Анатомия человека

Привес Михаил Григорьевич

Лысенков Николай Константинович

Бушкович Вячеслав Иосифович

УЧЕНИЕ О НЕРВНОЙ СИСТЕМЕ (НЕВРОЛОГИЯ). SYSTÉMA NERVÓSUM

 

 

Общие данные

Одним из основных свойств живого вещества является раздражимость. Каждый живой организм получает раздражения из окружающего его мира и отвечает на них соответствующими реакциями, которые связывают организм с внешней средой. Протекающий в самом организме обмен веществ в свою очередь обусловливает ряд раздражений, на которые организм также реагирует. Связь между участком, на который падает раздражение, и реагирующим органом в высшем многоклеточном организме осуществляется нервной системой.

Проникая своими разветвлениями во все органы и ткани, нервная система связывает все части организма в единое целое, осуществляя его объединение, интеграцию.

Следовательно, нервная система есть «невыразимо сложнейший и тончайший инструмент сношений, связи многочисленных частей организма между собой и организма как сложнейшей системы с бесконечным числом внешних влияний» (И. П. Павлов).

В основе деятельности нервной системы лежит рефлекс (И. М. Сеченов). «Это значит, что в тот или иной рецепторный (воспринимающий. — М. П.) нервный прибор ударяет тот или иной агент внешнего или внутреннего мира организма. Этот удар трансформируется в нервный процесс, в явление нервного возбуждения. Возбуждение по нервным волокнам, как по проводам, бежит в центральную нервную систему и оттуда благодаря установленным связям по другим проводам приносится к рабочему органу, трансформируясь, в свою очередь, в специфический процесс клеток этого органа (И. П. Павлов).

Основным анатомическим элементом нервной системы является нервная клетка, которая вместе со всеми отходящими от нее отростками носит название нейрона, или нейроцита. От тела клетки отходят в одну сторону один длинный (осевоцилиндрический) отросток — аксон, или нейрит, в другую сторону — короткие ветвящиеся отростки — дендриты.

Передача нервного возбуждения внутри нейрона идет в направлении от дендритов к телу клетки от нее к аксону; аксоны проводят возбуждение в направлении от тела клетки. Передача нервного импульса с одного нейрона на другой осуществляется посредством особым образом построенных концевых аппаратов, или синапсов (от греч. synápsis — соединение). Различают аксосоматические связи нейронов, при которых разветвления одного нейрона подходят к телу клетки другого нейрона, и филогенетически более новые аксодендритические связи, когда контакт осуществляется с дендритами нервных клеток.

Аксодендритические связи сильно развиты в филогенетически новых и высших в функциональном отношении верхних слоях коры. Они играют роль в механизме перераспределения нервных импульсов в коре и представляют, по-видимому, морфологическую основу временных связей при условнорефлекторной деятельности. В спинном мозге и подкорковых образованиях превалируют аксосоматические связи.

Прерывистость пути проведения нервного импульса выражена повсюду, создавая возможность самых разнообразных связей.

Таким образом, вся нервная система представляет собой комплекс нейронов, которые, вступая в соединение друг с другом, нигде не срастаются непосредственно между собой.

Следовательно, нервное возбуждение, возникнув в каком-либо месте, прередается по отросткам нервных клеток от одного нейрона к другому, от другого к третьему и т. д. Наглядным примером связи между органами, устанавливаемой при посредстве нейронов, может служить так называемая рефлекторная дуга, лежащая в основе рефлекса — наиболее простой и вместе с тем основной реакции нервной системы.

Простая рефлекторная дуга (рис. 264) состоит по крайней мере из двух нейронов, из которых один связан с какой-нибудь чувствительной поверхностью (например, кожей), а другой с помощью своего нейрита оканчивается в мышце (или железе).

Рис. 264. Схема рефлекторной дуги.

1 — нервное окончание чувствительного нейрона в коже; 2 — периферический отросток чувствительного нейрона; 3 — спинномозговой узел; 4 — центральный отросток чувствительного нейрона; 5 — вставочный нейрон;  6 — двигательная клетка переднего рога; 7 — нейрит двигательной клетки; 8 — нервное окончание в мышце.

При раздражении чувствительной поверхности возбуждение идет по связанному с ней нейрону в центростремительном направлении (центрипетально) к рефлекторному центру, где находится соединение (синапс) обоих нейронов. Здесь возбуждение переходит на другой нейрон и идет уже центробежно (центрифугально) к мышце или железе. В результате происходит сокращение мышцы или изменение секреции железы. Часто в состав простой рефлекторной дуги входит третий вставочный нейрон, который служит передаточной станцией с чувствительного пути на двигательный. Кроме простой (трехчленной) рефлекторной дуги, имеются сложно устроенные многонейронные рефлекторные дуги, проходящие через разные уровни головного мозга, включая его кору. У высших животных и человека на фоне простых и сложных рефлексов также при посредстве нейронов образуются временные рефлекторные связи высшего порядка, известные под названием условных рефлексов (И. П. Павлов).

Таким образом, всю нервную систему можно себе представить состоящей в функциональном отношении из трех родов элементов.^

1. Рецептор (восприниматель), трансформирующий энергию внешнего раздражения в нервный процесс; он связан с афферентным (центростремительным, или рецепторным) нейроном, распространяющим начавшееся возбуждение (нервный импульс) к центру; с этого явления начинается анализ (И. П. Павлов).

2. Кондуктор (проводник), вставочный, или ассоциативный, нейрон, осуществляющий замыкание, т. е. переключение возбуждения с центростремительного нейрона на центробежный. Это явление есть синтез, который представляет, «очевидно, явление нервного замыкания» (И. П. Павлов). Поэтому И. П. Павлов называет этот нейрон контактором, замыкателем.

3. Эфферентный (центробежный) нейрон , осуществляющий ответную реакцию (двигательную или секреторную) благодаря проведению нервного возбуждения от центра к периферии, к эффектору. Эффектор — это нервное окончание эфферентного нейрона, передающее нервный импульс к рабочему органу (мышца, железа). Поэтому этот нейрон называют также эффекторным. Рецепторы возбуждаются со стороны трех чувствительных поверхностей, или рецепторных полей, организма: 1) с наружной, кожной, поверхности тела (экстероцептивное поле ) при посредстве связанных с ней генетически органов чувств, получающих раздражение из внешней среды; 2) с внутренней поверхности тела (интероцептивное поле ), принимающей раздражения главным образом со стороны химических веществ, поступающих в полости внутренностей, и 3) из толщи стенок собственно тела (проприоцептивное поле ), в которых заложены кости, мышцы и другие органы, производящие раздражения, воспринимаемые специальными рецепторами. Рецепторы от названных полей связаны с афферентными нейронами, которые достигают центра и гам переключаются при посредстве подчас весьма сложной системы кондукторов на различные эфферентные проводники; последние, соединяясь с рабочими органами, дают тот или иной эффект.

Общая характеристика нервной системы с точки зрения кибернетики заключается в следующем. Живой организм — это уникальная кибернетическая машина, способная к самоуправлению. Эту функцию выполняет нервная система. Для самоуправления требуется 3 звена: I звено — поступление информации, которое происходит по определенному вводному каналу информации и совершается следующим образом:

А. Возникающее из источника информации сообщение поступает на приемный конец канала информации — рецептор . Рецептор — это кодирующее устройство, которое воспринимает сообщение и перерабатывает его в сигнал — афферентный сигнал , в результате чего внешнее раздражение превращается в нервный импульс.

Б. Афферентный сигнал передается далее по каналу информации, каковым является афферентный нерв .

Имеются 3 вида каналов информации, 3 входа в них: внешние входы — через органы чувств (экстероцепторы); внутренние входы: а) через органы растительной жизни (внутренности) — интероцепторы; б) через органы животной жизни (сома, собственно тело) — проприоцепторы. II звено — переработка информации. Она совершается декодирующим устройством, которое составляют клеточные тела афферентных нейронов нервных узлов и нервные клетки серого вещества спинного мозга, коры и подкорки головного мозга, образующие нервную сеть серого вещества центральной нервной системы. III звено — управление. Оно достигается передачей эфферентных сигналов из серого вещества спинного и головного мозга на исполнительный орган и осуществляется по эфферентным каналам, т. е. по эфферентным нервам с эффектором на конце.

Имеется 2 рода исполнительных органов:

1. Исполнительные органы животной жизни — произвольные мышцы, преимущественно скелетные.

2. Исполнительные органы растительной жизни — непроизвольные мышцы и железы.

Кроме этой кибернетической схемы, современная кибернетика установила общность принципа обратной связи для управления и координации процессов, совершающихся как в современных автоматах, так и в живых организмах; с этой точки зрения в нервной системе можно различать обратную связь рабочего органа с нервными центрами, так называемую обратную афферентацию. Под этим названием подразумевается передача сигналов с рабочего органа в центральную нервную систему о результатах его работы в каждый данный момент. Когда центры нервной системы посылают эфферентные импульсы в исполнительный орган, то в последнем возникает определенный рабочий эффект (движение, секреция). Этот эффект побуждает в исполнительном органе нервные (чувствительные) импульсы, которые по афферентным путям поступают обратно в спинной и головной мозг и сигнализируют о выполнении рабочим органом определенного действия в данный момент. Это и составляет сущность «обратной афферентации», которая, образно говоря, есть доклад центру о выполнении приказа на периферии. Так, при взятии рукой предмета глаза непрерывно измеряют расстояние между рукой и целью и свою информацию посылают в виде афферентных сигналов в мозг. В мозге происходит замыкание на эфферентные нейроны, которые передают двигательные импульсы в мышцы руки, производящие необходимые для взятия ею предмета действия. Мышцы одновременно воздействуют на находящиеся в них рецепторы, беспрерывно посылающие мозгу чувствительные сигналы, информирующие о положении руки в каждый данный момент. Такая двусторонняя сигнализация по цепям рефлексов продолжается до тех пор, пока расстояние между кистью руки и предметом не будет равно нулю, т. е. пока рука не возьмет предмет.

Следовательно, все время совершается самопроверка работы органа, возможная благодаря механизму «обратной афферентации», который имеет характер замкнутого круга в последовательности: центр (прибор, задающий программу действия) — эффектор (мотор) — объект (рабочий орган) — рецептор (восприемник) — центр.

Существование такой замкнутой кольцевой, или круговой, цепи рефлексов центральной нервной системы и обеспечивает все сложнейшие коррекции протекающих в организме процессов при любых изменениях внутренних и внешних условий. Без механизмов обратной связи живые организмы не смогли бы разумно приспособиться к окружающей среде.

Следовательно, вместо прежнего представления о том, что в основе строения и функции нервной системы лежит разомкнутая рефлекторная дуга, теория информации и обратной связи («обратной афферентации») дает новое представление о замкнутой кольцевой цепи рефлексов , о круговой системе эфферентно-афферентной сигнализации. Не разомкнутая дуга, а сомкнутый круг — таково новейшее представление о строении и функции нервной системы. Таким образом, в свете данных кибернетики нервная система характеризуется как система информации и управления .

Единая нервная система человека условно делится на 2 части соответственно двум основным частям организма — растительной и животной: 1) часть нервной системы, иннервирующая все внутренности, а также эндокринную систему и непроизвольные мышцы кожи, сердце и сосуды, т. е. органы растительной жизни, создающие внутреннюю среду организма, называется растительной нервной системой, вегетативной или автономной: 2) другая часть нервной системы, управляющая произвольной мускулатурой скелета и некоторых внутренностей (язык, гортань, глотка) и иннервирующая главным образом органы животной жизни, называется животной нервной системой, анимальной. Ее также не совсем удачно называют соматической, имея в виду сому, т. е. собственно тело. Она заведует по преимуществу функциями связи организма с внешней средой, обусловливая чувствительность организма (при посредстве органов чувств) и движения мускулатуры скелета. Условность и ограниченность приведенной выше классификации явствует из того, что вегетативная нервная система имеет отношение к иннервации всех органов, в том числе и соматических, так как она участвует в их питании (трофика), а также определяет тонус скелетной мускулатуры.

И. П. Павлов и особенно К. М. Быков со своими учениками (В. Н. Черниговский и др.) показали зависимость деятельности всех внутренностей и сосудов от коры головного мозга.

Вегетативная часть нервной системы в свою очередь делится на две части: симпатическую и парасимпатическую, которые для краткости также называются системами. Симпатическая система иннервирует все части организма, а парасимпатическая — лишь определенные области его (см. далее).

Кроме такой классификации, соответствующей строению организма, нервную систему делят по топографическому принципу на центральный и периферический отделы, или системы. Под центральной нервной системой разумеется спинной и головной мозг, которые состоят из серого и белого вещества, под периферической — все остальное, т. е. нервные корешки, узлы, сплетения, нервы и периферические нервные окончания. Серое вещество спинного и головного мозга — это скопления нервных клеток вместе с ближайшими разветвлениями их отростков, называемые нервными центрами. Нервный центр — это «скопление и сцепление нервных клеток» (И. П. Павлов).

Белое вещество — это нервные волокна (отростки нервных клеток, нейриты), покрытые миелиновой оболочкой (откуда и происходит белый цвет) и связывающие отдельные центры между собой, т. е. проводящие пути. Как в центральном, так и в периферическом отделах нервной системы содержатся элементы анимальной и вегетативной частей ее, чем достигается единство всей нервной системы.

Высшим отделом ее, который ведает всеми процессами организма, как животными, так и растительными, является кора большого мозга.

РАЗВИТИЕ НЕРВНОЙ СИСТЕМЫ

Филогенез нервной системы в кратких чертах сводится к следующему. У простейших одноклеточных организмов (амеба) нервной системы еще нет, а связь с окружающей средой осуществляется при помощи жидкостей, находящихся внутри и вне организма, — гуморальная (húmor — жидкость), донервная, форма регуляции.

В дальнейшем, когда возникает нервная система, появляется и другая форма регуляции — нервная. По мере развития нервной системы нервная регуляция все больше подчиняет себе гуморальную, так что образуется единая нейрогуморальная регуляция при ведущей роли нервной системы. Последняя в процессе филогенеза проходит ряд основных этапов (рис. 265).

Рис. 265. Этапы развития нервной системы.

1 , 2 — диффузная нервная система гидры; 3 , 4 — узловая нервная система кольчатого червя.

I этап — сетевидная нервная система. На этом этапе (кишечнополостные) нервная система, например гидры, состоит из нервных клеток, многочисленные отростки которых соединяются друг с другом в разных направлениях, образуя сеть, диффузно пронизывающую все тело животного. При раздражении любой точки тела возбуждение разливается по всей нервной сети и животное реагирует движением всего тела. Отражением этого этапа у человека является сетевидное строение интрамуральной нервной системы пищеварительного тракта.

II этап — узловая нервная система. На этом этапе (беспозвоночные) нервные клетки сближаются в отдельные скопления или группы, причем из скоплений клеточных тел получаются нервные узлы — центры, а из скоплений отростков — нервные стволы — нервы. При этом в каждой клетке число отростков уменьшается и они получают определенное направление. Соответственно сегментарному строению тела животного, например у кольчатого червя, в каждом сегменте имеются сегментарные нервные узлы и нервные стволы. Последние соединяют узлы в двух направлениях: поперечные стволы связывают узлы данного сегмента, а продольные — узлы разных сегментов. Благодаря этому нервные импульсы, возникающие в какой-либо точке тела, не разливаются по всему телу, а распространяются по поперечным стволам в пределах данного сегмента. Продольные стволы связывают нервные сегменты в одно целое. На головном конце животного, который при движении вперед соприкасается с различными предметами окружающего мира, развиваются органы чувств, в связи с чем головные узлы развиваются сильнее остальных, являясь прообразом будущего головного мозга. Отражением этого этапа является сохранение у человека примитивных черт (разбросанность на периферии узлов и микроганглиев) в строении вегетативной нервной системы.

III этап — трубчатая нервная система. На первоначальной ступени развития животных особенно большую роль играл аппарат движения, от совершенства которого зависит основное условие существования животного — питание (передвижение в поисках пищи, захватывание и поглощение ее).

У низших многоклеточных развился перистальтический способ передвижения, что связано с непроизвольной мускулатурой и ее местным нервным аппаратом. На более высокой ступени перистальтический способ сменяется скелетной моторикой, т. е. передвижением с помощью системы жестких рычагов — поверх мышц (членистоногие) и внутри мышц (позвоночные). Следствием этого явилось образование произвольной (скелетной) мускулатуры и центральной нервной системы, координирующей перемещение отдельных рычагов моторного скелета.

Такая центральная нервная система у хордовых (ланцетник) возникла в виде метамерно построенной нервной трубки с отходящими от нее сегментарными нервами ко всем сегментам тела, включая и аппарат движения, — туловищный мозг. У позвоночных и человека туловищный мозг становится спинным. Таким образом, появление туловищного мозга связано с усовершенствованием в первую очередь моторного вооружения животного. Наряду с этим уже у ланцетника имеются и рецепторы (обонятельный, световой). Дальнейшее развитие нервной системы и возникновение головного мозга обусловлены преимущественно усовершенствованием рецепторного вооружения.

Так как большинство органов чувств возникает на том конце тела животного, который обращен в сторону движения, т. е. вперед, то для восприятия поступающих через них внешних раздражений развивается передний конец туловищного мозга и образуется головной мозг, что совпадает с обособлением переднего конца тела в виде головы — цефализация (céphal — голова).

Е. К. Сепп в учебнике по нервным болезням дает упрощенную, но удобную для изучения схему филогенеза головного мозга, которую мы и приводим. Согласно этой схеме, на I этапе развития головной мозг состоит из трех отделов: заднего, среднего и переднего, причем из этих отделов в первую очередь (у низших рыб) особенно развивается задний, или ромбовидный, мозг (rhombencéphalon). Развитие заднего мозга происходит под влиянием рецепторов акустики и гравитации (рецепторы VIII пары черепных нервов), имеющих ведущее значение для ориентации в водной среде.

В дальнейшей эволюции задний мозг дифференцируется на продолговатый мозг , являющийся переходным отделом от спинного мозга к головному и потому называемый myelencéphalon (myelós — спинной мозг, encéphalon — головной), и собственно задний мозг — metencéphalon, из которого развиваются мозжечок и мост.

В процессе приспособления организма к окружающей среде путем изменения обмена веществ в заднем мозге как наиболее развитом на этом этапе отделе центральной нервной системы возникают центры управления жизненно важными процессами растительной жизни, связанными, в частности, с жаберным аппаратом (дыхание, кровообращение, пищеварение и др.). Поэтому в продолговатом мозге возникают ядра жаберных нервов (группа X пары — вагуса). Эти жизненно важные центры дыхания и кровообращения остаются в продолговатом мозге человека, чем объясняется смерть, наступающая при повреждении продолговатого мозга. На II этапе (еще у рыб) под влиянием зрительного рецептора особенно развивается средний мозг, mesencéphalon. На III этапе, в связи с окончательным переходом животных из водной среды в воздушную, усиленно развивается обонятельный рецептор, воспринимающий содержащиеся в воздухе химические вещества, сигнализирующие своим запахом о добыче, опасности и других жизненно важных явлениях окружающей природы.

Под влиянием обонятельного рецептора развивается передний мозг — prosencéphalon, вначале имеющий характер чисто обонятельного мозга. В дальнейшем передний мозг разрастается и дифференцируется на промежуточный — diencéphalon и конечный — telencéphalon.

В конечном мозге как в высшем отделе центральной нервной системы появляются центры для всех видов чувствительности. Однако нижележащие центры не исчезают, а сохраняются, подчиняясь центрам вышележащего этажа. Следовательно, с каждым новым этапом развития головного мозга возникают новые центры, подчиняющие себе старые. Происходит как бы передвижение функциональных центров к головному концу и одновременное подчинение филогенетически старых зачатков новым. В результате центры слуха, впервые возникшие в заднем мозге, имеются также в среднем и переднем, центры зрения, возникшие в среднем, имеются и в переднем, а центры обоняния — только в переднем мозге. Под влиянием обонятельного рецептора развивается небольшая часть переднего мозга, называемая поэтому обонятельным мозгом (rhinencéphalon), который покрыт корой серого вещества — старой корой (paleocórtex).

Совершенствование рецепторов приводит к прогрессивному развитию переднего мозга, который постепенно становится органом, управляющим всем поведением животного. Различают две формы поведения животного: инстинктивное, основанное на видовых реакциях (безусловные рефлексы), и индивидуальное, основанное на опыте индивида (условные рефлексы). Соответственно этим двум формам поведения в конечном мозге развивается две группы центров серого вещества: базальные узлы, имеющие строение ядер (ядерные центры), и кора серого вещества, имеющая строение сплошного экрана (экранные центры). При этом вначале развивается «подкорка», а затем кора. Кора возникает при переходе животного от водного к наземному образу жизни и обнаруживается отчетливо у амфибий и рептилий. Дальнейшая эволюция нервной системы характеризуется тем, что кора головного мозга все более и более подчиняет себе функции всех нижележащих центров, происходит постепенная кортиколизация функций .

Необходимой формацией для осуществления высшей нервной деятельности является новая кора, расположенная на поверхности полушарий и приобретающая в процессе филогенеза шестислойное строение. Благодаря усиленному развитию новой коры конечный мозг у высших позвоночных превосходит все остальные отделы головного мозга, покрывая их, как плащом (pállium). Развивающийся новый мозг (neencéphalon) оттесняет в глубину старый мозг (обонятельный), который как бы свертывается в виде гиппокампа (hyppocámpus), остающегося по-прежнему обонятельным центром. В результате плащ, т. е. новый мозг (neencéphalon), резко преобладает над остальными отделами мозга — старым мозгом (paleencéphalon).

Итак, развитее головного мозга совершается под влиянием развития рецепторов, чем и объясняется, что самый высший отдел головного мозга — кора (серое вещество) — представляет, как учит И. П. Павлов, совокупность корковых концов анализаторов, т. е. сплошную воспринимающую (рецепторную) поверхность. Дальнейшее развитие мозга у человека подчиняется иным закономерностям, связанным с его социальной природой. Кроме естественных органов тела, имеющихся и у животных, человек стал пользоваться орудиями труда. Орудия труда, ставшие искусственными органами, дополнили естественные органы тела и составили техническое вооружение человека.

С помощью этого вооружения человек приобрел возможность не только приспосабливаться самому к природе, как это делают животные, но и приспосабливать природу к своим нуждам. Труд, как уже отмечалось, явился решающим фактором становления человека, а в процессе общественного труда возникло необходимое для общения людей средство — речь. «Сначала труд, а затем и вместе с ним членораздельная речь явились двумя самыми главными стимулами, под влиянием которых мозг обезьяны постепенно превратился в человеческий мозг, который, при всем своем сходстве с обезьяньим, далеко превосходит его по величине и совершенству» (Маркс К., Энгельс Ф. Соч., 2-е изд., т. 20, с. 490). Это совершенство обусловлено максимальным развитием конечного мозга, особенно его коры — новой коры (neocortex).

Кроме анализаторов, воспринимающих различные раздражения внешнего мира и составляющих материальный субстрат конкретно-наглядного мышления, свойственного животным (первая сигнальная система действительности, по И. П. Павлову), у человека возникла способность абстрактного, отвлеченного мышления с помощью слова, сначала слышимого (устная речь) и позднее видимого (письменная речь). Это составило вторую сигнальную систему, по И. П. Павлову, которая в развивающемся животном мире явилась «чрезвычайной прибавкой к механизмам нервной деятельности» (И. П. Павлов).

Материальным субстратом второй сигнальной системы стали поверхностные слои новой коры. Поэтому кора конечного мозга достигает своего наивысшего развития у человека. Таким образом, эволюция нервной системы сводится к прогрессивному развитию конечного мозга, который у высших позвоночных и особенно у человека в связи с усложнением нервных функций достигает огромных размеров.

Изложенные закономерности филогенеза обусловливают эмбриогенез нервной системы человека. Нервная система происходит из наружного зародышевого листка, или эктодермы (см. «Введение»). Эта последняя образует продольное утолщение, называемое медуллярной пластинкой (рис. 266).

Рис. 266. Стадии эмбриогенеза нервной системы; поперечный схематический разрез.

А — медуллярная пластинка; В , С — медуллярная бороздка; D , Е  —  нервная трубка; 1 — роговой листок (эпидермис); 2 — нейральные гребни.

Медуллярная пластинка скоро углубляется в медуллярную бороздку, края которой (медуллярные валики) постепенно становятся выше и затем срастаются друг с другом, превращая бороздку в трубку (мозговая трубка). Мозговая трубка представляет собой зачаток центральной части нервной системы. Задний конец трубки образует зачаток спинного мозга, передний расширенный конец ее путем перетяжек расчленяется на три первичных мозговых пузыря, из которых происходит головной мозг во всей его сложности.

Нервная пластинка первоначально состоит только из одного слоя эпителиальных клеток. Во время замыкания ее в мозговую трубку количество клеток в стенках последней увеличивается, так что возникает три слоя: внутренний (обращенный в полость трубки), из которого происходит эпителиальная выстилка мозговых полостей (эпендима центрального канала спинного мозга и желудочков головного); средний, из которого развивается серое вещество мозга (зародышевые нервные клетки — нейробласты); наконец, наружный, почти не содержащий клеточных ядер, развивающийся в белое вещество (отростки нервных клеток — нейриты). Пучки нейритов нейробластов распространяются или в толще мозговой трубки, образуя белое вещество мозга, или же выходят в мезодерму и затем соединяются с молодыми мышечными клетками (миобластами). Таким путем возникают двигательные нервы.

Чувствительные нервы возникают из зачатков спинномозговых узлов, которые заметны уже по краям медуллярной бороздки у места перехода ее в кожную эктодерму. Когда бороздка смыкается в мозговую трубку, зачатки смещаются на ее дорсальную сторону, располагаясь по средней линии. Затем клетки этих зачатков перемещаются вентрально и располагаются вновь по бокам мозговой трубки в виде так называемых нейральных гребней . Оба нейральных гребня перешнуровываются четкообразно по сегментам дорсальной стороны зародыша, вследствие чего получается на каждой стороне ряд спинномозговых узлов, gánglia spinália. В головной части мозговой трубки они доходят только до области заднего мозгового пузырька, где образуют зачатки узлов чувствительных черепных нервов. В ганглиозных зачатках развиваются нейробласты, принимающие вид биполярных нервных клеток, один из отростков которых врастает в мозговую трубку, другой идет на периферию, образуя чувствительный нерв. Благодаря сращению на некотором протяжении от начала обоих отростков получаются из биполярных так называемые ложные униполярные клетки с одним отростком, делящимся в форме буквы «Т», являющиеся характерными для спинномозговых узлов взрослого. Центральные отростки клеток, проникающие в спинной мозг, составляют задние корешки спинномозговых нервов, а периферические отростки, разрастаясь венгрально, образуют (вместе с вышедшими из спинного мозга эфферентными волокнами, составляющими передний корешок) смешанный спинномозговой нерв. Из нейральных гребней возникают также зачатки вегетативной нервной системы, о чем подробно см. «Вегетативная (автономная) нервная система».

 

Центральная нервная система

СПИННОЙ МОЗГ

Развитие спинного мозга. Как уже отмечалось, филогенетически спинной мозг (туловищный мозг ланцетника) появляется на III этапе развития нервной системы (трубчатая нервная система). В это время головного мозга еще нет, поэтому туловищный мозг имеет центры для управления всеми процессами организма, как вегетативными, так и анимальными (висцеральные и соматические центры). Соответственно сегментарному строению тела туловищный мозг имеет сегментарное строение, он состоит из связанных между собой невромеров, в пределах которых замыкается простейшая рефлекторная дуга. Метамерное строение спинного мозга сохраняется и у человека, чем и обусловливается наличие у него коротких рефлекторных дуг.

С появлением головного мозга (этап кефализации) в нем возникают высшие центры управления всем организмом, а спинной мозг попадает в подчиненное положение. Спинной мозг не остается только сегментарным аппаратом, а становится и проводником импульсов от периферии к головному мозгу и обратно, в нем развиваются двусторонние связи с головным мозгом. Таким образом, в процессе эволюции спинного мозга образуется два аппарата: более старый сегментарный аппарат собственных связей спинного мозга и более новый надсегменгарный аппарат двусторонних проводящих путей к головному мозгу. Такой принцип строения наблюдается и у человека.

Решающим фактором образования туловищного мозга является приспособление к окружающей среде при помощи движения. Поэтому строение спинного мозга отражает способ передвижения животного. Так, например, у пресмыкающихся, не имеющих конечностей и передвигающихся с помощью туловища (например, у змеи), спинной мозг развит равномерно на всем протяжении и не имеет утолщений. У животных, пользующихся конечностями, возникает два утолщения, при этом, если более развиты передние конечности (например, крылья птиц), то преобладает переднее (шейное) утолщение спинного мозга; если более развиты задние конечности (например, ноги страуса), то увеличено заднее (поясничное) утолщение; если в ходьбе участвуют и передние, и задние конечности (четвероногие млекопитающие), то одинаково развиты оба утолщения. У человека в связи с более сложной деятельностью руки как органа труда шейное утолщение спинного мозга дифференцировалось сильнее, чем поясничное.

Отмеченные факторы филогенеза играют роль в развитии спинного мозга и в онтогенезе. Спинной мозг развивается из нервной трубки, из ее заднего отрезка (из переднего возникает головной мозг). Из вентрального отдела трубки образуются передние столбы серого вещества спинного мозга (клеточные тела двигательных нейронов), прилегающие к ним пучки нервных волокон и отростки названных нейронов (двигательные корешки). Из дорсального отдела возникают задние столбы серого вещества (клеточные тела вставочных нейронов), задние канатики (отростки чувствительных нейронов).

Таким образом, вентральная часть мозговой трубки является первично двигательной, а дорсальная — первично чувствительной. Деление на моторную (двигательную) и сенсорную (чувствительную) области простирается на всю нервную трубку и сохраняется в стволе головного мозга.

Из-за редукции каудальной части спинного мозга получается тонкий тяж из нервной ткани, будущая fílum terminále. Первоначально, на 3-м месяце утробной жизни, спинной мозг занимает весь позвоночный канал, затем позвоночник начинает расти скорее, чем мозг, вследствие чего конец последнего постепенно перемещается кверху (краниально). При рождении конец спинного мозга уже находится на уровне III поясничного позвонка, а у взрослого достигает высоты I–II поясничного позвонка. Благодаря такому «восхождению» спинного мозга отходящие от него нервные корешки принимают косое направление (рис. 267).

Рис. 267. Спинной мозг.

а — вид спереди;  б — вид сзади. Твердая и паутинная оболочки разрезаны. Сосудистая оболочка снята. Римскими цифрами обозначен порядок расположения шейных (С), грудных (Th), поясничных (L) и крестцовых (S) спинномозговых нервов; 1 — intumescentia cervicalis; 2 — gangl. spinale; 3 — dura mater medullae spinalis; 4 — intumescentia lumbosacralis; 5 — conus medullaris; 6 — cauda equina.

Строение спинного мозга

Спинной мозг, medúlla spinális (греч. myelós), лежит в позвоночном канале и у взрослых представляет собой длинный (45 см у мужчин и 41–42 см у женщин), несколько сплюснутый спереди назад цилиндрический тяж, который вверху (краниально) непосредственно переходит в продолговатый мозг, а внизу (каудально) оканчивается коническим заострением, cónus medulláris, на уровне II поясничного позвонка (см. рис. 267). Знание этого факта имеет практическое значение (чтобы не повредить спинной мозг при поясничном проколе с целью взятия спинномозговой жидкости или с целью спинномозговой анестезии, надо вводить иглу шприца между остистыми отростками III и IV поясничных позвонков).

От cónus medulláris отходит книзу так называемая концевая нить, fílum terminále, представляющая атрофированную нижнюю часть спинного мозга, которая внизу состоит из продолжения оболочек спинного мозга и прикрепляется ко II копчиковому позвонку.

Спинной мозг на своем протяжении имеет два утолщения, соответствующих корешкам нервов верхней и нижней конечностей: верхнее из них называется шейным утолщением, intumescéntia cervicális, а нижнее — пояснично-крестцовым, intumescéntia lumbosacrális. Из этих утолщений более обширно пояснично-крестцовое, но более дифференцировано шейное, что связано с более сложной иннервацией руки как органа труда. Образовавшимися вследствие утолщения боковых стенок спинномозговой трубки и проходящими по средней линии передней и задней продольными бороздами: глубокой físsura mediána antérior, и поверхностной, súlcus mediánus postérior, спинной мозг делится на две симметричные половины — правую и левую; каждая из них в свою очередь имеет слабо выраженную продольную борозду, идущую по линии входа задних корешков (súlcus posterolaterális) и по линии выхода передних корешков (súlcus anterolaterális).

Эти борозды делят каждую половину белого вещества спинного мозга на три продольных канатика: передний — funículus antérior, боковой — funículus laterális и задний — funículus postérior. Задний канатик в шейном и верхнегрудном отделах делится еще промежуточной бороздкой, súlcus intermédius postérior, на два пучка: fascículus grácilis и fascículus cuneátus . Оба эти пучка под теми же названиями переходят вверху на заднюю сторону продолговатого мозга.

На той и другой стороне из спинного мозга выходят двумя продольными рядами корешки спинномозговых нервов. Передний корешок , rádix ventrális s. antérior, выходящий через súlcus anterolaterális, состоит из нейритов двигательных (центробежных, или эфферентных) нейронов, клеточные тела которых лежат в спинном мозге, тогда какзадний корешок , rádix dorsális s. postérior, входящий в súlcus posterolateralis, содержит отростки чувствительных (центростремительных, или афферентных) нейронов, тела которых лежат в спинномозговых узлах.

На некотором расстоянии от спинного мозга двигательный корешок прилегает к чувствительному (рис. 268) и они вместе образуют ствол спинно-мозгового нерва, trúncus n. spinális, который невропатологи выделяют под именем канатика , funículus .

Рис. 268. Элементы периферической нервной системы (схема).

1  — radix posterior; 2 — radix anterior; 3 — gangl. spinale; 4 — truncus n. spinalis; 5 — plexus; 6 — ветви сплетения; 7 — задний рог;  8 — передний рог.

