Сержант Дэвид Эмме ехал в машине, сидя рядом с пулеметом, как вдруг раздался взрыв — боковую панель прошило осколками.

Это случилось 19 ноября 2004 года в небольшом городе Талль-Афар на северо-западе Ирака; тридцатидвухлетний американский солдат ехал в составе колонны, сопровождавшей полицейских-новобранцев. Не успела колонна выехать, как сержант почувствовал неладное: город как будто замер. Ребятня, обычно с криками носившаяся по пыльным дорогам, куда-то подевалась, лишь несколько парней постарше стояли на углу улицы. Один из них глянул на проезжавшего в колонне сержанта недобро, жестом показывая перерезанное горло.

Сержант по рации рассказал остальным об увиденном и предупредил: у него дурные предчувствия, так что каждый должен быть начеку. И он не обманулся — это случилось на первом же перекрестке.

Сработало самодельное взрывное устройство, спрятанное слева у обочины дороги — детонация произошла как раз тогда, когда колонна поравнялась с ним. Растущая волна невероятно высокого давления вокруг огненного шара расширяющихся газов несла с собой шрапнель, которой и разворотило боковину джипа. Сам Эмме оказался прямо на пути ударной волны, самой убийственной из всех волн.

Когда находившийся в джипе сержант пришел в себя, он не мог толком ни видеть, ни слышать: один из осколков вошел в его левый глаз, а от сильного взрыва левая барабанная перепонка лопнула. Человек двадцать пять скрывавшихся в соседних зданиях боевиков поливали огнем всю колонну сопровождения.

Эмме чувствовал, как водитель вытаскивает его из джипа и ведет к бронетранспортеру. Под ногами у них взлетали фонтанчики пыли от пуль, вокруг разрывались реактивные гранаты. Место Эмме за пулеметом в поврежденном джипе занял другой сержант; он подстрелил боевика, гнавшего начиненную взрывчаткой машину прямо на колонну.

Как только Эмме и водитель оказались в относительной безопасности бронетранспортера, их помчали к городской окраине, где располагалась передовая оперативная база. Эмме еще нашел в себе силы спуститься с бронетранспортера к подбежавшим врачам, но после сразу впал в кому. Сержанта перевезли в сначала в полевой госпиталь в Баладе, затем — в Багдад. Помимо разорванной барабанной перепонки и поврежденного глаза, у него оказался проломлен череп, обнаружился тяжелый ушиб левого полушария головного мозга. В Багдаде нейрохирурги сделали краниэктомию, удалив крупный осколок черепной кости, давивший на левую височную область. Через десять дней, находясь в палате отделения интенсивной терапии Военно-медицинского центра Уолтера Рида в Вашингтоне, сержант пришел в себя.

Очнувшийся Эмме, уверенный, что он все еще в Багдаде, принял медсестер за агентов ЦРУ. Его речь представляла собой бессмыслицу, он не в состоянии был выполнять простейшие указания. Обнаружились нарушения мышления, памяти, принятия решений; на поправку сержант пошел лишь спустя пять месяцев после когнитивной реабилитации. Его случай — классический пример типичной травмы служащих, принимавших участие в боевых операциях на территории Ирака и Афганистана: черепно-мозговая травма от ударной волны при взрыве самодельной придорожной мины.

У комиссованных с подобными травмами, помимо непосредственных нарушений в познавательной сфере, проявляются и общие симптомы более длительного характера. Часто их объединяют общим термином «посттравматическое стрессовое расстройство»; они проявляются в тревожных состояниях, депрессии, алкоголизме, с ними связывают повышенное число самоубийств среди бывших военнослужащих. Исследование 2008 года, предметом которого стали ветераны операции «Свобода Ираку», показало, что среди служащих, у которых через три-четыре месяца после возвращения из мест боевых действий развивались симптомы посттравматического стрессового расстройства, был самый большой процент тех, кто пострадал при взрыве бомбы в непосредственной близости.

По данным исследования, проведенного в 2008 году научно-исследовательской корпорацией «РЭНД» из 1,64 млн. американских военных, принявших с 2001 года участие в иракском конфликте и операции «Несокрушимая свобода» в Афганистане, примерно «320 000 человек пострадали от вероятной черепно-мозговой травмы, полученной в ходе боевых действий». Получается, каждый пятый оказался в непосредственной близости от разорвавшейся бомбы. Но цифра так велика вовсе не потому, что боевики закладывают самодельные взрывные устройства на каждом шагу — все дело, как это ни парадоксально, в особой эффективности современного бронежилета. Бронежилет, защищая боевой состав от осколочных ранений, повышает шансы солдат выжить после разорвавшейся в непосредственной близости бомбы. Раньше в подобных случаях большинство попросту гибло.

Взрывная волна сильно влияет на деятельность мозга даже при отсутствии видимых внешних повреждений. Во время взрыва давление воздуха сначала резко повышается, затем внезапно падает — кратковременная, но ужасающая по своей разрушительной силе взрывная волна развивает скорость в 1 287 км/ч, то есть движется раз в десять быстрее ураганного ветра. Такое невероятное давление череп в буквальном смысле деформирует, вызывая контузию или тяжелый ушиб тканей мозга. Кроме того, в кровеносных сосудах могут образоваться пузырьки воздуха, которые, попадая в мозг, повреждают целые области. Из компьютерной модели действия мощных ударных волн видно, что они устремляются в воздушный промежуток между головой солдата и шлемом, вызывая волнообразную деформацию черепа. Результат воздействия на мягкие ткани головного мозга сравним с последствиями от удара головой во время серьезной автомобильной катастрофы. Современный шлем защищает голову солдата от разлетающихся осколков, но против ударных волн он бесполезен.

Поражения, вызванные действием ударной волны, редко принимаются во внимание. Во-первых, видимые телесные повреждения при этом незначительны; во-вторых, многие военные, столкнувшись с проблемами в психической сфере, возникшими после участия в боевых действиях, предпочитают о них умалчивать, опасаясь неблагоприятных для дальнейшей службы последствий. Травмы, вызванные действием ударной волны, для современных военных действий не просто типичны — они грозят перерасти в эпидемию скрытого характера.

* * *

Так что же эти ударные волны собой представляют?

Их нельзя выделить в отдельную категорию, как, к примеру, волны океанические, электромагнитные или акустические; скорее, ударные волны можно описать как те же самые волны любой категории, но пребывающие в отвратительном настроении. Другими словами, любая волна может быть описана как ударная в момент наибольшей силы, когда от ее благовоспитанности не остается и следа.

