули не менее 700 м/с.
Наряду с убойным действием различают еще так называемое "останавливающее действие" пули. Останавливающим действием называют способность пули при попадании в наиболее важные органы быстро расстраивать функции организма противника так, чтобы он не мог оказать активное сопротивление. Нормальным останавливающим действием живая цель должна моментально обезвреживаться и обездвиживаться. Останавливающее действие имеет большое значение на дистанциях боя в упор и возрастает с увеличением калибра оружия. Поэтому калибры пистолетов и револьверов обычно делаются больше винтовочных.
Для снайперской стрельбы, обычно выполняемой на средних дистанциях (до 600 м), останавливающее действие пули особого значения не имеет.
ПУЛИ СПЕЦИАЛЬНОГО ДЕЙСТВИЯ
При ведении боевых действий невозможно обойтись без пуль специального действия - бронебойных, зажигательных, трассирующих и т. д.
Патроны с бронебойными пулями предназначены для поражения противника за бронированными укрытиями. От обыкновенных пуль бронебойные отличаются наличием броневого сердечника высокой прочности и твердости. Между оболочкой и сердечником обычно находится мягкая свинцовая рубашка, облегчающая врезание пули в нарезы и предохраняющая канал ствола от интенсивного износа. Иногда бронебойные пули не имеют специальной рубашки. Тогда оболочка, являясь корпусом пули, изготавливается из мягкого материала. Так устроена французская бронебойная пуля (3 на схеме 121), состоящая из томпакового корпуса и стального бронебойного сердечника. Носик бронебойной пули окрашен в черный цвет.
Схема 121. Бронебойные пули:
1- отечественная; 2 - испанская; 3 - французская
Бронепробиваемое действие пуль обычно выгодно сочетать с другими видами действия: зажигательным и трассирующим. Поэтому бронебойный сердечник встречается в бронебойно-зажигательных и бронебойно-зажигателыю-трассирующих пулях.
Трассирующие пули предназначены для целеуказания, корректирования огня при стрельбе до 1000 м. Такие пули наполнены трассирующим составом, который для равномерного горения запрессовывается в несколько приемов под очень высоким давлением во избежание разрушения состава при выстреле, горения его на большой поверхности и разрушения пули в полете (а на схеме 122). В оболочке трассирующих пуль отечественного производства спереди помещен сердечник из сплава свинца с сурьмой, а сзади - стаканчик с запрессованным в несколько слоев трассирующим составом
Схема 122. Трассирующие пули:
а - пуля Т-30 (СССР); б - пуля SPGA {Англия); в - пуля Т (Франция)
Во избежание разрушения спрессованного трассирующего состава в пуле и нарушения его нормального горения на трассирующих пулях обычно не делается накатка (канавка) на боковой поверхности для обжима в нее дульца гильзы. Крепление трассирующих пуль в дульце гильзы обеспечивается, как правило, за счет посадки их в дульце с натягом.
При выстреле пламя от порохового заряда зажигает трассирующий состав пули, который, сгорая в полете пули, дает яркий светящийся след, хорошо видный и днем и ночью. В зависимости от времени изготовления и применения в изготовлении трассирующего состава различных компонентов свечение трассера может быть зеленым, желтым, оранжевым и малиновым.
Наиболее практичным является малиновое свечение, хорошо заметное и ночью и днем.
Особенностью трассирующих пуль является изменение веса и перемещение центра тяжести пули по мере выгорания трассера. Изменение веса и продольное смещение центра тяжести не оказывают вредного влияния на характер полета пули. Но поперечное смещение центра тяжести, вызванное односторонним выгоранием трассирующего состава, делает пулю динамически неуравновешенной и вызывает значительное увеличение рассеивания. Кроме того, при горении трассера выделяются химически агрессивные продукты горения, которые разрушающе действуют на канал ствола. При стрельбе из пулемета это не имеет значения. Но снайперский отборный и точный ствол надо беречь. Поэтому не злоупотребляйте трассирующей стрельбой из снайперской винтовки. Тем более что точность стрельбы трассирующими пулями из самого хорошего ствола оставляет желать лучшего. Более того, трассирующая пуля с потерей веса от сгорания трассера быстро теряет пробивную способность и на дистанции 200 м уже не пробивает даже каску. Носик трассирующей пули окрашен в зеленый цвет.