При воспалении канатика (фуникулит) возникают сегментарные расстройства одновременно двигательной и чувствительной сфер; при заболевании корешка (радикулит) наблюдаются сегментарные нарушения одной сферы — или чувствительной, или двигательной, а при воспалении ветвей нерва (неврит) расстройства соответствуют зоне распространения данного нерва. Ствол нерва обычно очень короткий, так как по выходе из межпозвоночного отверстия нерв распадается на свои основные ветви.

В межпозвоночных отверстиях вблизи места соединения обоих корешков задний корешок имеет утолщение — спинномозговой узел , gánglion spinále , содержащий ложноуниполярные нервные клетки (афферентные нейроны) с одним отростком, который делится затем на две ветви: одна из них, центральная, идет в составе заднего корешка в спинной мозг, другая, периферическая, продолжается в спинномозговой нерв. Таким образом, в спинномозговых узлах отсутствуют синапсы, так как здесь лежат клеточные тела только афферентных нейронов. Этим названные узлы отличаются от вегетативных узлов периферической нервной системы, так как в последних вступают в контакты вставочные и эфферентные нейроны. Спинномозговые узлы крестцовых корешков лежат внутри крестцового канала, а узел копчикового корешка — внутри мешка твердой оболочки спинного мозга.

Вследствие того что спинной мозг короче позвоночного канала, место выхода нервных корешков не соответствует уровню межпозвоночных отверстий. Чтобы попасть в последние, корешки направляются не только в стороны от мозга, но еще и вниз, при этом тем отвеснее, чем ниже они отходят от спинного мозга. В поясничной части последнего нервные корешки спускаются к соответствующим межпозвоночным отверстиям параллельно fílum terminále, облекая ее и cónus medulláris густым пучком, который носит название конского хвоста, cauda equina (см. рис. 267).

Внутреннее строение спинного мозга. Спинной мозг состоит из серого вещества, содержащего нервные клетки, и белого вещества, слагающегося из миелиновых нервных волокон.

А. Серое вещество, substántia grísea, заложено внутри спинного мозга и окружено со всех сторон белым веществом. Серое вещество образует две вертикальные колонны, помещенные в правой и левой половинах спинного мозга. В середине его заложен узкий центральный канал , canális centrális, спинного мозга, проходящий во всю длину последнего и содержащий спинномозговую жидкость. Центральный канал является остатком полости первичной нервной трубки. Поэтому вверху он сообщается с IV желудочком головного мозга, а в области cónus medulláris заканчивается расширением —концевым желудочком , ventrículus tcrminális.

Серое вещество, окружающее центральный канал, носит название промежуточного, substántia intermédia centrális. В каждой колонне серого вещества два столба: передний, colúmna antérior, и задний, colúmna postérior.

На поперечных разрезах спинного мозга эти столбы имеют вид рогов: переднего , расширенного, córnu antérius, и заднего, заостренного, córnu postérius. Поэтому общий вид серого вещества на фоне белого напоминает букву «Н».

Серое вещество состоит из нервных клеток, группирующихся в ядра, расположение которых в основном соответствует сегментарному строению спинного мозга и его первичной трехчленной рефлекторной дуге. Первый, чувствительный, нейрон этой дуги лежит в спинномозговых узлах, периферический отросток которого начинается рецепторами в органах и тканях, а центральный в составе задних чувствительных корешков проникает через súlcus posterolaterális в спинной мозг. Вокруг верхушки заднего рога образуется пограничная зона белого вещества, представляющая собой совокупность центральных отростков клеток спинномозговых узлов, заканчивающихся в спинном мозге. Клетки задних рогов образуют отдельные группы или ядра, воспринимающие из сомы различные виды чувствительности, — соматически-чувствительные ядра. Среди них выделяются: грудное ядро, núcleus thorácicus (colúmna thorácica), наиболее выраженное в грудных сегментах мозга; находящееся на верхушке рога студенистое вещество, substántia gelatinósa, а также так называемые собственные ядра, núclei próprii.

Заложенные в заднем роге клетки образуют вторые, вставочные, нейроны.

В сером веществе задних рогов разбросаны также рассеянные клетки, так называемые пучковые клетки , аксоны которых проходят в белом веществе обособленными пучками волокон. Эти волокна несут нервные импульсы от определенных ядер спинного мозга в его другие сегменты или служат для связи с третьими нейронами рефлекторной дуги, заложенными в передних рогах того же сегмента. Отростки этих клеток, идущие от задних рогов к передним, располагаются вблизи серого вещества, по его периферии, образуя узкую кайму белого вещества, окружающего серое со всех сторон. Это собственные пучки спинного мозга, fasciculi próprii. Вследствие этого раздражение, идущее из определенной области тела, может передаваться не только на соответствующий ей сегмент спинного мозга, но захватывать и другие. В результате простой рефлекс может вовлекать в ответную реакцию целую группу мышц, обеспечивая сложное координированное движение, остающееся, однако, безусловнорефлекторным.

Передние рога содержат третьи, двигательные, нейроны, аксоны которых, выходя из спинного мозга, составляют передние, двигательные, корешки. Эти клетки образуют ядра эфферентных соматических нервов, иннервирующих скелетную мускулатуру, — сомагически-двигательные ядра. Последние имеют вид коротких колонок и лежат в виде двух групп — медиальной и латеральной. Нейроны медиальной группы иннервируют мышцы, развившиеся из дорсальной части миотомов (аутохтонная мускулатура спины), а латеральной — мышцы, происходящие из вентральной части миотомов (вентролатеральные мышцы туловища и мышцы конечностей); чем дистальнее иннервируемые мышцы, тем латеральнее лежат иннервирующие их клетки.

Наибольшее число ядер содержится в передних рогах шейного утолщения спинного мозга, откуда иннервируются верхние конечности, что определяется участием последних в трудовой деятельности человека. У последнего в связи с усложнением движений руки как органа труда этих ядер значительно больше, чем у животных, включая антропоидов. Таким образом, задние и передние рога серого вещества имеют отношение к иннервации органов животной жизни, особенно аппарата движения, в связи с усовершенствованием которого в процессе эволюции и развивался спинной мозг.

Передний и задний рога в каждой половине спинного мозга связаны между собой промежуточной зоной серого вещества, которая в грудном и поясничном отделах спинного мозга, на протяжении от I грудного до II–III поясничных сегментов особенно выражена и выступает в виде бокового рога , córnu laterále . Вследствие этого в названных отделах серое вещество на поперечном разрезе приобретает вид бабочки. В боковых рогах заложены клетки, иннервирующие вегетативные органы и группирующиеся в ядро, которое носит название colúmna intermediolaterális. Нейриты клеток этого ядра выходят из спинного мозга в составе передних корешков.

Б. Белое вещество, substántia álba, спинного мозга состоит из нервных отростков, которые составляют три системы нервных волокон:

1. Короткие пучки ассоциативных волокон, соединяющих участки спинного мозга на различных уровнях (афферентные и вставочные нейроны). 2. Длинные центростремительные (чувствительные, афферентные). 3. Длинные центробежные (двигательные, эфферентные). Первая система (коротких волокон) относится к собственному аппарату спинного мозга, а остальные две (длинных волокон) составляют проводниковый аппарат двусторонних связей с головным мозгом.

Собственный аппарат включает серое вещество спинного мозга с задними и передними корешками и собственными пучками белого вещества (fascículi próprii), окаймляющими серое в виде узкой полосы. По развитию собственный аппарат является образованием филогенетически более старым и потому сохраняет примитивные черты строения — сегментарносгь, отчего его называют также сегментарным аппаратом спинного мозга в отличие от остального несегментированного аппарата двусторонних связей с головным мозгом.

Таким образом, нервный сегмент — это поперечный отрезок спинного мозга и связанных с ним правого и левого спинномозговых нервов, развившихся из одного невротома (невромера). Он состоит из горизонтального слоя белого и серого вещества (задние, передние и боковые рога), содержащего нейроны, отростки которых проходят в одном парном (правом и левом) спинномозговом нерве и его корешках (см. рис. 268). В спинном мозге различают 31 сегмент, которые топографически делятся на 8 шейных, 12 грудных, 5 поясничных, 5 крестцовых и 1 копчиковый. В пределах нервного сегмента замыкается короткая рефлекторная дуга (см. рис. 264).

Так как собственный сегментарный аппарат спинного мозга возник тогда, когда еще не было головного, то функция его — это осуществление тех реакций в ответ на внешнее и внутреннее раздражения, которые в процессе эволюции возникли раньше, т. е. врожденных реакций.

Аппарат двусторонних связей с головным мозгом филогенетически более молодой, так как возник лишь тогда, когда появился головной мозг.

По мере развития последнего разрастались кнаружи и проводящие пути, связывающие спинной мозг с головным (рис. 269).

Рис. 269. Элементарная схема безусловного рефлекса. Нервные импульсы, возникающие при раздражении рецептора ( P ), по афферентным волокнам ( Афф. нерв , показано лишь одно такое волокно) идут к спинному мозгу ( 1 ), где через вставочный нейрон передаются на эфферентные волокна ( Эфф. нерв ), по которым доходят до эффектора. Пунктирные линии — распространение возбуждения от низших отделов центральной нервной системы на ее вышерасположенные отделы ( 2 , 3 , 4 ), до коры мозга ( 5 ) включительно и обратно на эфферентный нейрон.

Этим объясняется тот факт, что белое вещество спинного мозга как бы окружило со всех сторон серое вещество. Благодаря проводниковому аппарату собственный аппарат спинного мозга связан с аппаратом головного мозга, который объединяет работу всей нервной системы. Нервные волокна группируются в пучки, а из пучков составляются видимые невооруженным глазом канатики: задний, боковой и передний. В заднем канатике (рис. 270), прилежащем к заднему (чувствительному) рогу, лежат пучки восходящих нервных волокон; в переднем канатике, прилежащем к переднему (двигательному) рогу, лежат пучки нисходящих нервных волокон; наконец, в боковом канатике находятся и те и другие. Кроме канатиков, белое вещество находится в белой спайке, comissúra álba, образующейся вследствие перекреста волокон спереди от substántia intermédia centrális; сзади белая спайка отсутствует.

Рис. 270. Внутреннее строение спинного мозга; поперечный разрез.

а — схема проводящих путей спинного мозга: слева изображено местоположение восходящих, справа — нисходящих систем волокон: 1 — fasc. gracilis; 2 — fasc. cuneatus; 3 — radix posterior; 4 — tr. corticospinalts lateralis; 5 — tr. rubrospinalis; 6 — tr. tectospinalis; 7 — tr. spinothalamicus lateralis; 8 — tr. spinotectalis; 9 — tr. vestibulospinalis; 10 — tr. olivospinalis; 11 — tr. reticulospinalis; 12 — tr. corticospinalis anterior; 13 — tr. spinocerebellaris anterior; 14 — tr. spinocerebellaris posterior; 15 — fascc. proprii; 16 — tr. spinothalamicus anterior; 17 — tr. thalamospinalis;

б — ядра серого вещества (в грудном отделе):  1 — substantia gelatinosa; 2 — nucl. proprius cornu posterioris; 3 — nuc{. thoracicus; 4 — nucl intermediomedialis; 5 — columna intermediolateralis; 6 , 7 , 8 , 9 , 10 — пять двигательных ядер переднего рога;

I , II , III — соответственно передний, боковой и задний канатики белого вещества.

Задние канатики содержат волокна задних корешков спинномозговых нервов, слагающиеся в две системы:

1. Медиально расположенный тонкий пучок, fascículus grácilis.

2. Латерально расположенный клиновидный пучок, fascículus cuneátus.

Пучки тонкий и клиновидный проводят от соответствующих частей тела к коре головного мозга сознательную проприоцептивную (мышечно-суставное чувство) и кожную (чувство стереогноза — узнавание предметов на ощупь) чувствительность, имеющую отношение к определению положения тела в пространстве, а также тактильную чувствительность.

Боковые канатики содержат следующие пучки:

А. Восходящие.

К заднему мозгу : 1) tráctus spinocerebelláris postérior, задний спинно-мозжечковый путь, располагается в задней часта бокового канатика по его периферии; 2) tráctus spinocerebelláris antérior, передний спинно-мозжечковый путь, лежит вентральнее предыдущего.

Оба спинно-мозжечковых тракта проводят бессознательные проприоцеитивные импульсы (бессознательная координация движений).

К среднему мозгу : 3) tráctus spinotectális, спинно-покрышечный путь, прилегает к медиальной стороне и передней части tráctus spinocerebelláris antérior.

К промежуточному мозгу : 4) tráctus spinothalámicus laterális прилегает с медиальной стороны к tráctus spinocerebelláris antérior, тотчас позади tráctus spinotectális. Он проводит в дорсальной части тракта температурные раздражения, а в вентральной — болевые; 5) tráctus spinothalámicus antériror s. ventrális аналогичен предыдущему, но располагается кпереди от соименного латерального и является путем проведения импульсов осязания, прикосновения (тактильная чувствительность). По последним данным, этот тракт располагается в переднем канатике.

Б. Нисходящие.

От коры большого мозга : 1) латеральный корково-спинномозговой (пирамидный) путь, tráctus corticospinális (pyramidális) laterális. Этот тракт является сознательным эфферентным двигательным путем.

От среднего мозга : 2) tráctus rubrospinális. Он является бессознательным эфферентным двигательным путем.

От заднего мозга : 3) tráctus olivospinális, лежит вентральнее tráctus spinocerebelláris anterior, вблизи переднего канатика.

Передние канатики содержат нисходящие пути.

От коры головного мозга : 1) передний корково-спинномозговой (пирамидный) путь, tráctus corticospinális (pyramidális) antérior, составляет с латеральным пирамидным пучком общую пирамидную систему.

От среднего мозга : 2) tráctus tectospinális, лежит медиальнее пирамидного пучка, ограничивая fissúra mediána antérior. Благодаря ему осуществляются рефлекторные защитные движения при зрительных и слуховых раздражениях — зрительно-слуховой рефлекторный тракт.

Ряд пучков идет к передним рогам спинного мозга от различных ядер продолговатого мозга , имеющих отношение к равновесию и координации движений, а именно:

3) от ядер вестибулярного нерва — tráctus vestibulospinális — лежит на границе переднего и бокового канатиков;

4) от formátio reticuláris — tráctus reticulospinális antérior, лежит в средней части переднего канатика;

5) собственно пучки, fascículi próprii, непосредственно прилегают к серому веществу и относятся к собственному аппарату спинного мозга.

Оболочки спинного мозга

Спинной мозг одет тремя соединительноткаными оболочками, menínges, происходящими из мезодермы. Оболочки эти следующие, если идти с поверхности вглубь: твердая оболочка, dúra máter; паутинная оболочка, arachnoídea, и мягкая оболочка, pia máter. Краниально все три оболочки продолжаются в такие же оболочки головного мозга.

1. Твердая оболочка спинного мозга, dúra máter spinális, облекает в форме мешка снаружи спинной мозг. Она не прилегает вплотную к стенкам позвоночного канала, которые покрыты надкостницей. Последнюю называют также наружным листком твердой оболочки. Между надкостницей и твердой оболочкой находится эпидуральное пространство , сávitas epidurális . В нем залегают жировая клетчатка и венозные сплетения — pléxus venósi vertebráles intérni, в которые вливается венозная кровь от спинного мозга и позвонков. Краниально твердая оболочка срастается с краями большого отверстия затылочной кости, а каудально заканчивается на уровне II–III крестцовых позвонков, суживаясь в виде нити, fílum dúrae mátris spinális, которая прикрепляется к копчику.

Артерии твердая оболочка получает из спинномозговых ветвей сегментарных артерий, вены ее вливаются в pléxus venósus vertebrális intérnus, а нервы ее происходят из rámi meníngei спинномозговых нервов. Внутренняя поверхность твердой оболочки покрыта слоем эндотелия, вследствие чего имеет гладкий блестящий вид.

2. Паутинная оболочка спинного мозга, arachnoídea spinális, в виде тонкого прозрачного бессосудистого листка прилегает изнутри к твердой оболочке, отделяясь от последней щелевидным, пронизанным тонкими перекладинами субдуральным пространством , spátium subdurále. Между паутинной оболочкой и непосредственно покрывающей спинной мозг мягкой оболочкой находится подпаутинное пространство , cávitas subarachnoidális , в котором мозг и нервные корешки лежат свободно, окруженные большим количеством спинномозговой жидкости, liquor сегеbrospinális. Это пространство в особенности широко в нижней части арахноидального мешка, где оно окружает cáuda equína спинного мозга (cistérna terminális ). Наполняющая подпаутинное пространство жидкость находится в непрерывном сообщении с жидкостью подпаутинных пространств головного мозга и мозговых желудочков. Между паутинной оболочкой и покрывающей спинной мозг мягкой оболочкой в шейной области сзади, вдоль средней линии образуется перегородка, séptum cervicále intermédium. Кроме того, по бокам спинного мозга во фронтальной плоскости располагается зубчатая связка, lig. denticulátum, состоящая из 19–23 зубцов, проходящих в промежутках между передними и задними корешками. Зубчатые связки служат для укрепления мозга на месте, не позволяя ему вытягиваться в длину. Посредством обеих ligg. denticulátae подпаутинное пространство делится на передний и задний отделы.

3. Мягкая оболочка спинного мозга, pía máter spinális, покрытая с поверхности эндотелием, непосредственно облекает спинной мозг и содержит между двумя своими листками сосуды, вместе с которыми заходит в его борозды и мозговое вещество, образуя вокруг сосудов периваскулярные лимфатические пространства.

Сосуды спинного мозга (рис. 271). Аа. spináles antérior et postérior, спускаясь вдоль спинного мозга, соединяются между собой многочисленными ветвями, образуя на поверхности мозга сосудистую сеть (так называемую vasocoróna). От этой сети отходят веточки, проникающие вместе с отростками мягкой оболочки в вещество мозга (см. рис. 271).  Вены в общем аналогичны артериям и впадают в конечном итоге в pléxus venósi vertebráles intémi. К лимфатическим сосудам спинного мозга можно отнести периваскулярные пространства вокруг сосудов, сообщающиеся с подпаутинным пространством.

Рис. 271. Сосуды спинного мозга кошки (по И. Д. Льву ).

ГОЛОВНОЙ МОЗГ

ОБЩИЙ ОБЗОР ГОЛОВНОГО МОЗГА

Головной мозг, encáphalon, помещается в полости черепа и имеет форму, в общих чертах соответствующую внутренним очертаниям черепной полости. Его верхнелатеральная, или дорсальная, поверхность сообразно своду черепа выпукла, а нижняя, или основание мозга, более или менее уплощена и неровна. В головном мозге можно различить три крупные части: большой мозг (cérebrum), мозжечок (cerebéllum) и мозговой ствол (trúncus encephálicus). Наибольшую часть всего головного мозга занимают полушария большого мозга, за ними по величине следует мозжечок, остальную, сравнительно небольшую, часть составляет мозговой ствол.

Верхнелатеральная поверхность полушарий большого мозга. Оба полушария отделяются друг от друга щелью, fissúra longitudinális cérebri, идущей в сагиттальном направлении. В глубине продольной щели полушария связаны между собой спайкой — мозолистым телом , córpus callósum, и другими лежащими под ним образованиями. Спереди от мозолистого тела продольная щель сквозная, а сзади она переходит в поперечную щель мозга fissúra transvérsa cérebri, отделяющую задние части полушарий от лежащего под ними мозжечка.

Нижняя поверхность полушарий большого мозга (рис. 272).

Рис. 272. Нижняя поверхность головного мозга.

I — tr. olfactorius;  II — n. opticus;  III — n. oculomotorius; IV — n. trochlearis; V — n. trigeminus; VI — n. abducens; VII — n. facialis; VIII — n. vestibulocochlearis; IX — n. glossopharyngeus; X — n. vagus; XI — n. accessorius; XII — n. hypoglossus;  1 — bulbus olfactorius; 2 — tr. olfactorius; 3 — bulbus oculi sinistri; 4 — n. opticus; 5 — chiasma opticum; 6 — tr. opticus; 7 — substantia perforata anterior;  8 — hypophysis; 9 — tuber cinereum; 10 — corpus mamillare;  11 — substantia perforata posterior; 12 — pedunculus cerebri; 13 — pons; 14 — oliva; 15 — pyramis; 16 — flocculus; 17 — cerebellum; 18 , 19 , 20 , 21 — корешки четырех верхних спинномозговых нервов. 

Со стороны нижней поверхности мозга, fácies inférior cérebri, видна не только нижняя сторона полушарий большого мозга и мозжечка, но и вся нижняя поверхность мозгового ствола, а также отходящие от мозга нервы.

Передний отдел нижней поверхности головного мозга представлен лобными долями полушарий. На нижней поверхности лобных долей замечаютсяобонятельные луковицы , búlbi olfactórii, к которым из полости носа через отверстия lámina cribrósa решетчатой кости подходят тонкие нервные нити, fílа оIfactória, образующие в своей совокупности I пару черепных нервов — обонятельные нервы, nn. olfactórii. Обыкновенно при вынимании мозга из черепа эти нити отрываются от búlbus olfactórius.

Обонятельные луковицы продолжаются кзади в обонятельные тракты , tráctus olfactórii , оканчивающиеся каждый двумя корешками, между которыми находится возвышение, называемое trigónum olfactórium. Непосредственно сзади последнего на той и другой стороне находитсяпереднее продырявленное вещество , substántia perforáta antérior, названное так по причине наличия здесь маленьких дырочек, через которые проходят в мозговое вещество сосуды.

Посередине между обоими передними продырявленными пространствами лежит зрительный перекрест , chiásma ópticum, имеющий форму буквы «X». От верхней поверхности хиазмы отходит тоненькая пластинка серого цвета, lámina terminális, идущая в глубь fissúra longitudinális cérebri. Сзади зрительного перекрестка помещаетсясерый бугор , túbег cineréum; верхушка его вытянута в узкую трубку, так называемую воронку , infundibulum, к которой подвешен расположенный в турецком седле гипофиз, hypóphysis cérebri. Позади серого бугра находятся два шарообразных, белого цвета возвышения — сосцевидные тела , córpora mamillária . За ними лежит довольно глубокая межножковая ямка, fóssa interpedunculáris, ограниченная с боков двумя толстыми валиками, сходящимися кзади и называемыминожками мозга , pedúnculi cérebri. Дно ямки пронизано отверстиями для сосудов, а потому носит название заднего продырявленного вещества , substántia perforáta postérior. Рядом с этим веществом в борозде медиального края мозговой ножки на той и другой стороне выходит III пара — глазодвигательный нерв , n. oculomotóris. Сбоку ножек мозга виден самый тонкий из черепных нервов — блоковый нерв , n. trochleáris — IV пара, который, однако, отходит не на основании мозга, а с его дорсальной стороны, из так называемого верхнего мозгового паруса. Позади ножек мозга находится толстый поперечный вал — мост, pons, который, суживаясь с боков, погружается в мозжечок. Боковые части моста, ближайшие к мозжечку, носят названиесредних ножек мозжечка , pedúnculi cerebelláres médii; на границе между ними и собственно мостом выхолит на той и другой стороне V пара — тройничный нерв , n. trigéminus. Позади моста лежит продолговатый мозг , medúla oblongáta; между ним и задним краем моста по бокам средней линии видно начало VI пары —отводящего нерва , n. abdúcens; еще далее вбок у заднего края средних ножек мозжечка выходят рядом на той и другой стороне еще два нерва: VII — пара — лицевой нерв n. faciális , и VIII пара — n. vestibulocochleáris.

Между пирамидой и оливой продолговатого мозга выходят корешки XII пары — подъязычного нерва , n. hypoglóssus. Корешки IX, X и XI пар — n. glossopharýngeus, n. vágus и n. accessórius (верхняя часть) — выходят из бороздки позади оливы. Нижние волокна XI пары отходят уже от спинного мозга в шейной его части.

ЭМБРИОГЕНЕЗ ГОЛОВНОГО МОЗГА

Нервная трубка очень рано подразделяется на два отдела, соответствующие головному и спинному мозгу. Передний, расширенный ее отдел, представляющий зачаток головного мозга, как отмечалось, расчленяется путем перетяжек на три первичных мозговых пузыря, лежащих друг за другом: передний, prosencéphalon, средний, mesencéphalon, и задний, rhombencéphalon. Передний мозговой пузырь замыкается спереди так называемой концевой пластинкой, lámina terminális. Эта стадия из трех пузырей при последующей дифференцировке переходит в стадию пяти пузырей, дающих начало пяти главным отделам головного мозга (рис. 273). Одновременно с этим мозговая трубка изгибается в сагиттальном направлении. Прежде всего в области среднего пузыря развивается выпуклый в дорсальную сторону головной изгиб, а затем на границе с зачатком спинного мозга также выпуклый дорсально шейный изгиб. Между ними образуется в области заднего пузыря третий изгиб, выпуклый в вентральную сторону, — мостовой изгиб.

Рис. 273. Развитие головного мозга (схема).

а — пять мозговых пузырей: 1 — telencephalon — конечный мозг; 2 — diencephalon — промежуточный мозг; 3 — mesencephalon — средний мозг; 4 — metencephalon — собственно задний мозг как часть ромбовидного мозга; 5 — myelencephalon — продолговатый мозг; между 3-м и 4-м пузырем — перешеек (isthmus rhombencephali);  б — развитие головного мозга (по Р. Д. Синельникову ).

Посредством этого последнего изгиба задний мозговой пузырь, rhombencéphalon, делится на два отдела. Из них задний , myelencéphalon , превращается при окончательном развитии в продолговатый мозг, а из переднего отдела, называемого metencéphalon, развивается с вентральной стороны мост и с дорсальной стороны мозжечок. Metencéphalon отделяется <рт лежащего впереди него пузырька среднего мозга узкой перетяжкой,ísthmus rhombenéephali. Оощая полость rhombencéphalon, имеющая на горизонтальном сечении вид ромба, образует IV желудочек, сообщающийся с центральным каналом спинного мозга. Вентральная и боковые стенки ее благодаря развитию в них ядер черепных нервов сильно утолщаются, дорсальная же стенка остается тонкой. В области продолговатого мозга большая часть ее состоит только из одного эпителиального слоя, срастающегося с мягкой оболочкой (téla choroídea inférior). Стенки среднего мозгового пузыря, mesencéphalon, утолщаются при развитии в них мозгового вещества более равномерно. Вентрально из них возникают ножки мозга, а с дорсальной стороны — крыша среднего мозга (см. рис. 273). Полость среднего пузыря превращается в узкий канал — водопровод , соединяющийся с IV желудочком.

Более значительной дифференцировке и видоизменениям в форме подвергается передним мозговой пузырь, prosencéphalon, который подразделяется на заднюю часть, diencéphalon (промежуточный мозг ), и переднюю, telencéphalon (конечный мозг ). Боковые стенки промежуточного мозга, утолщаясь, образуют таламусы (thalámi). Кроме того, боковые стенки, выпячиваясь в стороны, образуют два зрительных пузырька, из которых впоследствии развиваются сетчатка глаз и зрительные нервы. Дорсальная стенка промежуточного мозга остается тонкой, в виде эпителиальной пластинки, срастающейся с мягкой оболочкой (téla choroídea supérior). Сзади из этой стенки возникает выпячивание, за счет которого происходит шишковидное тело (córpus pineále). Полые ножки глазных пузырьков втягиваются с вентральной стороны в стенку переднего мозгового пузыря, вследствие чего на дне полости последнего образуется углубление, recéssus ópticus, передняя стенка которого состоит из тонкой lámina terminális. Позади recéssus ópticus возникает другое воронкообразное углубление, стенки которого дают túber cineréum, infundíbulum и заднюю (нервную) долю hypóphysis cérebri. Еще далее кзади в области diencéphalon в виде одиночного возвышения закладываются парные córpora mamillária. Полость промежуточного мозга образует III желудочек.

Telencéphalon разделяется на срединную, меньшую, часть (pars mediana) и две большие боковые части — полушария большого мозга (hemisphéria déxtrum et sinístrum), которые у человека разрастаются очень сильно и в конце развития по величине значительно превосходят остальные отделы головного мозга. Полость pars mediána, являющаяся передним продолжением полости промежуточного мозга (III желудочек), по бокам сообщается посредством межжелудочковых отверстий с полостями полушарий, которые на развитом мозге носят название боковых желудочков . Передняя стенка, представляющая непосредственное продолжение lámina terminális, в начале первого месяца эмбриональной жизни образует утолщение, так называемую комиссуральную пластинку, из которой впоследствии развиваются мозолистое тело и передняя комиссура.

В основании каждого полушария, внутри, образуется выступ, так называемая полосатая часть, из которой развивается полосатое тело, córpus striátum. Часть медиальной стенки полушарий остается в виде одного эпителиального слоя, который вворачивается внутрь пузырька складкой мягкой оболочки (pléxus choroídeus). На нижней стороне каждого полушария уже на 5-й неделе эмбриональной жизни образуется выпячивание — зачаток обонятельного мозга , rhinenсéphalon , которое постепенно отграничивается от стенки полушарий бороздкой, соответствующей fissúra rhinális laterális. При развитии серого вещества (коры), а затем и белого в стенках полушария последнее увеличивается и образует так называемый плащ, pállium, лежащий над обонятельным мозгом и покрывающий собой не только таламусы, но и дорсальную поверхность среднего мозга и мозжечка.

Полушарие при своем росте увеличивается сначала в области лобной доли, затем теменной и затылочной и, наконец, височной. Благодаря этому создается впечатление, как. будто плащ вращается вокруг таламусов сначала спереди назад, затем вниз и, наконец, загибается вперед, к лобной доле. Вследствие этого на боковой поверхности полушария, между лобной долей и приблизившейся к ней височной, образуется ямка, fóssa laterális cérebri, которая при сближении названных долей большого мозга превращается в щель, súlcus cérebri laterális; на дне ее образуется островок, ínsula.

При развитии и росте полушария вместе с ним развиваются и совершают указанное «вращение» и его внутренние камеры, боковые желудочки мозга, а также часть córpus striátum (хвостатое ядро), чем и объясняется сходство их формы с формой полушария: у желудочков — наличие передней, центральной и задней частей и загибающейся книзу и вперед нижней части (см. рис. 295), у хвостатого ядра — наличие головки, тела и загибающегося книзу и вперед хвоста.

Борозды и извилины (рис. 274, 275, 276) возникают вследствие неравномерного роста самого мозга, что связано с развитием отдельных его частей.

Рис. 274. Верхнелатеральная поверхность левого полушария большого мозга.

1 , 7 — gyrus frontalis superior; 2 — gyrus frontalis medius; 3 — gyrus frontalis inferior; 4 — pars triangularis; 5 — pars opercularis; 8 — polus frontalis; 9 — gyrus precentralis; 10 , 6 — gyrus postcentralis; 11 — lobulus parietalis superior; 12 — lobulus parietalis inferior; 13 — gyrus ssupramarginalis; 14 — gyrus angularis; 15 — gyri occipitales laterales; 16 — gyrus temporafis superior; 17 — gyrus temporalis medius; 18 — gyrus temporalis inferior; 19 — sul. centralis; 20 — sul. postcentralis; 21 — sul. intraparietalis; 22 — соединение sul. intraparietalis и sul. occipitalis transversus; 23 — sul. parietoccipitalis; 24 — sul. occipitalis transversus; 25 — sull. occipitales laterales; 26 — sul. temporalis superior; 27 — sul. temporalis inferior; 28 — sill. cerebri lateralis; 29 — r. ascendens sulci cerebri lateralis; 30 — r. anterior sulci cerebri lateralis; 31 — sul. frontalis superior; 32 — sul. precentralis; 33 — sul. frontalis inferior.

Рис. 275. Медиальная поверхность правого полушария большого мозга.

1  — gyrus frontalis superior; 2 — lobulus paracentralis; 3 — precuneus; 4 — cuneus; 5 — gyrus lingualis; 6 — gyrus parahippocampalis; 7 — uncus; 8 — gyrus occipitotemporalis medialis; 9 — gyrus occipitotemporalis lateralis; 10 — gyrus cinguli; 11 — sul. centralis; 12 , 24 — sul. cinguli; 13 — sul. subparietalis; 14 — sul. parietooccipitalis; 15 — sul. calcarinus; 16 — sul. collateralis; 17 — sul. occipitotemporalis; 18 — isthmus gyri cinguli; 19 — sul. hippocampi; 20 — gyrus subcallosus; 21 — area olfactoria; 22 — sul. olfaetorius anterior; 23 — sul. olfactorius posterior; 25 — sul. corporis callosi; 26 — corpus callosum.

Рис. 276. Нижняя поверхность большого мозга.

1  — gyri orbitales; 2 — gyrus rectus; 3 , 4 — gyri occipitotemporales medialis et lateralis; 5 — gyrus parahippocampalis; 6 — gyrus occipitotemporalis medialis; 7 — isthmus gyri cinguli;  8 — cuneus; 9 — gyrus temporalis medius; 10 — trigonum olfactorium; 11 — tr. olfactorius; 12 — bulbus olfactorius; 13 — sul. olfactorius; 14 — sulci orbitales; 15 — uncus gyri parahippocampalis; 16 — sul. temporalis inferior; 17 — sul. hippocampi;  18 — sul. occipitotemporalis; 19 — sul. calcarinus; 20 — sul. collateralis; 21 — sul. parietooccipitalis.

Так, на месте обонятельного мозга возникают súlcus olfactórius, súlcus hippocampi и súlcus cínguli; на границе корковых концов кожного и двигательного анализаторов (понятие анализатора и описание борозд см. ниже) — súlcus centrális; на границе двигательного анализатора и премоторной зоны, получающей импульсы от внутренностей, — súlcus precentrális; на месте слухового анализатора — súlcus temporális supérior; в области зрительного анализатора — súlcus calcarinus и súlcus parietooccipitális.

Все эти борозды, появляющиеся раньше других и отличающиеся абсолютным постоянством, относятся к первичным бороздам . Остальные борозды, имеющие наименования и также возникающие в связи с развитием анализаторов, но появляющиеся несколько позднее и отличающиеся меньшим постоянством, относятся ко вторичным бороздам . К моменту рождения имеются все борозды — первичные и вторичные. Наконец, многочисленные мелкие бороздки, не имеющие названий, появляются не только в утробной жизни, но и после рождения. Они крайне непостоянны по времени появления, месту и числу; это третичные борозды . От степени их развития зависят все разнообразие и сложность мозгового рельефа. Рост человеческого мозга в эмбриональном периоде и в первые годы жизни, пока идут бурный рост организма, его приспособление к новой среде, приобретение способности к прямохождению и становление второй, словесной, сигнальной системы, происходит очень интенсивно и заканчивается к 20 годам. У новорожденных мозг (в среднем) массой 340 г у мальчиков и 330 г у девочек, а у взрослого — 1375 г у мужчин и 1245 г у женщин.