Самые впечатляющие и разрушительные ударные волны отмечаются среди волн акустических. Волны давления, стремительно несущиеся из эпицентра взрыва, суть акустические ударные волны, особенно неистовые образчики все тех же волн сжатия-разрежения, которые мы иногда слышим как звук. Однако я буду называть их просто ударными волнами давления, или, в случае их распространения через твердую материю, ударными волнами в твердых средах — чтобы избежать путаницы, поскольку многие все же связывают термин «акустический» с обычными звуковыми волнами, а вовсе не с теми, от которых барабанные перепонки лопаются.

На первый взгляд, сравнение из разряда «хорошее настроение — плохое настроение» едва ли приемлемо в качестве отличительного признака ударных волн от волн обычных, однако обычные волны могут вырастать до ударных и наоборот, так что, на мой взгляд, аналогия с настроением удачная. Так что же представляют собой волны, доведенные до бешенства? Независимо от того, к какой категории они принадлежат — к волнам океаническим, волнам давления или каким-то другим, — ударные волны непременно проявят свой крутой нрав, ведя себя типичным образом:

Их физиономии, такие непохожие на мягкие личики благовоспитанных собратьев, искажаются гневом. Форма ударной волны бывает разной — этим волнам не свойственна аккуратная симметрия обычных волн. К примеру, ударная волна давления обычно примчится к вам по воздуху в виде невероятно крутого скачка давления (одного или нескольких), сопровождаемого более плавным возвратом к нормальному давлению. Благовоспитанные волны давления, напротив, обладают симметричной кривой поднимающегося и падающего давления.

Обычно они мчатся сломя голову. Ударные волны в любой среде распространяются быстрее, чем нормальные волны соответствующей категории. В то время как у благовоспитанных волн скорость распространения через определенную среду постоянна, не зависит от их частоты и интенсивности, ударные волны мчатся быстрее остальных. И чем они интенсивнее, тем стремительнее.

Они слишком раздражены и нетерпеливы, чтобы соблюдать все Законы волны, которым подчиняются остальные. Ударные волны зачастую отражаются, преломляются и отклоняются не так, как это делают волны благовоспитанные; то же самое можно сказать о поведении двух ударных волн в том случае, когда они накладываются.

Они стремятся разнести все вдребезги. Часто ударные волны оказывают продолжительное, даже разрушительное воздействие на любую среду распространения. Например, когда ударная волна в твердых средах проходит через плотную материю, она может превратить ее в осколки. Если же среда жидкая или газообразная, волна ее нагреет, а то и раскалит добела. А вот благовоспитанные волны ведут себя примерно — оставляют окружающее пространство после своего пребывания неизменным.

Невидимые ударные волны, расходящиеся от выстрелов из установленного на линкоре орудия калибром 381 мм, можно обнаружить по следам, которые они оставляют на водной поверхности

Физики, понятное дело, за основу определения ударной волны взяли более устойчивую категорию, нежели колебания настроения. Те из вас, кто относит себя к лирикам, могут отвернуться и поглазеть в окно, поскольку я собираюсь, пусть и коротенько, об этой категории поведать. Так вот, по мнению ученых, ударная волна распространяется нелинейно, в то время как распространение обычных волн — линейное; под линейностью имеется в виду соблюдение принципа суперпозиции. Этот принцип заключается в следующем: в результате наложения двух волн непосредственно складываются их гребни и подошвы.

* * *

Все, можете поворачиваться — с нудной частью покончено.

Вне всяких сомнений, наиболее очевидный способ создания ударных волн — взрывы. Но они совсем не обязательно должны иметь рукотворную природу. Пример тому — ударная волна в воздухе, образовавшаяся во время грандиозного извержения вулкана Кракатау на одноименном индонезийском острове в 1883 году; остров в результате извержения прекратил существование. Волне понадобилось 10 часов 20 минут, чтобы пройти 11 620 км, отделявших остров от Лондона. В Лондоне она была зарегистрирована барографами Гринвичской обсерватории как внезапный скачок атмосферного давления, за которым последовал такой же резкий спад, после чего давление вернулось к нормальному значению.

Проницательные наблюдатели за волнами наверняка уже вычислили, что раз волны давления покрыли такое расстояние за 10 часов 20 минут, они распространялись со скоростью ниже обычной. В конце концов, скорость звука (а именно с такой скоростью волны давления и распространяются) в воздушной среде при температуре +4,5°С равна примерно 1 207 км/ч, в то время как 11 620 км, пройденные за 10 часов 20 минут, означают скорость в 1 127 км/ч. В этом можно заметить противоречие второму свойству ударных волн, которое гласит: ударные волны распространяются быстрее волн обычных. На деле же ударная волна в атмосфере скачет вверх и вниз, проходя при этом расстояние гораздо большее, чем то, которое покрывает, скажем, ворон, летящий по прямой.

Еще один природный источник ударных волн — молния. Каждый раз, слыша гром, вы слышите ударные волны. При этом взрыв происходит в результате чудовищной силы колебаний воздуха, которые происходят из-за очень быстрого повышения давления на пути молнии вследствие сильного нагревания. Возникают волны давления с резко выраженным фронтом, за которым следует более плавный возврат к нормальному атмосферному давлению. Выходит, раскат грома и есть звучание этой самой волны давления? Такой вопрос я задал, беседуя с профессором Марком Крамером, изучающим ударные волны в Политехническом университете Виргинии. Профессор рассказал, что наши уши улавливают подобный скачок давления как «щелчок искрового разряда при подключении аккумулятора машины или стук при столкновении двух бильярдных шаров».

Так почему, поинтересовался я, раскат грома воспринимается нами как мощный, оглушительный треск (по крайней мере, вблизи)? Профессор ответил, что частично это происходит потому, что «молния, которую мы видим, на деле представляет собой множество разрядов». Множественные ударные волны следуют одна за другой с очень небольшим интервалом, поэтому звук усиливается. То же самое происходит и тогда, когда «гром образуется по всей длине вспышки молнии, которая обычно растягивается на несколько километров». Получается, что ударные волны образуются в разных точках разветвленной молнии — более удаленные волны достигают ваших ушей позже, чем более близкие. Оба эти фактора означают следующее: вместо щелчка электрического разряда одной ударной волны вы слышите треск множества волн, соединенных вместе.