Зажигательные пули выпускались до Второй мировой войны и в ее начальный период. Пули эти предназначались для поражения легковоспламеняющихся целей. В их конструкциях зажигательный состав помещался чаще всего в головной части пули и срабатывал (воспламенялся) при попадании пули в цель (схема 123). Некоторые зажигательные пули, например французская (а на схеме 123), загорались еще в канале ствола от пороховых газов. Автору доводилось видеть стрельбу такими пулями при экспертно-криминалистическом отстреле. Зрелище было очень впечатляющим от стрелка через полигон уходили красивые желто-оранжевые шары величиной с футбольный мяч. Но боевого эффекта от этого фейерверка не было абсолютно никакого. Зажигательные пули, появившиеся в конце Первой мировой войны для борьбы с фанерно-полотняными аэропланами противника, оказались несостоятельными против цельнометаллической авиации. Французские, польские, японские, испанские зажигательные пули не имели необходимой пробивной способности и были не в состоянии пробить и поджечь даже железнодорожную цистерну. Положение не спасало даже то, что впоследствии зажигательный состав стали помещать внутри прочного стального корпуса. Носик зажигательной пули окрашен в красный цвет.
Схема 123. Зажигательные пули:
а - французская пуля Ph: 1 - оболочка, 2 - фосфор, 3, 4 и 5 - донная часть, 6 - легкоплавкая пробка; б - испанская пуля Р 1 - сердечник, 2 - очко, 3 - тяжелое тело, 4 - зажигательный состав (фосфор); в - германская пуля SPr 1 - оболочка, 2 - зажигательный состав (фосфор), 3 - донная часть; 4 - легкоплавкая пробка; г - английская пуля SA: 1 - оболочка, 2 - зажигательный состав, 3 - донная часть; 4 - легкоплавкая пробка
По причине малой пробиваемости зажигательные пули довольно быстро стали вытесняться из боевого применения бронебойно-зажигательными пулями, которые обычно имели карбидо-вольфрамовый или стальной бронебойный сердечник. Сочетание зажигательного и бронебойного действия получилось очень выгодным. Конструкции бронебойно-зажигательных пуль во время Второй мировой войны в разных странах были различными (схема 124). Обычно зажигательный состав по-прежнему располагался в головной части пули - так он надежнее срабатывал, но хуже поджигал. Не вся зажигающая субстанция проникала вслед за бронебойным сердечником в образованную им пробоину. Во избежание этого недостатка выгоднее размещать зажигательный состав позади бронебойного сердечника, но в этом случае снижается чувствительность воспламенения пули к действию по слабым преградам. Оригинально решили эту задачу немцы, они расположили зажигательный состав вокруг бронебойного сердечника (4 на схеме 124, схема 125).
Схема 124 Бронебойно-зажигательные пули:
1- отечественная, 2 - итальянская; 3 - английская; 4 - германская
Схема 125. Бронебойно-зажигательная пуля РтК калибра 7,92 (германская)
Головная часть бронебойно-зажигательных пуль окрашена в черный цвет с красным пояском.
Бронебойно-зажигательно-трассирующие пули обладают одновременно бронебойным, зажигательным и трассирующим действием. Они состоят из тех же элементов: оболочки, бронебойного сердечника, трассера и зажигательного состава (схема 126). Наличие трассера у этих пуль существенно повышает их зажигательное действие. Носик бронебойно-зажигательно-трассирующей пули окрашивается в фиолетовый и красный цвета.