ОТДЕЛЬНЫЕ ЧАСТИ ГОЛОВНОГО МОЗГА

На основании эмбрионального развития, как было уже указано, головной мозг делится на отделы, располагающиеся, начиная с каудального конца, в таком порядке:

1) rhombencéphalon — ромбовидный, или задний, мозг, который в свою очередь состоит из: a) myelencéphalon — продолговатого мозга и б) mеlencéphalon — собственно заднего мозга; 2) mesencéphalon — средний мозг; 3) prosencéphalon — передний мозг, в котором различают: a) diencéphalon — промежуточный мозг и б) telencéphalon — конечный мозг.

Все названные отделы, кроме мозжечка и конечного мозга, составляют мозговой ствол.

Кроме таких отделов, выделяют еще перешеек, isthmus rhombencéphali, между rhombencéphalon и средним мозгом.

Prosencéphalon составляет большой мозг — cérebrum в отличие от малого мозга — мозжечка, cerebéllum.

Ромбовидный мозг

Продолговатый мозг

Продолговатый мозг, myelencéphalon, medúlla oblongáta (рис. 277, 278), представляет непосредственное продолжение спинного мозга в ствол головного мозга и является частью ромбовидного мозга. Он сочетает в себе черты строения спинного мозга и начального отдела головного, чем и оправдывается его название myelencéphalon. Medúlla oblongáta имеет вид луковицы, búlbus cérebri (отсюда термин «бульбарные расстройства»); верхний расширенный конец граничит с мостом, а нижней границей служит место выхода корешков 1 пары шейных нервов или уровень большого отверстия затылочной кости.

Рис. 277. Вентральная поверхность мозгового ствола.

Рис. 278. Мозговой ствол; вид сзади.

1 — pulvinar (задняя часть thalamus); 2 — pedunculus cerebellaris superior; 3 — pedunculus cerebellaris medius; 4 — pedunculus cerebellaris inferior; 5 — fasc. gracilis; 6 — fasc. cuneatus; 7 — tuberculum gracilum; 8 — tuberculum cuneatum; 9 — apertura meaiana ventriculi quarti; 10 — plexus chorloideus и tela chorioidea ventriculi quarlti (разрезаны и отвернуты, через разрез видна полость IV желудочка); 11 — n. trochlearis; 12 — colliculus inferior крыши среднего мозга; 13 — colliculus superior крыши среднего мозга; 14 — corpus geniculatum mediate; 15 — corpus pineale.

1. На передней (вентральной) поверхности продолговатого мозга по средней линии проходит fissúra mediána antérior, составляющая продолжение одноименной борозды спинного мозга. По бокам ее на той и другой стороне находятся два продольных тяжа — пирамиды, pyramídes medúllae oblongátae, которые как бы продолжаются в передние канатики спинного мозга. Составляющие пирамиды пучки нервных волокон частью перекрещиваются в глубине fissúra mediána antérior с аналогичными волокнами противоположной стороны — decussátio pyramídum, после чего спускаются в боковом канатике на другой стороне спинного мозга — tráctus corticospinális (pyramidális) laterális, частью остаются неперекрещенными и спускаются в переднем канатике спинного мозга на своей стороне — tráctus corticospinális (pyramidális) antérior.

Пирамиды отсутствуют у низших позвоночных и появляются по мере развития новой коры; поэтому они наиболее развиты у человека, так как пирамидные волокна соединяют кору большого мозга, достигшую у человека наивысшего развития, с ядрами черепных нервов и передними рогами спинного мозга.

Латерально от пирамиды лежит овальное возвышение — оливa , olíva , которая отделена от пирамиды бороздкой, súlcus anterolaterális.

2. На задней (дорсальной) поверхности продолговатого мозга (см. рис. 278) тянется súlcus mediánus postérior — непосредственное продолжение одноименной борозды спинного мозга. По бокам ее лежат задние канатики, ограниченные латерально с той и другой стороны слабо выраженной súlcus posterolaterális. По направлению кверху задние канатики расходятся в стороны и идут к мозжечку, входя в состав его нижних ножек, pedúnculi cerebelláres inferióres, окаймляющих снизу ромбовидную ямку. Каждый задний канатик подразделяется при помощи промежуточной борозды на медиальный, fascículus grácilis, и латеральный, fascículus cuneátus. У нижнего угла ромбовидной ямки тонкий и клиновидный пучки приобретают утолщения — tubérculum grácilum и tubérculum cuneátum. Эти утолщения обусловлены соименными с пучками ядрами серого вещества, núcleus grácilis и núcleus cuneátus. В названных ядрах оканчиваются проходящие в задних канатиках восходящие волокна спинного мозга (тонкий и клиновидный пучки). Латеральная поверхность продолговатого мозга, находящаяся между súlci posterolaterális et anterolaterális, соответствует боковому канатику. Из súlcus posterolaterális позади оливы выходят XI, X и IX пары черепных нервов. В состав продолговатого мозга входит нижняя часть ромбовидной ямки (рис. 279; см. рис. 283).

Рис. 279. Мозговой ствол; caгиттальный разрез.

Внутреннее строение продолговатого мозга. Продолговатый мозг возник в связи с развитием органов гравитации и слуха, а также в связи с жаберным аппаратом, имеющим отношение к дыханию и кровообращению. Поэтому в нем заложены ядра серого вещества , имеющие отношение к равновесию, координации движений, а также к регуляции обмена веществ, дыхания и кровообращения (рис. 280).

Рис. 280. Продолговатый мозг; горизонтальный разрез на уровне оливы.

1 — velum medullare posterior; 2 — formatio reticularis;  3 — nucl. tracius spinalis n. trigemini; 4 — nucl. ambiguus; 5 — tr. olivocerebellaris; 6 — nucl. olivaris accessorius medialis; 7 , 16 — nucll. olivares; 8 — n. accessorius; 9 — pyramis; 10 — n. hypoglossus; 11 — oliva; 12 — hilus nuclei olivaris; 13 — tr. tectospinalis; 14 — n. vagus; 15 — tr. rubrospinalis; 17 — pedunculus cerebellaris inferior; 18 — fasc. longitudinalis medialis; 19 — nucl. n. hypoglossi.

1. Núcleus oliváris, ядро оливы, имеет вид извитой пластинки серого вещества, открытой медиально (hílus), и обусловливает снаружи выпячивание оливы. Оно связано с зубчатым ядром мозжечка и является промежуточным ядром равновесия, наиболее выраженным у человека, вертикальное положение которого нуждается в совершенном аппарате гравитации. (Встречается еще núcleus oliváris accessórius mediális.)

2. Formátio reticuláris, ретикулярная формация , образующаяся из переплетения нервных волокон и лежащих между ними нервных клеток.

3. Ядра четырех пар нижних черепных нервов (XII–IX), имеющие отношение к иннервации производных жаберного аппарата и внутренностей.

4. Жизненно важные центры дыхания и кровообращения, связанные с ядрами блуждающего нерва. Поэтому при повреждении продолговатого мозга может наступить смерть.

Белое вещество продолговатого мозга содержит длинные и короткие волокна. К длинным относятся проходящие транзитно в передние канатики спинного мозга нисходящие пирамидные пути, частью перекрещивающиеся в области пирамид. Кроме того, в ядрах задних канатиков (núclei grácilis et cuneátus) находятся тела вторых нейронов восходящих чувствительных путей. Их отростки идут от продолговатого мозга к таламусу, tráctus bulbothalámicits. Волокна этого пучка образуют медиальную петлю, lemníscus mediális, которая в продолговатом мозге совершает перекрест, decussátio lemniscórum, и в виде пучка волокон, расположенных дорсальнее пирамид, между оливами — межоливный петлевой слой — идет далее. Таким образом, в продолговатом мозге имеется два перекрестка длинных проводящих путей: вентральный двигательный, decussátio pyramidum, и дорсальный чувствительный, decussátio lemniscórum.

К коротким путям относятся пучки нервных волокон, соединяющие между собой отдельные ядра серого вещества, а также ядра продолговатого мозга с соседними отделами головного мозга. Среди них следует отметить tráctus olivocerebelláris и лежащий дорсально от межоливного слоя fascículus longitudinális mediális.

Топографические взаимоотношения главнейших образований продолговатого мозга видны на поперечном срезе, проведенном на уровне олив (см. рис. 280). Отходящие от ядер подъязычного и блуждающего нервов корешки делят продолговатый мозг на той и другой стороне на три области: заднюю, боковую и переднюю. В задней лежат ядра заднего канатика и нижние ножки мозжечка, в боковой — ядро оливы и formátio reticuláris и в передней — пирамиды.

Задний мозг

Metencephalon состоит из двух частей: вентральной — моста и дорсальной — мозжечка.

Мост

Мост, pons, представляет собой со стороны основания мозга толстый белый вал, граничащий сзади с верхним концом продолговатого мозга, а спереди — с ножками мозга (см. рис. 277). Латеральной границей моста служит искусственно проводимая линия через корешки тройничного и лицевого нервов, linea trigeminofaciális. Латерально от этой линии находятся средние мозжечковые ножки, pedúnculi cerebelláres médii, погружающиеся на той и другой стороне в мозжечок. Дорсальная поверхность моста не видна снаружи, так как она скрыта под мозжечком, образуя верхнюю часть ромбовидной ямки (дна IV желудочка). Вентральная поверхность моста имеет волокнистый характер, причем волокна в общем идут поперечно и направляются в pedúnculi cerebelláres médii. По средней линии вентральной поверхности проходит пологая канавка, súlcus basiláris, в которой лежит a. basiláris.

Внутреннее строение моста. На поперечных разрезах моста можно видеть, что он состоит из большей передней, или вентральной, части , pars ventrális póntis , и меньшейдорсальной , pars dorsális póntis . Границей между ними служит толстый слой поперечных волокон — трапециевидное тело , córpus trapezoídeum , волокна которого относятся к слуховому пути. В области трапециевидного тела располагается ядро, также имеющее отношение к слуховому пути, — núcleus dorsális córporis trapezoídei.

Pars ventrális содержит продольные и поперечные волокна, между которыми разбросаны собственные ядра серого вещества, núclei póntis.

Продольные волокна принадлежат к пирамидным путям, к fibrae corticopontinae, которые связаны с собственными ядрами моста, откуда берут начало поперечные волокна, идущие к коре мозжечка, tráctus pontocerebelláris. Вся эта система проводящих путей связывает через мост кору полушарий большого мозга с корой полушарий мозжечка. Чем сильнее развита кора большого мозга, тем сильнее развиты мост и мозжечок. Естественно, что мост оказывается наиболее выраженным у человека, что является специфический чертой строения его головного мозга. В pars dorsális находится formátio reticuláris póntis, являющееся продолжением такой же формации продолговатого мозга, а поверх ретикулярной формации — выстланное эпендимой дно ромбовидной ямки с лежащими под ним ядрами черепных нервов (VIII–V пары).

В pars dorsális продолжаются также проводящие пути продолговатого мозга, располагающиеся между средней линией и núcleus dorsális córporis trapezoídei и входящие в состав медиальной петли, lemníscus mediális; в последней перекрещиваются восходящие пути продолговатого мозга, tráctus bulbothalámicus.

Мозжечок

Мозжечок, cerebéllum, является производным заднего мозга, развившегося в связи с рецепторами гравитации. Поэтому он имеет прямое отношение к координации движений и является органом приспособления организма к преодолению основных свойств массы тела — тяжести и инерции.

Развитие мозжечка в процессе филогенеза прошло 3 основных этапа соответственно изменению способов передвижения животного.

Мозжечок впервые появляется в классе круглоротых, у миног, в виде поперечной пластинки. У низших позвоночных (рыбы) выделяются парные ушковидные части (archicerebellum) и непарное тело (paleocerebellum), соответствующее червю; у пресмыкающихся и птиц сильно развито тело, а ушковидные части превращаются в рудиментарные. Полушария мозжечка возникают только у млекопитающих (neocerebellum). У человека в связи с прямохождением при помощи одной пары конечностей (ног) и усовершенствованием хватательных движений руки при трудовых процессах полушария мозжечка достигают наибольшего развития, так что мозжечок у человека развит сильнее, чем у всех животных, что составляет специфическую человеческую черту его строения.

Мозжечок помещается под затылочными долями полушарий большого мозга, дорсально от моста и продолговатого мозга, и лежит в задней черепной ямке. В нем различают объемистые боковые части, илиполушария , hemisphéria cerebélli, и расположенную между ними среднюю узкую часть —червь , vérmis.

На переднем краю мозжечка находится передняя вырезка, которая охватывает прилежащую часть ствола мозга. На заднем краю имеется более узкая задняя вырезка, отделяющая полушария друг от друга.

Поверхность мозжечка покрыта слоем серого вещества, составляющим кору мозжечка, и образует узкие извилины — листки мозжечка, fólia cerebélli, отделенные друг от друга бороздами, fissúrae cerebélli. Среди них самая глубокая fissúra horizontális cerebélli проходит по заднему краю мозжечка, отделяет верхнюю поверхность полушарий, fácies supérior, от нижней, fácies inférior. С помощью горизонтальной и других крупных борозд вся поверхность мозжечка делится на ряд долек, lóbuli cerebélli. Среди них необходимо выделить наиболее изолированную маленькую дольку — клочок, flócculus, лежащую на нижней поверхности каждого полушария у средней мозжечковой ножки, а также связанную с клочком часть червя — nódulus, узелок. Flócculus соединен с nódulus посредством тонкой полоски — ножки клочка, pedúnculus flócculi, которая медиально переходит в тонкую полулунную пластинку — нижний мозговой парус, vélum medulláre inférius.

Внутреннее строение мозжечка. В толще мозжечка имеются парные ядра серого вещества, заложенные в каждой половине мозжечка среди белого ее вещества (рис. 281). По бокам от средней линии в области, где в мозжечок вдается шатер, fastígium, лежит самое медиальное ядро — ядро шатра, núcleus fastígii. Латеральнее от него расположено шаровидное ядро, núcleus globósus, а еще латеральнее — пробковидное ядро, núcleus embolifórmis. Наконец, в центре полушария находится зубчатое ядро, núcleus dentátus, имеющее вид серой извилистой пластинки, похожей на ядро оливы. Сходство núcleus dentátus мозжечка с имеющим также зубчатую форму ядром оливы не случайно, так как оба ядра связаны проводящими путями, fíbrae olivocerebelláres, и каждая извилина одного ядра аналогична извилине другого. Таким образом, оба ядра вместе участвуют в осуществлении функции равновесия (см. рис. 280, 281).

Рис. 281. Ядра мозжечка (схема).

1  — nucl. fastigii; 2 — nucl. globosus; 3 — nucl. emboliformis; 4 — nucl. dentatus.

Названные ядра мозжечка имеют различный филогенетический возраст: núcleus fastigii относился к самой древней части мозжечка — flócculus (агchicerebéllum), связанной с вестибулярным аппаратом; núclei embolifórmis et globósus — к старой части (paleocerebéllum), возникшей в связи с движениями туловища, и núcleus dentátus — к самой молодой (neocerebéllum), развившейся в связи с передвижением при помощи конечностей. Поэтому при поражении каждой из этих частей нарушаются различные стороны двигательной функции, соответствующие различным стадиям филогенеза, а именно: при повреждении флоккулонодулярной системы и ее ядра шатра нарушается равновесие тела. При поражении червя и соответствующих ему пробковидного и шаровидного ядер нарушается работа мускулатуры шеи и туловища, при поражении полушарий и зубчатого ядра — работа мускулатуры конечностей.

Белое вещество мозжечка на разрезе имеет вид мелких листочков растения, соответствующих каждой извилине, покрытой с периферии корой серого вещества. В результате общая картина белого и серого вещества на разрезе мозжечка напоминает дерево, árbor vitae cerebélli (древо жизни; название дано по внешнему виду, поскольку повреждение мозжечка не является непосредственной угрозой жизни). Белое вещество мозжечка слагается из различного рода нервных волокон. Одни из них связывают извилины и дольки, другие идут от коры к внутренним ядрам мозжечка и, наконец, третьи связывают мозжечок с соседними отделами мозга. Эти последние волокна идут в составе трех пар мозжечковых ножек :

1. Нижние ножки, pedúnculi cerebelláres infériores (к продолговатому мозгу). В их составе идут к мозжечку tráctus spinocerebelláris postérior, fíbrae arcuátae extérnae — от ядер задних канатиков продолговатого мозга и fíbrae olivocerebelláres — от оливы. Первые два тракта оканчиваются в коре червя и полушарий. Кроме того, здесь идут волокна от ядер вестибулярного нерва, заканчивающиеся в nucleus fastigii. Благодаря всем этим волокнам мозжечок получает импульсы от вестибулярного аппарата и проприоцептивного поля, вследствие чего становится ядром проприоцеитивной чувствительности, совершающим автоматическую поправку на двигательную деятельность остальных отделов мозга. В составе нижних ножек идут также нисходящие пути в обратном направлении, а именно: от núcleus fastígii к латеральному вестибулярному ядру (см. ниже), а от него — к передним рогам спинного мозга, tráctus vestibulospinális. При посредстве этого пути мозжечок оказывает влияние на спинной мозг.

2. Средние ножки, pedunculi cerebellares medii (к мосту). В их составе идут нервные волокна от ядер моста к коре мозжечка. Возникающие в ядрах моста проводящие пути к коре мозжечка, tráctus pontocerebellares, находятся на продолжении корково-мостовых путей, fíbrae corticopontínae, оканчивающихся в ядрах моста после перекреста. Эти пути связывают кору большого мозга с корой мозжечка, чем и объясняется тот факт, что чем более развита кора большого мозга, тем более развиты мост и полушария мозжечка, что наблюдается у человека.

3. Верхние ножки, pedúnculi cerebelláres superióres (к крыше среднего мозга). Они состоят из нервных волокон, идущих в обоих направлениях: 1) к мозжечку — tráctus spinocerebelláris antérior и 2) от núcleus dentátus мозжечка к покрышке среднего мозга — tráctus cerebellotegmentális, который после перекреста заканчивается в красном ядре и в таламусе. По первым путям в мозжечок идут импульсы от спинного мозга, а по вторым он посылает импульсы в экстрапирамидную систему, через которую сам влияет на спинной мозг.

Перешеек

Перешеек, ísthmus rhombencéphali, представляет переход от rhombencéphalon к mesencéphalon. В его состав входят: 1) верхние мозжечковые ножки, pedúnculi cerebelláres superióres; 2) натянутый между ними и мозжечком верхний мозговой парус, vélum medulláre supérius, который прикрепляется к срединной бороздке между холмиками пластинки крыши среднего мозга; 3) треугольник петли, trigónum lemnísсi, обусловленный ходом слуховых волокон латеральной петли, lemníscus laterális. Этот треугольник серого цвета, ограничен спереди ручкой нижнего холмика, сзади — верхней ножкой мозжечка и латерально — ножкой мозга. Последняя отделена от перешейка и среднего мозга ясно выраженной бороздой, súlcus laterális mesencéphali. Внутрь перешейка вдается верхний конец IV желудочка, переходящий в среднем мозге в водопровод.

IV желудочек

IV желудочек, ventriculus quártus, представляет собой остаток полости заднего мозгового пузыря и поэтому является общей полостью для всех отделов заднего мозга, составляющих ромбовидный мозг, rhombencéphalon (продолговатый мозг, мозжечок, мост и перешеек). IV желудочек напоминает палатку, в которой различают дно и крышу (см. рис. 279; рис. 282).

Рис. 282. Медиальная поверхность правого полушария большого мозга; разрез ствола и мозжечка. Водопровод мозга; IV желудочек.

1 — gyrus subcallosus; 2 — sul. olfactorius posterior; 3 — area olfactoria; 4 — septum pellucidum; 5 , 11 — sul. cinguli; 6 — gyrus frontalis superior; 7 — genu corporis callosi; 8 — gyrus einguli; 9 — sul. corporis callosi, 10 — tr. uncus corporis callosi; 12 — sul. centralis; 13 — lobulus paracentralis; 14 — precuneus; 15 — sul. parietooccipitalis; 16 — sul. subparietalis; 17 — splenium corporis callosi; 18 — cuneus; 19 — sul calcannus; 20 — gyrus occipitotemporalis medialis; 21 — долька нижнего червя; 22 — задняя граница моста; 23 — pons; 24 — n. oculomotonus; 25 — corpus mamillare; 26 — chiasma opticum; 27 — fornix (columna).

Дно, или основание, желудочка имеет форму ромба, как бы вдавленного в заднюю поверхность продолговатого мозга и моста. Поэтому его называют ромбовидной ямкой , fóssa rhomboídea. В задненижний угол ромбовидной ямки открывается центральный канал спинного мозга, а в передневерхнем углу IV желудочек сообщается с водопроводом. Латеральные углы заканчиваются слепо в виде двух карманов, recéssus lateráles ventriculi quárti, загибающихся вентрально вокруг нижних ножек мозжечка.

Крыша IV желудочка, tégmen ventrículi quárti, имеет форму шатра и составлена двумя мозговыми парусами: верхним, vélum medulláre supérius, натянутым между верхними ножками мозжечка, и нижним, vélum medulláre inférius, парным образованием, примыкающим к ножкам клочка. Часть крыши между парусами образована веществом мозжечка. Нижний мозговой парус дополняется листком мягкой оболочки, téla choroídea ventrículi quárti, покрытой изнутри слоем эпителия, lámina choroídea epitheliális, представляющим рудимент задней стенки заднего мозгового пузыря (с ней связано сплетение — pléxus choroídeus ventrículi quárti).

Téla choroídea первоначально вполне замыкает полость желудочка, но затем в процессе развития в ней появляются три отверстия: одно в области нижнего угла ромбовидной ямки, apertúra mediána ventrículi quárti (самое большое), и два в области боковых карманов желудочка, apertúrae lateráles ventrículi quárti. При посредстве этих отверстий IV желудочек сообщается с подпаутинным пространством головного мозга, благодаря чему спинномозговая жидкость поступает из мозговых желудочков в межоболочечные пространства. В случае сужения или заращения этих отверстий на почве воспаления мозговых оболочек (менингит) накапливающаяся в мозговых желудочках спинномозговая жидкость не находит себе выхода в подпаутинное пространство и возникает водянка головного мозга.

Ромбовидная ямка, fóssa rhomboídea (рис. 283), имеет соответственно ромбовидной форме четыре стороны — две верхние и две нижние.

Рис. 283. Ядра черепных нервов в ромбовидной ямке.

1 — nucl. n. oculomotorii; 2 — nucl. accessorius n. oculomotorii; 3 — nucl. n. trochlearis; 4 — nucl. mesencephalicus n. trigemini; 5 — nucl. motorius n. trigemini; 6 — nucl. pontis n. trigemini; 7 — nucl. vestibularis superior;  8 — nucl. n. solitarius (IX, X); 9 — nucl. cochlearis ventralis; 10 — nucl. vestibularis lateralis; 11 — nucl. cochlearis dorsalis; 12 — nucl. vestibularis medialis; 13 — nucl. abducentis; 14 — nucl. n. facialis; 15 — nucl. salivatorius superior; 16 — nucl. ambiguus; 17 — nucl. salivatorius inferior;  18 — nucl. n. hypoglossi; 19 — nucl. dorsalis n. vagi; 20 — nucl. n. iccessorii.

Верхние стороны ромба ограничены двумя верхними мозжечковыми ножками, а нижние стороны — двумя нижними ножками. Вдоль ромба, по средней линии, от верхнего угла к нижнему тянется срединная борозда, súlcus mediánus, которая делит ромбовидную ямку на правую и левую половины. По сторонам борозды расположено парное возвышение, eminéntia mediális, обусловленное скоплением серого вещества.

Книзу eminéntia mediális постепенно суживается, переходя в треугольник, на который проецируется ядро подъязычного нерва, trigónum nérvi hypoglóssi. Латеральнее нижней части этого треугольника лежит меньший треугольник, заметный по своей серой окраске, trigónum nérvi vági, в котором заложено вегетативное ядро блуждающего нерва, núcleus dorsális nérvi vági. Вверху eminentia medialis имеет возвышение — лицевой бугорок, collículus faciális, обусловленный прохождением корешка лицевого и проекцией ядра отводящего нервов.

В области латеральных углов располагается с обеих сторон вестибулярное поле, área vestibuláris, здесь помещаются ядра VIII пары. Часть выходящих из них волокон идет поперек ромбовидной ямки от латеральных углов к срединной борозде в виде горизонтальных полосок, stríae medulláres ventrículi quárti. Эти полоски делят ромбовидную ямку на верхнюю и нижнюю половины и соответствуют границе между продолговатым мозгом и мостом.

Топография серого вещества ромбовидной ямки. Серое вещество спинного мозга непосредственно переходит в серое вещество мозгового ствола и частью расстилается по ромбовидной ямке и стенкам водопровода (см. «Средний мозг»), а частью разбивается на отдельные ядра черепных нервов или ядра пучков проводящих путей.

Чтобы понять расположение этих ядер, нужно учитывать, как отмечалось, что замкнутая нервная трубка при переходе от спинного в продолговатый мозг раскрылась на своей задней стороне и развернулась в ромбовидную ямку. Вследствие этого задние рога серого вещества спинного мозга как бы разошлись в стороны. Заложенные в задних рогах соматически-чувствительные ядра расположились в ромбовидной ямке латерально, а соответствующие передним рогам соматически-двигательные ядра остались лежать медиально. Что касается вегетативных ядер, заложенных в боковых рогах спинного мозга, то соответственно положению боковых рогов между задними и передними эти ядра при развертывании нервной трубки оказались лежащими в ромбовидной ямке между соматически-чувствительными и соматически-двигательными ядрами. В результате в области ромбовидной ямки в отличие от спинного мозга ядра серого вещества расположены не в переднезаднем направлении, а лежат рядами — медиально и латерально.

Так, например, соматически-двигательные ядра XII и VI пар лежат в медиальном ряду, вегетативные ядра X, IX, VII пар — в среднем ряду и соматически-чувствительные ядра VIII пары — латерально.

Проекция ядер черепных нервов на ромбовидную ямку :

XII пара — подъязычный нерв, n. hypoglóssus, имеет единственное двигательное ядро , заложенное в самой нижней части ромбовидной ямки, в глубине trigónum n. hypoglóssi.

XI пара — добавочный нерв, n. accessórius, имеет два ядра (оба двигательные): одно заложено в спинном мозге и называется núcleus n. асcessórii, другое является каудальным продолжением ядер X и IX пар нервов и называется núcleus ambiguus. Оно лежит в продолговатом мозге дорсолатералыю от ядра оливы.

X пара — блуждающий нерв, n. vágus, имеет три ядра:

1) чувствительное ядро, núcleus solitárius, расположено рядом с ядром подъязычного нерва, в глубине trigónum n. vági;

2) вегетативное ядро, núcleus dorsális n. vagi, лежит в той же области;

3) двигательное ядро, núcleus ambiguus (двойное), общее с ядром IX пары, заложено в formátio reticuláris, глубже núcleus dorsális.

IX пара — языкоглоточный нерв, n. glossopharýngeus, также содержит три ядра:

1) чувствительное ядро, núcleus solitárius, лежит латеральнее ядра подъязычного нерва;

2) вегетативное (секреторное) ядро, núcleus salivatórius inférior, нижнее слюноотделительное ядро; клетки его рассеяны в formátio reticuláris продолговатого мозга между n. ambíguus и ядром оливы;

3) двигательное ядро, общее с n.vágus и n.accessórius, núcleus ambíguus.

VIII пара — преддверно-улитковый нерв, n. vestibulocochleáris, имеет множественные ядра, проецирующиеся на латеральные углы ромбовидной ямки, в области área vestibuláris. Ядра делятся на две группы соответственно двум частям нерва. Одна часть нерва, pars cochleáris, — нерв улитки, или собственно слуховой нерв, имеет два ядра: заднее, núcleus cochleáris dorsális, и переднее, núcleus cochleáris ventrális, расположенное латеральнее и кпереди от предыдущего. Другая часть нерва, pars vestibuláris, — нерв преддверия, или гравитационный нерв, имеет четыре ядра (núclei vestibuláres):

1) медиальное — главное;

2) латеральное;

3) верхнее;

4) нижнее.

Наличие у человека четырех ядер отражает ранние стадии филогенеза, когда у рыб имелось несколько отдельных воспринимающих гравитационных аппаратов.

VII пара — лицевой нерв, n. faciális, имеет одно двигательное ядро , расположенное в formátio reticuláris pártis dorsális моста. Отходящие от него нервные волокна на своем пути в толще моста образуют петлю, выпячивающуюся на ромбовидной ямке в виде collículus faciális.

Промежуточный нерв, n. intermédius, тесно связанный в своем ходе с лицевым нервом, имеет два ядра:

1) вегетативное (секреторное), núcleus salivatórius supérior (верхнее слюноотделительное ядро), заложено в formátio reticuláris моста, дорсальнее ядра лицевого нерва;

2) чувствительное, núcleus solitárius.

VI пара — отводящий нерв, n. abdúcens. имеет одно двигательное ядро , заложенное в петле лицевого нерва, поэтому collículus faciális на поверхности ромбовидной ямки соответствует этому ядру.

V пара — тройничный нерв, n.trigéminus, имеет четыре ядра:

1) чувствительное, núcleus pontinus n. trigémini, проецируется в дорсолатеральной части верхнего отдела моста;

2) ядро спинномозгового тракта, núcleus spinális n.trigémini, является продолжением предыдущего по всему протяжению продолговатого мозга до шейного отдела спинного мозга, где соприкасается с substántia gelatinósa задних рогов;

3) двигательное ядро, núcleus motórius n. trigémini (жевательное), расположено медиальнее чувствительного;

4) ядро среднемозгового тракта, núcleus mesencephálicus n. trigémini, лежит латеральнее водопровода. Оно представляет ядро проприоцептивной чувствительности для жевательных мышц и для мышц глазного яблока.

Возможно, что это ядро отражает самостоятельное развитие первой ветви тройничного нерва (n. ophthálmicus), называемого у животных n. ophthálmicus profúndus и имеющего отношение к органу зрения, чем и объясняется расположение ядра в среднем мозге.

Средний мозг

Средний мозг, mesencéphalon, развивается в процессе филогенеза под преимущественным влиянием зрительного рецептора, поэтому важнейшие его образования имеют отношение к иннервации глаза. Здесь же образовались центры слуха, которые вместе с центрами зрения в дальнейшем разрослись в виде четырех холмиков крыши среднего мозга. С появлением у высших животных и человека коркового конца слухового и зрительного анализаторов в коре переднего мозга слуховые и зрительные центры среднего мозга сами попали в подчиненное положение и стали промежуточными, подкорковыми. С развитием у высших млекопитающих и человека переднего мозга через средний мозг стали проходить проводящие пути, связывающие кору конечного мозга со спинным (ножки мозга) (см. рис. 277, 278).

В результате в среднем мозге человека имеются: 1) подкорковые центры зрения и ядра нервов, иннервирующих мышцы глаза; 2) подкорковые слуховые центры; 3) все восходящие и нисходящие проводящие пути, связывающие кору головного мозга со спинным и идущие транзитно через средний мозг; 4) пучки белого вещества, связывающие средний мозг с другими отделами центральной нервной системы. Соответственно этому средний мозг, являющийся у человека наименьшим и наиболее просто устроенным отделом головного мозга, имеет две основные части: крышу, где располагаются подкорковые центры слуха и зрения, и ножки мозга, где преимущественно проходят проводящие пути.

1. Дорсальная часть, крыша среднего мозга, téctum mcsencéphali.

Она скрыта под задним концом мозолистого тела и подразделяется посредством двух идущих крест-накрест канавок — продольной и поперечной — на четыре холмика, располагающихся попарно.

Верхние два холмика, collículi superióres, являются подкорковыми центрами зрения, оба нижних, collículi inferióres, — подкорковыми центрами слуха. В плоской канавке между верхними бугорками лежит шишковидное тело. Каждый холмик переходит в так называемую ручку холмика, Ьгáchium collículi, направляющуюся латерально, кпереди и кверху, к промежуточному мозгу. Ручка верхнего холмика, bráchium collículi superióris, идет под подушкой, púlvinar, таламуса к латеральному коленчатому телу, córpus geniculátum laterále. Ручка нижнего холмика bráchium collículi inferióris, проходя вдоль верхнего края trigónum lemnísci до súlcus laterális mesencéphali, исчезает под медиальным коленчатым телом, córpus geniculátum mediále. Названные коленчатые тела относятся уже к промежуточному мозгу.

2. Вентральная часть, ножки мозга, pedúnculi cérebri, содержит все проводящие пути к переднему мозгу.

Ножки мозга имеют вид двух толстых полуцилиндрических белых тяжей, которые расходятся от края моста под углом и погружаются в толщу полушарий большого мозга.

3. Полость среднего мозга, являющаяся остатком первичной полости среднего мозгового пузыря, имеет вид узкого канала и называется водопроводом мозга, aquedúctus cérebri. Он представляет узкий, выстланный эпендимой канал 1,5–2,0 см длиной, соединяющий IV желудочек с III. Дорсально водопровод ограничивается крышей среднего мозга, вентрально — покрышкой ножек мозга.

Внутреннее строение среднего мозга. На поперечном разрезе среднего мозга различают три основные части: I) пластинку крыши, lámina técti; 2) покрышку, tegméntum, представляющую верхний отдел pedúnculi cérebri; 3) вентральный отдел pedúnculi cérebri, или основание ножки мозга, básis pedúnculi cerebrális. Соответственно развитию среднего мозга под влиянием зрительного рецептора в нем заложены различные ядра, имеющие отношение к иннервации глаза.