Кроме резко выраженных фронтов громыхающие волны давления обладают еще одним свойством — распространяются быстрее, чем обычные звуковые волны. При этом они подчиняются правилу ударных волн: более интенсивные, звучащие громче, распространяются быстрее, чем менее интенсивные, звучащие тише. Как объяснил Крамер, это одна из причин того, почему грозу за многие километры от нас мы слышим как глухие раскаты, а не как звонкий треск. «Скорость распространения волны зависит от амплитуды», — сказал профессор. Амплитуда же — один из способов описания интенсивности, то есть мощности волны давления. «Получается, что разные части волны распространяются с разной скоростью, вызывая искажение этой самой волны», — продолжал профессор. Это искажение, как я узнал, и объясняет изменение звучания грома по мере того, как мы удаляемся или приближаемся к источнику громовых раскатов.

Взрыв, вызванный бомбой или резким расширением воздуха вдоль вспышки молнии, порождает волны самых разных частот и интенсивности — звуки пронзительные и гулкие, громкие и тихие. Эти волны смешиваются. Непосредственно возле вспышки ударные волны давления соединяются в оглушительный треск. Чем дальше от вспышки, тем сильнее звучание рассеивается. Поскольку более громкие и интенсивные ударные волны распространяются быстрее, они вырываются вперед. Таким образом, последовательность ударных волн вытягивается на протяжении всего расстояния, на которое они распространяются, звук при этом обретает глубину. Можно привести аналогию со стуком палки, которой вы ведете вдоль железной ограды: если вы ведете палкой быстро, удары сливаются в высокий звук, если медленно — в звук более низкий. Сами удары и в том, и в другом случае звучат одинаково, однако мы слышим их общее звучание как более высокое или более низкое, в зависимости от того, насколько короткий между ними временной интервал. Подобное вытягивание последовательности ударных волн является одной из причин того, почему раскаты грома в зависимости от удаленности воспринимаются совершенно по-разному.

* * *

К счастью, чтобы прочувствовать ударную волну на себе, вам совсем не обязательно находиться вблизи от разрывающегося снаряда или молнии. Вы сами в состоянии ее породить — когда, сгруппировавшись, «бомбочкой» ныряете в бассейн. Громкий всплеск воды при вашем ударе о водную поверхность представляет собой нечто вроде громового разряда вдоль вспышки молнии, только в воде.

Вообще-то, пловцов, участвующих в соревнованиях, большими поклонниками ударных волн не назовешь. Спортсмены всеми силами стараются избежать встречи с ними, поскольку это пустая трата энергии. Вот почему вы никогда не увидите, как они лихо ныряют «бомбочкой», когда стартовый пистолет дает команду к заплыву на дистанцию в 200 м кролем на груди. (Хотя я с удовольствием посмотрел бы.) Наоборот, спортсмены стараются минимизировать всплеск на входе в воду, вытягивая руки в одну линию с телом, таким образом снижая сопротивление воды, а вместе с ним — образующиеся при всплеске ударные волны. Сокращение ударной волны ведет к сокращению потери энергии в воде. Однако в воде пловцов подстерегает другая столь же неприятная ударная волна — головная волна. Она возникает как раз перед головой отчаянно гребущего спортсмена.

Представляете, каким грохотом сопровождаются эти ударные волны?

Головная волна, говорите? А где же сильный удар и грохот, где всплеск, обыкновенный для ударной волны? Вообще, самыми очевидными источниками ударных волн считаются взрывы. Но они — не единственные: ударные волны порождаются и головными волнами, расходящимися спереди от двигающегося объекта — пловца, лодки на воде или даже объекта в воздушной среде, — пока этот объект двигается через среду с достаточной скоростью. Головные волны перерастают в ударные лишь в том случае, когда объект идет со скоростью не ниже обычной скорости распространения через данную среду волн — тогда они не успевают убраться с дороги и начинают толпиться, тесня друг дружку.

Если головная волна от пловца кажется вам для ударной волны слишком кроткой, что вы скажете по поводу других ударных волн — сверхзвукового хлопка в момент перехода самолета на сверхзвуковую скорость?

Это еще один пример ударной волны, но только в воздухе (мы слышим ее как звук), а не на поверхности воды. Однако принцип один и тот же. В небе самолет порождает волны давления спереди и сзади от себя, поскольку вызывает смещение воздушной среды — она вынуждена быстро смещаться перед самолетом и быстро возвращаться на первоначальное место позади него. Эти резкие перемещения воздуха вызывают перепады атмосферного давления, распространяющиеся вокруг самолета как волны давления. Волны давления идут в виде сферических слоев; некоторые расходятся от носа самолета, другие — от его хвоста. Они образуются независимо от скорости самолета. Хотя мы часто воспринимаем волны давления как звук, те, что расходятся от самолета, мы не слышим — рев двигателей стальной птицы их заглушает. Если только, конечно, самолет не летит со скоростью звука или быстрее — в таком случае мы попросту обречены на то, чтобы их услышать.

Формирование ударной волны при полете со скоростью звука

Когда сверхзвуковой самолет разгоняется до скорости звука — величины, обозначаемой числом Маха, равным 1, — он двигается с той же скоростью, что и порождаемые им волны давления. Получается, волны у конического носа самолета не могут обогнать сам самолет — их скорости равны. Поэтому они громоздятся друг на друга — каждый пик давления накладывается на предыдущий. В итоге образуется головная волна огромной мощности. Когда самолет выходит на скорость звука, волны давления совмещаются, образуя головную ударную волну. Резко образовавшаяся ударная волна возросшего атмосферного давления растягивается перед носом самолета — головная волна при этом движется вместе с самолетом на скорости звука. Ударная волна упавшего атмосферного давления, — на самом деле не что иное, как кормовая корабельная волна, — идет от хвоста.

С земли взрывоподобные звуки слышны, когда пронзительно воющий самолет проносится, сопровождаемый ударными волнами высокого и низкого давления. За волной спереди тут же следует волна сзади (обычно оба «хлопка» разделяются слишком незначительным временным интервалом, чтобы их различить как отдельные звуки, если только самолет не летит высоко). Однако для пилота все выглядит иначе — развивая скорость, равную 1 Маха, он никогда не слышит «хлопка», поскольку фронт ударной волны всегда остается чуть впереди носа самолета. Пилот слышит «хлопок» ударной волны только тогда, когда форсирует скорость звука, то есть преодолевает звуковой барьер, который представляет собой всего-навсего ударную волну высокого давления впереди конусообразного носа. О барьере говорят потому, что необходимо значительное усиление тяги, чтобы пройти через эту область повышенного давления. Если скорость звука в воздушной среде, через которую идет самолет, равна 1 190 км/ч, увеличение тяги с 1 190 км/ч до 1 207 км/ч требует гораздо больших усилий, чем увеличение с 1 175 км/ч до 1 190 км/ч, поскольку в таком случае самолет идет со сверхзвуковой скоростью, превышая число Маха, равное 1, и вырывается за область высокого давления, являющуюся фронтом ударной волны. Когда пилот прорывается через звуковой барьер, область высокого давления проходит над кабиной — он слышит «хлопок».