Схема 126. Бронебойно-зажигательно-трассирующие пули:
1 - отечественная БЗТ-30;
2 - итальянская
До Второй мировой войны в армиях некоторых стран (в частности, СССР и Германии) применялись так называемые пристрелочно-зажигательные пули. По идее они должны были давать яркую вспышку в момент встречи даже с фанерным щитом обычной мишени. Пули эти и в СССР, и в Германии имели одинаковую конструкцию. Принцип их действия обычно был основан на том, что ударник, находящийся на оси пули и предназначенный для накола капсюля, в походном состоянии удерживался на месте взаимно сомкнутыми грузиками-противовесами. Эти противовесы при выстреле и вращении пули центробежной силой расходились в стороны, освобождали или взводили ударник. При встрече с целью и торможении пули ударник накалывал капсюль, который воспламенял зажигательный состав, давая очень яркую вспышку. Когда-то в ДОСААФ, куда отдавали для учебных целей всякий патронный "сброд", ненужный в армии, автор стрелял такими патронами выпуска 1919 (!) г. Патроны были с латунной гильзой и латунной оболочкой пули, порох от старости детонировал и оружие сильно било в плечо. На дистанции 300 м вспышки от попадания этих пуль были заметны в яркий солнечный день невооруженным глазом. Эти пули, по существу, являлись разрывными, ибо они по-настоящему разрывались на осколки при попадании в фанерный щит. При этом образовывалась дыра, в которую можно было просунуть кулак. По рассказам очевидцев, попадания такими пулями по живой цели имели ужасные последствия. Этот боеприпас был запрещен Женевской конвенцией и во время Второй мировой войны не производился, разумеется, не в целях гуманизма, а по причине дороговизны в производстве. Старые запасы патронов с такими пулями пошли в ход. Для снайперской стрельбы такие пули непригодны по причине большого (очень большого) рассеивания. Носик пристрелочно-зажигательной пули, так же, как и у обычной зажигательной, окрашивается в красный цвет. Это и были те самые знаменитые разрывные пули, которые не афишировались ни у нас, ни в Германии. Их устройство представлено на схемах 127, 128.
Схема 127. Разрывные пули:
а - пуля дистанционная (Германия); б - пуля ударная (Германия); в - пуля ударная (Испания)
Схема 128. Разрывные пули инерционного действия:
1 - оболочка; 2 - взрывчатое вещество;
3 - капсюль; 4 - предохранитель; 5 - ударник
Вышеописанные разновидности специальных пуль применяются во всех патронах стрелкового оружия, не исключая даже пистолетных патронов, если те используются для стрельбы из пистолет-пулеметов.
Отечественным пулям присваиваются следующие обозначения: П - пистолетная; Л - обыкновенная легкая винтовочная; ПС - обыкновенная со стальным сердечником; Т-30, Т-44, Т-45, Т-46 - трассирующие; Б-32, БЗ - бронебойно-зажигательные; БЗТ - бронебойно-зажигательно-трассирующая; ПЗ - пристрелочно-зажигательная; 3 - зажигательная.
По этим маркировкам можно определить вид боеприпасов в ящике с патронами.
В настоящее время в боевом применении остались наиболее практично себя зарекомендовавшие легкие обыкновенные пули, трассирующие и бронебойно-зажигательные.
На складах НЗ до сих пор остались довольно большие запасы патронов со всеми вышеописанными видами пуль, и время от времени эти патроны поступают как для учебных стрельб, так и для боевого применения. В зацинкованном виде боевые винтовочные патроны могут храниться 70-80 лет, не теряя боевых качеств.
Малокалиберные валовые спортивно-охотничьи патроны, выпускавшиеся в СССР, могли храниться 4-5 лет без изменения боевых качеств. По истечении этого срока у них начинала изменяться кучность боя по высоте из-за неравномерности сгорания пороха в разных патронах. После 7-8 лет хранения у таких патронов в связи с разложением капсюльного состава резко возрастало количество осечек. После 10-12 лет хранения многие партии этих патронов становились непригодны для использования.
Целевые малокалиберные патроны, изготовленные очень качественно и скрупулезно, хранившиеся в герметичных упаковках и зацинкованные, не теряли своих качеств при сроках хранения 20 лет и более. Но долго хранить малокалиберные патроны не следует, потому что на длительные сроки хранения они не рассчитаны.