У низших позвоночных верхнее двухолмие служит главным местом окончания зрительного нерва и является главным зрительным центром. У млекопитающих и у человека с переносом зрительных центров в передний мозг остающаяся связь зрительного нерва с верхним холмиком имеет значение только для рефлексов. В ядре нижнего холмика, а также в медиальном коленчатом теле оканчиваются волокна слуховой петли (lemníscus laterális). Крыша среднего мозга имеет двустороннюю связь со спинным мозгом — tráctus spinotectális и tráctus tectobulbáris et tectospinális. Последние после перекреста в покрышке идут к мышечным ядрам в продолговатом и спинном мозге. Это так называемый зрительно-звуковой рефлекторный путь, о котором говорилось при описании спинного мозга. Таким образом, пластинку крыши среднего мозга можно рассматривать как рефлекторный центр для различного рода движений, возникающих главным образом под влиянием зрительных и слуховых раздражений.

Водопровод мозга окружен центральным серым веществом, имеющим по своей функции отношение к вегетативной системе. В нем, под вентральной стенкой водопровода, в покрышке ножки мозга заложены ядра двух двигательных черепных нервов — n. oculomotórius (III пара) на уровне верхнего двухолмия и n. trochleáris (IV пара) на уровне нижнего двухолмия. Ядро глазодвигательного нерва состоит из нескольких отделов соответственно иннервации нескольких мышц глазного яблока. Медиально и кзади от него помещается еще небольшое, тоже парное, вегетативное добавочное ядро, núcleus accessórius, и непарное срединное ядро. Добавочное ядро и непарное срединное ядро иннервируют непроизвольные мышцы глаза, m. ciliáris и m. sphíncter pupillae. Эта часть глазодвигательного нерва относится к парасимпатической системе. Выше (ростральнее) ядра глазодвигательного нерва в покрышке ножки мозга располагается ядро медиального продольного пучка.

Латерально от водопровода мозга находится ядро среднемозгового тракта тройничного нерва, núcleus mesencephálicus n. trigémini.

Ножки мозга делятся, как уже отмечалось, на вентральную часть, или основание ножки мозга , básis pedúnculi cérebralis , и покрышку , tegméntum . Границей между ними служит черное вещество, substántia nigra, обязанное своим цветом содержащемуся в составляющих его нервных клетках черному пигменту — меланину (рис. 284).

Рис. 284. Поперечный разрез через ножки мозга.

1  — nucl. ruber; 2 — nucl. n. oculomotorii; 3 — aqueductus cerebri; 4 — lemniscus medialis; 5 — substantia nigra; 6 — basis pedunculi cerebralis; 7 — n. oculomotorius;  8 — tegmentum mcseneephali.

Покрышка среднего мозга, tegméntum mesencéphali, — часть среднего мозга, расположенная между его крышей и черным веществом (substántia nígra) ножек мозга.

От нее отходит tráctus tegmentális centrális — центральный покрышечный путь — проекционный нисходящий нервный путь, расположенный в центральной части покрышки среднего мозга. Он содержит волокна, идущие от таламуса, бледного шара, красного ядра и ретикулярной формации среднего мозга к ретикулярной формации и оливе продолговатого мозга; относится к экстрапирамидной системе.

Substántia nígra простирается на всем протяжении ножки мозга от моста до промежуточного мозга; по своей функции относится к экстрапирамидной системе.

Расположенное вентрально от substántia nígra основание ножки мозга содержит продольные нервные волокна, спускающиеся от коры полушария большого мозга ко всем нижележащим отделам центральной нервной системы (tráctus corticopontínus, corticonucláaris, corticospinális и др.). Tegméntum, находящаяся дорсально от substántia nígra, содержит преимущественно восходящие волокна, в том числе медиальную и латеральную петли. В составе этих петель восходят к большому мозгу все чувствительные пути, за исключением зрительного и обонятельного.

Среди ядер серого вещества самое значительное — красное ядро , núcleus rúber . Это удлиненное колбасовидное образование простирается в покрышке ножки мозга от гипоталамуса промежуточного мозга до нижнего двухолмия, где от него начинается важный нисходящий тракт, tráctus rubrospinális, соединяющий красное ядро с передними рогами спинного мозга. Пучок этот после выхода из красного ядра перекрещивается с аналогичным пучком противоположной стороны в вентральной части срединного шва — вентральный перекрест покрышки. Núcleus rúber является весьма важным координационным центром экстрапирамидной системы, связанным с остальными ее частями. К нему проходят волокна от мозжечка в составе верхних ножек последнего после их перекреста под крышей среднего мозга, вентрально от aquedúctus cérebri, а также от pállidum — самого нижнего и самого древнего из подкорковых узлов головного мозга, входящих в состав экстрапирамидной системы. Благодаря этим связям мозжечок и экстрапирамидная система через посредство красного ядра и отходящего от него tractus rubrospinalis оказывают влияние на всю скелетную мускулатуру в смысле регуляции бессознательных автоматических движений.

В покрышку среднего мозга продолжаются такжеретикулярная формация , formátio reticuláris , и fasciculus longitudinális mediális. Последний берет начало в различных местах. Одна из его частей начинается из вестибулярных ядер, проходит на той и другой стороне по бокам средней линии, непосредственно под серым веществом дна водопровода и IV желудочка, и состоит из восходящих и нисходящих волокон, идущих к ядрам III, IV, VI и XI черепных нервов. Медиальный продольный пучок является важным ассоциативным путем, связующим различные ядра нервов глазных мышц между собой, чем обусловливаются сочетанные движения глаз при отклонении их в ту или другую сторону. Функция его связана также с движениями глаз и головы, возникающими при раздражении аппарата равновесия.

Передний мозг

Передний мозг, prosencéphalon, развивается в связи с обонятельным рецептором и вначале (у водных животных) является чисто обонятельным мозгом, rhinencéphalon. С переходом животных из водной среды в воздушную роль обонятельного рецептора возрастает, так как с его помощью определяются содержащиеся в воздухе химические вещества, сигнализирующие животному о добыче, опасности и других жизненно важных явлениях природы с далекого расстояния, — дистантный рецептор.

Поэтому, а также благодаря развитию и совершенствованию других анализаторов передний мозг у наземных животных сильно разрастается и превосходит другие отделы центральной нервной системы, превращаясь из обонятельного мозга в орган, управляющий всем поведением животного. Соответственно двум основным формам поведения: 1) инстинктивному, основанному на опыте вида (безусловные рефлексы), и 2) индивидуальному, основанному на опыте индивида (условные рефлексы), в переднем мозге развиваются две группы центров: 1) базальные, или подкорковые, ядра полушарий большого мозга; 2) кора большого мозга. В эти две группы центров переднего мозга поступают все нервные импульсы и к ним протягиваются все афферентные чувствительные пути, которые (за немногими исключениями) предварительно проходят через один общий центр — таламус, thálamus. Приспособление организма к среде путем изменения обмена веществ обусловило возникновение в переднем мозге высших центров, ведающих вегетативными процессами (гипоталамус, hypothálamus).

Из двух частей переднего мозга, промежуточного мозга, dicncéphalon, и конечного, telencéphalon, кора и подкорковые ядра относятся к конечному мозгу, а таламус и гипоталамус — к промежуточному.

Промежуточный мозг

Промежуточный мозг, diencéphalon, залегает под мозолистым телом и сводом, срастаясь по бокам с полушариями конечного мозга. Соответственно сказанному выше о функции и развитии переднего мозга в промежуточном мозге различают две основные части: 1) дорсальную (филогенетически более молодую) — thalamencéphalon — центр афферентных путей и 2) вентральную (филогенетически более старую) — hypothálamus — высший вегетативный центр. Полостью diencéphalon является III желудочек.

Таламический мозг

Thalamencéphalon в свою очередь состоит из трех частей: thálamus — таламус, epithálamus — над таламическая область и metathálamus — заталамическая область (рис. 285).

Рис. 285. Промежуточный и средний мозг; вид сверху.

1  — corpus callosum; 2 — cavum sepli pellucidi; 3 — septum pellucidum; 4 — fornix (поперечный разрез столбов); 5 — comissura anterior; 6 — adhesio interthalamica; 7 — comissura posterior; 8 — tectum mesencephali (lam. tecti); 9 — corpus pineale; 10 — thalamus; 11 — ventriculus tertius; 12 — nucl. caudatus (caput).

A. Thálamus, таламус, представляет собой большое парное скопление серого вещества в боковых стенках промежуточного мозга по бокам III желудочка, имеющее яйцевидную форму, причем передний его конец заострен в виде tuberculum antérius, а задний расширен и утолщен в виде подушки, рúlvinar. Деление на передний конец и подушку соответствует функциональному делению thálamus на центры афферентных путей (передний конец) и на зрительный центр (задний). Дорсальная поверхность покрыта тонким слоем белого вещества — strátum zonále. В латеральном своем отделе она обращена в полость бокового желудочка, отделяясь от соседнего с ней хвостатого ядра пограничной бороздкой, súlcus terminális, являющейся границей между telencéphalon, к которому принадлежит хвостатое ядро, и diencéphalon, к которому относится таламус. По этой бороздке проходит полоска мозгового вещества, stría terminális.

Медиальная поверхность таламуса, покрытая тонким слоем серого вещества, расположена вертикально и обращена в полость III желудочка, образуя его латеральную стенку: Сверху она отграничивается от дорсальной поверхности посредством белой мозговой полоски, stría medulláris thálami. Обе медиальные поверхности таламусов соединены между собой серой спайкой — adhésio interthálamica, лежащей почти посередине. Латеральная поверхность таламуса граничит с внутренней капсулой, cápsula intérna. Нижней своей поверхностью таламус располагается над ножкой мозга, срастаясь с ее покрышкой (рис. 286).

Рис. 286. Метаталамус и гипоталамус.

1 — aqueductus cerebri; 2 — nucl. ruber; 3 — tegmentum; 4 — substantia nigra; 5 — pedunculus cerebri; 6 — corpus mamillare; 7 — substantia perforata anterior;  8 — trigonum olfactorium; 9 — infundibulum; 10 — chiasma opticum;  11 — n. opticus; 12 — tuber cinereum; 13 — substantia perforata posterior; 14 — corpus geniculatum IateraIe; 15 — corpus gcniculatum mediale; 16 — pulvinar; 17 — tr. opticus.

Как видно на разрезах, серая масса таламуса белыми прослойками, láminae medulláres thálami, разделяется на отдельные ядра, носящие названия в зависимости от их топографии: передние, центральные, медиальные, латеральные, вентральные и задние.

Функциональное значение таламуса очень велико. В нем переключаются афферентные пути: в его подушке, púlvinar, где находится заднее ядро, оканчивается часть волокон зрительного тракта (подкорковый центр зрения, ассоциативное ядро таламуса), в передних ядрах — пучок, идущий от córpora mamillária и связывающий таламус с обонятельной сферой, и, наконец, все остальные афферентные чувствительные пути от нижележащих отделов центральной нервной системы в остальных его ядрах, причем lemníscus mediális заканчивается в латеральных ядрах. Таким образом, thálamus является подкорковым центром почти всех видов чувствительности. Отсюда чувствительные пути идут частью в подкорковые ядра (благодаря чему таламус является чувствительным центром экстрапирамидной системы), частью — непосредственно в кору (tráctus thalamocorticális).

Б. Epithálamus. Striae medulláres обоих таламусов направляются кзади (каудально) и образуют на той и другой стороне треугольное расширение, называемое trigónum habénulae. От последнего отходит так называемый поводок, habénula, который вместе с таким же поводком противоположной стороны соединяется с шишковидным телом, córpus pineále (см. рис. 285). Спереди от córpus pineále оба поводка связаны вместе посредством commissúra habenulárum. Само шишковидное тело, напоминающее несколько сосновую шишку (pínus — сосна, отчего и происходит его название), по своему строению и функции относится к железам внутренней секреции. Выдаваясь кзади в область среднего мозга, шишковидное тело располагается в бороздке между верхними холмиками крыши среднего мозга, образуя как бы пятый бугорок.

В. Metathálamus. Позади таламуса находятся два небольших возвышения — коленчатые тела , córpus geniculátun laterále et mediále (см. рис. 278, 286).

Медиальное коленчатое тело , меньшее по размерам, но более выраженное, лежит спереди ручки нижнего холмика под púlvinar таламуса, отделенное от него ясной бороздкой. В нем заканчиваются волокна слуховой петли, lemníscus laterális, вследствие чего оно является вместе с нижними холмиками крыши среднего мозга подкорковым центром слуха. Латеральное коленчатое тело , большее, в виде плоского бугорка помещается на нижней латеральной стороне púlvinar. В нем оканчивается большей своей частью латеральная часть зрительного тракта (другая часть тракта оканчивается в púlvinar). Поэтому вместе с púlvinar и верхними холмиками крыши среднего мозга латеральное коленчатое тело является подкорковым цен гром зрения. Ядра обоих коленчатых тел центральными путями связаны с корковыми концами соответственных анализаторов.

Гипоталамус

Гипоталамус, hypothálamus (см. рис. 286), в широком смысле слова, объединяет образования, расположенные вентрально под дном III желудочка, впереди substántia perforáta postérior, включая и заднюю гипоталамическую область, régio hypothalámica postérior. Соответственно эмбриональному развитию hypothalamus делится на два отдела: передний — régio hypothalámica antérior, под именем которого объединяют túber cineréum с infundíbulum и hypóphysis, а также chiásma ópticum с tráctus ópticus, задний — córpora mamillária и regio hypothalámica postérior. Ядра гиноталамической области связаны с гипофизом посредством портальных сосудов (с передней долей гипофиза) и гипоталамогипофизарного пучка (с задней долей его).

Благодаря этим связям гипоталамус и гипофиз образуют особую гипоталамо-гипофизарную систему (ГГНС).

A. Túber cineréum, серый бугор, находящийся спереди от córpora mamillária, представляет непарный полый выступ нижней стенки III желудочка, состоящий из тонкой пластинки серого вещества. Верхушка бугра вытянута в узкую полую воронку, infundíbulum, на слепом конце которой находится гипофиз, hypóphysis (glándula pituitária), лежащий в углублении турецкого седла (описание его см. в разделе «Органы внутренней секреции»), В túber cínereum заложены ядра серого вещества, являющиеся высшими вегетативными центрами, влияющими, в частности, на обмен веществ и теплорегуляцию.

Б. Chiásma ópticurn, зрительный перекрест, лежит впереди серого бугра, образован перекрестом зрительных нервов, nn. óptici.

В. Córpora mamillária, сосцевидные тела, — два небольших белого цвета возвышения неправильной шаровидной формы, лежащих симметрично по бокам средней линии, спереди от substántia perforáta postérior. Под поверхностным слоем белого вещества внутри каждого из тел находится два серых ядра.

По своей функции corpora mamillária относятся к подкорковым обонятельным центрам.

Г. Régio hypothalámica postérior, задняя гипоталамическая область; это небольшой участок мозгового вещества, расположенный под таламусом. В нем латеральнее substántia nígra залегает принадлежащее промежуточному мозгу овальное тело, núcleus hypothalámicus postérior. Оно является одним из звеньев экстрапирамидной системы; ему также приписывают и вегетативные функции.

III желудочек

III желудочек, ventrículus tértius, расположен как раз по средней линии и на фронтальном разрезе мозга имеет вид узкой вертикальной щели. Боковые стенки III желудочка образованы медиальными поверхностями таламусов, между которыми почти посередине перекидывается adhésio interthalámica (см. рис. 285). Переднюю стенку желудочка составляет снизу тонкая пластинка, lámina terminális, а дальше кверху — столбики свода (cólumnae fórnicis) с лежащей поперек белой передней спайкой, commissúre cérebri antérior. По бокам у передней стенки желудочка столбики свода вместе с передними концами таламусов ограничивают межжелудочковые отверстия, forámina intervetriculária, соединяющие полость III желудочка с боковыми желудочками, залегающими в полушариях конечного мозга. Верхняя стенка III желудочка, лежащая под сводом и мозолистым телом, представляет собой téla choroídea ventrículi tértii (рис. 287); в состав последней входят недоразвитая стенка мозгового пузыря в виде эпителиальной пластинки, lámina epitheliális, и сросшаяся с ней мягкая оболочка.

Рис. 287. Часть головного мозга со вскрытыми боковыми желудочками. Мозолистое тело перерезано и вместе со сводом отвернуто кзади для демонстрации tela choroidea.

1 — corpus callosum; 2 — columnae fornicis (перерезаны); 3 — tela cnoroidea ventriculi tertii; 4 — v. cerebri magna; 5 — plexus choroideus ventriculi lateralis; 6 — nucll. caudati; 7 — crus fornicis; 8 — cornu posterius ventriculi lateralis.

По бокам от средней линии в téla chorioídea заложено сосудистое сплетение, pléxus choroideus ventrículi tértii. В области задней стенки желудочка находятся commissúra habenulárum и commissúra cérebri postérior, между которыми вдается в каудальную сторону слепой выступ желудочка, recéssus pineális. Вентрально от commissúra postérior открывается в III желудочек воронкообразным отверстием водопровод. Нижняя, узкая, стенка III желудочка, отграниченная изнутри от боковых стенок бороздками (súlci hypothalámici), со стороны основания мозга соответствует substántia perforáta postérior, córpora mamillária, túber cineréum с chiásma ópticum. В области дна полость желудочка образует два углубления: recéssus infundíbuli, вдающийся в серый бугор и в воронку, и recéssus ópticus, лежащий впереди хиазмы. Внутренняя поверхность стенок III желудочка покрыта эпендимой.

Рассмотренные отделы мозга: ромбовидный (кроме мозжечка), средний и промежуточный — объединяются под названием мозгового ствола. Клиницисты иногда к мозговому стволу относят только задний и средний мозг. Мозговой ствол, филогенетически более старое образование, существенно отличается по строению и функции от более молодой части головного мозга — конечного мозга, telencéphalon.

Конечный мозг

Как уже отмечалось, конечный мозг, telencéphalon, представлен двумя полушариями, hemisphérici cérebri. В состав каждого полушария входят: плащ, или мантия, pállium, обонятельный мозг, rhinencéphalon, и базальные ядра. Остатком первоначальных полостей обоих пузырей конечного мозга являются боковые желудочки, ventrículi lateráles. Передний мозг, из которого выделяется конечный, вначале возникает в связи с обонятельным рецептором (обонятельный мозг), а затем он становится органом управления поведением животного, причем в нем возникают центры инстинктивного поведения, основанного на видовых реакциях (безусловные рефлексы), — подкорковые ядра и центры индивидуального поведения, основанного на индивидуальном опыте (условные рефлексы), — кора большого мозга. Соответственно этому в конечном мозге различают в порядке исторического развития следующие группы центров :

1. Обонятельный мозг, rhinencéphalon, — самая древняя и вместе с тем самая меньшая часть, расположенная вентрально.

2. Базальные, или центральные, ядра полушарий, «подкорка», — старая часть конечного мозга, paleencéphalon, скрытая в глубине.

3. Серое вещество коры, córtex, — самая молодая часть, neencéphalon, и вместе с тем самая большая часть, покрывающая остальные как бы плащом, откуда и ее название «плащ», или мантия, pállium.

Кроме отмеченных для животных двух форм поведения, у человека возникает третья форма — коллективное поведение, основанное на опыте человеческого коллектива, создающегося в процессе трудовой деятельности человека и общения людей с помощью речи. Эта форма поведения связана с развитием самых молодых поверхностных слоев мозговой коры, составляющих материальный субстрат так называемой второй сигнальной (словесной) системы действительности (И. П. Павлов).

Так как в процессе эволюции из всех отделов центральной нервной системы быстрее и сильнее всего растет конечный мозг, то он у человека становится самой большой частью головного мозга и приобретает вид двух объемистых полушарий — правого и левого, hemisphéria déxtrum et sinístrum. В глубине продольной щели мозга оба полушария соединены между собой толстой горизонтальной пластинкой — мозолистым телом, córpus callósum, которое состоит из нервных волокон, идущих поперечно из одного полушария в другое. В мозолистом теле различают передний загибающийся книзу конец, иликолено , génu córporis callósi , среднюю часть, тело , trúncus córporis callósi , и затем задний конец, утолщенный в форме валика, splénium córporis callósi. Все эти части хорошо видны на сагиттальном разрезе мозга между обоими полушариями (см. рис. 282). Колено мозолистого тела, загибаясь книзу, заостряется и образует клюв, róstrum córporis callósi, который переходит в тонкую пластинку, lámina rostrális, продолжающуюся в свою очередь в lámina terminális.

Под мозолистым телом находится так называемый свод, fórnix (см. рис. 282; рис. 288), представляющий два дугообразных белых тяжа, которые в средней своей части, córpus fórnicis , соединены между собой, а спереди и сзади расходятся, образуя впереди столбы свода, соlúmпае fórnicis , позади — ножки свода, crúra fórnicis.

Рис. 288. Свод, гиппокамп и передняя комиссура.

1 — corpus fornicis; 2 — crus fornicis; 3 — fimbria hippocampi; 4 , 5 — columna fornicis; 6 — corpus mamillare; 7 — fasc. thalamomamillaris; 8 , 9 — comissura anterior; 10 — splenium corporis callosi;  11 — trigonum collatcralc; 12 — calcar avis; 13 — polus occipitalis; 14 — polus temporalis; 15 — gyrus temporalis medius; 16 — hippocampus.

Crúra fórnicis, направляясь назад, спускаются в нижние рога боковых желудочков и переходят там в fímbria hippocámpi. Между crúra fórnicis под splénium córporis callósi протягиваются поперечные пучки нервных волокон, образующие commissúra fórnicis. Передние концы свода, colúnmae fórnicis, продолжаются вниз до основания мозга, где оканчиваются в córpora mamillária, проходя через серое вещество hypothalamus. Colúmnae fórnicis ограничивают лежащие позади них межжелудочковые отверстия, соединяющие III желудочек с боковыми желудочками. Впереди столбов свода находится передняя спайка, commissúra antérior, имеющая вид белой поперечной перекладины, состоящей из нервных волокон. Между передней частью свода и génu córporis callósi натянута тонкая вертикальная пластинка мозговой ткани — прозрачная перегородка, séptum pellúcidum, в толще которой находится небольшая щелевидная полость, cavum sépti pellúcidi (см. рис. 282, 293).

Для удобства изучения начнем описание частей конечного мозга в порядке, обратном историческому развитию, т. е. с плаща, который закрывает остальные части.

Плащ

В каждом полушарии можно различить три поверхности: верхнелатеральную, медиальную и нижнюю, и три края: верхний, нижний и медиальный, три конца, или полюса: передний полюс, pólus frontális, задний, pólus occipitális, и затем pólus temporális, соответствующий выступу нижней поверхности и отделенный от нее ямкой, fóssa laterális cérebri.

Поверхность полушария (плащ) образована равномерным слоем серого вещества толщиной 1,3–4,5 мм, содержащего нервные клетки. Слой этот, называемый корой большого мозга, córtex cérebri, представляется как бы сложенным в складки, благодаря чему поверхность плаща имеет в высшей степени сложный рисунок, состоящий из чередующихся между собой в различных направлениях борозд и валиков между ними, называемых извилинами, gýri. Величина и форма борозд подвержены значительным индивидуальным колебаниям, вследствие чего не только мозг различных людей, но даже полушария одной и той же особи по рисунку борозд не вполне похожи.

Глубокими постоянными бороздами пользуются для разделения каждого полушария на большие участки, называемые долями, lóbi последние в свою очередь разделяются на дольки и извилины. Долей каждого полушария пять: лобная (lóbus frontális), теменная (lóbus parietális), височная (lóbus temporális), затылочная (lóbus occipitális) и долька, скрытая на дне латеральной борозды, так называемый островок (ínsula).

Верхнелатеральная поверхность полушария разграничена на доли посредством трех борозд (см. рис. 274; рис. 289): латеральной, центральной и верхнего конца теменно-затылочной борозды, которая, находясь на медиальной стороне полушария, образует зарубку на его верхнем краю.

Рис. 289. Ядра анализаторов в коре большого мозга (верхнелатеральная поверхнрсть).

1 — ядро двигательного анализатора; 2 — ядро кожного анализатора; 3 — ядро двигательного анализатора, посредством которого синтезируются привычные целенаправленные движения; 4 — ядро зрительного анализатора письменной речи; 5 — ядро зрительного анализатора (зрительная память); 6 — ядро слухового анализатора; 7 — ядро слухового анализатора речи; 8 — ядро двигательного анализатора артикуляции речи; 9 — ядро двигательного анализатора, имеющего отношение к сочетанному повороту головы и глаз; 10 — ядро двигательного анализатора письменной речи; 11 , 12 , 13 — sul. cerebri lateralis; 11 — сама борозда; 12 — r. ascendens; 13 — r. anterior; 14 — sul. frontalis inferior; 15 — sul. precentralis inferior; 16 — sul. frontalis superior; 17 — sul. precentralis superior; 18 — sul. centralis; 19 — sul. intraparietalis; 20 — sul. temporalis superior; 21 — sul. postcentralis.

Латеральная борозда , súlcus cérebri laterális , начинается на базальной поверхности полушария из латеральной ямки и затем переходит на верхнелатеральную поверхность, направляясь назад и несколько вверх. Она оканчивается приблизительно на границе средней и задней третей верхнелатеральной поверхности полушария. В передней части латеральной борозды от нее отходят две небольшие ветви: rámus ascénclens и rámus antérior, направляющиеся в лобную долю.

Центральная борозда , súlcus centrális , начинается на верхнем краю полушария, несколько кзади от его середины, и идет вперед и вниз. Нижний конец центральной борозды не доходит до латеральной борозды. Участок полушария, находящийся впереди центральной борозды, относится к лобной доле; часть мозговой поверхности, лежащая сзади от центральной борозды, составляет теменную долю, которая посредством задней части латеральной борозды отграничивается от лежащей ниже височной доли. Задней границей теменной доли служит конец вышеупомянутой теменно-затылочной борозды , súlcus parietooccipitális , расположенной на медиальной поверхности полушария, но эта граница неполная, ибо названная борозда не заходит далеко на верхнелатеральную поверхность, вследствие чего теменная доля непосредственно переходит в затылочную. Эта последняя также не имеет резкой границы, которая отделяла бы ее от впереди лежащей височной доли. Вследствие этого граница между только что упомянутыми долями проводится искусственно посредством линии, идущей от теменно-затылочной борозды к нижнему краю полушария.

Каждая доля состоит из ряда извилин, называемых в отдельных местах дольками, которые ограничиваются бороздами мозговой поверхности.

Лобная доля . В заднем отделе наружной поверхности этой доли проходит súlcus precentrális почти параллельно направлению súlcus centrális. От нее в продольном направлении отходят две борозды: súlcus frontális supérior et súlcus frontális inférior. Благодаря этому лобная доля разделяется на четыре извилины — одну вертикальную и три горизонтальные. Вертикальная извилина, gýrus precentrális, находится между súlcus centrális и súlcus precentrális.

Горизонтальные извилины лобной доли следующие: 1) верхняя лобная, gýrus frontális supérior, которая идет выше súlcus frontális supérior, параллельно верхнему краю полушария, заходя и на его медиальную поверхность; 2) средняя лобная извилина, gýrus frontális médius, тянется между верхней и нижней лобными бороздами и 3) нижняя лобная извилина, gýrus frontális inférior, помещается между súlcus frontális inférior и латеральной бороздой. Ветви латеральной борозды, вдающиеся в нижнюю лобную извилину, делят последнюю на три части: pars operculáris, лежащую между нижним концом súlcus precentrális и rámus ascéndens súlci laterális, pars trianguláris, находящуюся между обеими ветвями латеральной борозды, и, наконец, pars orbitális, помещающуюся впереди от rámus antérior súlci laterális.

Теменная доля . На ней приблизительно параллельно центральной борозде располагается súlcus postcentrális, сливающаяся обычно с súlcus intraparietális, идущей в горизонтальном направлении. В зависимости от расположения этих борозд теменная доля разделяется на три извилины, из которых одна вертикальная, а две другие горизонтальные. Вертикальная извилина, gýrus postcentrális, идет позади súlcus centrális в одном направлении с gýrus precentrális, отделенная от нее центральной бороздой. Выше súlcus intraparietális помещается верхняя теменная извилина, или долька, lóbulus parietális supérior, которая распространяется и на медиальную поверхность полушария. Ниже súlcus intraparietális лежит lóbulus parietális inférior, которая, направляясь назад, огибает концы латеральной борозды и súlcus temporális supérior и теряется в области затылочной доли. Часть lóbulus parietális inférior, огибающая латеральную борозду, называется gýrus supramarginális; другая часть, которая огибает súlcus temporális supérior, носит название gýrus anguláris.

Височная доля . Латеральная поверхность этой доли имеет три продольные извилины, отграниченные друг от друга súlcus temporális supérior и súlcus temporális inférior. Верхняя из извилин, gýrus temporális supérior, находится между латеральной бороздой и súlcus temporális supérior. Верхняя ее поверхность, скрытая в глубине латеральной борозды, несет 2–3 короткие извилинки, называемые gýri tempórales transversi. Между верхней и нижней височными бороздами протягивается gyrus temporális médius. Ниже последней, отделяясь от нее súlcus temporális inférior, проходит gýrus temporális inférior, которая посредством нижнего края отделена от лежащей на нижней поверхности gýrus occipitotemporális laterális.

Затылочная доля . Борозды латеральной поверхности этой доли изменчивы и непостоянны. Из них выделяют идущую поперечно súlcus occipitális transvérsus, соединяющуюся обыкновенно с концом súlcus intraparietális.

Островок, í nsula . Чтобы увидеть эту дольку, надо раздвинуть или удалить нависающие над ней края латеральной борозды. Эти края, относясь к лобной, теменной и височной долям, носят название покрышки, opérculum. Островок имеет форму треугольника, верхушка которого обращена вперед и вниз. Спереди, сверху и сзади островок отграничивается от соседних с ним частей посредством глубокой борозды, súlcus circuláris. Поверхность островка покрыта короткими извилинами.

Нижняя поверхность полушария (см. рис. 276) в той ее части, которая лежит кпереди от латеральной ямки, относится к лобной доле. Здесь параллельно медиальному краю полушария проходит súlcus olfactórius, в которой лежат búlbus et tráctus olfactórius. Между этой бороздой и медиальным краем полушария протягивается прямая извилина, gýrus réctus, представляющая собой продолжение верхней лобной извилины. Латерально от súlcus olfactórius на нижней поверхности находится несколько непостоянных бороздок, súlci orbitáles, ограничивающих gýri orbitáles, которые можно рассматривать как продолжение средней и нижней лобных извилин. Задний участок базальной поверхности полушария образован нижними поверхностями височной и затылочной долей, которые здесь не имеют определенных границ. На этом участке видны две борозды: súlcus occipitotemporális, проходящая в направлении от затылочного полюса к височному и ограничивающая gýrus occipitotemporális laterális, и идущая параллельно ей súlcus collaterális (продолжением ее кпереди является súlcus rhinális). Между ними располагается gýrus occipitotemporális mediális. Медиально от súlcus collaterális расположены две извилины: между задним отделом этой борозды и sulcus calcarinus лежит gýrus linguális; между передним отделом этой борозды и súlcus rhinális, с одной стороны, и глубокой súlcus hippocámpi, огибающей ствол мозга, — с другой лежит gýrus parahippocampális. Эта извилина, примыкающая к стволу мозга, находится уже на медиальной поверхности полушария.

Медиальная поверхность полушария. На этой поверхности (см. рис. 282) находится борозда мозолистого тела, súlcus córporis callósi, идущая непосредственно над мозолистым телом и продолжающаяся своим задним концом в глубокую súlcus hippocámpi, которая направляется вперед и книзу. Параллельно и выше этой борозды проходит по медиальной поверхности полушария súlcus cínguli, которая начинается спереди под клювом мозолистого тела, затем идет назад и оканчивается своим задним концом на верхнем краю полушария. Пространство, располагающееся между этим краем полушария и súlcus cínguli, относится к лобной доле, к верхней лобной извилине. Небольшой участок над súlcus cínguli, ограниченный сзади задним концом súlcus cínguli, а спереди маленькой бороздкой, súlcus paracentrális, называется парацентральной долькой, lóbulus paracentrális, так как он соответствует медиальной поверхности верхних концов обеих центральных извилин, переходящих здесь друг в друга.

Кзади от lóbulus paracentrális находится четырехугольная поверхность (так называемое предклинье, precúneus), ограниченная спереди концом súlcus cínguli, снизу небольшой súlcus subparietális, а сзади глубокой súlcus parietoocipitális. Precúneus относится к теменной доле. Позади precúneus лежит резко обособленный участок коры, относящийся к затылочной доле, — клин, cúneus, который ограничен спереди súlcus parietooccipitális, а сзади súlcus calcarínus, сходящимися под углом. Книзу и кзади клин соприкасается с gýrus linguális. Между súlcus cínguli и бороздой мозолистого тела протягивается поясная извилина, gýrus cínguli, которая при посредстве перешейка, ísthmus, продолжается в gýrus parahippocampális, заканчивающуюся крючком, úncus. Парагиппокампальная извилина ограничивается с одной стороны súlcus hippocámpi, огибающей ствол мозга, а с другой — súlcus cojlaterális и ее продолжением кпереди, носящим название súlcus rhinális. Ísthmus — суженное место перехода поясной извилины в парагиппокампальную, находится позади splénium córporis callósi, у конца борозды, образовавшейся от слияния súlcus parietooccipitális с súlcus calcarínus. Gýrus cínguli, ísthmus и gýrus parahippocampális образуют вместе сводчатую извилину, gýrus fornicátus, которая описывает почти полный круг, открытый только снизу и спереди. Сводчатая извилина не имеет отношения ни к одной из долей плаща. Она относится к лимбической области.

Лимбическая область (régie límbica) — часть новой коры полушарий большого мозга, занимающая поясную и нарагиппокампальную извилины; входит в состав лимбической системы. Раздвигая край súlcus hippocámpi, можно видеть узкую зазубренную серую полоску, представляющую собой рудиментарную извилину gýrus dentatus.