Когда скорость самолета превышает скорость звука, фронт ударной волны из плоского диска становится конусообразным

С увеличением скорости (выше 1 Маха) расположение фронта ударной волны меняется. На скорости в 1 Мах фронт вытягивается перед самолетом наподобие гигантской «тарелки» высокого давления, прижатой к носу самолета; такая же «тарелка», только низкого давления, прижата к хвосту. При прорыве самолета через звуковой барьер обе «тарелки» преобразуются в конусы, тянущиеся от носа и хвоста самолета назад. На скорости в 2 Маха, в два раза превышающей скорость звука, эти конусы ударных волн принимают положение под углом в 45°. Если бы сверхзвуковой самолет несся с такой скоростью у вас над головой, вы услышали бы сверхзвуковой хлопок уже после того, как он пролетел над вами — конусы ударных волн дошли бы до вас с опозданием.

Когда воздух (или любая другая газообразная среда) сжимается, он нагревается, а когда расширяется — охлаждается. Вот почему порождаемая сверхзвуковым самолетом ударная волна иногда бывает видима как призрачное, неустойчивое облако — оно называется «воротником» или «яйцом» ударной волны. Поскольку за высоким давлением фронта ударной волны сразу следует область низкого давления, такое резкое снижение давления может охладить воздух — содержащийся в нем водяной пар тут же превращается в облако капелек. В зависимости от скорости, это сверхзвуковое облако принимает форму либо диска (на скорости в 1 Мах), либо конуса (на скорости, превышающей 1 Мах), «насаженного» на фюзеляж самолета.

При известной доле воображения облако можно сравнить с мятной подушечкой жевательной резинки, которую приносят в ресторане вместе со счетом (смотрите следующую страницу).

Звучание ударных волн на сверхзвуковой скорости также меняется — в зависимости от того, на какой высоте самолет летит. На больших высотах каждый конус ударной волны (передний и задний) к моменту достижения земли растягивается — звучат сильные, но глухие хлопки. Однако низколетящий самолет производит более высокие звуки, похожие на пару быстрых выстрелов или даже ударов кнута укротителя львов. (Если уж на то пошло, двух ударов, причем, скоординированных — укротители должны щелкать кнутами практически одновременно.) Но вне зависимости от того, глухие это удары или звонкие щелчки, за ударными волнами тут же следует оглушительный рев двигателей самолета.

* * *

Сравнение сверхзвукового самолета и кнута возникло не на пустом месте — в момент щелчка кончик кнута развивает сверхзвуковую скорость, рождающую ударную волну. Термины «удар пастуха» и «удар кучера» к приемам самозащиты никакого отношения не имеют. Так называются техники обращения с кнутом, при которых самый кончик (иначе — растреп) кнута рассекает воздух быстрее скорости звука, порождая щелчок ударной волны. Опытный пастух или кучер воспроизводит подобный удар с кажущейся для постороннего наблюдателя легкостью. Расслабленным движением кисти он посылает энергию в виде волны по веревке кнута и тут же дергает кнутовище на себя, усиливая напряжение. Волна, поначалу двигающаяся на малой скорости, под конец, проходя все сужающуюся веревку, разгоняется до сверхзвуковых значений. Возникает мощная ударная волна — резкий и оглушительный, как выстрел, удар кнута.

F/A-18 «Хорнет» (вверху) и «Супер Хорнет» (внизу) преодолевают звуковой барьер, пролетая через гигантские «мятные подушечки»

Колено возле рукояти, самая толстая часть кнута, сплетено из множества кожаных полос. Кнут постепенно сужается и в конце соединяется с одной-единственной полосой из кожи. К концу этой полосы привязывается растреп — маленький, но очень подвижный шнурок из нейлона или проволоки; именно им пастухи и щелкают.

Как постепенно сужающееся русло реки собирает приливную энергию, формируя крутой и быстрый волновой фронт, так и конец кнута концентрирует энергию, пущенную по кнуту в виде волны, только еще сильнее. Математики из Университета Аризоны вычислили: если диаметр шнурка на самом конце стандартного кнута длиной в 2 м равен одной десятой части кнута возле кнутовища, то при ударе таким кнутом волна перемещается на конце со скоростью, в тридцать два раза превышающей ту, с которой она перемещалась в самом начале.

«Ну как, громко я щелкнул?»

Попрактиковавшись, можно запросто посылать волну вдоль кнута со сверхзвуковой скоростью. Замедленная съемка специальной аппаратурой показывает: ударная звуковая волна образуется при скорости движения шнурка, превышающей скорость звука в два раза. Э-ге-гей!..

* * *

Вы наверняка помните некоторые особенности ударных волн: они возникают внезапно, благодаря резко выраженным фронтам; распространяются быстрее, чем обычные волны. Третье свойство ударных волн — их сильное, порой даже разрушительное воздействие на среду распространения. Сержант Эмме на себе испытал, каково это — ударная волна, пройдя через его череп, вызвала тяжелый ушиб головного мозга. А некоторые солдаты, к несчастью, оказываются слишком близко от взрыва и погибают — ударные волны проходят через их тела.

Когда ударные волны распространяются через воздух, он довольно сильно нагревается — благодаря чрезвычайно высокому давлению фронта некоторых ударных волн. Иногда температура повышается настолько, что воздушная среда меняет свой химический состав. Именно таким образом ударная волна воздействовала на воздух в верхних слоях земной атмосферы; результатом явилось происшествие, ставшее одним из самых драматических в истории освоения космоса. Речь пойдет о злополучном запуске «Аполлона-13» с людьми на борту; аппарат должен был сесть на Луну. Чтобы понять, какую роль в этой драме сыграла ударная волна, вам придется малость покружить вместе с космонавтами, поскольку главные события развивались уже в последние минуты полета.

Мировая пресса освещала запуск 11 апреля 1970 года довольно сдержанно. За год до этого произошла высадка на Луну — событие, вызвавшее настоящий фурор, так что запуск «Аполлона-13» на этом фоне выглядел рядовым.