Патроны к огнестрельному нарезному оружию во всех государствах мира стараются делать как можно более качественно. Классическую механику не обманешь. Например, незначительное изменение веса пули от расчетного не оказывает существенного влияния на меткость стрельбы при малых дистанциях, но с увеличением дальности дает знать о себе довольно сильно. При изменении веса обыкновенной винтовочной легкой пули на 1% (Vнач - 865 м/с) отклонение траектории по высоте на дальности 500 м составит 0,012 м, на 1200 м - 0,262 м, на 1500 м - 0,75 м.
В снайперской практике от качества пули зависит очень многое.
На высоту траектории пули влияют не только ее вес, но и начальная скорость пули, и геометрия ее обтекаемости. На начальную скорость пули в свою очередь влияют величина порохового заряда и материал оболочки: разный материал обеспечивает разное трение пули о стенки ствола.
Крайне важное значение имеет балансировка пули. Если центр тяжести не совпадает с геометрической осью, то разброс пуль повышается, следовательно, снижается меткость стрельбы. Это сплошь и рядом наблюдается при стрельбе пулями с различной механической неоднородной начинкой.
Чем меньше отклонения в форме, весе и геометрических размерах при изготовлении пули данной конструкции, тем лучше меткость стрельбы при прочих равных условиях.
Кроме того, необходимо иметь в виду, что ржавчина на оболочке пули, забоины, царапины и прочего рода деформации очень неблагоприятно отражаются на полете пули в воздухе и приводят к ухудшению кучности стрельбы.
На максимальное давление пороховых газов, выбрасывающих пулю, имеет влияние начальное форс-давление, врезающее пулю в нарезы, которое в свою очередь зависит от того, насколько плотно пуля запрессована в гильзу и фиксирована в ней обжимом дульца за кольцевую накатку. При разных материалах гильзы это усилие будет разным. Пуля, косо посаженная в гильзу, и по нарезам пойдет "косым" образом, в полете будет неустойчива и обязательно отклонится от заданного направления. Поэтому патроны старых выпусков необходимо тщательно осматривать, отбирать и отбраковывать при обнаружении погрешностей.
Лучшую кучность стрельбы дают обыкновенные пули, у которых оболочка залита свинцом без другой начинки. При стрельбе по живой цели специальные пули не нужны.
Как вы уже убедились, винтовочные боеприпасы, одинаковые с виду и предназначенные для одного и того же оружия, неодинаковы. На протяжении нескольких десятков лет они изготавливались на разных заводах, из различных материалов, в различных условиях, при непрерывно меняющихся требованиях обстановки, с пулями разной конструкции, разного веса, разной заливки свинцом, разного диаметра (см. табл. 38) и разного качества изготовления.
Одни и те же с виду патроны имеют разную траекторию пули и различную кучность боя. При стрельбе из пулемета это не имеет значения - плюс-минус 20 см выше-ниже. Но для снайперской стрельбы это не годится. "Сброд" различных патронов, пусть даже самых хороших, не дает точной, кучной и однообразной стрельбы.
Поэтому снайпер отбирает именно для своего ствола (ствол стволу тоже рознь, см. далее) однообразные патроны, одной серии, одного завода, одного года выпуска и, еще лучше, из одного ящика. Разные партии патронов разнятся друг от друга по высоте траектории. Поэтому под разные партии патронов снайперское оружие нужно пристреливать заново.
ПРОБИВНОЕ ДЕЙСТВИЕ ПУЛИ
Пробивное действие пули характеризуется глубиной ее проникновения в преграду определенной плотности. Живая сила пули в момент ее встречи с преградой существенно влияет на глубину проникновения. Но кроме этого, пробивное действие пули зависит от ряда других факторов, например, от калибра, веса, формы и конструкции пули, а также от свойств пробиваемой среды и от угла встречи. Углом встречи называется угол между касательной к траектории в точке встречи и касательной к поверхности цели (преграды) в той же точке. Наилучший результат получается при угле встречи, равном 90°. На схеме 129 показан угол встречи для случая вертикальной преграды.