Строение мозговой коры . Кора полушарий большого мозга состоит из шести слоев (пластинок), различающихся между собой главным образом по форме входящих в них нервных клеток (рис. 290): 1) молекулярная пластинка лежит непосредственно под pia mater и содержит концевые разветвления отростков нервных клеток, переплетающихся сетеобразно; 2) наружная зернистая пластинка называется так потому, что в ее состав входят многочисленные маленькие клетки, похожие на зерна; 3) наружная пирамидная пластинка состоит из малых и средних пирамидных нервных клеток; 4) внутренняя зернистая пластинка слагается, так же как и наружная зернистая, из маленьких клеток — зерен; 5) внутренняя пирамидная пластинка содержит большие пирамидные клетки; 6) мультиформная пластинка граничит с белым веществом. Из этих 6 слоев нижние (V и VI) являются преимущественно началом эфферентных путей; в частности, V слой состоит из пирамидных клеток, аксоны которых составляют пирамидную систему (пирамидные клетки, дающие начало пирамидной системе, находятся в предцентральной извилине). Средние слои (III и IV) связаны преимущественно с афферентными путями, а верхние (I и II) относятся к ассоциативным путям коры. Шестислойный тип коры видоизменяется в различных областях как в смысле толщины и расположения слоев, так и состава клеток (подробно см. в курсе гистологии).

Рис. 290. Схема строения коры головного мозга.

1  — молекулярная пластинка; 2 — наружная зернистая пластинка; 3 — наружная пирамидная пластинка; 4 — внутренняя зернистая пластинка; 5 — внутренняя пирамидная пластинка; 6 — мультиформная пластинка; 7 — белое вещество.

Обонятельный мозг

Обонятельный мозг, rhinencéphalon (рис. 291, 292), есть филогенетически самая древняя часть переднего мозга, возникшая в связи с анализатором обоняния, когда передний мозг не стал еще органом поведения животного. Поэтому все компоненты его являются различными частями обонятельного анализатора (понятие об анализаторе см. «Морфологические основы локализации функций»).

У рыб почти весь передний мозг является органом обоняния. С развитием новой коры, что наблюдается у млекопитающих и человека, развивается новая часть переднего мозга (neencéphalon) — плащ, pállium. Но и плащ проходит свой длинный путь развития и содержит три части различной филогенетической давности. Более старые части.

Рис. 291. Развитие новой коры (neopallium).

а — змеи; б — сумчатого млекопитающего; 1 ,  3 — neopallium: 2 — archipallium; 4 — hippocampus.

Рис. 292. Обонятельный мозг (схема).

1 — gyrus dentatus; 2 — gyrus parahippocampalis; 3 — uncus; 4 — substantia perforata anterior; 5 , 6 — striae olfactoriae; 7 — tr. olfactorius; 8 — bulbus olfactorius; 9 — commissura anterior; 10 — fornix; 11 — septum pellucidum; 12 — corpus callosum; 13 — gyrus for meatus.

1. Paleopállium, входящий в состав височной доли. Вначале этот отдел располагался на латеральной поверхности полушария, но в дальнейшем, под влиянием сильно увеличивающегося neopállium, он свернулся в колбасовидное образование — гиппокамп и сместился медиально в полость бокового желудочка конечного мозга в виде выпячивания его нижнего рога. Гиппокамп покрыт древней корой, paleocórtex.

2. Archipállium — небольшой участок коры на вентральной поверхности лобной доли, лежащий вблизи búlbus olfactórius и покрытый старой корой, archicórtex.

3. Neopállium, новый плащ, в коре которого, neocórtex, появились высшие центры обоняния — корковые концы анализатора. Это — úncus, являющийся частью сводчатой извилины.

В результате обонятельный мозг человека содержит ряд образований различного происхождения, которые топографически можно разделить на два отдела. Периферический отдел — это обонятельная доля, lóbus olfactórius, под которой разумеется ряд образований, лежащих на основании мозга: 1) búlbus olfactórius; 2) tráctus olfactórius; 3) trigónum olfactórium; 4) substántia perforáta antérior. Центральный отдел — это извилины мозга: 1) парагиппокампальная извилина, gýrus parahippocampális; 2) зубчатая извилина, gýrus dentátus; 3) сводчатая извилина, gýrus fornicátus, с расположенной вблизи височного полюса передней ее частью — крючком, úncus.

Боковые желудочки

В полушариях конечного мозга залегают ниже уровня мозолистого тела симметрично по сторонам средней линии два боковых желудочка, ventrículi lateráles (рис. 293, 294, 295[рисунка нет]), отделенные от верхнелатеральной поверхности полушарий всей толщей мозгового вещества.

Рис. 293. Боковые желудочки, вскрытые сверху путем удаления части полушарий вместе с мозолистым телом.

1 — cornu anterius; 2 — nucl. caudatus (caput); 3 — for. interventriculare; 4 — nucl. lentiformis (в разрезе); 5 — stria terminalis; 6 — верхняя поверхность thalamus; 7 — hippocampus; 8 — eminentia collateralis; 9 — fimbria hippocampi; 10 — crus fornicis;  11 — cornu posterius ventriculi lateralis; 12 — медиальная стенка заднего рога;  13 — calcar avis; 14 , 15 — cornu posterius; 16 — splenium corporis callosi; 17 , 19 — plexus choroideus в центральной части бокового желудочка и продолжение его в нижний рог; 18 — commissure fornicis; 20 — columnae fornicis; 21 — septum pellucidum; 22 — cavum septi pellucidi; 23 — corpus callosum.

Полость каждого бокового желудочка (см. рис. 294) соответствует форме полушария: она начинается в лобной доле в виде загнутого вниз и в латеральную сторону переднего рога, córnu antérius, отсюда она через область теменной доли тянется под названием центральной части, párs centrális, которая на уровне заднего края мозолистого тела разделяется на нижний рог, córni inférius, (в толще височной доли) и задний рог, córnu postérius (в затылочной доле).

Рис. 294. Сагиттальный разрез левого полушария (проведен немного латеральнее срединной плоскости для демонстрации отделов бокового желудочка).

1 — pars centralis; 2 — cornu anterius; 3 — cornu inferius; 4 — cornu posterius; 5 — corpus callosum.

Медиальная стенка переднего рога образована séptum pellúcidum, которая отделяет передний рог от такого же рога другого полушария (см. рис. 293). Латеральная стенка и отчасти дно переднего рога заняты возвышением серого цвета, головкой хвостатого ядра, cáput núclei caudáti, а верхняя стенка образуется волокнами мозолистого тела. Крыша центральной, наиболее узкой части бокового желудочка также состоит из волокон мозолистого тела, дно же составляется из продолжения хвостатого ядра, córpus núclei caudáti, и части верхней поверхности таламуса. Задний рог окружен слоем белых нервных волокон, происходящих из мозолистого тела, так называемого tapétum (покров); на его медиальной стенке заметен валик — птичья шпора, cálcar ávis, образованная вдавлением со стороны súlcus calcarínus, находящейся на медиальной поверхности полушария. Верхнелатеральная стенка нижнего рога образуется tapétum, составляющим продолжение такого же образования, окружающего задний рог. С медиальной стороны на верхней стенке проходит загибающаяся книзу и кпереди утонченная часть хвостатого ядра — cáuda núclei caudáti.

По медиальной стенке нижнего рога на всем протяжении тянется белого цвета возвышение — гиппокамп, hippocámpus, который образуется вследствие вдавления от глубоко врезывающейся снаружи súlcus hippocámpi. Передний конец hippocámpus разделяется бороздками на несколько небольших бугорков. По медиальному краю гиппокампа идет так называемая бахромка, fímbria hippocámpi, представляющая продолжение ножки свода (crus fórnicis). На дне нижнего рога находится валик, eminéntia collaterális, происходящий от вдавления снаружи одноименной борозды. С медиальной стороны бокового желудочка в его центральную часть и нижний рог вдается мягкая мозговая оболочка, образующая в этом месте сосудистое сплетение, pléxus choroídeus ventrículi laterális. Сплетение покрыто эпителием, представляющим остаток неразвитой медиальной стенки желудочка. Pléxus choroídeus ventrículi laterális является латеральным краем téla choroídea ventrículi tértii.

Базальные ядра полушарий

Кроме серой коры на поверхности полушария, имеются еще скопления серого вещества в его толще, именуемые базальными ядрами и составляющие то, что для краткости называют подкоркой. В отличие от коры, имеющей строение экранных центров, подкорковые ядра имеют строение ядерных центров. Различают три скопления подкорковых ядер: córpus striátum, cláustrum и córpus amygdaloídeum (рис. 296, 297).

Рис. 296. Фронтальный разрез полушарий через полосатое тело и таламус.

1 — fornix; 2 — plexus choroideus ventriculi tertii; 3 — plexus choroideus ventriculi lateralis; 4 — ventriculus lateralis; 5 — nucl. caudatus; 6 — crus posterius внутренней капсулы; 7 — putamen; 8 — globus pallidus; 9 — capsula externa; 10 — claustrum; 11 — sul. cerebri lateralis; 12 , 14 , 15 — gyri temporales superior, medius et inferior; 13 — insula; 16 — gyrus narahippocampalis; 17 — n. oculomotorius; 18 — pons; 19 — nucl. corporis mamillaris; 20 — tr. opticus; 21 — ventriculus tertius; 22 — adhesio interthalamica; 23 , 24 , 25 — ядра thalamus; 26 , 28 , 31 — gyri frontales inferior, medius et superior; 27 — corpus callosum; 29 — gyrus cinguli; 30 — sul. cinguli.

Рис. 297. Полушария большого мозга на разных уровнях горизонтального разреза.

1 — nucl. caudatus; 2 — putamen; 3 — кора островка полушария; 4 — globus pallidus; 5 — claustrum; 6 — cauda nuclei caudati; 7 — nucl. corporis geniculati medialis;  8 — cornu inferius ventriculi lateralis; 9 — pedunculus cerebellaris superior; 10 — pedunculus cerebellaris medius; 11 — pedunculus cerebellaris inferior; 12 — striae medullares; 13 — trigonum n. hypoglossi; 14 — trigonum n. vagi; 15 — tuberculum gracile; 16 — cerebellum; 17 — velum medullare superius;  18 — n. trochlearis; 19 — thalamus; 20 — nucl. ruber; 21 — stria terminalis; 22 — nucl. hypothalamicus; 23 — nucl. caudatus; 24 — cortex cerebri; 25 — cavum septi pellucidi; 26 — cornu anterius ventriculi lateralis; AA — capsula interna: a — fibrae corticothalanncae;  б — tr. frontopontinus; в — tr. corticonuclearis; г — tr. corticospinalis;  д — fibrae thalamocorticales; e — tr. occipitotemporopontinus; ж — центральный слуховой тракт, з — центральный зрительный тракт.

1. Cóprus striátum, полосатое тело, состоит из двух не вполне отделенных друг от друга частей — núcleus caudátus и núcleus lentifórmis.

A. Núcleus caudátus, хвостатое ядро , лежит выше и медиальнее núcleus lentifórmis, отделяясь от последнего прослойкой белого вещества, называемой внутренней капсулой, cápsula intérna. Утолщенная передняя часть хвостатого ядра, его головка, cáput núclei caudáti , образует латеральную стенку переднего рога бокового желудочка, задний же утонченный отдел хвостатого ядра, córpus et cáuda núclei caudáti , тянется назад по дну центральной части бокового желудочка; cáuda заворачивается на верхнюю стенку нижнего рога. С медиальной стороны núcleus caudátus прилегает к таламусу, отделяясь от него полоской белого вещества, stría terminális. Спереди и снизу головка хвостатого ядра доходит до substántia perforáta antérior, где она соединяется с núcleus lentifórmis (с частью последнего, называемой putámen). Кроме этого широкого соединения обоих ядер с вентральной стороны, имеются еще тонкие полоски серого вещества, располагающиеся вперемешку с белыми пучками внутренней капсулы. Они послужили причиной названия «полосатое тело», córpus striátum (см. рис. 296).

Б. Núcleus lentifórmis, чечевицеобразное ядро , залегает латерально от núcleus caudátus и таламуса, отделенное от них cápsula intérna. На горизонтальном разрезе полушария медиальная поверхность чечевицеобразного ядра, обращенная к внутренней капсуле, имеет форму угла с верхушкой, направленной к середине; передняя сторона угла параллельна хвостатому ядру, а задняя — таламусу. Латеральная поверхность немного выпукла и обращена к латеральной стороне полушария в области островка. Спереди и вентрально, как было уже указано, чечевицеобразное ядро сливается с головкой núcleus caudátus. На фронтальном разрезе чечевицеобразное ядро имеет форму клина, верхушка которого обращена в медиальную сторону, а основание — в латеральную. Чечевицеобразное ядро двумя параллельными белыми прослойками, láminae medulláres, разделяется на три членика, из которых латеральный, темно-серого цвета, называется скорлупой, putámen , а два медиальных, более светлых, носят вместе название бледного шара, glóbus pállidus (см. рис. 296).

Отличаясь уже по своему макроскопическому виду, glóbus pállidus имеет также и гистологическую структуру, отличную от других частей полосатого тела. Филогенетически glóbus pállidus представляет более старое образование (paleostriátum), чем putámen и núcleus caudátus (neostriátum).

Ввиду всех этих особенностей glóbus pállidus в настоящее время выделяют в особую морфологическую единицу под названием pállidum, тогда как обозначение striátum оставляют только за putámen и núcleus caudátus. Вследствие этого термин «чечевицеобразное ядро» теряет свое прежнее значение и может употребляться только в чисто топографическом смысле, а вместо прежнего названия córpus striátum хвостатое и чечевицеобразное ядро именуют стриопаллидарной системой. Стриопаллидарная система представляет собой главную часть экстрапирамидной системы (см. далее), а кроме того, она является высшим регулирующим центром вегетативных функций в отношении теплорегуляции и углеводного обмена, доминирующим над подобными же вегетативными центрами в hypothálamus.

2. Cláustrum, ограда, представляет тонкую пластинку серого вещества, заложенную в области островка, между ним и putámen (см. рис. 297). От последнего она отделяется прослойкой белого вещества, cápsula extérna, а от коры островка — прослойкой, носящей название cápsula extréma.

3. Córpus amygdaloídeum, миндалевидное тело, расположено под putámen в переднем конце височной доли. Córpus amygdaloídeum, по-видимому, относится к подкорковым обонятельным центрам и к лимбической системе. В нем оканчивается идущий из обонятельной доли и substántia perforáta antérior пучок волокон, отмеченный при описании таламуса под названием stría terminális (см. рис. 297).

Лимбическая система представляет комплекс образований конечного, промежуточного и среднего мозга, участвующий в регуляции различных вегетативных функций, поддержании постоянства внутренней среды организма (гомеостаза) и в формировании эмоционально окрашенных поведенческих реакций. Поэтому некоторые авторы обозначают лимбическую систему как «висцеральный мозг». Основную часть ее составляют структуры коры большого мозга, расположенные преимущественно на медиальной поверхности его полушарий, и тесно связанные с ними подкорковые образования, а именно: амигдалоидная область, конечная полоска, гипоталамус, гиппокамп, свод, септальная область, сосцевидные тела, сосцевидно-таламический пучок, таламус, поясная извилина. На медиальной поверхности полушарий большого мозга лимбическая система представлена поясной и парагиппокампальной извилинами.

Белое вещество полушарий

Все пространство между серым веществом мозговой коры и базальными ядрами занято белым веществом. Оно состоит из большого количества нервных волокон, идущих в различных направлениях и образующих проводящие пути конечного мозга. Нервные волокна могут быть разделены на три системы: 1) ассоциативные, 2) комиссуральные и 3) проекционные волокна.

А. Ассоциативные волокна (рис. 298) связывают между собой различные участки коры одного и того же полушария. Они разделяются на короткие и длинные. Короткие волокна, fíbrae arcuátae cérebri, связывают между собой соседние извилины в форме дугообразных пучков. Длинные ассоциативные волокна соединяют более отдаленные друг от друга участки коры. Таких пучков волокон существует несколько. Cíngulum, пояс, — пучок волокон, проходящий в gýrus fornicátus, соединяет различные участки коры gýrus cinguli как между собой, так и с соседними извилинами медиальной поверхности полушария. Лобная доля соединяется с нижней теменной долькой, затылочной долей и задней частью височной доли посредством fascículus longitudinális supérior. Височная и затылочная доли связываются между собой через fascículus longitudinális inférior. Наконец, орбитальную поверхность лобной доли соединяет с височным полюсом так называемый крючковидный пучок, fascículus uncinátus.

Рис. 298. Схематическое изображение ассоциативных путей полушарий большого мозга.

Б. Комиссуральные волокна, входящие в состав так называемых мозговых комиссур, или спаек, соединяют симметричные части обоих полушарий. Самая большая мозговая спайка — мозолистое тело, córpus callósum, связывает между собой части обоих полушарий, относящиеся к neencéphalon.

Две мозговые спайки, commissúra antérior и commissúra fórnicis, гораздо меньшие по своим размерам, относятся к rhinencéphalon и соединяют: commissúra antérior — обонятельные доли и обе парагиппокампальные извилины, commissúra fornícis — гиппокампы.

В. Проекционные волокна связывают мозговую кору частью с thálamus и córpora geniculáta, частью с нижележащими отделами центральной нервной системы до спинного мозга включительно. Одни из этих волокон проводят возбуждения центростремительно, по направлению к коре, а другие, наоборот, — центробежно.

Проекционные волокна в белом веществе полушария ближе к коре образуют так называемый лучистый венец, coróna radiáta, и затем главная часть их сходится во внутреннюю капсулу, о которой упоминалось выше. Внутренняя капсула, cápsula intérna, как было указано, представляет слой белого вещества между núcleus lentifórmis, с одной стороны, и хвостатым ядром и таламусом — с другой. На фронтальном разрезе мозга внутренняя капсула имеет вид косо идущей белой полосы, продолжающейся в ножку мозга. На горизонтальном разрезе она представляется в форме угла, открытого в латеральную сторону (см. рис. 297); вследствие этого в cápsula intérna различают переднюю ножку, crus antérius cápsulae intérnae, — между хвостатым ядром и передней половиной внутренней поверхности núcleus lentifórmis, заднюю ножку, crus postérius , — между таламусом и задней половиной чечевицеобразного ядра и колено , génu cápsulae intérnae, лежащее на месте перегиба между обеими частями внутренней капсулы. Проекционные волокна по их длине могут быть разделены на следующие системы, начиная с самых длинных:

1. Tráctus corticospinális (pyramidális) проводит двигательные волевые импульсы к мышцам туловища и конечностей. Начавшись от пирамидных клеток коры средней и верхней частей предцентральной извилины и lóbulus paracentrális, волокна пирамидного пути идут в составе лучистого венца, а затем проходят через внутреннюю капсулу, занимая передние две трети ее задней ножки, причем волокна для верхней конечности идут спереди волокон для нижней конечности. Далее они проходят через ножку мозга, pedúnculus cérebri, а оттуда через мост в продолговатый мозг.

2. Tráctus corticonucleáris — проводящие пути к двигательным ядрам черепных нервов. Начавшись от пирамидных клеток коры нижней части предцентральной извилины, они проходят через колено внутренней капсулы и через ножку мозга, затем вступают в мост и, переходя на другую сторону, оканчиваются в двигательных ядрах противоположной стороны, образуя перекрест. Небольшая часть волокон оканчивается без перекреста.

Так как все двигательные волокна собраны на небольшом пространстве во внутренней капсуле (колено и передние две трети задней ножки ее), то при повреждении их в этом месте наблюдается односторонний паралич (hemiplegia) противоположной стороны тела.

3. Trátctus corticopontíni — пути от мозговой коры к ядрам моста. Они идут от коры лобной доли (tráctus frontopontínus), затылочной (tráctus occipitopontínus), височной (tráctus temporopontínus) и теменной (tráctus раrietopontínus). В качестве продолжения этих путей из ядер моста идут волокна в мозжечок в составе его средних ножек. При помощи этих путей кора большого мозга оказывает тормозящее и регулирующее влияние на деятельность мозжечка.

4. Fíbrae thalamocorticális et corticothalámici — волокна от таламуса к коре и обратно от коры к таламусу. Из волокон, идущих от таламуса, необходимо отметить так называемую центральную таламическую лучистость, которая является конечной частью чувствительного пути, направляющегося к центру кожного чувства в постцентральную извилину. Выходя из латеральных ядер таламуса, волокна этого пути проходят через заднюю ножку внутренней капсулы, позади пирамидного пути. Место это было названо чувствительным перекрестом, так как здесь проходят и другие чувствительные пути, а именно: зрительная лучистость, radiátio óptica, идущая от córpus geniculátum laterále и púlvinar таламуса к зрительному центру в коре затылочной доли, затем слуховая лучистость, radiátio acústica, направляющаяся от córpus geniculátum mediále и нижнего холмика крыши среднего мозга к верхней височной извилине, где заложен центр слуха. Зрительный и слуховой пути занимают самое заднее положение в задней ножке внутренней капсулы.

Морфологические основы динамической локализации функций в коре полушарий большого мозга (центры мозговой коры)

Знание локализации функций в коре головного мозга имеет огромное теоретическое значение, так как дает представление о нервной регуляции всех процессов организма и приспособлении его к окружающей среде. Оно имеет и большое практическое значение для диагностики мест поражения в полушариях головного мозга.

Представление о локализации функций в коре головного мозга связано прежде всего с понятием о корковом центре. Еще в 1874 г. киевский анатом В. А. Бец выступил с утверждением, что каждый участок коры отличается по строению от других участков мозга. Этим было положено начало учению о разнокачественности коры головного мозга — цитоархитектонике (цитос — клетка, архитектонес — строю). В настоящее время удалось выявить более 50 различных участков коры — корковых цитоархитектонических полей, каждое из которых отличается от других по строению и расположению нервных элементов. Из этих полей, обозначаемых номерами, составлена специальная карта мозговой коры человека (рис. 299).

Рис. 299. Карта цитоархитектонических полей мозга человека (по данным Института мозга АМН СССР). Вверху — верхнелатеральная поверхность, внизу — медиальная поверхность. Объяснение в тексте.

По И. П. Павлову, центр — это мозговой конец так называемого анализатора. Анализатор — это нервный механизм, функция которого состоит в том, чтобы разлагать известную сложность внешнего и внутреннего мира на отдельные элементы, т. е. производить анализ. Вместе с тем благодаря широким связям с другими анализаторами здесь происходит и синтез, сочетание анализаторов друг с другом и с разными деятельностями организма. «Анализатор есть сложный нервный механизм, начинающийся наружным воспринимающим аппаратом и кончающийся в мозгу» (И. П. Павлов).

С точки зрения И. П. Павлова, мозговой центр, или корковый конец анализатора, имеет не строго очерченные границы, а состоит из ядерной и рассеянной частей — теория ядра и рассеянных элементов. «Ядро» представляет подробную и точную проекцию в коре всех элементов периферического рецептора и является необходимым для осуществления высшего анализа и синтеза. «Рассеянные элементы» находятся по периферии ядра и могут быть разбросаны далеко от него; в них осуществляются более простой и элементарный анализ и синтез. При поражении ядерной части рассеянные элементы могут до известной степени компенсировать выпавшую функцию ядра, что имеет огромное клиническое значение для восстановления данной функции.

До И. П. Павлова в коре различались двигательная зона, или двигательные центры, предцентральная извилина, и чувствительная зона, или чувствительные центры, расположенные позади súlcus centrális. И. П. Павлов показал, что так называемая двигательная зона, соответствующая предцентральной извилине, есть, как и другие зоны мозговой коры, воспринимающая область (корковый конец двигательного анализатора). «Моторная область есть рецепторная область… Этим устанавливается единство всей коры полушарий» (И. П. Павлов). В настоящее время вся мозговая кора рассматривается как сплошная воспринимающая поверхность. Кора — это совокупность корковых концов анализаторов. С этой точки зрения мы и рассмотрим топографию корковых отделов анализаторов, т. е. главнейшие воспринимающие участки коры полушарий большого мозга.

Прежде всего рассмотрим корковые концы анализаторов, воспринимающих раздражения из внутренней среды организма (см. рис. 289, 299).

1. Ядро двигательного анализатора, т. е. анализатора проприоцептивных (кинестетических) раздражений, исходящих от костей, суставов, скелетных мышц и их сухожилий, находится в предцентральной извилине (поля 4 и 6) и lóbulus paracentrális. Здесь замыкаются двигательные условные рефлексы. Двигательные параличи, возникающие при поражении двигательной зоны, И. П. Павлов объясняет не повреждением двигательных эфферентных нейронов, а нарушением ядра двигательного анализатора, вследствие чего кора не воспринимает кинестетические раздражения и движения становятся невозможными. Клетки ядра двигательного анализатора заложены в средних слоях коры моторной зоны. В глубоких ее слоях (V, отчасти VI) лежат гигантские пирамидные клетки, представляющие собой эфферентные нейроны, которые И. П. Павлов рассматривает как вставочные нейроны, связывающие кору мозга с подкорковыми ядрами, ядрами черепных нервов и передними рогами спинного мозга, т. е. с двигательными нейронами. В предцентральной извилине тело человека, так же как и в задней, спроецировано вниз головой. При этом правая двигательная область связана с левой половиной тела и наоборот, ибо начинающиеся от нее пирамидные пути перекрещиваются частью в продолговатом, а частью в спинном мозге. Мышцы туловища, гортани, глотки находятся под влиянием обоих полушарий. Кроме предцентральной извилины, проприоцептивные импульсы (мышечно-суставная чувствительность) приходят и в кору постцентральной извилины.

2. Ядро двигательного анализатора, имеющего-отношение к сочетанному повороту головы и глаз в противоположную сторону, помещается в средней лобной извилине, в премоторной области (поле 8). Такой поворот происходит и при раздражении поля 17, расположенного в затылочной доле в соседстве с ядром зрительного анализатора. Так как при сокращении мышц глаза в кору мозга (двигательный анализатор, поле 8) всегда поступают не только импульсы от рецепторов этих мышц, но и импульсы от сетчатки (зрительный анализатор, поле 17), то различные зрительные раздражения всегда сочетаются с различным положением глаз, устанавливаемым сокращением мышц глазного яблока.

3. Ядро двигательного анализатора, посредством которого происходит синтез целенаправленных сложных профессиональных, трудовых и спортивных движений, помещается в левой (у правшей) нижней теменной дольке, в gýrus supramarginális (глубокие слои поля 40). Эти координированные движения, образованные по принципу временных связей и выработанные практикой индивидуальной жизни, осуществляются через связь gýrus supramarginális с предцентральной извилиной. При поражении поля 40 сохраняется способность к движению вообще, но появляется неспособность совершать целенаправленные движения, действовать — апраксия (праксия — действие, практика).

4. Ядро анализатора положения и движения головы — статический анализатор (вестибулярный аппарат) в коре мозга точно еще не локализован. Есть основания предполагать, что вестибулярный аппарат проецируется в той же области коры, что и улитка, т. е. в височной доле. Так, при поражении полей 21 и 20, лежащих в области средней и нижней височных извилин, наблюдается атаксия, т. е. расстройство равновесия, покачивание тела при стоянии. Этот анализатор, играющий решающую роль в прямохождении человека, имеет особенное значение для работы летчиков в условиях реактивной авиации, так как чувствительность вестибулярного аппарата на самолете значительно понижается.

5. Ядро анализатора импульсов, идущих от внутренностей и сосудов, находится в нижних отделах передней и задней центральных извилин. Центростремительные импульсы от внутренностей, сосудов, непроизвольной мускулатуры и желез кожи поступают в этот отдел коры, откуда исходят центробежные пути к подкорковым вегетативным центрам.

В премоторной области (поля 6 и 8) совершается объединение вегетативных и анимальных функций. Однако не следует считать, что только эта область коры влияет на деятельность внутренностей. На них оказывает влияние состояние всей коры полушарий большого мозга.

Нервные импульсы из внешней среды организма поступают в корковые концы анализаторов внешнего мира.

1. Ядро слухового анализатора лежит в средней части верхней височной извилины, на поверхности, обращенной к островку, — поля 41, 42, 52, где спроецирована улитка. Повреждение ведет к глухоте.

2. Ядро зрительного анализатора находится в затылочной доле — поля 17, 18, 19. На внутренней поверхности затылочной доли, по краям súlcus calcarínus, в поле 17 заканчивается зрительный путь. Здесь спроецирована сетчатка глаза, причем зрительный анализатор каждого полушария связан с полями зрения и соименными половинами сетчатки обоих глаз (например, левое полушарие связано с латеральной половиной левого глаза и медиальной правого). При поражении ядра зрительного анализатора наступает слепота. Выше поля 17 расположено поле 18, при поражении которого зрение сохраняется и только теряется зрительная память. Еще выше находится поле 19, при поражении которого утрачивается ориентация в непривычной обстановке.

3. Ядро обонятельного анализатора помещается в филогенетически древней части коры мозга, в пределах основания обонятельного мозга — úncus, отчасти гиппокампа (поле 11) (см. рис. 299, поля А и Е).

4. Ядро вкусового анализатора, по одним данным, находится в нижней части постцентральной извилины, близко к центрам мышц рта и языка, по другим — в úncus, в ближайшем соседстве с корковым концом обонятельного анализатора, чем объясняется тесная связь обонятельных и вкусовых ощущений. Установлено, что расстройство вкуса наступает при поражении поля 43.

Анализаторы обоняния, вкуса и слуха каждого полушария связаны с рецепторами соответствующих органов обеих сторон тела.

5. Ядро кожного анализатора (осязательная, болевая и температурная чувствительность) находится в постцентральной извилине (поля 1, 2, 3) и в коре верхней теменной области (поля 5 и 7). При этом тело спроецировано в постцентральной извилине вверх ногами, так что в верхней ее части расположена проекция рецепторов нижних конечностей, а в нижней — проекция рецепторов головы. Так как у животных рецепторы общей чувствительности особенно развиты на головном конце тела, в области рта, играющего огромную роль при захватывании пищи, то и у человека сохранилось сильное развитие рецепторов рта. В связи с этим область последних занимает в коре постцентральной извилины непомерно большую зону. Вместе с тем у человека в связи с развитием руки как органа труда резко увеличились рецепторы осязания в коже кисти, которая стала и органом осязания. Соответственно этому участки коры, соответствующие рецепторам верхней конечности, много больше таковых нижней конечности. Поэтому, если в постцентральную извилину врисовать фигуру человека головой вниз (к основанию черепа) и стопами вверх (к верхнему краю полушария), то надо нарисовать громадное лицо с несообразно большим ртом, большую руку, особенно кисть с большим пальцем, резко превосходящим остальные, небольшое туловище и маленькую ножку. Каждая постцентральная извилина связана с противоположной частью тела вследствие перекреста чувствительных проводников в спинном и частью в продолговатом мозге.

Частный вид кожной чувствительности — узнавание предметов на ощупь — стереогнозия (стереос — пространственный, гнозис — знание) связана с участком коры верхней теменной дольки (поле 7) перекрестно: левое полушарие соответствует правой руке, правое — левой руке. При поражении поверхностных слоев поля 7 утрачивается способность узнавать предметы на ощупь, при закрытых глазах.

Описанные корковые концы анализаторов расположены в определенных областях мозговой коры, которая, таким образом, представляет собой «грандиозную мозаику, грандиозную сигнализационную доску» (И. П. Павлов).

На эту «доску» благодаря анализаторам падают сигналы из внешней и внутренней среды организма. Эти сигналы, по И. П. Павлову, и составляют первую сигнальную систему действительности, проявляющуюся в форме конкретно-наглядного мышления (ощущения и комплексы ощущений — восприятия). Первая сигнальная система имеется и у животных. Но «в развивающемся животном мире на фазе человека произошла чрезвычайная прибавка к механизмам нервной деятельности. Для животного действительность сигнализируется почти исключительно раздражениями и следами их в полушариях большого мозга, непосредственно приходящими в специальные клетки зрительных, слуховых и других рецепторов организма. Это то, что и мы имеем в себе как впечатления, ощущения и представления от окружающей внешней среды, как общеприродной, так и от нашей социальной, исключая слово, слышимое и видимое. Это первая сигнальная система, общая у нас с животными. Но слово составило вторую, специально нашу сигнальную систему действительности, будучи сигналом первых сигналов…» (И. П. Павлов).

Таким образом, И. П. Павлов различает две корковые системы: первую и вторую сигнальные системы действительности, из которых сначала возникла первая сигнальная система (она имеется и у животных), а затем вторая — она имеется только у человека и является словесной системой. Вторая сигнальная система — это человеческое мышление, которое всегда словесно, ибо язык — это материальная оболочка мышления. Язык — это «…непосредственная действительность мысли» (Маркс К., Энгельс Ф. Соч., 2-е изд., т. 3, с. 448).

Путем весьма длительного повторения образовались временные связи между определенными сигналами (слышимые звуки и видимые знаки) и движениями губ, языка, мышц гортани, с одной стороны, и с реальными раздражителями или представлениями о них — с другой. Так, на базе первой сигнальной системы возникла вторая.

Отражая этот процесс филогенеза, у человека в онтогенезе сначала закладывается первая сигнальная система, а затем вторая. Чтобы вторая сигнальная система начала функционировать, требуется общение ребенка с другими людьми и приобретение навыков устной и письменной речи, на что уходит ряд лет. Если ребенок рождается глухим или теряет слух до того, как он начал говорить, то заложенная у него возможность устной речи не используется и ребенок остается немым, хотя звуки он произносить может. Точно так же, если человека не обучать чтению и письму, то он навсегда останется неграмотным. Все это свидетельствует о решающем влиянии окружающей среды для развития второй сигнальной системы. Последняя связана с деятельностью всей коры мозга, однако некоторые области ее играют особенную роль в осуществлении речи. Эти области коры являются ядрами анализаторов речи.

Поэтому для понимания анатомического субстрата второй сигнальной системы необходимо, кроме знания строения коры большого мозга в целом, учитывать также корковые концы анализаторов речи (рис. 300).

Рис. 300. Топография корковых центров речи (схема). Левое полушарие большого мозга.

1  — слуховой (акустический) центр; 2 — зрительный (оптический) центр речи; 3 — двигательный центр устной речи; 4 — двигательный центр письменной речи.

1. Так как речь явилась средством общения людей в процессе их совместной трудовой деятельности, то двигательные анализаторы речи выработались в непосредственной близости от ядра общего двигательного анализатора.

Двигательный анализатор артикуляции речи (речедвигательный анализатор) находится в задней части нижней лобной извилины (поле 44), в непосредственной близости от нижнего отдела моторной зоны. В нем происходит анализ раздражений, проходящих от мускулатуры, участвующей в создании устной речи. Эта функция сопряжена с двигательным анализатором мышц губ, языка и гортани, находящимся в нижнем отделе предцентральной извилины, чем и объясняется близость речедвигательного анализатора к двигательному анализатору названных мышц. При поражении поля 44 сохраняется способность производить простейшие движения речевой мускулатуры, кричать и даже петь, но утрачивается возможность произносить слова — двигательная афазия (фазис — речь). Впереди поля 44 расположено поле 45, имеющее отношение к речи и пению. При поражении его возникает вокальная амузия — неспособность петь, составлять музыкальные фразы, а также аграмматизм — неспособность составлять из слов предложения.