Однако как только на борту возникла нештатная ситуация, новости о полете заняли первые страницы всех мировых изданий. Каждый этап разворачивающейся драмы передавался в прямом телеэфире — весь мир словно затаил дыхание, гадая, удастся ли трем космонавтам приземлиться целыми и невредимыми.

Трудности возникли на третьи сутки полета, когда один из членов экипажа проводил обычную процедуру — включал вентиляторы, которые перемешивали жидкий кислород в двух бачках для двигательных отсеков. При выполнении процедуры произошло замыкание оголенных проводов в одном из бачков, приведшее к взрыву бачка. В результате сорвало панель отделения четвертого двигательного отсека (присутствие экипажа в отсеке не предполагалось — в нем размещались двигательные установки, электрическое оборудование и устройства для кондиционирования воздуха). Кроме того, взрыв повредил другой бачок.

Услышав сильный удар, космонавты поняли только одно — произошло нечто серьезное. Загорелась световая сигнализация, нарушилась работа силовых установок, приборы «сбрендили». Но экипаж по-прежнему толком не понимал, в чем дело. Командир экипажа Джим Ловелл посмотрел в иллюминатор и заметил вытекающий в открытый космос кислород. Именно тогда он соединился по радиосвязи с Центром управления полетами, произнеся ставшую впоследствии знаменитой фразу: «Хьюстон, у нас проблемы».

Высадка на Луну была отменена; специалисты из Космического центра им. Линдона Джонсона делали все, чтобы экипаж вернулся живым. Трем космонавтам предстояло избавиться от поврежденного «Одиссея», командного модуля, в котором экипаж обычно находится во время взлета и посадки, а также при орбитальном полете. И перейти в «Водолей», лунный модуль, предназначенный для посадки на Луну и взлета с нее. Поскольку ни о какой Луне и речи не было, «Водолей» предполагалось использовать в качестве своего рода спасательной шлюпки, бороздящей космические просторы. Однако в лунном отсеке запас кислорода был ограничен, всего на сорок пять часов, а этого никак не хватило бы для того, чтобы дождаться запланированного приземления. И вот в Центре управления полетами пошли на риск — принялись вычислять новую траекторию, чтобы ускорить возвращение космонавтов. Большую часть топлива лунного модуля решено было использовать для корректировки курса — при этом время пребывания экипажа в космосе сокращалось на девять часов. При условии правильности расчетов космический корабль вырвется из поля притяжения Луны и, подобно камню, пущенному из рогатки, полетит к Земле. Ну, а если нет… Однако запасного плана попросту не существовало.

Как только корабль удалось вывести на новый курс, пришлось отключить навигационную систему, аппаратуру наведения, сократить обогрев корабля — чтобы сберечь убывающую энергию. У космонавтов осталась только связь с Землей, да еще работала система вентилирования воздуха. Без должного обогрева температура в модуле постепенно упала до +4° С.

Очередное серьезное затруднение возникло из-за патронов поглотителя углекислого газа СO2, выдыхаемого космонавтами. Те патроны, что находились в лунном модуле, были рассчитаны на несколько часов работы — их с лихвой хватило бы при высадке на Луну, однако для обратного полета к Земле не хватало. Уровень углекислого газа близился к критической отметке. В Центре управления полетами нашлись светлые головы — было решено использовать патроны из командного модуля. При этом космонавты воспользовались подручными материалами: липкой лентой, пластиковыми трубками, картоном. Но судьба продолжала испытывать их на прочность: из Центра управления полетами экипажу сообщили, что угол приближения к Земле слишком мал. Они «промахнутся» и выйдут на слишком большую орбиту, где им уже не выжить. Поступила команда включить двигатель лунного модуля для коррекции траектории вручную, ориентируясь по видимой в иллюминатор Земле.

Но и после коррекции траектории напряжение не ослабевало. Космонавты должны были перейти из лунного модуля в командный — приготовить свою «спасательную шлюпку» к приземлению. Однако никто не знал, уцелел ли после взрыва теплозащитный экран, который должен был защищать входящий в атмосферу Земли модуль. Вот тут-то на сцену и выступает ударная волна.

Экипаж прекрасно понимал: командный модуль будет нестись к Земле на огромной — 40 000 км/ч — скорости в сопровождении мощной головной ударной волны. Давление повысится настолько, что воздух разогреется до +2 700° С. Понимали космонавты и то, что при такой температуре воздух из газообразного состояния перейдет в плазменное. То есть до такой степени раскалится, что от электронных оболочек значительной части атомов или молекул отделится, по крайней мере, один электрон.

Огненная головная ударная волна, мчащаяся впереди командного модуля, наглядно демонстрировала то, какими неистовыми ударные волны бывают, меняя среду, в которой распространяются, до неузнаваемости.

И космонавты, и специалисты из Центра управления полетами отдавали себе отчет в том, что свободные электроны в плазме станут отличными проводниками электрического тока и преградят путь электромагнитным волнам, посредством которых поддерживалась связь с модулем во время прохождения им слоев атмосферы уже на обратном пути. Проще говоря, это значило, что радиосвязь с модулем прервется минуты на три.

Не было никакой информации о том, в каком состоянии находится теплозащитный экран, от которого зависела жизнь космонавтов. Поврежден он или уцелел? Выдержит ли напор крайне высоких температур ударной волны?

Пассажиру рейса Фиджи — Новая Зеландия удалось сфотографировать «Аполлон-13» во время расстыковки рабочего отсека и лунного модуля, которые при входе в верхние слои атмосферы загорелись. Могла ли та же участь постичь и поврежденный командный модуль с тремя космонавтами на борту?

Командный модуль вошел в верхние слои атмосферы; воздух под давлением ударной волны стал переходить в преграждавшую распространение электромагнитных волн плазму. Связь между «Одиссеем» и Центром управления полетами оборвалась; ведущие новостных программ пояснили замершим у телеэкранов зрителям, что теперь уже ничего поделать нельзя, остается только ждать.

Спустя три минуты Центр управления полетами попытался связаться с модулем: «Одиссей», это Хьюстон. Как слышите? Прием». Ответа не последовало.

Три минуты, четыре… Радиосигнала от космонавтов по-прежнему не было.