Схема 129. Угол встречи
Для выявления пробивного действия пули пользуются измерением проникновения ее в пакет, составленный из сухих сосновых досок толщиной 2,5 см каждая, с промежутками между ними на толщину доски. При стрельбе по такому пакету легкая пуля из снайперской винтовки пробивает: с расстояния 100 м - до 36 досок, с расстояния 500 м - до 18 досок, с расстояния 1000 м - до 8 досок, с расстояния 2000 м - до 3 досок
Пробивное действие пули зависит не только от свойств оружия и пули, но и от свойств пробиваемой преграды. Легкая винтовочная пуля образца 1908 года пробивает на дистанции до 2000 м:
- железную плиту 12 мм,
- стальную плиту до 6 мм,
- слой гравия или щебня до 12 см,
- слой песка или земли до 70 см,
- слой мягкой глины до 80 см,
- слой торфа до 2,80 м,
- слой утрамбованного снега до 3,5 м,
- слой соломы до 4 м,
- кирпичную стену до 15-20 см,
- стену из дубового дерева до 70 см,
- стену из соснового дерева до 85 см.
Пробивное действие пули зависит от расстояния стрельбы и от угла встречи. Например, бронебойная пуля образца 1930 года при попадании по нормали (Р90°) пробивает броню толщиной 7 мм с расстояния 400 м без отказа, с расстояния 800 м - менее половины, на дистанции 1000 м броня не пробивается совершенно, при отклонении траектории от нормали на 15° с расстояния 400 м сквозные пробоины в 7-мм броне получаются в 60% случаев, а при отклонении от нормали на 30° уже с расстояния 250 м пуля совсем не пробивает броню.
Бронебойная пуля калибра 7,62 мм пробивает:
Пробивное действие 5,6-мм пули малокалиберного спортивного патрона бокового огня (начальная скорость пули 330 м/с, дистанция 50 м):
Тяжелый пластинчатый бронежилет времен Великой Отечественной войны, надетый на два ватника, удерживает легкую винтовочную пулю даже при выстреле в упор.
Оконное стекло разбивает винтовочную пулю вдребезги. Дело в том, что частицы стекла, действуя как наждак, при встрече с узким носиком винтовочной пули мгновенно "счесывают" с нее оболочку. Оставшиеся фрагменты пули летят по изменившейся непредсказуемой траектории и не гарантируют поражения цели, находившейся за стеклом. Такое явление наблюдается при стрельбе из винтовок и автоматов боеприпасами с остроконечными пулями. Узкий носик пули на большой скорости резко принимает на себя большую абразивную нагрузку и мгновенно разрушается. Такого явления не наблюдается у тупых пистолетных пуль и пуль револьвера наган, летящих с низкими дозвуковыми скоростями.
Поэтому при стрельбе по целям, расположенным за стеклом, рекомендуется стрелять или бронебойными пулями, или пулями, имеющими стальной сердечник (с серебряным носиком).
Каска на расстоянии до 800 м пробивается всеми типами пуль, кроме трассирующих.
С потерей скорости пули ее пробивное действие уменьшается (табл. 42):
Таблица 42
Потеря скорости 7,62-мм пули
ВНИМАНИЕ. Трассирующие пули в связи с выгоранием трассирующего состава быстро теряют массу, а вместе с ней и пробивную способность. На дистанции 200 м трассирующая пуля не пробивает даже каску.
Начальная скорость спортивных малокалиберных патронов со свинцовыми пулями различных партий и наименований колеблется в пределах 280-350 м/с. Начальная скорость западных малокалиберных патронов с оболочечными и полуоболочечными пулями различных партий колеблется от 380 до 550 м/с.