2. Так как развитие устной речи связано с органом слуха, то в непосредственной близости к звуковому анализатору выработался слуховой анализатор устной речи. Его ядро помещается в задней части верхней височной извилины, в глубине латеральной борозды (поле 42). Благодаря слуховому анализатору различные сочетания звуков воспринимаются человеком как слова, которые означают различные предметы и явления и становятся сигналами их (вторыми сигналами). С помощью его человек контролирует свою, речь и понимает чужую. При поражении его сохраняется способность слышать звуки, но теряется способность понимать слова — словесная глухота, или сенсорная афазия. При поражении поля 22 (средняя треть верхней височной извилины) наступает музыкальная глухота: больной не знает мотивов, а музыкальные звуки воспринимаются им как беспорядочный шум.

3. На более высокой ступени развития человечество научилось не только говорить, но и писать. Письменная речь требует определенных движений руки при начертании букв или других знаков, что связано с двигательным анализатором (общим). Поэтому двигательный анализатор письменной речи помещается в заднем отделе средней лобной извилины, вблизи зоны предцентральной извилины (моторная зона). Деятельность этого анализатора связана с анализатором необходимых при письме заученных движений руки (поле 40 в нижней теменной дольке). При повреждении поля 40 сохраняются все виды движения, но теряется способность тонких движений, необходимых для начертания букв, слов и других знаков (аграфия).

4. Так как развитие письменной речи связано и с органом зрения, то в непосредственной близости к зрительному анализатору выработался зрительный анализатор письменной речи, который, естественно, расположен вблизи súlcus calcarínus, в gýrus anguláris (поле 39). При повреждении нижней теменной дольки сохраняется зрение, но теряется способность читать (алексия), т. е. анализировать написанные буквы и слагать из них слова и фразы.

Все речевые анализаторы закладываются в обоих полушариях, но развиваются только с одной стороны (у правшей — слева, у левшей — справа) и функционально оказываются асимметричными. Эта связь между двигательным анализатором руки (органа труда) и речевыми анализаторами объясняется тесной связью между трудом и речью, оказавшими решающее влияние на развитие мозга.

«…Труд, а затем и вместе с ним членораздельная речь…» привели к развитию мозга (Маркс К., Энгельс Ф. Соч., 2-е изд., т. 20, с. 490). Этой связью пользуются и в лечебных целях. При поражении речедвигательного анализатора сохраняется элементарная двигательная способность речевых мышц, но утрачивается возможность устной речи (моторная афазия). В этих случаях иногда удается восстановить речь длительным упражнением левой руки (у правшей), работа которой благоприятствует развитию зачаточного правостороннего ядра речедвигательного анализатора.

Анализаторы устной и письменной речи воспринимают словесные сигналы (как говорил И. П. Павлов, сигналы сигналов, или вторые сигналы), что составляет вторую сигнальную систему действительности, проявляющуюся в форме абстрактного отвлеченного мышления (общие представления, понятия, умозаключения, обобщения), которое свойственно только человеку. Однако морфологическую основу второй сигнальной системы составляют не только указанные анализаторы. Так как функция речи является филогенетически наиболее молодой, то она и наименее локализована. Так как кора растет по периферии, то наиболее поверхностные слои коры имеют отношение ко второй сигнальной системе. Эти слои состоят из большого числа нервных клеток (15 млрд) с короткими отростками, благодаря которым создается возможность неограниченной замыкательной функции, широких ассоциаций, что и составляет сущность деятельности второй сигнальной системы. При этом вторая сигнальная система функционирует не отдельно от первой, а в тесной связи с ней, точнее на основе ее, так как вторые сигналы могут возникнуть лишь при наличии первых. «Основные законы, установленные в работе первой сигнальной системы, должны также управлять и второй, потому что это работа все той же нервной ткани» (И. П. Павлов).

Учение И. П. Павлова о двух сигнальных системах дает материалистическое объяснение психической деятельности человека и составляет естественнонаучную основу теории отражения В. И. Ленина. Согласно этой теории, в нашем сознании в форме субъективных образов отражается объективный реальный мир, существующий независимо от нашего сознания.

Ощущение — это субъективный образ объективного мира. «…Ощущение… есть превращение энергии внешнего раздражения в факт сознания» (Ленин В. И. Полн. собр. соч., т. 18, с. 46).

В рецепторе внешнее раздражение, например световая энергия, превращается в нервный процесс, который в коре мозга становится ощущением.

Одно и то же количество и качество энергии, в данном случае световой, у здоровых людей вызовет в коре мозга ощущение зеленого цвета (субъективный образ), а у больного дальтонизмом (благодаря иному строению сетчатки глаза) — ощущение красного цвета.

Следовательно, световая энергия — это объективная реальность, а цвет — субъективный образ, отражение ее в нашем сознании, зависящее от устройства органа чувств (глаза).

Значит, с точки зрения ленинской теории отражения мозг может быть охарактеризован как орган отражения действительности.

После всего сказанного о строении центральной нервной системы можно отметить «человеческие» признаки строения мозга, т. е. специфические черты строения его, отличающие человека от животных (рис. 301, 302).

Рис. 301. Развитие новой коры (красный цвет) по отношению к старой коре (серый цвет).

I — акула: II — ящерица; III — кролик; IV — человек;  1 — lobus olfactorius; 2 — corpus striatum; 3 — diencephaIon; 4 — mesencephalon; 5 — cerebellum; 6 — medulla oblongata.

Рис. 302. Строение мозга медведя ( а ), обезьяны ( б ), человека ( в ). Цифрами обозначены корковые концы анализаторов речи.

1. Преобладание головного мозга над спинным. Так, у хищных (например, у кошки) головной мозг в 4 раза тяжелее спинного, у приматов (например, у макак) — в 8 раз, а у человека — в 45 раз (масса спинного мозга 30 г, головного — 1500 г). Спинной мозг составляет у млекопитающих 22–48 % массы головного мозга, у гориллы — 5–6 %, у человека — только 2 %.

2. Масса мозга. По абсолютной массе мозга человек не занимает первого места, так как у крупных животных мозг тяжелее, чем у человека (1500 г): у дельфина — 1800 г, у слона — 5200 г, у кита — 7000 г. Чтобы вскрыть истинные отношения массы мозга к массе тела, используют так называемый квадратный указатель мозга, т. е. произведение абсолютной массы мозга на относительную. Этот указатель позволил выделить человека из всего животного мира. Так, у грызунов он равен 0,19, у хищных — 1,14, у китообразных (дельфин) — 6,27, у человекообразных обезьян — 7,35, у слонов — 9,82 и, наконец, у человека — 32,0.

3. Преобладание плаща над мозговым стволом, т. е. нового мозга (neencéphalon) над древним (paleencéphalon).

4. Наивысшее развитие лобной доли большого мозга. На лобные доли приходится у низших обезьян 8-12 % всей поверхности полушарий, у антропоидных обезьян — 16 %, у человека — 30 %.

5. Преобладание новой коры полушарий большого мозга над старой.

6. Преобладание коры над подкоркой, которое у человека достигает максимальных цифр: кора составляет 53,7 % всего объема мозга, а базальные ядра — только 3,7 %

7. Борозды и извилины увеличивают площадь коры серого вещества, поэтому чем больше развита кора полушарий большого мозга, тем больше и складчатость мозга. Увеличение складчатости достигается большим развитием мелких борозд третьей категории, глубиной борозд и их асимметричным расположением. Ни у одного животного нет одновременно такого большого числа борозд и извилин, при этом столь глубоких и асимметричных, как у человека.

8. Наличие второй сигнальной системы, анатомическим субстратом которой являются самые поверхностные слои мозговой коры.

Подводя итоги изложенному, можно сказать, что специфическими чертами строения мозга человека, отличающими его от мозга самых высокоразвитых животных, является максимальное преобладание молодых частей центральной нервной системы над старыми: головного мозга над спинным, плаща над стволом, новой коры над старой, поверхностных слоев мозговой коры над глубокими.

Ложность «теории» расизма в учении о мозге

Чтобы оправдать стремление империалистических кругов к мировому господству, находящиеся на службе эксплуататорских классов реакционные ученые создали «теорию» расизма, согласно которой народы мира изначально делятся на передовые и отсталые, а человеческие расы — на высшие и низшие. Высшие расы имеют, по мнению расистов, право на покорение низших не только в силу экономической и политической отсталости последних, но и вследствие якобы их более низкой биологической организации.

В качестве аргументов для отнесения к более низкой организации привлекаются некоторые признаки строения мозга, а именно: сравнительно меньшие масса и объем мозга, меньшее число борозд и извилин, редкие вариации их, наличие борозд, более выраженных у приматов, например обезьянья борозда в затылочной доле, а также ряд других признаков.

Однако все эти особенности строения мозга не могут служить признаками низшего развития. В самом деле, если взять абсолютную массу мозга, то она не может являться показателем умственного развития человека, так как у гениальных людей можно встретить мозг самой различной массы. Масса мозга людей колеблется от 1100 до 2000 г. Тяжелый мозг встречается не только у умственно одаренных людей, но и у людей среднего развития, а также у эпилептиков и идиотов. Так, самый тяжелый мозг из всех известных до настоящего времени (2850 г) принадлежал идиоту-эпилептику 21 года. Приводимая А. Якобом сводка цифр массы мозга 50 выдающихся деятелей различных специальностей показывает, что масса их мозга колеблется в широких границах, так что никоим образом нельзя провести прямые параллели между массой мозга и одаренностью. Так, если сравнить массу мозга крупнейших писателей — И. С. Тургенева и Анатоля Франса, то при одинаковом характере их одаренности мозг И. С. Тургенева был более тяжелым (2012 г), а мозг Анатоля Франса вдвое легче (1017 г), что не помешало Анатолю Франсу проявить свой талант. То же наблюдается и при сравнении мозга других выдающихся людей, например поэтов Байрона (2238 г) и Уитмена (1282 г), ученых-зоологов Кювье (1830 г) и Агассица (1495 г) и др.

Такая же картина наблюдается при сравнении у различных гениальных людей абсолютного объема мозга и черепа: например, у Гете окружность головы 60 см, у Данте — 54 см, что не помешало Данте написать свое бессмертное произведение «Божественная комедия».

Как показали исследования Л. Я. Пинеса, обезьянья борозда с одинаковой частотой встречается на внутренней поверхности затылочной доли мозга у представителей различных рас и у интеллектуально выдающихся лиц. Развитие других борозд и извилин также подвержено различным вариациям, с одинаковой частотой встречающихся у разных народов. Ряд объективных буржуазных исследователей высказываются, что на основании наличия различных борозд нельзя делать заключение об умственной одаренности. Таким образом, отмеченные особенности строения мозга являются не расовыми признаками, а вариантами индивидуальной изменчивости, которой подвержены все органы, в том числе и мозг. Закономерное нарастание массы и объема мозга действительно имеет место в эволюции человека, но оно происходит в течение сотен тысячелетий. Так, у человекообразных обезьян масса мозга 400–500 г, а у современного человека — 1100–2000 г (в среднем 1500 г).

Что же касается современных людей, то колебания массы и объема мозга не отражают степени умственного развития. Культурная и политическая отсталость народов обусловливается не биологической организацией (строение мозга и всего тела человека), а социальными условиями жизни общества. Яркий пример этого мы видим в Индии и других бывших колониальных странах. Там раньше, чем в Европе, возникла древняя и весьма высокая культура, создавшая замечательные памятники искусства, зодчества и литературы. Однако после порабощения Индии англичанами, за три столетия колониального гнета, развитие индийского народа резко затормозилось, и он отстал от завоевавших его европейцев. Теперь, когда порабощенные народы сбросили ярмо колониализма и снова стали свободными, они быстро идут по пути социального прогресса. Таким образом, необходимо видеть реакционную политическую сущность расизма и разоблачать ее, опираясь на строго научные морфологические факты.

Оболочки головного мозга

Оболочки головного мозга, meninges, составляют непосредственное продолжение оболочек спинного мозга — твердой, паутинной и мягкой.

Твердая оболочка, dúra máter encéphali, — плотная белесоватая соединительнотканная оболочка, лежащая снаружи от остальных оболочек. Наружная ее поверхность непосредственно прилежит к черепным костям, для которых твердая оболочка служит надкостницей, в чем состоит ее отличие от такой же оболочки спинного мозга. Внутренняя поверхность, обращенная к мозгу, покрыта эндотелием и вследствие этого гладкая и блестящая. Между ней и паутинной оболочкой мозга находится узкое щелевидное пространство, spátium subdurále, заполненное небольшим количеством жидкости. Местами твердая оболочка расщепляется на два листка. Такое расщепление имеет место в области венозных синусов (см. ниже), а также в области ямки у верхушки пирамиды височной кости (impressio trigemini), где лежит узел тройничного нерва. Твердая оболочка отдает со своей внутренней стороны несколько отростков, которые, проникая между частями мозга, отделяют их друг от друга (рис. 303).

Рис. 303. Твердая оболочка головного мозга и ее венозные синусы.

1 , 18 — sinus petrosus superior (dexter et sinister); 2 — sinus petrosus inferior; 5 — falx cerebri; 4 — sinus sagittalis superior; 5 — sinus sagittalis inferior; 6 — infundibulum; 7 — a. carotis interna; 8 — n. opticus; 9 — crista galli; 10 , 14 — sinus intercavernosus: 11 — sinus sphenoparietalis; 12 — cerebri media; 13 — diaphragma sellae; 15 — dorsum sellae; 16 — sinus cavernosus; 17 — plexus basillaris; 19 — bulbus superior v. jugular is internae; 20 — sinus sigmoideus; 21 — tentorium cerebelli; 22 — vv. cerebri inferiores; 23 — sinus transversus; 24 — confluens sinuum; 25 — sinus rectus; 26 — v. cerebri magna; 27 — vv. cerebri superiores.

Falx cérebri, серп большого мозга , расположен в сагиттальном направлении между обоими полушариями большого мозга. Прикрепляясь по средней линии черепного свода к краям súlcus sínus sagittális superióris, он своим передним узким концом прирастает к crísta gálli, а задним широким срастается с верхней поверхностью мозжечкового намета.

Tentórium cerebélli, намет мозжечка , представляет горизонтально натянутую пластинку, слегка выпуклую кверху наподобие двускатной крыши. Пластинка эта прикрепляется по краям súlcus sínus transvérsi затылочной кости и вдоль верхней грани пирамиды височной кости на обеих сторонах до procéssus clinoídeus posterior клиновидной кости. Намет мозжечка отделяет затылочные доли большого мозга от нижележащего мозжечка.

Falx cerebélli, серп мозжечка , располагается, так же как и серп большого мозга, по средней линии вдоль crísta occipitális intérna до большого отверстия затылочной кости, охватывая последнее по бокам двумя ножками; этот невысокий отросток вдается в заднюю вырезку мозжечка.

Diaphrágma séllae, диафрагма седла , пластинка, ограничивающая сверху вместилище для гипофиза на дне турецкого седла. В середине она прободается отверстием для пропуска воронки, infundíbulum, к которой прикрепляется hypóphysis.

Кровеносные сосуды твердой оболочки питают также кости черепа и образуют на внутренней пластинке последних вдавления, súlci meníngei. Из артерий самая крупная a. meníngea média, ветвь a. maxilláris, проходящая в череп через forámen spinósum клиновидной кости. В передней черепной ямке разветвляется небольшая ветвь из a. ophthálmica, а в задней — веточки из a. pharýngea ascéndens, из a. vertebrális и из a. occipitális, проникающие через forámen mastoídeum. Вены твердой оболочки сопровождают соответствующие артерии, обычно по две, и впадают частью в синусы, частью в pléxus pterygoídeus.

Нервы . Твердая оболочка иннервируется тройничным нервом.

Кроме собственных вен, твердая оболочка содержит ряд вместилищ, собирающих кровь из мозга и называемых синусами твердой оболочки, sínus dúrae mátris (см. рис. 303).

Синусы представляют венозные, лишенные клапанов каналы (треугольные в поперечном сечении), залегающие в толще самой твердой оболочки по местам прикрепления ее отростков к черепу и отличающиеся от вен строением своих стенок. Последние образованы туго натянутыми листками твердой оболочки, вследствие чего не спадаются при разрезе и при ранении зияют. Неподатливость стенок венозных синусов обеспечивает свободный отток венозной крови при смене внутричерепного давления, что важно для бесперебойной деятельности головного мозга, чем и объясняется наличие таких венозных синусов только в черепе.

Имеются следующие синусы:

Sínus transvérsus — самый большой и широкий, расположен по заднему краю tentórium cerebélli в súlcus sínus transvérsi затылочной кости, откуда спускается как sínus sigmoídeus в súlcus sinus sigmoídei и далее у forámen juguláre переходит в устье v. juguláris intérna. Благодаря этому поперечный синус с сигмовидным служит главным коллектором для всей венозной крови черепной полости. В него частью непосредственно, частью опосредованно впадают все остальные синусы. Непосредственно в него впадают:

Sínus sagittális supérior идет по верхнему краю falx cérebri вдоль всего súlcus sinus sagittális superióris or crísta gálli до protuberántia occipitális intérna; по бокам sínus sagittális supérior, в толще твердой оболочки, заложены так называемые кровяные озера — небольшие полости, сообщающиеся с одной стороны с синусом и диплоическими венами, а с другой — с венами твердой оболочки и мозга.

Sínus occipitális — как бы продолжение предыдущего вдоль места прикрепления falx cerebélli к crísta occipitális intérna и далее (после раздвоения) по обоим краям forámen mágnum затылочной кости.

Sínus réctus на линии прикрепления falx cérebri к tentórium cerebélli. Он принимает спереди sínus sagittális inférior, идущий вдоль нижнего свободного края falx cérebri, а также v. cérebri mágna, по которой кровь оттекает из глубоких частей мозга.

В месте, где сходятся названные синусы (sínus transvérsus, sínus sagittális supérior, sínus réctus и sínus occipitális), образуется общее расширение, известное под именем стока синусов, cónfluens sínuum. На основании черепа сбоку турецкого седла расположен пещеристый синус, sínus cavernósus, имеющий вид или венозного сплетения, или широкой лакуны, окружающей внутреннюю сонную артерию. Он соединяется с таким же синусом другой стороны двумя поперечными анастомозами, sínus intercavernósi, проходящими спереди и сзади fóssa hypophysiális, вследствие чего в области турецкого седла образуется венозное кольцо .

Пещеристый синус представляет сложный анатомический комплекс, в состав которого, кроме самого синуса, входят внутренняя сонная артерия, нервные стволы и окружающая их соединительная ткань. Все эти образования составляют как бы особый прибор, играющий важную роль в регуляции внутричерепного тока венозной крови. Спереди в пещеристый синус вливаются v. ophthálmica supérior, проходящая через верхнюю глазничную щель, а также нижний конец sínus sphenoparietális, идущего вдоль края álae minóris.

Отток крови из sínus cavernósus совершается в два лежащих сзади синуса: sínus petrósus supérior et inférior, заложенные в соименных желобках, súlcus sínus petrósi superióris et inferióris. Оба sínus petrósi inferióres соединяются между собой несколькими венозными каналами, которые лежат в толще твердой оболочки на базилярной части затылочной кости и называются в своей совокупности pléxus basiláris. Pléxus basiláris сообщается с венозными сплетениями позвоночного канала, через которые таким образом оттекает кровь из полости черепа.

Главным путем оттока крови из синусов служат внутренние яремные вены, но, кроме того, венозные синусы соединяются с венами наружной поверхности черепа посредством так называемых эмиссарных вен, vv. emissáriae, проходящих через отверстия в черепных костях (forámen parietale, forámen mastoídeum, canális condyláris см. «Остеология»). Такую же роль играют небольшие вены, выходящие из черепа вместе с нервами через forámen ovále, forámen rotúndum и canális hypoglossalis. В синусы твердой оболочки также впадают vénae diplóicae, вены губчатого вещества костей черепа; другим концом они могут иметь связь с наружными венами головы. Vénae diplóicae представляют анастомозирующие друг с другом каналы, выстланные изнутри слоем эндотелия и проходящие в губчатом веществе плоских костей черепа.

Паутинная оболочка, arachnoídea encéphali (рис. 304), так же как и в спинном мозге, отделяется от твердой оболочки капиллярной щелью субдурального пространства. Паутинная оболочка не заходит в глубину борозд и углублений мозга, как pía máter, но перекидывается через них в виде мостиков, вследствие чего между ней и мягкой оболочкой находится подпаутинное пространство, cávitas subarachnoideális, которое наполнено прозрачной жидкостью.

Рис. 304. Схема взаимоотношений оболочек головного мозга и грануляций паутинной оболочки.

1 , 16 — granulationes arachnojdeales; 2 — v. emissaria;  3 — v. diploica; 4 — diploë; 5 — dura mater encephali; 6 — trabeculae arachnoideales; 7 — spatium perjvasculare; 8 — cavitas subarachnoidealis; 9 — pia mater; 10 — arachnoidea; 11 — falx cerebri; 12 — sinus sagittalis superior; 13 — cortex cerebri; 14 — r. corticalis a. cerebri; 15 — r. corticalis v. cerebri.

В некоторых местах, преимущественно на основании мозга, подпаутинные пространства развиты особенно сильно, образуя широкие и глубокие вместилища спинномозговой жидкости, называемые цистернами (рис. 305).

Рис. 305. Подпаутинные пространства.

1  — cisterna chiasmatis; 2 — chiasma opticum; 3 — cisterna interpeduncularis; 4 — подпаутинное пространство спинного мозга; 5 — cisterna сеrebellomedullaris; 6 — arachnoidea; 7 — подпаутинное пространство над мозолистым телом; 8 — подпаутинное пространство в бороздах.

Имеются следующие цистерны:

1. Cistérna cerebellomedulláris (самая большая) между задним краем мозжечка и продолговатым мозгом.

2. Cisierna interpedunculáris между pedúnculi cerebri.

3. Cisterna chiasmatis впереди chiasma ópticum.

4. Cistérna fóssae laterális cérebri в соименной ямке.

Все подпаутинные пространства широко сообщаются между собой и у большого отверстия затылочной кости непосредственно продолжаются в подпаутинное пространство спинного мозга. Кроме того, они находятся в прямом сообщении с желудочками мозга через отверстия в области задней стенки IV желудочка: apertúra mediána ventrículi quárti, открывающееся в cistérna cerebellomedulláris, и apertúra laterális ventrículi IV. В подпаутинных пространствах залегают мозговые сосуды, которые соединительнотканными перекладинами, trabéculae arachnoideáles, и окружающей жидкостью предохраняются от сдавления.

Особенностью строения паутинной оболочки являются так называемые грануляции паутинной оболочки , granulatiónes arachnoideáles , представляющие выросты паутинной оболочки в виде кругловатых телец серо-розового цвета, вдающихся в полость венозных синусов или же в лежащие рядом кровяные озера (см. рис. 304). Они имеются у детей и у взрослых, но наибольшей величины и многочисленности достигают в старости. Увеличиваясь в размерах, грануляции своим давлением на черепные кости образуют на внутренней поверхности последних углубления, известные в остеологии под названием fovéolae granuláres. Грануляции служат для оттока спинномозговой жидкости в кровяное русло путем фильтрации.

Мягкая оболочка, pía máter encéphali, тесно прилегает к мозгу, заходя во все борозды и щели его поверхности, и содержит кровеносные сосуды и сосудистые сплетения (см. рис. 287). Между оболочкой и сосудами существует пери васкулярная щель, сообщающаяся с подпаутинным пространством.

Спинномозговая жидкость

Спинномозговая жидкость, líquor cerebrospinális, наполняющая подпаутинные пространства головного и спинного мозга и мозговые желудочки, резко отличается от других жидкостей организма. С ней сходны только эндо- и перилимфа внутреннего уха и водянистая влага глаза. Выделение спинномозговой жидкости происходит путем секреции из pléxus choroídei, эпителиальная обкладка которых имеет характер железистого эпителия. Аппарат, продуцирующий líquor cerebrospinális, обладает свойством пропускать в жидкость одни вещества и задерживать другие (гематоэнцефалический барьер), что имеет большое значение для предохранения мозга от вредных влияний. Таким образом, по своим особенностям спинномозговая жидкость является не только механическим защитным приспособлением для мозга и лежащих на его основании сосудов, но и специальной внутренней средой, которая необходима для правильного функционирования центральных органов нервной системы. Пространство, в котором помещается líquor cerebrospinális, замкнуто. Отток жидкости из него совершается путем фильтрации главным образом в венозную систему через посредство грануляций паутинной оболочки, а отчасти также и в лимфатическую систему через влагалища нервов, в которые продолжаются мозговые оболочки.

Сосуды головного мозга

Артерии большого мозга происходят из ветвей a. carótis intérna и a. basiláris, образующих на основании мозга circulus arteriósus cérebri (см. «Сосудистая система»). На поверхности каждого полушария разветвляются передняя, средняя и задняя мозговые артерии. A. cérebri antérior снабжает кровью медиальную поверхность полушария до súlcus parietooccipitális, на наружной его поверхности верхнюю лобную извилину и верхний край теменной доли, а на нижней поверхности полушария — gýrus réctus лобной доли. A. cérebri média снабжает кровью островок, обе центральные извилины, нижнюю лобную извилину и большую часть средней лобной извилины, теменную долю и верхнюю и среднюю височные извилины. A. cérebri postérior разветвляется на медиальной, нижней и латеральной поверхностях височной и затылочной долей, за исключением верхней и средней височной извилин (рис. 306).

Рис. 306. Схема васкуляризации головного мозга.

а — наружная поверхность: зоны a. cerebri media (светлые); зоны аа. cerebri anterior et posterior (заштрихованы); б — внутренняя поверхность: зоны a. cerebri anterior (мелкие точки), media (клетки) и posterior (линии). Мозолистое тело (красный цвет).

Перечисленные артерии своими разветвлениями в pía máter образуют артериальную сеть, из которой проникают отвесно в толщу мозгового вещества: 1) кортикальные артерии — маленькие веточки, разветвляющиеся только в мозговой коре, и 2) медуллярные артерии, которые, пройдя кору, идут в белое вещество.

Со стороны основания мозга входят центральные артерии.

Кортикальные, медуллярные и центральные артерии анастомозируют друг с другом, образуя единую сосудистую сеть. Мозжечок получает кровь из трех артерий с каждой стороны. Две a. cerebélli inférior anterior (ветвь a. basiláris) и a. cerebélli inférior postérior (ветвь a. vertebrális), разветвляются на нижней поверхности мозжечка, третья же ветвь, a. cerebélli supérior (ветвь a. basiláris), идет на его верхнюю поверхность. От a. cerebélli supérior снабжаются также нижние холмики крыши среднего мозга, а верхние холмики получают свои веточки от a. cérebri postérior. Артерии остальных частей головного мозга, относящиеся к мосту и продолговатому мозгу, происходят от a. vertebrális, a. basiláris и их ветвей.

Кроме описанных артериальных сосудов, имеются еще особые артерии сосудистых сплетений в числе четырех на каждой стороне.

Вены большого мозга разделяются на поверхностные и глубокие. Поверхностные вены большей частью собирают кровь из мозговой коры и вливаются частью в sínus sagittális supérior (верхние вены), частью (нижние вены) в sínus transvérsus и синусы основания черепа. Вены лишены клапанов и отличаются своими многочисленными соустьями. Глубокие вены собирают кровь из центральных серых ядер и желудочков мозга и сливаются в одну большую v. cérebri mágna, впадающую в sínus réctus.

Вены мозжечка составляют группы: верхние изливают кровь в sínus réctus и v. cérebri mágna, нижние — в sínus transvérsus, sigmoídeus, petrósus inférior.

Рентгенологическое исследование центральной нервной системы (рис. 307) позволяет видеть мозг живого человека без вскрытия черепа на светлом фоне нейтрального газа, введенного в подпаутинное пространство. Такой метод называется энцефалографией.

Рис. 307. Нормальная йодовентрикулограмма.

1 — for. interventriculare; 2 — infundibulum; 3 , 4 — подпаутинное пространство; 5 — ventriculus quartus; 6 — ventriculus lateralis: cornu anterius, cornu inferius, cornu posterius.

На энцефалограммах видны контуры головного мозга и его отдельных частей и выявляется ветвистый рисунок мозговых борозд. Введенный в подпаутинное пространство газ или контрастная жидкость попадают в систему мозговых камер, давая изображение мозговых желудочков (вентрикулография).

На боковой вентрикулограмме ясно видны: передний рог, центральная часть, задний и нижний рога бокового желудочка; III и IV желудочки на боковых снимках видны не всегда. Увеличение их является признаком патологического расширения.

На снимках, сделанных в затылочном положении (к пленке прилегает затылочная область; ход лучей сагиттальный), видна характерная симметричная фигура боковых желудочков, напоминающая бабочку. Правую и левую половины фигуры бабочки (как бы крылья ее) разделяет вертикально идущая линия — séptum pellúcidum, отделяющая оба боковых желудочка. Книзу от нее располагается узкая светлая щель — III желудочек. Ниже последнего в единичных случаях замечается узкая щелевидная тень IV желудочка. При патологическом расширении мозговых желудочков фигура бабочки искажается, а III и IV желудочки увеличиваются и становятся ясно заметными.

С помощью новейшего метода рентгенологического исследования — компьютерной (вычислительной) томографии можно получать рентгеновское изображение любого слоя головного мозга в любой плоскости; в частности удается видеть все части мозговых желудочков без контрастирования.

 

Периферический отдел нервной системы

АНИМАЛЬНЫЕ ИЛИ СОМАТИЧЕСКИЕ НЕРВЫ

По месту отхождения от центральной нервной системы — от спинного или головного мозга, нервные стволы разделяются на спинномозговые, nn. spináles, и черепные, nn. craniáles (encephálici).

СПИННОМОЗГОВЫЕ НЕРВЫ

Спинномозговые нервы, nn. spináles, располагаются в правильном порядке (невромеры), соответствуя миотомам (миомерам) туловища и чередуясь с сегментами позвоночного столба; каждому нерву соответствует относящийся к нему участок кожи (дерматом).

У человека имеется 31 пара спинномозговых нервов, а именно: 8 пар шейных, 12 пар грудных, 5 пар поясничных, 5 пар крестцовых и 1 пара копчиковых (см. рис. 267). Каждый спинномозговой нерв отходит от спинного мозга двумя корешками: задним (чувствительным) и передним (двигательным); оба корешка соединяются в один ствол, trúncus n. spinális, выходящий из позвоночного канала через межпозвоночное отверстие. Вблизи и несколько кнаружи от места соединения задний корешок образует узел, gánglion spinále, в котором передний двигательный корешок не принимает участия. Благодаря соединению обоих корешков спинномозговые нервы являются смешанными нервами: они содержат чувствительные (афферентные) волокна от клеток спинномозговых узлов, двигательные (эфферентные) волокна от клеток переднего рога, а также вегетативные волокна от клеток боковых рогов, выходящие из спинного мозга в составе переднего корешка (рис. 308).

Рис. 308. Общее расположение спинномозгового нерва (n. thoracicus).

1 — передний корешок: 2 — r. meningeus; 3 — симпатический узел; 4 — r. cutaneus lateralis; 5 — r. ventralis; 6 — r. communicans; 7 — r. dorsalis; 8 — r. medialis rami dorsalis; 9 — задний корешок.

Вегетативные волокна имеются и в заднем корешке. Вегетативные волокна, попадающие через корешки в анимальные нервы, обеспечивают в соме такие процессы, как трофика, сосудодвигательные реакции и т. п.

У круглоротых (миноги) оба корешка продолжаются в отдельные нервы — двигательные и чувствительные. В дальнейшем ходе эволюции, начиная с поперечноротых рыб корешки сближаются и сливаются, так что раздельный ход сохраняется только для корешков, а нервы становятся смешанными.

Каждый спинномозговой нерв при выходе из межпозвоночного отверстия делится соответственно двум частям миотома (дорсальной и вентральной) на две ветви:

1) заднюю, rámus dorsális, для развивающейся из дорсальной части миотома аутохтонной мускулатуры спины и покрывающей ее кожи;

2) переднюю, rámus ventrális, для вентральной стенки туловища и конечностей, развивающихся из вентральных частей миотомов.

Кроме того, от спинномозгового нерва отходят еще два рода ветвей:

3) для иннервации внутренностей и сосудов — соединительные ветви к симпатическому стволу, rr. coinmunicántes;

4) для иннервации оболочек спинного мозга — r. meníngeus, идущая обратно через межпозвоночное отверстие.

Задние ветви спинномозговых нервов

Задние ветви, rámi dorsáles, всех спинномозговых нервов идут назад между поперечными отростками позвонков, огибая суставные отростки их. Все они (за исключением I шейного, IV и V крестцовых и копчикового) делятся на rámus mediális и rámus laterális, которые снабжают кожу затылка, задней поверхности шеи и спины, а также глубокие спинные мышцы.

Задняя ветвь I шейного нерва, n. suboccipitális, выходит между затылочной костью и атлантом и затем делится на ветви, снабжающие mm. récti cápitis májor et mínor, m. semispinális cápitis, mm. oblíqui cápitis. К коже n. suboccipitális ветвей не дает. Задняя ветвь II шейного нерва, n. occipitális májor, выйдя между задней дугой атланта и II позвонком, прободает затем мышцы и, сделавшись подкожным, иннервирует затылочную область головы.

Rámi dorsáles грудных нервов делятся на медиальную и латеральную ветви, дающие ветви к аутохтонной мускулатуре; кожные ветви у верхних грудных нервов отходят только от rámi mediáдes, а у нижних — от rámi lateráles.

Кожные ветви трех верхних поясничных нервов идут в верхнюю часть ягодичной области под названием nn. clúnium superióres, а кожные ветви крестцовых — под названием nn. clúnium médii.