Над ожидаемым местом приводнения — к юго-востоку от островов Американского Самоа в Тихом океане — кружили поисково-спасательные вертолеты. Все диспетчеры в пункте управления Космического центра имени Линдона Джонсона неотрывно следили за стрелками своих секундомеров. Спустя четыре с половиной минуты кое-кто в пункте управления уже потерял надежду.

В Центре управления полетами следят за идущим к Луне «Аполлоном-13». Весь драматизм ситуации, возникшей при возвращении модуля, лежит целиком и полностью на совести ударной волны

Вдруг раздался треск статического напряжения — по радиосвязи зазвучал голос пилота Джона Суайгерта. И весь мир с облегчением выдохнул.

Однако в фильме Рона Ховарда «Аполлон-13» эта пауза, которая на экране для большего драматического эффекта зачастую продлевается, была сокращена — время прерывания радиосвязи, вызванного ударными волнами, урезали. Не было никакой необходимости тянуть ее для нагнетания напряжения — действительность превзошла самые смелые фантазии Голливуда.

И все же без художественных преувеличений в сценарии не обошлось. «Привет, Хьюстон. Это «Одиссей», — говорит Суайгерт в фильме; оркестр в это время играет бодрую, оптимистичную музыку. — Рад снова вас слышать». Хотя на деле прозвучавшая фраза была куда как скромнее: «Все в порядке, Джо».

* * *

Похоже, я позаботился о дурной славе ударных волн. Однако то разрушительное воздействие, какое они оказывают на среду распространения, можно обернуть во благо. Особенно в том случае, если вы страдаете от камней в почках.

Дистанционная ударно-волновая литотрипсия — медицинский термин, обозначающий использование ударных волн для безоперационного дробления твердых конкрементов в почках. Пациента укладывают на особым образом устроенную кушетку, к которой подведен генератор ударных волн — он фокусирует высокоинтенсивные звуковые волны на почечном камне. В основе эффективности процедуры лежит тот факт, что большая часть энергии ударных волн поглощается телом в тех участках, где плотность сред резко меняется. Когда волны переходят из мягких тканей почки в твердый камень и выходят с его противоположной стороны, они вызывают в структурах камня напряжение. Это самое напряжение его и разрушает. Часовой процедуры, в ходе которой аппарат испускает до восьми тысяч ударных волн, достаточно для того, чтобы раздробить камень средних размеров — от 6 до 12 мм в поперечнике — на мелкие частицы, выводимые с мочой. Красота, да и только!

Чтобы избежать при литотрипсии неблагоприятного воздействия на костные и хрящевые ткани, ударные волны концентрируют на определенном участке. И тут уже используют волны менее агрессивной природы. Врач определяет точное местоположение почечного камня с помощью ультразвукового аппарата или работающего в режиме реального времени рентгеновского сканера — ни в одном из них ударные волны не применяются. Ультразвуковой сканер формирует картинку, испуская безвредные высокочастотные акустические волны и прислушиваясь к эху, которое отражается — очень похоже на принцип действия гидроакустического комплекса подводной лодки. (Представьте, будто почечный камень — подводная мина, которую вот-вот торпедируют ударные волны.) Рентгеновский сканер, называемый рентгеноскопом, испускает высокочастотные электромагнитные волны низкой интенсивности, которые проходят через пациента. Твердые объекты, такие как почечные камни, поглощают рентгеновские лучи в большем объеме, нежели мягкие ткани, поэтому обнаруживаются по акустической тени.

* * *

Если брать планетарные масштабы, то Земля также содержит в себе твердое «тело», окруженное более мягкой «тканью». Выройте ямку глубиной примерно в 5 000 км — это где-то три четверти пути до центра Земли, — и вы на него наткнетесь.

О строении Земли нам известны удивительные вещи. Внешний слой состоит из твердой земной коры, примерно 30 км толщиной; за ней идет верхняя мантия — слой твердых пород, который уходит на глубину около 60 км, за верхней мантией — мантия из очень вязкого вещества. На глубине без малого 3 000 км начинается внешнее ядро — слой из расплавленного железа и никеля; считается, что потоки внутри них обусловливают земной магнетизм. Прямо посреди этой жидкости располагается твердое внутреннее ядро около 2 500 км в поперечнике. Это почти три четверти диаметра Луны; внутреннее ядро состоит из твердого железа и никеля (а вовсе не сыра, как когда-то думали про Луну).

Но откуда мы все это знаем, если до сих пор забирались не глубже 12,3 км? (Скважину именно такой глубины пробурили русские на Кольском полуострове.) От ударных волн — тех, что вызываются землетрясениями.

Всемирная стандартизированная сейсмологическая сеть станций, создание которой завершилось в 1961 году, представляет собой глобальную систему измерительных устройств, улавливающих раскаты ударных волн от ядерных взрывов. Эта сеть должна была обеспечивать выполнение Договора о всеобъемлющем запрещении ядерных испытаний, заключенного в 1963 году между США, Британией и СССР. Согласно этому договору, запрещались любые наземные испытания ядерного оружия.

Но со временем сеть начали использовать и для высокоточного определения землетрясений. Каждое землетрясение засекалось с помощью метода триангуляции — сравнивалось время прибытия сейсмических волн, зафиксированных приборами в разных местах. Впервые стало ясно, что расположение эпицентров землетрясений — точек на поверхности, находящихся прямо над подземными источниками колебаний — далеко не случайно — большая их часть концентрируется вдоль хорошо заметных геологических разломов. Это открытие перевернуло наши представления о земной коре, подтвердив теорию о тектонике плит, согласно которой земная поверхность состоит из огромных плит твердых пород, постепенно перемещающихся относительно друг друга. Землетрясения в основном происходят на границах плит — при резком разрыве пород с их взаимным смещением накопленная энергия, освобождаясь, вызывает волновые колебания поверхности земли, то есть землетрясения. Смещение тектонических плит порождает ударные волны, реверберирующие по всей планете. И хотя каждый день в мире происходит около пятидесяти землетрясений, лишь малая их часть порождает колебания достаточно мощные для того, чтобы их могли уловить приборы в самых разных точках земного шара.

Под землей землетрясение порождает огромное количество самых разных волн, каждая из которых ведет себя по-своему. Сейсмические волны подразделяются на две основные группы, в зависимости от способа распространения: внутри земли или вдоль поверхности.