ПАТРОНЫ ДЛЯ СНАЙПЕРСКОЙ СТРЕЛЬБЫ
При снайперской стрельбе наиболее предпочтительны два вида патронов, специально разработанных для применения в реальных боевых условиях. Первый из них так и называется: "снайперские" (фото 195). Патроны эти изготавливаются с особой тщательностью, не только с однообразной навеской порохового заряда и пуль, одинаковых по массе, но и с очень точным соблюдением геометрической формы пули, специальным мягким материалом гильзы, с более толстым слоем томпакового покрытия. Патроны "снайперские" имеют очень высокую кучность боя, не уступающую кучности боя специальных спортивно-целевых патронов такого же калибра с латунной гильзой. Пуля патрона "снайперский" ничем не окрашена во избежание изменения весового баланса. Эти патроны специально предназначены для поражения живой силы противника. Посмотрите на продольный разрез пули этого боеприпаса (фото 196). В головной части пули находится пустота, а полый носик пули выполняет функцию баллистического наконечника-обтекателя. За ним следует стальной сердечник и уже затем - свинцовая заливка. Центр тяжести такой пули несколько смещен назад. При попадании в плотные ткани (кость) такая пуля разворачивается боком, идет кувырком, затем разваливается на головную (стальную) и хвостовую (свинцовую) части, которые движутся внутри цели самостоятельно и непредсказуемо, не оставляя противнику шансов на выживание. Охотники говорили, что такие боеприпасы успешно валят даже крупного зверя.
Фото 195. Патрон "снайперский" на фрагменте упаковки
Фото 196. Продольный разрез пули патрона "снайперский"
1 - пустой баллистический наконечник; 2 - стальной сердечник; 3 - свинцовая заливка; 4 - скос сердечника; 5 - полый хвостовик
Благодаря стальному сердечнику пули патронов "снайперские" имеют бронепробиваемость на 25-30% выше, чем обычные легкие пули. Пули данного вида боеприпасов имеют обтекаемую форму тяжелой пули образца 1930 г , но вес, равный весу легкой пули, - 9,9 г благодаря стальному сердечнику и пустоте в хвостовой части. Так было специально задумано разработчиками для придания легкой пуле полезных качеств пули тяжелой. Поэтому траектория полета пули патронов "снайперские" соответствует табл. 8 превышения средних траекторий, приведенной в настоящем пособии и наставлении по винтовке СВД.
Как уже было сказано, пули патронов "снайперские" ничем не маркируются (фото 197). На бумажных пачках этих боеприпасов имеются надписи "снайперские".
Фото 197. Пуля патрона "снайперский"
Второй вид боеприпасов, предназначенных для снайперской стрельбы, имеет пулю со стальным сердечником, головная часть которой окрашена в серебристый цвет (фото 198). Их так и называют - пули с серебряным носиком (вес пули 9,6 г).
Фото 198. Пуля с "серебряным" носиком для стрельбы по легкобронированным целям
Стальной сердечник этой пули занимает большую часть ее объема (фото 199).
Фото 199. Пуля для стрельбы по легкобронированным целям в разрезе:
1 - свинцовая заливка, 2 - стальной сердечник; 3 - свинцовая рубашка между стальным сердечником и оболочкой
В головной части пули находится свинцовая заливка для большей устойчивости пули в полете. Такие боеприпасы предназначены для снайперской работы по легкобронированным и укрепленным целям. Пуля с сердечником маркировки "серебряный носик" пробивает:
На продольном разрезе видно, что пули с сердечником имеют обтекаемую форму тяжелой пули с коническим хвостовиком. Но пули эти относятся к категории легких (вес 9,6 г) из-за стального сердечника, который легче свинцового такого же объема. Баллистика этих пуль и кучность боя практически такая же, как у патронов "снайперские", и при стрельбе ими следует руководствоваться все той же таблицей превышения средних траекторий по винтовке СВД.
Вышеописанные два типа боеприпасов были разработаны применительно к винтовке СВД, но их баллистика практически соответствует табл. 9 превышения средних траекторий для трехлинейной винтовки образца 1891-1930 гг., приведенной в данном пособии.