Передние ветви спинномозговых нервов

Передние ветви, rámi ventráles, спинномозговых нервов иннервируют кожу и мускулатуру вентральной стенки тела и обе пары конечностей. Так как кожа живота в нижней своей части принимает участие в развитии наружных половых органов, то покрывающая их кожа иннервируется также передними ветвями. Последние, кроме первых двух, гораздо крупнее задних.

Передние ветви спинномозговых нервов сохраняют первоначальное метамерное строение только в грудном отделе (nn. intercostáles). В остальных отделах, связанных с конечностями, при развитии которых сегментарность теряется, волокна, отходящие от передних спинномозговых ветвей, переплетаются. Так образуются нервные сплетения, pléxus, в которых происходит обмен волокон различных невромеров. В сплетениях происходит сложное перераспределение волокон: передняя ветвь каждого спинномозгового нерва дает свои волокна в несколько периферических нервов, и, следовательно, каждый из них содержит волокна от нескольких сегментов спинного мозга. Понятно поэтому, что поражение того или иного нерва, не сопровождается нарушением функции всех мышц, получающих иннервацию из сегментов, давших начало этому нерву.

Большинство нервов, отходящих от сплетений, являются смешанными; поэтому клиническая картина поражения складывается из двигательных нарушений, нарушений чувствительности и вегетативных расстройств.

Различают три больших сплетения: шейное, плечевое и пояснично-крестцовое. Последнее делится на поясничное, крестцовое и копчиковое.

Шейное сплетение

Шейное сплетение, pléxus cervicális, образуется передними ветвями четырех верхних шейных нервов (СI — CIV), которые соединяются между собой тремя дугообразными петлями и располагаются сбоку поперечных отростков между предпозвоночными мышцами с медиальной и позвоночными (m. scalénus médius, m. levátor scápulae, m. splénius cérvicis) с латеральной стороны, анастомозируя с n. accessórius, n. hypoglóssus и truncus sympathicus. Спереди сплетение прикрыто m. sternocleidomastoideus. Ветви, отходящие от сплетения, разделяются на кожные, мышечные и смешанные (рис. 309).

Рис. 309. Схема иннервации головы и шеи шейными нервами.

Кожные ветви . 1. N. occipitális mínor (из СII и СIII) к коже латеральной части затылочной области.

2. N. auriculáris mágnus (из CIII) иннервирует ушную раковину и наружный слуховой проход.

3. N. transvérsus cólli (из СII-СIII) отводит, как и предыдущие два нерва у середины заднего края m. sternocleídomastoideus и, обогнув задний край грудино-ключично-сосцевидной мышцы, идет кпереди и снабжает кожу шеи.

4. Nn. supraclaviculáres (из СIII и CIV) спускаются в кожу над большой грудной и дельтовидной мышцами.

Мышечные ветви . 1. К mm. récti cápitis antérior et laterális, mm. lóngi cápitis et cólli, mm. scaléni, m. levátor scápulae и, наконец, к mm. intertransversárii anterióres.

2. Rádix inférior ánsae cervicális, отходит от СII-СIII, проходит спереди от v. juguláris interna под грудино-ключично-сосцевидной мышцей и соединяется с radix superior, отходящим от n. hypoglóssus, образуя вместе с этой ветвью шейную петлю, ánsa cervicális. Волокна шейного сплетения посредством ветвей, отходящих от ánsa, иннервируют m. stemohyoídeus, m. stemothyroídeus и m. omohyoídeus.

3. Ветви к m. sternocleidomastoídeus и m. trapezius (от СIII и CIV), принимающие участие в иннервации этих мышц вместе с n. accessórius.

Смешанные ветви. N. phrénicus — диафрагмальный нерв (СIII-CIV), спускается по m. scalénus antérior вниз в грудную полость, куда проходит между подключичной артерией и веной. Далее правый n. phrénicus спускается почти вертикально впереди корня правого легкого и идет по боковой поверхности перикарда, к диафрагме. Левый n. phrénicus пересекает переднюю поверхность дуги аорты и впереди корня левого легкого проходит по левой боковой поверхности перикарда к диафрагме. Оба нерва идут в переднем средостении между перикардом и плеврой. N. phrénicus принимает волокна от двух нижних шейных узлов симпатического ствола.

N. phrénicus — смешанный нерв: своими двигательными ветвями он иннервирует диафрагму, являясь, таким образом, нервом, обслуживающим дыхание; чувствительные ветви он дает к плевре и перикарду. Некоторые из конечных ветвей нерва проходят сквозь диафрагму в брюшную полость (nn. phrenicoabdomináles) и анастомозируют с симпатическим сплетением диафрагмы, посылая веточки к брюшине, связкам печени и к самой печени, вследствие чего при ее заболевании может возникнуть особый френикус-симптом. Своими волокнами в грудной полости он снабжает сердце, легкие, вилочковую железу, а в брюшной он связан с чревным сплетением и через него иннервирует ряд внутренностей.

Плечевое сплетение

Плечевое сплетение, pléxus brachiális, слагается из передних ветвей четырех нижних шейных нервов (СV—СVIII) и большей части первого грудного (ThI); часто присоединяется тонкая ветвь от CIV. Плечевое сплетение выходит через промежуток между передней и средней лестничными мышцами в надключичную ямку, располагаясь выше и сзади a. subclávia. Из него возникают три толстых нервных пучка, идущих в подмышечную ямку и окружающих a. axilláris с трех сторон: с латеральной (латеральный пучок), медиальной (медиальный пучок) и кзади от артерии (задний пучок).

В сплетении обыкновенно различают надключичную (pars supraclaviculáris) и подключичную (pars infraclaviculáris) части. Периферические ветви разделяются на короткие и длинные. Короткие ветви отходят в различных местах сплетения в надключичной его части и снабжают отчасти мышцы шеи, а также мышцы пояса верхней конечности (за исключением m. trapézius) и плечевого сустава. Длинные ветви происходят из вышеуказанных трех пучков и идут вдоль верхней конечности, иннервируя ее мышцы и кожу.

Короткие ветви . 1. N. dorsális scápulae (из CV) идет вдоль медиального края лопатки. Иннервирует m. levátor scápulae и mm. rhomboídei.

2. N. thorácicus lóngus (из CV—CVII) спускается по наружной поверхности m. serrátus antérior, которую иннервирует.

3. N. suprascapuláris (из CV и CVI) идет через incisúra scápulae в fóssa supraspináta. Иннервирует mm. supra- et infraspinátus и капсулу плечевого сустава.

4. Nn. pectoráles mediális et laterális (из CV—ThI) — к m. pectorális májor et mínor.

5. N. subclávius (CV) — к m. subclávius.

6. N. subscapuláris (CV—СVIII) иннервирует m. subscapuiáris, m. téres májor и m. latíssimus dórsi. Ветвь, идущая вдоль латерального края лопатки к m. latíssimus dórsi, называется n. thoracodorsális.

7. N. axilláris, подмышечный нерв (из CV—CVI), — самый толстый нерв из коротких ветвей плечевого сплетения, проникает вместе с a. circumfléxa húmeri postérior через forámen quadriláterum на заднюю поверхность хирургической шейки плечевой кости и дает ветви к mm. deltoídeus, téres mínor и к плечевому суставу. По заднему краю дельтовидной мышцы дает кожную ветвь, n. cutáneus bráchii laterális supérior, иннервирующую кожу дельтовидной области и заднелатеральной области плеча в верхнем отделе его.

Длинные ветви . Среди них можно выделить передние — для сгибателей и пронаторов (nn. musculocutaneus, mediánus et ulnáris) и задние — для разгибателей и супинаторов (n. radiális).

1. N. musculocutáneus, мышечно-кожный нерв, отходит от латерального пучка плечевого сплетения (из CV—CVII), прободает m. coracobrachiális и иннервирует все передние мышцы плеча mm. coracobrachiális, biceps et brachiális. Пройдя между двумя последними на латеральную сторону плеча, продолжается на предплечье под названием n. cutáneus antebráchii laterális, снабжая кожу лучевой стороны последнего, а также кожу thénar.

2. N. mediánus, срединный нерв (CV—CVIII, ThI), отходит от медиального и латерального пучков двумя корешками, охватывающими спереди a. axilláris, затем он идет в súlcus bicipitális mediális вместе с плечевой артерией. В локтевом сгибе нерв подходит под m. pronátor téres и поверхностный сгибатель пальцев и идет дальше между последним и m. fléxor digitórum profúndus, затем — в одноименной бороздке, súlcus mediánus, посередине предплечья на ладонь. На плече n. mediánus ветвей не дает. На предплечье он отдает rámi musculáres для всех мышц передней сгибательной группы, за исключением m. fléxor cárpi ulnáris и ближайшей к последнему части глубокого сгибателя пальцев (рис. 310).

Рис. 310. Нервы кисти; ладонная поверхность.

1 — m. flexor digitorum superfieialis; 2 — n. medianus; 3 — r. palmaris n. mediani; 4 — rr. musculares n. mediani; 5 , 6 , 7 ,  8 — nn. digitales palmares proprii; 9 — r. communicans между n. medianus и n. ulnaris;  10 — r. superfieialis n. ulnaris;  11 — r. profundus n. ulnaris; 12 — os pisiforme; 13 — n. ulnaris.

Одна из ветвей, n. interósseus (antebráchii) antérior, сопровождает a. interóssea antérior на межкостной перепонке, и иннервирует глубокие сгибающие мышцы (m. fléxor póllicis lóngus и часть m. fléxor digitórum profúndus), m. pronátor quadrátus и лучезапястный сустав. Над лучезапястным суставом n. ediánus дает тонкую кожную ветвь — rámus palmáris n. mediáni, которая снабжает небольшой участок кожи на thénar и ладони. N. mediánus выходит на ладонь через canális cárpi вместе с сухожилиями сгибателей и делится на три ветви, nn. digitáles palmáres commúnes, которые идут вдоль первого, второго и третьего межпястных промежутков под ладонным апоневрозом по направлению к пальцам. Первая из них иннервирует мышцы thénar, за исключением m. addúctor póllicis и глубокой головки m. fléxor póllicis brévis, которые иннервируются локтевым нервом. Nn. digitáles palmáres communes в свою очередь делятся на семь nn. digitáles palmáres próprii, которые идут к обоим сторонам I–III пальцев и к лучевой стороне IV пальца. От этих же ветвей снабжается и кожа лучевой стороны ладони (рис. 311); пальцевые нервы снабжают также первую и вторую червеобразные мышцы.

Рис. 311. Кожная иннервация верхней конечности.

а — ладонная поверхность: 1 — n. cutaneus brachii medialis; 2 — n. cutaneus antebrachii medialis; 3 — r. palmaris n. mediani; 4 — r. cutaneus palmaris n. ulnaris; 5 — n. medianus; 6 — r. superificialis n. radialis; 7 — n. cutaneus antebrachii lateralis (от n. musculocutaneus); 8 — n. cutaneus brachii posterior (от n. radialis); 9 — nn. pectorales laterales; 10 — nn. supraclaviculares (от plexus cervicalis); 11 — n. cutaneus brachii lateralis superior (от n. axillaris); 

б — тыльная поверхность: 1 — n. cutaneus brachii lateralis superior (от n. axillaris); 2 — n. cutaneus brachii posterior et lateralis inferior (от n. radialis); 3 — n. cutaneus antebrachii lateralis (от n. musculocutaneus); 4 — n. cutaneus antebrachii posterior (от n. radialis); 5 — r. superficial n. radialis; 6 — n. medianus; 7 — r. cutaneus palmaris n. ulnaris; 8 — r. dorsalis n. ulnaris; 9 — n. cutaneus antebrachii medialis; 10 — n. cutaneus brachii medialis;  11 — rr. cutanet latt. nn. intercostalium; 12 — nn. supraclaviculares (от plexus cervicalis).

3. N. ulnáris, локтевой нерв (см. рис. 310, 311), выходящий из медиального пучка плечевого сплетения (СVII, СVIII, ThI), проходит по медиальной стороне плеча на заднюю поверхность медиального надмыщелка (здесь он лежит под кожей, почему его часто ушибают, что вызывает в медиальной зоне предплечья ощущение покалывания), затем ложится в súlcus ulnáris и далее в canális cárpi ulnáris, где идет вместе с соименными артерией и венами до ладони; на поверхности retináculum flexórum он переходит в свою конечную ветвь — rámus palmáris n. ulnáris. На плече локтевой нерв, так же как и срединный, не дает ветвей.

Ветви n. ulnáris на предплечье и кисти. Rámi articuláres к локтевому суставу.

Rámi musculáres для m. fléxor cárpi ulnáris и соседней с ним части m. fléxor digitórum profúndus.

Rámus cutáneus palmáris к коже hypothénar.

Rámus dorsális n. ulnáris уходит через промежуток между m. fléxor cárpi ulnáris и локтевой костью на тыл кисти, где она разделяется на пять тыльных пальцевых ветвей, nn. digitáles dorsáles для V, IV пальцев и локтевой стороны III пальца.

Rámus palmáris n. ulnáris, конечная ветвь локтевого нерва, на уровне os pisifórme делится на поверхностную и глубокую ветви, из которых поверхностная, rámus superficiális , снабжает мышечной веточкой m. palmáris brévis, затем кожу на локтевой стороне ладони и, разделившись, дает три nn. digitáles palmáres próprii к обеим сторонам мизинца и к локтевой стороне IV пальца.

Rámus profúndus , глубокая ветвь локтевого нерва, вместе с глубокой ветвью, a. ulnáris уходит через промежуток между m. fléxor и m. abdúctor dígiti mínimi и сопровождает глубокую ладонную дугу. Там она иннервирует все мышцы hypothénar, все mm. interóssei, третью и четвертую mm. lumbricáles, а из мышц thénar — m. addúctor póllicis и глубокую головку m. fléxor póllicis brévis. Rámus profúndus оканчивается тонким анастомозом с n. mediánus (см. рис. 310).

4. N. cutáneus bráchii mediális происходит из медиального пучка сплетения (из СVIII, ThI), идет по подмышечной ямке медиально от a. axilláris, соединяется обыкновенно с прободающей ветвью II грудного нерва, так называемого n. intercostobrachiális, и снабжает кожу на медиальной поверхности плеча вплоть до локтевого сустава.

5. N. cutáneus antebráchii mediális тоже из медиального пучка сплетения (из СVIII, ThI), в подмышечной ямке лежит рядом с n. ulnáris; в верхней части плеча располагается медиально от плечевой артерии рядом с v. basílica, вместе с которой прободает фасцию и становится подкожным. Нерв этот иннервирует кожу на локтевой (медиальной) стороне предплечья до лучезапястного сустава.

6. N. radiális, лучевой нерв (СV-СVIII, ThI), составляет продолжение заднего пучка плечевого сплетения. Он проходит сзади от плечевой артерии вместе с a. profúnda bráchii на заднюю сторону плеча, огибает спирально плечевую кость, располагаясь в canális humeromusculáris, и затем, прободая сзади наперед латеральную межмышечную перегородку, выходит в промежуток между m. brachioradiális и m. brachiális. Здесь нерв делится на поверхностную (rámus superficiális) и глубокую (rámus profúndus) ветви. Перед этим n. radiális дает следующие ветви :

Rámi musculáres на плече для разгибателей — m. tríceps и m. ancóneus. От последней веточки снабжаются еще капсула локтевого сустава и латеральный надмыщелок плеча, поэтому при воспалении последнего (эпикондилит) возникает боль по ходу всего лучевого нерва.

Nn. cutánei bráchii postérior et laterális inférior разветвляются в коже задней и нижнем отделе заднелатеральной поверхностей плеча.

N. cutáneus anterbráchii postérior берет начало от лучевого нерва в canális humeromusculáris, выходит под кожу над началом m. brachioradiális и распространяется на тыльной стороне предплечья.

Rámi musculáres идут к m. brachioradiális и m. exténsor cárpi radiális lóngus.

Rámus superficiális идет на предплечье в súlcus radiális латерально от a. radiális, а затем в нижней трети предплечья через промежуток между лучевой костью и сухожилием m. brachioradiális переходит на тыл кисти и снабжает пятью тыльными ветвями, nn. digitáles dorsáles , по бокам I и II палец, а также лучевую сторону III. Ветви эти обыкновенно оканчиваются на уровне последних межфаланговых суставов. Таким образом, каждый палец снабжается двумя тыльными и двумя ладонными нервами, проходящими по обеим сторонам.

Тыльные нервы происходят из n. radiális и n. ulnáris, иннервирующих каждый по 21/2 пальца, а ладонные — из n. mediánus и n. ulnáris, причем первый снабжает 31/2 пальца (начиная с большого), а второй — остальные 11/2 пальца (см. рис. 311).

Rámus profúndus проходит сквозь m. supinátor и, снабдив последний ветвью, выходит на дорсальную сторону предплечья, иннервируя m. exténsor cárpi radiális brévis и все задние мышцы предплечья. Продолжение глубокой ветви, n. interósseus (antebráchii) postérior, спускается между разгибателями большого пальца до лучезапястного сустава, который иннервирует. Из хода n. radiális видно, что он иннервирует все разгибатели как на плече, так и на предплечье, а на последнем еще и лучевую группу мышц. Соответственно этому на разгибательной стороне плеча и предплечья им иннервируется и кожа. Лучевой нерв — продолжение заднего пучка — является как бы задним нервом руки.

Передние ветви грудных нервов

Передние ветви, rámi ventráles, грудных нервов, nn. thorácici, носят название межреберных нервов, nn. intercostáles, так как они идут в межреберных промежутках, но XII идет по нижнему краю XII ребра (n. subcostális) (рис. 312).

Рис. 312. Схема межреберных нервов (нервный сегмент).

Верхние шесть межреберных нервов доходят до края грудины, нижние шесть проходят в толщу брюшной стенки, где в промежутке между поперечной и внутренней косой мышцами направляются к прямой мышце живота, куда проникают, пройдя через ее влагалище. XII межреберный нерв, проходящий по m. quadrátus lumbórum, близко подходит к лобковому симфизу, оканчиваясь в нижней части прямой мышцы и m. pyramidális.

На своем пути nn. intercostáles дают rámi musculáres для всех вентральных мышц в стенках грудной и брюшной полостей, а также для мышц вентрального происхождения на спине: mm. serrati posterióres superióres et inferióres и mm. levatóres costarum. Они также участвуют в иннервации плевры и брюшины.

Кроме того, от nn. intercostáles отходят два ряда прободающих ветвей, снабжающих кожу на боковой поверхности груди и живота — rámi cutánei lateráles (pectoráles et abdomináles) и на передней — rámi cutánei anterióres (pectoráles et abdomináles). От них отходят ветви к молочной железе: от боковых — rámi mámmárii lateráles и от передних — rámi mámmárii mediáles.

Rámi cutánei anterióres шести нижних межреберных нервов в качестве продолжения их концов прободают прямую мышцу живота и передний листок ее влагалища и разветвляются в коже живота в этой же области.

Пояснично-крестцовое сплетение

Из передних ветвей поясничных, крестцовых и копчикового нервов слагается пояснично-крестцовое сплетение, pléxus lumbosacrális. Это общее сплетение разделяется по областям на частные отделы, или сплетения: поясничное, крестцовое и копчиковое.

Поясничное сплетение

Поясничное сплетение, pléxus lumbális, образуется из передних ветвей трех верхних поясничных нервов и верхней части IV такого же нерва, а также веточки от XII межреберного нерва. Сплетение залегает спереди поперечных отростков поясничных позвонков в толще m. psóas májor и дает целый ряд ветвей, которые выходят частью из-под латерального, частью из-под медиального края этой мышцы, частью же прободают ее и появляются на ее передней поверхности. Ветви эти следующие :

1. Rámi musculáres к mm. psóas májor et mínor, m. quadrátus lumbórum и mm. intertransversárii lateráles lumbórum.

2. N. iliohvpogástricus (LI) выходит из-под латерального края m. psóas májor и ложится на переднюю поверхность m. quadrátus lumbórum параллельно XII межреберному нерву. Будучи, как и последний, сегментарным нервом, n. iliohvpogástricus подобно ему проходит между поперечной и внутренней косой мышцами живота, снабжая их мышечными ветвями, а также иннервирует кожу верхней части ягодицы и паховою канала выше его поверхностного отверстия.

3. N. ilioinguinalis (LI) — также сегментарный нерв, выходит из-под латерального края m. psóas májor и идет параллельно и книзу от n. iliohvpogástricus, а затем непосредственно в паховом канале, выходит через поверхностное паховое кольцо и разветвляется в коже лобка и мошонки или большой половой губы.

4. N. genitofemoralis (LII) проходит сквозь толщу m. psóas májor на переднюю поверхность этой мышцы и разделяется на две ветви, из которых одна, r. femorális, направляется к паховой связке, проходит под нее и разветвляется в коже бедра тотчас ниже этой связки. Другая ветвь, r. genitális, прободает заднюю стенку пахового канала и присоединяется к семенному канатику, снабжая m. cremáster и оболочки яичка.

5. N. cutáneus fémoris laterális (LII, LIII), выйдя из-под бокового края m. psóas májor, направляется по поверхности m. iliácus к spína ilíaca antérior supérior, где он прободает брюшную стенку и выходит на бедро, становится подкожным и спускается по боковой поверхности бедра до колена, иннервируя кожу.

6. N. femoralis, бедренный нерв — самая толстая ветвь поясничного сплетения (LII, LIII, LIV), выходит через lacúna musculórum на переднюю сторону бедра. Он ложится латерально от бедренной артерии, отделяясь от нее глубоким листком, fásciae látae, распадается на многочисленные ветви, из которых одни, rámi musculáres, иннервируют m. quadríceps, m. sartórius и m. pectíneus, a другие, rámi cutánei anterióres, снабжают кожу переднемедиальной поверхности бедра. Одна из кожных ветвей бедренного нерва, очень длинная, n. saphénus, ложится в canális adductórius латерально от a. femorális. У hiátus adductórius нерв покидает артерию, прободает переднюю стенку канала и становится поверхностным. На голени нерв сопровождает v. saphéna mágna. От него отходит rámus infrapatelláris  к коже нижней части колена и rámi cutánei crúris mediáles — к коже медиальной поверхности голени вплоть до такого же края стопы.

7. N. obturatorius, запирательный нерв (LII— LIV), проходит через запирательный канал на бедро и иннервирует m. obturatórius extérnus, тазобедренный сустав и все приводящие мышцы вместе с m. grácilis и m. pectíneus, а также кожу над ними.

Крестцовое сплетение

Крестцовое сплетение, pléxus sacrális, — самое значительное из всех сплетений, слагается из передних ветвей IV (нижней части) и V поясничного нерва и таких же ветвей четырех крестцовых нервов (SI—SIV), выходящих из передних отверстий крестца. Близость многочисленных пучков сплетения к крестцово-подвздошному сочленению обусловливает различные локализацию и иррадиацию болей при заболеваниях этого сочленения. Нервы сплетения, соединяясь друг с другом, образуют (рис. 313) толстый ствол седалищного нерва, выходящий через forámen infrapirifórme из тазовой полости. Ветви, отходящие от крестцового сплетения, можно разделить на короткие и длинные.

Рис. 313. Крестцовое и копчиковое сплетения (схема).

1  — cauda equina;  2 — vertebra lumbalis V; 3 — vertebrae sacrales; 4 — rr. ventrales nn. sacrales; 5 — n. pudendus; 6 — ветви к rectum; 7 — ветви к мышцам промежности; 8 — ветви к половым органам: 9 — corpora cavernosa; 10 — m. obturatorius internus; 11 — facies symphysialis; 12 — n. ischiadicus; 13 — n. cutaneus femoris posterior; 14 — ветви к ягодичным мышцам; 15 — ветви к мышцам задней поверхности тазобедренного сустава; 16 — ветви к fascia lata; 17 — crista iliaca;  18 — vasa iliaca externa; 19 — plexus coccygeus.

Первые разветвляются в области пояса нижней конечности, а вторые снабжают всю нижнюю конечность, за исключением той ее части, которая снабжена ветвями поясничного сплетения.

Короткие ветви (рис. 314).

Рис. 314. Нервы ягодичной области.

1 , 7 — m. gluteus maximus; 2 — n. gluteus superior; 3 — lig. sacrospinale; 4 — n. pudendus; 5 — rr. perineales; 6 — n. cutaneus femoris posterior; 8 — m. quadratus femoris; 9 — n. ischiadicus; 10 — m. piriformis; 11 — m. tensor fasciae latae; 12 — m. gluteus minimus.

1. Rámi musculáres для m. pirifórmis (из SI и SII), m. obturatórius intérnus с mm. gemélli и quadrátus fémoris (из LIV, LV, SI и SII), для mm. levátor áni et coccýgeus (SIII, SIV).

2. N. glúteus supérior (LIV и LV и от SI) выходит через forámen suprapirifórme из таза вместе с одноименной артерией и затем распространяется в m. glúteus médius, m. glúteus mínimus и m. ténsor fásciae látae.

3. N. glúteus inférior (LV, SI, SII), выйдя через forámen infrapirifórme, снабжает своими ветвями m. glúteus máximus и капсулу тазобедренного сустава.

4. N. pudendus (SI-SIV), выйдя через forámen infrapirifórme, уходит обратно в таз через forámen ischiádicum mínus. Далее n. pudéndus вместе с соименной артерией проходит по боковой стенке fóssa ischiorectális. В пределах последней от него отходят nn. rectáles inferióres, которые снабжают наружный сфинктер, m. sphíncter áni extérnus, и кожу в ближайшей окружности заднего прохода. На уровне седалищного бугра у заднего края diaphrágma urogenitále n. pudéndus делится на nn. perinéi и n. dorsális pénis (clitóridis). Первые, идя кпереди, иннервируют m. ischiocavernósus, m. bulbospongiósus и m. transvérsus perinéi superficiális, а также кожу промежности. Конечные ветви снабжают кожу задней стороны мошонки (nn. scrotáles posterióres) или больших половых губ (nn. labiáles posterióres). N. dorsális pénis (clitóridis) сопровождает в толще diaphrágma urogenitále a. dorsális pénis, дает веточки к m. transvérsus perinéi profúndus и m. sphincter uréthrae, проходит на спинку полового члена (или клитора), где распространяется в коже главным образом glans pénis. В составе n. pudéndus проходит большое число вегетативных волокон.

Длинные ветви. 1. N. cutáneus fémoris postérior (SI, SII, SIII) выходит из таза вместе с седалищным нервом, а затем спускается вниз под m. glúteus máximus на заднюю поверхность бедра. С медиальной своей стороны он дает веточки, идущие под кожу нижней части ягодицы (nn. clúnium inferióres) и к промежности (rámi perineáles). На бедре на поверхности задних мышц доходит книзу до подколенной ямки и дает многочисленные ветви, которые распространяются в коже задней стороны бедра и голени.

2. N. ischiádicus, седалищный нерв — самый крупный из нервов всего тела, представляет непосредственное продолжение крестцового сплетения, содержащее волокна всех его корешков. Выйдя из тазовой полости через большое седалищное отверстие ниже m. pirifórmis, прикрывается m. glúteus máximus. Дальше книзу нерв выходит из-под нижнего края этой мышцы и спускается отвесно на задней стороне бедра под сгибателями голени. В верхней части подколенной ямки он обыкновенно делится на две свои главные ветви: медиальную, более толстую, n. tibiális, и латеральную, потоньше, n. peronéis (fibuláris) commúnis. Довольно часто нерв бывает разделен на два отдельных ствола уже на всем протяжении бедра.

Ветви седалищного нерва .

1. Rámi musculáres к задним мышцам бедра: m. semitendinósus, m. semimembranósus и к длинной головке m. bíceps fémoris, а также к задней части m. addúctor mágnus. Короткая головка m. bíceps получает веточку от малоберцового нерва. Отсюда же отходит веточка к коленному суставу.

2. N. tibiális, большеберцовый нерв (LIV, LV, SI, SIII), идет прямо вниз посередине подколенной ямки по тракту подколенных сосудов, затем входит в canális cruropoplíteus и, сопровождая в нем а. и vv. tibiáles posterióres, доходит до медиальной лодыжки. Позади последней n. tibiális разделяется на свои конечные ветви, nn. plantáres laterális et mediális, проходящие в одноименных бороздках подошвы. В подколенной ямке от n. tibiális отходят rámi musculáres к m. gastrocnémius, m. plantáris, m. sleus и m. poplíteus, а также несколько веточек к коленному суставу. Кроме того, в подколенной ямке большеберцовый нерв отдает длинную кожную ветвь, n. cutáneus súrae mediális, которая идет вниз вместе с v. saphéna párva и иннервирует кожу заднемедиальной поверхности голени. На голени n. tibiális дает n. interósseus crúris, который иннервирует все три глубокие мышцы: m. tibiális posterior, m. fléxor hállucis lóngus и m. fléxor digitórum lóngus, заднюю сторону голеностопного сустава и дает позади медиальной лодыжки кожные ветви к коже пятки и медиального края стопы (рис. 315).

Рис. 315. Кожная иннервация нижней конечности.

а — задняя поверхность: 1 — nn. clunium superiores; 2 — nn. clunium medii; 3 — clunium inferiores; 4 — n. cutaneus femoris lateralis; 5 — rr. cutanei anterioris n. femoralis; 6 — n. cutaneus femoris posterior; 7 — r. cutaneus n. obturatorii; 8 — n. cutaneus surae lateralis (om n. peroneus communis); 9 — n. cutaneus surae medialis (от n. tibialis); 10 — n. suralis; 11 — n. plantaris lateralis; 12 — n. plantaris medialis;

б — передняя поверхность:  1 — r. cutaneus lateralis n. iliohypogastricl; 2 — n. genitofem oralis; 3 — n. cutaneus femoris lateralis; 4 — rr. cutanei untcriores n. femoralis; 5 — r. cutancus n. obturutorii; 6 — n. cutaneus surae lateralis (or n. peroneus comm.); 7 — n. saphenus (от n. femoralis); 8 — n. cutaneus surue medialis; 9 — n. peroneus superflcialis; 10 — n. suralis; 11 — n. peroneus profundus.

N. plantáris mediális вместе с одноименной артерией проходит в súlcus plantáris mediális вдоль медиального края m. fléxor digitórum brévis и снабжает эту мышцу и мышцы медиальной группы, за исключением m. addúctor hállucis и латеральной головки m. fléxor hállucis brévis. Затем нерв в конце концов распадается на семь nn. digitáles plantáres próprii , из которых один идет к медиальному краю большого пальца и попутно снабжает также первую и вторую mm. lumbricáles, а остальные шесть иннервируют кожу обращенных друг к другу сторон пальцев начиная с латеральной стороны большого и кончая медиальным краем IV (рис. 316).

Рис. 316. Нервы подошвы ( а ) и схема областей ее иннервации ( б ).

1 — n. plantaris lateralis; 2 — m. flexor digiti minimi brevis; 3 — mm. interossei dorsales; 4 — mm. interossei plantares; 5 — mm. lumbricales; 6 — caput transversum m. adductoris hallucis; 7 — caput obliquum m. adductoris hallucis; 8 — m. flexor hallucis brevis; 9 — m. abductor hallucis; 10 — m. quadratus plantae; 11 — m. flexor digitorum brevis; 12 — n. plantaris medialis; 13 — n. tibialis; 14 — область распространения ветвей n. sapheni; 15 — область иннервации n. tibialis; 16 — область иннервации n. plantaris lateralis; 17 — область иннервации n. plantaris medialis.

N. plantáris laterális идет по ходу одноименной артерии в súlcus plantáris laterális. Иннервирует посредством rámi musculáres все три мышцы латеральной группы подошвы и m. quadrátus plántae и делится на две ветви — глубокую и поверхностную. Первая, rámus profúndus, идет вместе с подошвенной артериальной дугой и снабжает третью и четвертую mm. lumbricáles и все mm. interóssei, а также m. addúctor hállucis и латеральную головку m. fléxor hállucis brévis. Поверхностная ветвь, rámus superficiális, дает ветви к коже подошвы и разделяется на три nn. digitáles plantáres próprii , идущие к обеим сторонам V пальца и к обращенной к последнему стороне IV пальца. В общем распределение nn. plantáres mediális et laterális соответствует ходу n. mediánus и n. ulnáris на кисти.

3. N. peronéus (fibuláris) commúnis, общий малоберцовый нерв (LIV, LV, SI, SII), идет латерально от n. tibiális к головке малоберцовой кости, где он прободает начало m. peronéus lóngus и делится на поверхностную и глубокую ветви. На своем пути n. peronéus commúnis дает n. cutáneus súrae laterális, иннервирующий кожу латеральной стороны голени. Ниже середины последней n. cutanéus súrae laterális соединяется с n. cutáneus súrae mediális, образуя n. surális, который огибает сзади латеральную лодыжку, давая ветви к коже пятки (rámi calcánei lateráles), а затем идет под названием n. cutáneus dorsális laterális по латеральному краю тыла стопы, снабжая кожу этого края и боковую сторону мизинца.

Поверхностная ветвь малоберцового нерва , n. peronéus (fibuláris) superficiális , спускается между mm. paronéi в canális musculoperonéus supérior, отдавая к ним мышечные ветви. На границе средней и нижней третей голени он в качестве уже только кожного нерва прободает фасцию и спускается на середину тыла стопы, разделяясь на две ветви. Одна из них, n. cutáneus dorsális mediális , иннервирует медиальную сторону большого пальца и обращенные друг к другу края II и III пальцев (nérvi digitáles dorsáles). Другая ветвь, n. cutáneus dorsális intermédius , делится на nn. digitáles pédis, иннервирующие обращенные друг к другу стороны тыльной поверхности II–V пальцев (см. рис. 315).

Глубокая ветвь малоберцового нерва , n. peronéus (fibuláris) profúndus , проходит в сопровождении a. tibiális antérior, отдавая ветви к m. tibiális antérior, m. exténsor digitórum lóngus и m. exténsor hállucis lóngus, а также rámus articuláris к голеностопному суставу. N. peronéus profúndus вместе с сопровождающей его артерией выходит на тыл стопы, иннервирует короткий разгибатель пальцев и затем, разделившись на два nn. digitáles dorsáles , снабжает кожу обращенных друг к другу поверхностей I и II пальцев.

В составе крестцового сплетения, относящегося к анимальной нервной системе, проходят преганглионарные, парасимпатические волокна, начинающиеся в боковых рогах II–IV крестцовых сегментов спинного мозга. Эти волокна в виде nérvi splánchnici pelvíni направляются к нервным сплетениям таза, иннервирующим тазовые внутренности: мочевой пузырь, сигмовидную и прямую кишку и внутренние половые органы.