Волны внутри земли распространяются быстрее волн, идущих вдоль поверхности. По ним сейсмологи определяют местонахождение землетрясения — сравнивают данные о времени прибытия волн, регистрируемые разными наблюдательными станциями. Самые быстрые, приходящие первыми — первичные волны, или Р-волны; они проносятся через землю со скоростью 8-13 км/с. Р-волны относятся к продольным волнам и представляют собой сжатие-разрежение недр Земли. Другими словами, это волны плотности, волны сжатия-растяжения, которые распространяются посредством колебаний земного вещества вдоль направления движения волны. Р-волны — это ударно-волновая версия других волн сжатия-разрежения, а именно акустических волн. Мы слышим звуки, как под водой, так и через стену — от соседей; точно так же Р-волны проходят как через жидкие среды, так и через твердую материю Земли. От других акустических волн их отличает резко выраженный, мощный фронт волны и интенсивность колебаний.

Упругие сейсмические волны распространяются в недрах Земли. Р-волны представляют собой волны продольные, S-волны — поперечные

Находящийся в тысячах километров от эпицентра мощного землетрясения сейсмограф сначала зарегистрирует Р-волны. Несколькими минутами позже до него дойдут волны другого типа, также относимые к упругим сейсмическим волнам — вторичные волны, или S-волны. Они распространяются в недрах Земли медленнее — их скорость составляет всего 60% от скорости Р-волн, то есть от 4 до 12 км в секунду. S-волны — поперечные: земная порода колеблется из стороны в сторону, или вверх-вниз относительно направления распространения волн.

Благодаря тщательному анализу сейсмических волн, тут же следующих за землетрясением (тип волн, расстояние, на котором они были зарегистрированы, скорость распространения), удалось составить довольно точное представление о недрах нашей планеты.

К примеру, на стороне земного шара, противоположной точке землетрясения, S-волн никогда не бывает. Эта гигантская «тень» — только не волн света, а сейсмических волн — свидетельствует о том, что в центре планеты находится вещество, препятствующее распространению S-волн сквозь Землю. Судя по размерам «тени», блокирующая область чуть больше Марса. Благодаря «тени» геологи определили, что находящийся под мантией Земли следующий слой, внешнее ядро, пребывает в жидком состоянии. Как они догадались? Дело в том, что поперечные волны, те самые, что колеблются из стороны в сторону, как S-волны, через жидкости не распространяются.

Но почему? А потому, что в отличие от твердых веществ, жидкость при движении из стороны в сторону не пружинит. Она не оказывает сопротивления движению по надвигам, в ней не возникают силы упругости, при наличии которых поперечная волна двигается в среде. S-волна может распространяться только через твердое вещество, поскольку оно оказывает сопротивление движению по надвигам. Твердая порода, возвращаясь в ту точку, откуда начала движение, когда возникло колебание в одну сторону, пружинит — то есть волновые вибрации через нее распространяются. А вот жидкость под воздействием вибраций из стороны в сторону не пружинит — она их поглощает, перетекая туда и обратно. Получается, что именно жидкое вещество преграждает поперечным S-волнам путь в недрах Земли, отбрасывая «тень» на противоположную сторону планеты.

Рассуждая подобным образом, геологи выстроили рабочую модель Земли, обозначив переход земной коры в вязкую мантию, а вязкой мантии — в жидкое внешнее ядро, сменяющееся твердым внутренним. Уточнению модели способствовал и тот факт, что Р-волны и S-волны при распространении через слои разной плотности меняют скорость. Иными словами, происходит рефракция. Волны, распространяясь по дуговой траектории, при прохождении градиентов плотности внутри одного слоя резко меняют направление. Однако сложить мозаику из отдельных, разрозненных фактов, непросто. Волны будто нарочно пытаются сбить нас со следа, переходя одна в другую: S-волна может перейти в Р-волну, и наоборот.

Разветвленная сеть сейсмографов позволяет провести «медицинский осмотр» планеты. Как поглощение и рассеяние ультразвуковых волн, пропускаемых через матку, позволяет увидеть еще не родившегося ребенка, так волны от сейсмических толчков землетрясения позволяют увидеть нутро матушки-Земли.

Вот мы тут рассуждаем о сейсмических волнах, а ведь чуть не забыли о самом главном (по крайней мере, для нас) их свойстве: сейсмические волны способны вызывать на поверхности земли ужасающие разрушения. Но повинны в разрушениях не столько упругие волны, сколько поверхностные волны. Само их название подсказывает — они распространяются вдоль поверхности Земли. Поверхностные волны берут начало от эпицентра землетрясения и проходят через твердую земную кору, не затрагивая более глубокие слои. Их скорость чуть ниже скорости S-волн; собственно, это третий тип регистрируемых сейсмографами волн.

Поверхностные волны подразделяются на два вида: волны Лява и волны Рэлея, названные по именам ученых, описавших их математически. Волны Лява колеблют земную поверхность горизонтально — из стороны в сторону относительно направления распространения волны. Волны Рэлея, наоборот, перекатываются вверх-вниз; земля при этом перемещается по траектории овала, что роднит волны Рэлея с волнами океаническими.

Поверхностные волны, распространяясь вдоль земной коры, причиняют разрушения более серьезные, нежели упругие волны. Поверхностные волны, колеблющие землю из стороны в сторону, называются волнами Лява, а те, что перекатываются вверх-вниз — волнами Рэлея

Сходство волн Рэлея и морских волн было подмечено одним из очевидцев землетрясения 1886 года в городе Чарльстон, штат Южная Каролина:

«Земля пошла волнами — совсем как па море… И волны эти выглядели точь-в-точь как те, что я тысячу раз видел с берега Салливан-Айленда… Казалось, волны идут и с юго-запада, и с северо-запада, пересекая улицу по диагонали и проходя друг через друга; они поднимали меня и опускали — я как будто качался на волнах неспокойного моря». {96}

Величина поверхностных волн, а следовательно, и разрушительная сила землетрясения, зависит не только от амплитуды колебаний, но и от глубины положения их центра. Сильное землетрясение на глубине более 300 км породит лишь незначительные поверхностные волны по сравнению с землетрясением у поверхности земли. Центр ужасающего землетрясения в 7 баллов, произошедшего в январе 2010 года на Гаити и до основания разметавшего Порт-о-Пренс, находился всего в 13 км от поверхности земли. Поэтому его поверхностные волны оказались такими губительными, сравняв город и пригороды с землей. Здания и инфраструктура столицы гаитян, нации довольно бедной, возводились без учета сейсмической активности и не устояли против землетрясения и последовавшей за ним серии многочисленных повторных толчков. В результате за считанные часы погибло около 230 000 человек.

* * *

Однако существует в природе такой зверек, которому ударные волны близки и знакомы; взгляните на следующую страницу.