Специализированные патроны калибра 7,62 мм "снайперские" и "серебряный носик", предназначенные именно для снайперских стрельб, по весу и поперечной нагрузке являются легкими, при этом имея такую же совершенную аэродинамическую форму, как и тяжелые пули образца 1930 г, поэтому их траектория на дистанции до 500 м соответствует траектории легкой пули, а на дистанции от 500 до 1300 м - траектории пули тяжелой. Поэтому в таблице превышения средних траекторий для винтовки СВД указаны баллистические данные для стрельбы легкой пулей, а именно: патронами "снайперскими", "серебряный носик" и валовыми пулеметно-винтовочными патронами со стальным сердечником.
Пули патронов "снайперские" делаются легкими для повышенного действия по живой цели. Скорость легкой пули быстрее, чем тяжелой. Как уже известно, пуля, попадающая в живую цель со скоростью 700 м/с и выше, вызывает гидравлический удар и сопряженный с ним физиологический шок, мгновенно выводящий цель из строя. Такое действие легкой пули снайперского патрона по цели сохраняется практически до 400-500 м, после этой дистанции скорость пули снижается сопротивлением воздуха, но поражающее действие именно пули патрона "снайперский" от этого ничуть не уменьшается. Почему? Внимательно посмотрите на продольный распил этой пули. стальной сердечник в головной части имеет чуть заметный скос правой стороной вверх (см. фото 196). Это создает хоть и незначительный, но перевес массы с одной стороны головной части пули. При вращении этот противовес все больше и больше заносит носик пули в сторону и она все больше и больше приобретает неустойчивое положение по горизонтали. Поэтому чем дальше дистанция до цели, тем неустойчивее становится пуля при подлете к ней. На дистанциях стрельбы далее 400-500 м пуля снайперских патронов даже при попадании в мягкие ткани разворачивается боком и, если не разваливается на части, начинает кувыркаться, оставляя после себя фарш.
При всем этом пуля патрона "снайперский" очень хорошо держится на ветру (как говорят, "стоит на ветер") и гарантированно сохраняет устойчивое положение в полете на дистанции стрельбы 200 м.
Кучность боя патронов "снайперские" можно считать абсолютной. Все неудачи, случающиеся при работе с этими патронами, можно объяснить только пониженным качеством ствола или ошибками стрелка. Уникальные баллистические данные вышеописанного боеприпаса и его повышенное действие по цели вызвали у натовских военных заметную растерянность во время последних балканских конфликтов.
ОТБОР БОЕПРИПАСОВ
В реальной боевой практике не всегда приходится стрелять боеприпасами, изготовленными и предназначенными специально для снайперской стрельбы. Подчас приходится стрелять тем, что есть в наличии. Зацинкованные валовые патроны, изготовленные в довоенное, военное и послевоенное время (1936-1956 гг.), нередко имеют неправильную "косую" посадку пули в дульце гильзы. Это так называемые "кривые" патроны, у которых пуля чуть-чуть отклонена вбок от общей оси гильза - пуля. Такая "кривая" посадка пули заметна на глаз. На глаз заметна даже неравномерность посадки пули в гильзу по глубине: очень часто пули посажены или слишком глубоко, или чрезмерно выступают.
Пули с "косой" посадкой пойдут по стволу тоже "косым" образом, и поэтому точности стрельбы они не обеспечат. Пули с неодинаковой посадкой дадут неодинаковое давление в стволе и обозначат разброс по вертикали. Визуальным осмотром такие патроны выбраковываются и отдаются пулеметчикам. Разумеется, валовые патроны с легкими пулями образца 1908- 1930 гг. будут иметь гораздо больший разброс, чем снайперские или спортивно-целевые, но на войне это лучше, чем ничего.
Можно стрелять любыми патронами, новыми на вид, не имеющими на поверхности сильных потертостей, царапин, вмятин, ржавчины.
Патроны с потертостями свидетельствуют о том, что их очень долго и неизвестно при каких обстоятельствах таскали по карманам и подсумкам. Эти боеприпасы могут оказаться подмоченными - в таком случае они могут не сработать.
Нельзя применять патроны, имеющие даже незначительные вмятины на гильзах. Дело не в том, что такие боеприпасы не заходят в патронник; при необходимости их можно туда загнать силой. Дело в том, что распрямляющаяся под дьявольским давлением вмятина с большой силой ударяет в стенку патронника и его может элементарно разорвать. Такие случаи бывали. Нельзя применять патроны с ржавыми гильзами и ржавыми пулями. Ржавая оболочка пули может развалиться и фрагменты деформированной пули полетят в непредсказуемых направлениях. Ржавую гильзу может элементарно разорвать. При этом бывает, что остатки гильзы не просто пригорают к патроннику, а намертво привариваются к нему. Бывает, что в таком случае при прорыве газов назад затвор приваривается к ствольной коробке и, кроме того, стрелок получает сильный газовый удар в лицо с риском повреждения глаз.
Нельзя использовать патроны выпуска первой половины 30-х годов и ранее. Такие боеприпасы часто детонируют; бывает, что при этом ствол разносит в клочья, отрывая стрелку пальцы левой руки.
Нельзя носить патроны в кожаных подсумках и патронташах - только в брезентовых или кирзовых. От соприкосновения с кожей металл плакированных боеприпасов покрывается зеленым налетом и ржавчиной.
И, разумеется, нельзя смазывать боеприпасы - они после этого не стреляют. Силой поверхностного натяжения даже самая густая смазка рано или поздно проникает внутрь патрона и обволакивает капсюльный и пороховой заряды, которые после этого не срабатывают. Для предохранения патронов от влаги их разрешается смазывать тонким слоем свиного сала, и такие боеприпасы рекомендуется использовать в первую очередь и побыстрее.
Не забывайте, что трассирующие пули портят ствол и на дистанции 200 м (и даже меньше) не пробивают даже каску. Трассирующие пули применяйте по жесткой необходимости и для целеуказания.
Если есть возможность, калибруйте валовые патроны по диаметру пули и отбирайте для стрельбы патроны с пулями, одинаковыми по диаметру и глубине посадки в гильзе. Снайперы старой формации валовые патроны (и даже целевые) обязательно взвешивают и отбраковывают те, которые имеют отклонения в общем весе. По возможности, так следует поступать и вам. Всем этим вы резко повысите кучность боя своего ствола.
Всегда имейте по нескольку штук патронов бронебойно-зажигательных и трассирующих. Боевая необходимость может потребовать их применения при самых неожиданных обстоятельствах.
Не применяйте патроны, у которых капсюль выступает над дном гильзы. При закрывании затвора такой патрон может преждевременно сработать.
Не применяйте патроны, имеющие коррозию или трещины на капсюле. Такой капсюль может пробить ударником.
Если произошла осечка и этот патрон у вас не последний, без сожаления выбрасывайте его. Нельзя "щелкать" по этому патрону второй раз. Сильный ударник винтовки может пробить капсюль, и газовый поток в таком случае ударяет в лицо стреляющего с мощностью боксерского кулака без перчатки. Когда-то по молодости автор в это не верил, пока не получил вот такую жуткую газовую оплеуху. Ощущение было такое, как будто голова оторвалась и все остальное существует само по себе.
Очень редко, но все-таки происходит весьма опасное явление, называемое затяжным выстрелом. Бывает, что сбившийся в комки или отсыревший порох воспламеняется не сразу, а через какое-то время. Поэтому при осечке никогда не спешите сразу же открывать затвор. После осечки сосчитайте до десяти, и если выстрела не произойдет, резко открывайте затвор и выбрасывайте наружу несработавший патрон. Автор был свидетелем случая, когда молодой курсант, не выдержав положенные после осечки 5-6 секунд, рванул затвор на себя, патрон вылетел, упал под ноги инструктору и взорвался. Никто не пострадал. Но если бы этот патрон сработал в момент открывания затвора, последствия были бы ужасными.