Это рак-щелкун, которого еще называют креветкой. Креветка принадлежит семейству Alpheidae, подтип ракообразные; она обитает среди океанических рифов тропических и умеренных широт. В длину креветка едва достигает 5 см; даже не верится, что такое тщедушное существо может иметь что-то общее с ударными волнами. Однако вспомните: ударные волны характеризует отнюдь не размер, а резко выраженный фронт, высокая скорость распространения и последствия воздействия на среду. Ударные мини-волны не только существуют, но и являются рабочим инструментом этой самой боксирующей креветки. Я говорю «боксирующей», потому что одна клешня у нее заметно больше другой — креветка напоминает потерявшего одну перчатку боксера.

«Не вздумай сунуться — клешня «заряжена»

Большая клешня креветки обладает функцией, отсутствующей у маленькой клешни: она создает кавитационный пузырек, который, в свою очередь, порождает ударную волну, оглушающую жертву

Захлопывая клешню с невероятной скоростью, креветка производит резкий щелкающий звук — так она общается с сородичами. Нырните на глубину и проплывите возле колонии этих креветок — можно подумать, будто вы очутились на подводной фабрике попкорна. Хлопки клешней нескольких креветок могут быть настолько громкими, что во время Второй мировой они даже мешали подводным лодкам отслеживать передвижения вражеских субмарин.

Однако щелкающие звуки составляют не только креветочную «азбуку Морзе» — они выступают в качестве смертоносного оружия. Когда креветка щелкает клешней, возникает струя воды, текущей со скоростью 105 км/ч. Когда дети плещутся в бассейне и под водой резко сжимают кулаки, получаются те же струи, только скорость у них меньше. Креветка с помощью струи оглушает, а иногда даже убивает небольшую рыбу и креветок других видов. Зрелище само по себе впечатляющее. Но удивительнее всего то, что орудием убийства выступает отнюдь не захлопывающаяся со звуком кастаньет клешня, а подводная ударная волна.

И хотя ударная волна имеет малые масштабы, по силе воздействия ее можно сравнить с извержением Кракатау. Струя воды развивает скорость, достаточную для того, чтобы возник кавитационный пузырек. В момент зарождения струи давление падает настолько, что морская вода моментально превращается в пузырек водяного пара. В течение нескольких миллисекунд этот пузырек с силой схлопывается, порождая ударную волну, которая распространяется как участок сильного повышения давления и способна оглушить жертву на расстоянии 4 см.

Водяной пар в схлопнувшемся пузырьке мгновенно переходит обратно в жидкое состояние, нагреваясь до температуры около + 4 700° С. Подумать только, ведь это почти что температура поверхности Солнца! Одновременно происходит вспышка света. Она длится какую-то миллисекунду, и человеческому глазу незаметна, но при съемке 40 000 кадров в минуту видна. И хотя данный феномен — ударная волна давления, порождающая световую вспышку — известен как сонолюминесценция, заснявшие ее в природных условиях исследователи придумали термин «креветколюминесценция».

* * *

Чем еще волны так примечательны? Тем, что мы их почти не замечаем.

И пускай в данном утверждении кроется внутреннее противоречие, доля правды в нем присутствует. Мы уделяем значительное внимание информации, которую волны переносят, однако сами волны не замечаем — для нас они всего лишь невидимые бойкие посыльные. Ведь вам совсем не обязательно понимать принцип работы лампочки накаливания, чтобы видеть освещенное пространство вокруг себя. И когда вам признаются в любви, вы не думаете (я на это очень надеюсь) о том, что это признание — не что иное, как последовательность периодических волн давления.

Вот и еще одна особенность ударных волн — мимо них так запросто не пройдешь. О приближении этих безжалостных чудовищ из мира волн оповещает сама среда распространения.

Как мы видим, ударные волны возникают в результате либо взрывов, будь то бомба, вулкан или щелчок клешни креветки, либо как головные ударные волны перед объектами, движущимися в среде со скоростью, обычной для волн в этой среде или выше. Однако существует еще один способ образования ударных волн: они появляются тогда, когда волна определенного типа достигает конца своего жизненного пути.

Вообще-то, такая ударная волна нам хорошо знакома. Закройте глаза и представьте себе волну — наверняка это она и будет.

Ну как, догадались, о чем я?

Это наш старый добрый знакомец — бурун. Вы, конечно же, помните: дойдя до прибрежного мелководья, морская волна, что называется, собирается гармошкой — замедляет бег, а склоны волны все набирают крутизну, пока гребень не перевешивает. И вот когда верхушка волны обрушивается вниз, волна превращается в ударную.

И то правда: буруны ведь обладают всеми характеристиками ударных волн. У них резко выраженный фронт — передний склон, который опрокидывается, расплескивается, накатывает, всегда круче пологого заднего. Они распространяются быстрее обычных волн, по крайней мере, это справедливо для бурунов внушительного вида, которые стремительно сменяют друг друга, разлетаясь брызгами. Когда буруны оборачиваются пенистыми потоками, они становятся неуправляемыми: Законы волны — отражение, рефракция и дифракция — уже не для них. К тому же большая часть энергии перемещающейся воды рассеивается — передается окружающему пространству в виде тепла и звука, а не продолжает свое существование в виде океанической волны.

Как и все ударные волны, буруны таят в себе угрозу, обладая разрушительной мощью. Любой серфингист знает, как опасно запрыгивать на огромный бурун; перед теми же, кто в достаточной мере ловок и везуч, ударные волны раскрываются во всей своей красе. Я мог бы наблюдать за этими волнами часы напролет. Мгновение, когда обычная волна оборачивается ударной, поистине волшебно.

Только что волны катили стройными рядами, как вдруг тишь да гладь сменяется хаосом: воздух перемешивается с водой, вода — с воздухом. Где еще можно любоваться таким изящным превращением порядка в полный беспорядок? Причем повторяющимся вновь и вновь. Конечно, это волшебное превращение вернее будет назвать переходом от линейной волны к нелинейной, но, право, это было бы несправедливо.

Разбиваясь о берег, волна умирает — точнее, подходит к концу та часть ее жизни, которую она провела в водной среде. Хотя энергия волны не исчезает — она преобразуется. Окончательно волна передает ее воздуху и берегу уже будучи ударной волной.

Альфред Теннисон написал:

Бей, бей, бей В неподвижные камни, вода. Благодатная радость потерянных дней Не вернется ко мне никогда. {99}