Копчиковое сплетение

Копчиковое сплетение, pléxus coccýgeus, составляется передними ветвями V крестцового и копчикового нервов. Из него исходят тонкие nn. anococcýgei, которые, соединившись с задней ветвью копчикового нерва, разветвляются в коже у верхушки копчика.

ЧЕРЕПНЫЕ НЕРВЫ

Черепных нервов, nn. craniáles (encephalici), 12 пар: I — nn. olfactórii, II — n. ópticus, III — n. oculomotórius, IV — n. trochleáris, V — n. trigéminus, VI — n. abdúcens, VII — n. faciális, VIII — n. vestibulocochleáris, IX — n. glossopharýngeus, X — n. vágus, XI — n. accessórius, XII — n. hypoglóssus.

Черепные нервы имеют особенности, отличающие их от спинномозговых нервов. Эти особенности зависят главным образом от иных условий развития мозга и головы сравнительно со спинным мозгом и туловищем. Прежде всего первые два черепных нерва, связанные с передним мозгом, по своему характеру и происхождению занимают совершенно отдельное положение среди всех нервов. Они являются выростами мозга. Остальные черепные нервы, хотя принципиально и не отличаются от спинномозговых нервов, но тем не менее для них характерно то обстоятельство, что ни один из них не соответствует полному спинномозговому нерву, слагающемуся из переднего и заднего корешков. Каждый из черепных нервов представляет собой какой-нибудь один из этих двух корешков, которые в области головы никогда не соединяются вместе, что напоминает подобные же отношения, существующие у спинномозговых нервов примитивных позвоночных (миноги) (рис. 317). III, IV, VI, XI и XII черепные нервы соответствуют передним корешкам спинномозговых нервов, а V, VII, VIII, IX и X нервы гомологичны задним (рис. 318, 319).

Рис. 317. Схема черепных нервов низших позвоночных. Жаберные дуги обозначены арабскими цифрами, нервы — римскими.

Рис. 318. Схема черепных нервов человеческого эмбриона. Обозначения те же, что на рис. 317.

Рис. 319. Схема черепных нервов (римские цифры) взрослого человека.

Особенности черепных нервов связаны с прогрессивным развитием головного мозга.

Черепные нервы, как и спинномозговые, имеют ядра серого вещества: соматически-чувствительные (соответствующие задним рогам серого вещества спинного мозга), соматически-двигательные (соответствующие передним рогам) и вегетативные (соответствующие боковым рогам). Последние можно разделить на висцерально-чувствительные и висцерально-двигательные, из которых висцерально-двигательные иннервируют не только неисчерченную (гладкую) мускулатуру, но и скелетные мышцы висцерального происхождения. Учитывая, что исчерченные (скелетные) мышцы приобрели черты соматических мускулов, все ядра черепных нервов, имеющих отношение к таким мышцам независимо от их происхождения, лучше обозначать как соматически-двигательные.

В результате в составе черепных нервов имеются те же компоненты , что и в спинномозговых нервах.

Афферентные :

1. Соматически-чувствительные волокна, идущие от органов, воспринимающих физические раздражители (давление, температуру, звук и свет), т. е. от кожи, органов слуха и зрения, — II, V, VIII.

2. Висцерально-чувствительные волокна, идущие от органов, воспринимающих химические раздражители (растворенные или взвешенные в окружающей среде или во внутренних полостях частицы различных веществ), т. е. от нервных окончаний в органах пищеварения и других внутренностях, от специальных органов глотки, ротовой (органы вкуса) и носовой (органы обоняния) полостей, — I, V, VII, IX, X.

Эфферентные:

3. Соматически-двигательные волокна, иннервирующие произвольную мускулатуру, а именно: мышцы, происшедшие из головных миотомов, глазные мышцы (III, IV, VI), и подъязычную мускулатуру (XII), а также вторично сместившиеся в состав переднего отдела пищеварительного тракта мышцы скелетного типа — так называемые мышцы жаберного аппарата, ставшие у млекопитающих и человека жевательными, мимическими и т. п. (V, VII, IX, X, XI).

4. Висцерально-двигательные волокна, иннервирующие висцеральную мускулатуру, т. е. непроизвольную мускулатуру сосудов и внутренностей (органы пищеварения и дыхания), мышцу сердца, а также различного рода железы (секреторные волокна), — VII, IX, X.

В составе двигательных нервов к тем же органам проходят симпатические волокна, идущие из соответствующих симпатических узлов.

Из 12 пар черепных нервов соматически-чувствительным является VIII нерв, соматически-двигательными — III, IV, VI, XI, XII. Остальные нервы (V, VII, IX, X) являются смешанными.

Обонятельный нерв, который можно назвать висцерально-чувствительным, и зрительный — соматически-чувствительный занимают особое положение, что уже отмечалось.

Малое число соматически-двигательных нервов по сравнению с остальными находится в связи с редукцией миотомов головы, дающих начало лишь глазным мышцам. Развитие смешанных нервов, содержащих висцеральные компоненты, связано с эволюцией передней части кишечной трубки (хватательной и дыхательной), в области которой развивается висцеральный аппарат со сложной чувствующей областью и значительной мускулатурой.

Нервы, развившиеся путем слияния спинномозговых нервов

К этой группе относится один нерв — n. hypoglóssus.

Подъязычный нерв (XII)

N. hypoglóssus, подъязычный нерв, есть результат слияния 3–4 спинномозговых (затылочных) сегментарных нервов, существующих у животных самостоятельно и иннервирующих подъязычную мускулатуру. Соответственно обособлению из нее мышц языка эти нервы (затылочные и передние спинномозговые) у высших позвоночных и человека сливаются вместе, образуя как бы переходную группу от спинномозговых нервов к черепным. Этим объясняются положение ядра нерва не только в головном мозге, но и в спинном, положение самого нерва в переднелатеральной борозде продолговатого мозга вблизи спинного мозга и выход его многими корешковыми нитями (10–15), а также связь с передними ветвями I и II шейных нервов в виде ánsa cervicális (см. рис. 272; рис. 320).

Рис. 320. Схема начала ветвления и связей подъязычного нерва.

1 — fossa rhomboidea; 2 — canalis hypoglossalis; 3 — соединительные ветви подъязычного нерва с верхним симпатическим шейным узлом и с нижним узлом блуждающего нерва; 4 — n. hypoglossus; 5 , 6 — ветви подъязычного нерва к мышцам языка; 7 — ветви к m. geniohyoideus; 8 — os hyoideum; 9 — ветвь к щитоподъязычной мышце; 10 — ветви к грудино-подъязычной мышце; 11 — ветви к грудино-щитовидной мышце; 12 — ветвь к лопаточно-подъязычной мышце; 13 — внутренняя яремная вена; 14 — нижний корешок шейной петли; 15 — верхний корешок шейной петли; 16 — внутренняя яремная вена; 17 — внутренняя сонная артерия: 18 — nn. cervicales; 19 — nucl. n. hypoglossi.

Подъязычный нерв, являясь мышечным, содержит эфферентные (двигательные) волокна к мышцам языка и афферентные (проприоцептивные) волокна от рецепторов этих мышц. В нем проходят также симпатические волокна от верхнего шейного симпатического узла. Он имеет связи с n. linguális, с нижним узлом n. vági, с I и II шейными нервами.

Единственное соматически-двигательное ядро нерва, заложенное в продолговатом мозге, в области trigónum n. hypoglóssi ромбовидной ямки, спускается через продолговатый мозг, доходя до I–II шейного сегмента; оно входит в систему ретикулярной формации. Появляясь на основании мозга между пирамидой и оливой несколькими корешками, нерв затем проходит через одноименный канал затылочной кости, canális hypoglóssalis, спускается по латеральной стороне a. carótis intérna, проходит под задним брюшком m. digástricus и идет в виде дуги, выпуклой книзу, по латеральной поверхности m. hyoglóssus. Здесь дуга подъязычного нерва ограничивает сверху треугольник Пирогова.

При высоком расположении дуги подъязычного нерва треугольник Пирогова имеет большую площадь и наоборот. У переднего края m. hyoglóssus подъязычный нерв распадается на свои конечные ветви, которые входят в мускулатуру языка. Часть волокон подъязычного нерва идет в составе ветвей лицевого нерва к круговой мышце рта, почему при поражении ядра нерва несколько страдает и функция этой мышцы.

Одна из ветвей нерва, rádix supérior, спускается вниз, соединяется с rádix inférior шейного сплетения и образует вместе с ним шейную петлю — ánsa cervicális (рис. 321).

Рис. 321. Схема связей подъязычного нерва с шейными спинномозговыми нервами.

1 — ветви к m. rectus capitis anterior и к m. longus capitis; 2 — пучок волокон из С1 в составе radix superior n. hypoglossi; 3 — n. hypoglossus; 4 — ветвь к m. geniohyoideus; 5 — ветвь к m. thyrohyoideus;  6 — radix superior n. hypoglossi; 7 — rr. musculares; 8 — radix inferior шейного сплетения в составе шейной петли.

Следовательно, ánsa cervicális — шейная петля, представляет соединение последнего черепного нерва (подъязычного) с первым сплетением спинномозговых нервов, шейным сплетением. От этой петли иннервируются мышцы, расположенные ниже подъязычной кости, и m. geniohyoídeus. Rádix supérior подъязычного нерва состоит целиком из волокон I и II шейных нервов, присоединившихся к нему из шейного сплетения.

Эту морфологическую связь подъязычного нерва с шейным сплетением можно объяснить развитием нерва, а также тем, что мышцы языка при акте глотания функционально тесно связаны с мышцами шеи, действующими на подъязычную кость и щитовидный хрящ.

Нервы жаберных дуг

К этой группе относятся V, VII, IX и X черепные нервы, которые как гомологи задних корешков спинномозговых нервов снабжены лежащими вне мозга нервными узлами с находящимися в них псевдоуниполярными клетками. Эти нервы развиваются в связи с задним (ромбовидным) мозгом. Наряду с чувствительными волокнами они содержат в себе и двигательные, иннервирующие мускулатуру жаберного аппарата.

Типичный висцеральный нерв у рыб, обслуживающий висцеральную (жаберную) дугу, обычно состоит из наджаберного узла, gánglion epibranchiále (от греч. branchiae — жабры), преджаберной ветви, rámus pretremáticus, состоящей из чувствительных волокон, и зажаберной ветви, rámus posttremáticus, содержащей и чувствительные, и двигательные волокна. Чувствительные волокна обеих ветвей являются отростками нейронов, лежащих в наджаберном узле, а двигательные проходят мимо узла, как в спинномозговом нерве. Эти характерные черты строения типичного висцерального нерва и будут проявляться более или менее отчетливо в строении указанных нервов.

В этой группе будут описаны также XI пара, n. accessórius, который является отщеплением X нерва, и VIII пара, n. vestibulocochleáris. Последний является афферентным нервом, обособившимся в процессе развития от лицевого нерва, и поэтому, хотя он и не относится к нервам жаберных дуг, данные о нем будут изложены после VII пары.

Тройничный нерв (V)

N. trigéminus, тройничный нерв, развивается в связи с первой жаберной дугой (мандибулярной) и является смешанным. Чувствительными своими волокнами иннервирует кожу лица и передней части головы, граничит сзади с областью распространения в коже задних ветвей шейных нервов и ветвей шейного сплетения. Кожные ветви (задние) II шейного нерва заходят на территорию тройничного нерва, вследствие чего возникает пограничная зона смешанной иннервации шириной в 1–2 поперечника пальца. Тройничный нерв также является проводником чувствительности от рецепторов слизистых оболочек рта, носа, уха и конъюнктивы глаза, кроме тех отделов их, которые являются специфическими рецепторами органов чувств (иннервируемых из I, II, VII, VIII и IX пар) (см. рис. 272; рис. 322).

Рис. 322. Схема тройничного нерва.

1 — gangl. trigeminale; 2 — первая ветвь n. trigemini; 3 — вторая ветвь n. trigemini; 4 — третья ветвь n. trigemini; 5 — дно IV желудочка;  6 — n. lingualis; 7 — ветви к жевательной мускулатуре.

В качестве нерва первой жаберной дуги n. trigéminus иннервирует развившиеся из нее жевательные мышцы и мышцы дна полости рта и содержит исходящие от их рецепторов афферентные (проприоцептивные) волокна, заканчивающиеся в núcleus mesencephálicus n. trigémini.

В составе ветвей нерва проходят, кроме того, секреторные (вегетативные) волокна к железам, находящимся в области лицевых полостей.

Поскольку тройничный нерв является смешанным, он имеет четыре ядра, из которых два чувствительных и одно двигательное заложены в заднем мозге, а одно чувствительное (проприоцептивное) — в среднем мозге. Отростки клеток, заложенных в двигательном ядре (núcleus motórius), выходят из моста на линии, отделяющей мост от средней ножки мозжечка и соединяющей место выхода nn. trigémini et faciális (línea trigeminofaciális), образуя двигательный корешок нерва, rádix motória. Рядом с ним в вещество мозга входит чувствительный корешок, rádix sensória. Оба корешка составляют ствол тройничного нерва, который по выходе из мозга проникает под твердую оболочку дна средней черепной ямки и ложится на верхнюю поверхность пирамиды височной кости у ее верхушки, там, где находится impréssio trigémini. Здесь твердая оболочка, раздваиваясь, образует для него небольшую полость, cávum trigeminále. В этой полости чувствительный корешок имеет большой тройничный узел , gánglion trigeminále . Центральные отростки клеток этого узла составляют rádix sensória и идут к чувствительным ядрам: núcleus pontinus n. trigémini, núcleus spinális n. trigémini и núcleus mesencephálicus n. trigémini, а периферические идут в составе трех главных ветвей тройничного нерва, отходящих от выпуклого края узла.

Ветви эти следующие: первая, или глазная, n. ophthálmicus, вторая, или верхнечелюстная, n. maxilláris, и третья, или нижнечелюстная, n. mandibuláris. Двигательный корешок тройничного нерва, не принимающий участия в образовании узла, проходит свободно под последним и затем присоединяется к третьей ветви. Тройничный нерв человека является результатом слияния двух нервов животных: 1) n. ophthálmicus profúndus, или n. trigéminus I, и 2) n. maxillomandibuláris, или n. trigéminus II. Следы этого слияния бывают заметны и в gánglion trigeminále нерва, который часто бывает двойным. Соответственно этому rámus ophthálmicus есть бывший n. ophthálmicus profúndus, а две остальные ветви составляют n. maxillomandibuláris, который, являясь нервом первой жаберной дуги, имеет строение типичного висцерального нерва: gánglion trigéminale его гомологичен наджаберному узлу, rámus maxilláris — преджаберной ветви, a rámus mandibuláris — зажаберной ветви. Этим объясняется, что rámus mandibuláris является смешанной ветвью, а rádix motória минует узел нерва.

Каждая из трех ветвей тройничного нерва посылает тонкую веточку к твердой оболочке головного мозга.

В области разветвлений каждой из трех ветвей n. trigéminus находится еще несколько небольших нервных узелков, относящихся к вегетативной нервной системе, но описываемых обыкновенно при тройничном нерве. Эти вегетативные (парасимпатические) узлы образовались из клеток, выселившихся в процессе эмбриогенеза по путям ветвей тройничного нерва, чем и объясняется сохранившаяся на всю жизнь связь с ними, а именно: с n. ophthálmicus — gánglion ciliáre, с n. maxilláris — g. pterygopalatínum, с n. mandibuláris — g. óticum и с n. linguális (из третьей ветви) — g. submandibuláre.

Первая ветвь тройничного нерва (рис. 323). N. ophthálmicus, глазной нерв, выходит из полости черепа в глазницу через fissúra orbitális supérior, но перед вступлением в нее еще делится на три ветви: n. frontális, n. lacrimális и n. nasociliáris.

Рис. 323. Нервы глазницы; вид сверху.

1  — m. levator palpebrae superioris; 2 — gl. lacrimalis; 3 — m. rectus oculi superior; 4 — n. lacrimalis; 5 — m. rectus oculi lateralis; 6 — fossa cranii media; 7 — m. temporalis;  8 — m. pterygoideus lateralis; 9 — n. mandibuluris; 10 — n. accessorius; 11 — n. vagus; 12 — n. glossophuryngeus; 13 — n. cochlearis VIII пары; 14 — p. vestibularis VIII пары;  15 — n. facialis;  16 , 18 — n. nbducens; 17 — n. trigeminus; 19 — gangl. trigeminale; 20 — n. oculomotorius; 21 — a. carmis interna; 22 — n. maxillaris; 23 — n. opticus; 24 — n. ophthalmicus; 25 — n. trochlcarb; 26 — m. obliquus oculi suporior; 27 — lam. cribrosa; 28 — n. nasoeiliaris; 29 — crista galli; 30 — n. supraorbitulis; 31 — n. frontalis; 32 — trochlea;  33 — sinus frontalis.

1. N. frontális, лобный нерв, направляется прямо кпереди под крышей глазницы через incisúra (или forámen) supraorbitális в кожу лба, здесь он называется n. supraorbitális, давая по пути ветви в кожу верхнего века и медиального угла глаза.

2. N. lacrimális, слезный нерв, идет к слезной железе и, пройдя через нее, оканчивается в коже и конъюнктиве латерального угла глаза. До входа в слезную железу n. lacrimális соединяется с n. zygomáticus (от второй ветви тройничного нерва). Через этот «анастомоз» n. lacrimális получает секреторные волокна для слезной железы и снабжает ее также чувствительными волокнами.

3. N. nasociliáris, носоресничный нерв, иннервирует переднюю часть носовой полости (nn. ethmoidáles antérior et postérior), глазное яблоко (nn. ciliáres lóngi), кожу медиального угла глаза, конъюнктиву и слезный мешок (n. infratrochlearis). От него отходит также соединительная ветвь к gánglion ciliáre. N. ophthálmicus осуществляет чувствительную (проприоцептивную) иннервацию глазных мышц при помощи связей с III, IV и VI нервами.

Gándlion ciliáre, ресничный узел, в форме продолговатого комочка около 1,5 мм длиной лежит в задней части глазницы на боковой стороне зрительного нерва. В этом узле, относящемся к вегетативной нервной системе, прерываются парасимпатические волокна, идущие из добавочного ядра глазодвигательного нерва в составе n. oculomotórius к мышцам глаза. От переднего конца узла отходят 3–6 nn. ciliáres bréves, которые прободают склеру глазного яблока в окружности зрительного нерва и идут внутрь глаза. Через эта нервы проходят (после перерыва их в узле) указанные парасимпатические волокна к m. sphíncter pupíllae и m. ciliáris.

Вторая ветвь тройничного нерва (рис. 324).

Рис. 324. Верхнечелюстной нерв.

1  — r. dentalis superior; 2 — n. zygomaticus; 3 — n. maxillaris; 4 — n. canalis pterygoidei; 5 — n. ophthalmicus; 6 — n. trigeminus; 7 — n. mandibularis;  8 — chorda tympani; 9 — gangl., oticum; 10 — веточки gangl. pterygopalatinum к n. maxillaris; 11 — n. massetericus; 12 — n. alveolaris inferior; 13 — n. lingualis; 14 — gangl. pterygopalatinum; 15 — n. infraorbitalis.

N. maxilláris, верхнечелюстной нерв, выходит из полости черепа через forámen rotúndum в крыловидно-небную ямку; отсюда его непосредственным продолжением является n. infraorbitális, идущий через fissúra orbitális inférior в súlcus и canális infraorbitális на нижней стенке глазницы и затем выходящий через forámen infraorbitále на лицо, где он распадается на пучок ветвей. Ветви эти, соединяясь отчасти с ветвями n. faciális, иннервируют кожу нижнего века, боковой поверхности носа и верхней губы.

От n. maxilláris и его продолжения, n. infraorbitális, отходят, кроме того, следующие ветви:

1. N. zygomáticus, скуловой нерв, к коже щеки и передней части височной области.

2. Nn. alveoláres superióres в толще maxílla образуют сплетение, pléxus deritális supérior, от которого отходят rámi dentáles superióres к верхним зубам и rámi gingiváles superióres к деснам.

3. Rr. ganglionáres соединяют n. maxilláris с gánglion pterygopalatínum.

Gánglion pterygopalatínum, крылонебный узел, расположен в крыловидно-небной ямке медиально и книзу от n. maxillaris. В узле, относящемся к вегетативной нервной системе, прерываются парасимпатические волокна, идущие из вегетативного ядра n. intermédius к слезной железе и железам оболочки слизистой носа и неба в составе самого нерва и далее в виде n. petrósus major (ветвь лицевого нерва).

Gánglion pterygopalatínum отдает следующие (секреторные) ветви (рис. 325):

Рис. 325. Обонятельный нерв, крылонебный узел, ветви тройничного нерва.

1 — meatus nasi inferior; 2 , 4 , 7 — conchae nasales inferior, media et superior; 3 — meatus nasi medtus; 5 — bulbus olfactorius; 6 — nn. olfactorii; 8 — sinus sphenoidalis; 9 — n. opticus; 10 , 23 — a. carotis interna; 11 — n. oculomotorius; 12 — gangl. pterygopalatinum; 13 — n. ophthalmicus; 14 — n. maxillaris; 15 — gangl. trigeminale; 16 — n. canalis pterygoidei; 17 — n. trigeminus; 18 — n. petrosus major; 19 — n. petrosus profundus; 20 , 31 — n. facialis; 21 — VIII пара черепных нервов; 22 — plexus sympathicus вокруг a. carotis interna; 24 — n. lingualis; 25 — n. alveolaris inferior; 26 — chorda tympani; 27 — a. meningea media; 28 — a. maxillaris; 29 — processus styloideus; 30 — processus mastoideus; 32 — gI. parotis; 33 — lam. perpendicularis ossis palatini; 34 — m. pterygoideus medialis; 35 — nn. palatini; 36 — palatum molle; 37 — palatum durum; 38 — labium superius.

1) rámi nasáles posterióres идут через forámen sphenopalatínum к железам слизистой оболочки носа; наиболее крупная из них, n. nasopalatinus, проходит через, canális incisívus, к железам слизистой оболочки твердого неба; 2) nn. palatíni спускаются по canális palatínus májor и, выходя через forámina palatína május et mínus, иннервируют железы слизистой оболочки твердого и мягкого неба.

В составе нервов, отходящих от крылонебного узла, проходят, кроме секреторных волокон, еще чувствительные (от второй ветви тройничного нерва) и симпатические волокна. Таким образом, волокна n. intermédius (парасимпатической части лицевого нерва), проходящие по n. petrósus májor, через крылонебный узел иннервируют железы носовой полости и нёба, а также слезную железу. Эти волокна идут из крылонебного узла через n. zygomáticus, а из него в n. lacrimális.

Третья ветвь тройничного нерва (рис. 326).

Рис. 326. Нижнечелюстной нерв.

1  — n. maxillaris; 2 — n. alveolaris superior; 3 , 4 — n. infraorbitalis; 5 — n. buccalis;  6 — m. buccinator; 7 , 10 — n. alveolaris inferior; 8 — m. massoter; 9 — n. lingualis; 11 — m. pterygoideus laterulis; 12 — n. massetericus; 13 — n. facialis; 14 — n. auriculotemporalis; 15 — m. temporalis.

N. mandibuláris, нижнечелюстной нерв, имеет в своем составе, кроме чувствительного, весь двигательный корешок тройничного нерва, идущий из упомянутого двигательного ядра, núcleus motórius, к мускулатуре, возникшей из нижнечелюстной дуги, а потому иннервирует мышцы, прикрепляющиеся к нижней челюсти, кожу, ее покрывающую, и другие производные нижнечелюстной дуги. По выходе из черепа через forámen ovále он делится на две группы ветвей.

А. Мышечные ветви:

К соименным мышцам: n. massetéricus, nn. temporáles profúndi, nn. pterygoídei mediális et laterális, n. tensóris týmpani, n. tensóris véli palatíni, n. mylohyoídeus; последний отходит от n. alveoláris inférior, ветви n. mandibuláris, и иннервирует также переднее брюшко m. digastricus.

Б. Чувствительные ветви:

1. N. buccális к слизистой оболочке щеки.

2. N. linguális ложится под слизистую оболочку дна полости рта. Отдав n. sublinguális к слизистой оболочке дна полости рта, он иннервирует слизистую оболочку спинки языка на протяжении ее передних двух третей. В том месте, где n. linguális проходит между обеими крыловидными мышцами, к нему присоединяется выходящая из fissúra petrotympánica тонкая веточка лицевого нерва — chórda týmpani. В ней проходят исходящие из núcleus salivatórius supérior n. intermédii парасимпатические секреторные волокна для подъязычной и поднижнечелюстной слюнных желез. Она несет также в своем составе вкусовые волокна от передних двух третей языка. Волокна самого n. linguális, распространяющиеся в языке, являются проводниками общей чувствительности (осязания, боли, температурной чувствительности).

3. N. alveoláris inférior через forámen mandíbulae вместе с одноименной артерией уходит в канал нижней челюсти, где дает ветви ко всем нижним зубам, предварительно образовав сплетение, pléxus dentális inférior. У переднего конца canális mandíbulae n. alveoláris inférior дает толстую ветвь, n. mentális, которая выходит из forámen mentále и распространяется в коже подбородка и нижней губы. N. alveoláris inférior — чувствительный нерв с небольшой примесью двигательных волокон, которые выходят из него у forámen mandíbulae в составе n. mylohyoídeus (см. выше).

4. N. auriculotemporális проникает в верхнюю часть околоушной железы и идет в височную область, сопровождая a. temporális superficiális. Дает секреторные ветви к околоушной слюнной железе (о происхождении их см. ниже), а также чувствительные ветви к височно-нижнечелюстному суставу, к коже передней части ушной раковины, наружного слухового прохода и к коже виска.

В области третьей ветви тройничного нерва имеются два узелка, относящихся к вегетативной системе, через посредство которых происходит главным образом иннервация слюнных желез. Один из них — gánglion óticum, ушной узел представляет небольшое кругловатое тело, расположенное под forámen ovále на медиальной стороне n. mandibuláris. К нему приходят парасимпатические секреторные волокна в составе n. petrósus minor, являющегося продолжением n. tympánicus, происходящего из языкоглоточного нерва. Волокна эти прерываются в узле и идут к околоушной железе через посредство n. auriculotemporális, с которым gánglion óticum находится в соединении. Другой узелок, gánglion submandibuláre, поднижнечелюстной узел, располагается у переднего края m. pterygoídeus mediális, поверх поднижнечелюстной слюнной железы, под n. linguális. Узел связан ветвями с n. linguális. Через посредство этих ветвей идут к узлу и оканчиваются в нем волокна chórda týmpani; продолжением их служат исходящие из gánglion submandibuláre волокна, иннервирующие поднижнечелюстную и подъязычную слюнные железы.

Лицевой нерв (VII)

N. faciális (n. intermedio-facialis), лицевой нерв, является смешанным нервом; в качестве нерва второй жаберной дуги иннервирует развившиеся из нее мышцы все мимические и часть подъязычных и содержит исходящие из его двигательного ядра эфферентные (двигательные) волокна к этим мышцам и исходящие от рецепторов последних афферентные (проприоцептивные) волокна. В его составе проходят также вкусовые (афферентные) и секреторные (эфферентные) волокна, принадлежащие так называемому промежуточному нерву, n. intermédius (см. ниже) (рис. 327).

Рис. 327. Схема лицевого нерва.

1 — дно IV желудочка; 2 — nucl. n. facialis; 3 — stylomastoideum; 4 — m. auricularis posterior; 5 — venter occipitalis; 6 — venter posterior m. digastrici; 7 — m. styiohyoideus;  8 — ветви n. facialis к мимической мускулатуре и к m. piatysma; 9 — m. depressor angulioris; 10 — m. mentalis; 11 — m. depressor labii inferioris; 12 — m. buccinator; 13 — orbicularis oris; 14 — m. levator labii superiores; 15 — levator anguli oris; 16 — zygomaticus; 17 — m. orbicularis oculi; 18 — m. corrugator supercilii; 19 — venter frontalis m. epicranii; 20 — chorda tympani; 21 — n. lingualis; 22 — gangl. pterygopalatinum; 23 — gangl. trigemjnale; 24 — carotis interna; 25 — n. intermedius; 26 — n. facialis; 27 — vestibulocochlearis.

Соответственно компонентам, составляющим его, n. faciális имеет три ядра , заложенных в мосту: двигательное — núcleus motórius nérvi faciális чувствительное — núcleus solitárius и секреторное — núcleus salivatórius supérior. Последние два ядра принадлежат nérvus intermédius.

N. faciális выходит на поверхность мозга сбоку по заднему краю моста, на linea trigeminofaciális, рядом с n. vestibulocochleáris. Затем он вместе с последним нервом проникает в pórus acústicus intérnus и вступает в лицевой канал (canális faciális). В канале нерв вначале идет горизонтально, направляясь кнаружи, затем в области hiátus canális n. petrósi majóris он поворачивает под прямым углом назад и также горизонтально проходит по внутренней стенке барабанной полости в верхней ее части. Миновав пределы барабанной полости, нерв снова делает изгиб и спускается вертикально вниз, выходя из черепа через forámen stylomastoídeum. В том месте, где нерв поворачивая назад, образует угол (коленце, genículum), чувствительная (вкусовая) часть его образует небольшой нервный узелок, gánglion genículi (узел коленца).

При выходе из forámen stylomastoídeum лицевой нерв вступает в толщу околоушной железы и разделяется на свои конечные ветви. На пути в одноименном канале височной кости n. faciális дает следующие ветви (рис. 328):

Рис. 328. Отношение нервов и сосудов к височной кости (схема).

1  — n. stapedius; 2 — chorda tympani;  3 — plexus tympanicus; 4 — r. communicans n. facialis к plexus tympanicus; 5 — gangl. geniculi; 6 — n. facialis; 7 — n. intermedius;  8 — VIII пара черепных нервов; 9 , 19 — r. comnunicans со сплетением вокруг a. meningea media; 10 — n. petrosus major; 11 — caroticotympanicus;  12 — n. petrosus minor; 13 — plexus sympathicus a. carotis internae; 14 — n. petros profundus; 15 — n. canalis pterygoidei; 16 — nn. pierygopalatini; 17 — n. maxillaris; 18 — gangl. pterygopalatinum; 20 — plexus sympathicus a. meningeae mediae; 21 — gangl. oticum; 22 — ветви от gangl. oticum к auriculotemporalis; 23 — r. communicans между gangl. oticum и chorda tympani; 24 — n. massetericus; 25 — n. mandibularis; 26 — n. lingualis; 27 — n. alveolaris inferior; 28 — n. auriculotemporalis; 29 — a. tympanica; 30 — n. glossopharyngeus;  31 — n. vagus (gangl. superius); 32 — r. auricularis n. vagi; 33 — r. communicans n.facialis к r. auricrularis n. vagi; 34 — ветвь n. facialis к m. styiohyoideus; 35 — ветвь n. facialis к vender posterior m. digastrici; 36 — n. auricularis posterior; 37 — processus masioideus.

1. N. petrósus májor (секреторный нерв) берет начало в области коленца и выходит через hiátus canális n. petrósi majóris; затем он направляется по одноименной бороздке на передней поверхности пирамиды височной кости, súlcus n. petrósi majóris, проходит в canális pterygoídeus вместе с симпатическим нервом, n. petrósus profúndus, образуя с ним общий n. canális pterygoídei, и достигает gánglion pterygopalatínum. Нерв прерывается в узле и его волокна в составе rami nasáles posterióres и nn. palatíni идут к железам слизистой оболочки носа и нёба; часть волокон в составе n. zygomáticus (из n. maxilláris) через связи с n. lacrimális достигает слезной железы.

2. N. stapédius (мышечный) иннервирует m. stapédius.

3. Chórda týmpani (смешанная ветвь), отделившись от лицевого нерва в нижней части лицевого канала, проникает в барабанную полость, ложится там на медиальную поверхность барабанной перепонки, а затем уходит через fissúra petrotympánica. Выйдя из щели наружу, она спускается вниз и кпереди и присоединяется к n. linguális.

Чувствительная (вкусовая) часть chórdae tympani (периферические отростки клеток, лежащих в gánglion geniculi) идет в составе n. linguális к слизистой оболочке языка, снабжая вкусовыми волокнами две передние трети его. Секреторная часть подходит к gánglion submandibuláre и после перерыва в нем снабжает секреторными волокнами поднижнечелюстную и подъязычную слюнные железы.

После выхода из forámen stylomastoídeum от n. faciális отходят следующие мышечные ветви:

1. N. auriculáris postérior иннервирует m. auriculáris postérior и venter occipitális m. epicránii.

2. Rámus digástricus иннервирует заднее брюшко m. digástricus и m. stylohyoídeus.

3. Многочисленные ветви к мимической мускулатуре лица образуют и околоушной железе сплетение, pléxus parotídeus. Ветви эти имеют в общем радиарное направление сзади наперед и, выходя из железы, идут на лицо и верхнюю часть шеи, широко анастомозируя с подкожными ветвями тройничного нерва. В них различают:

a) rámi temporĆles к mm. auriculáres antérior et supérior, vénter frontáli m. epicrámus и m. orbiculáris óculi;

б) rámi zygomátici к m. orbiculáris óculi и m. zygomáticus;

в) rámi buccáles к мышцам в окружности рта и носа;

г) rámus marginális mandíbulae — ветвь, идущую по краю нижней челюсти мышцам подбородка и нижней губы;

д) rámus cólli, которая спускается на шею и иннервирует m. platýsma (рис. 329).

Рис. 329. Иннервация кожи головы и мимической мускулатуры.

1 — ветвь n. frontalis; 2 — n. supraorbitalis; 3 — ветви n. auriculotemporalis; 4 — r. zygomalicus n. facialis; 5 — n. auriculotemporaiis: 6 , 7 — rr. buccales n. facialis; 8 — n. infraorbitalis; 9 — r. marginalis mandibulae; 10 — n. mentalis;  11 — n. transversus colli; 12 — r. colli n. facialis; 13 — n. auricularis magnus; 14 — r. communicans n. facialis к plexus cervicalis; 15 — n. facialis; 16 — n. auricularis posterior; 17 — n. occipitalis minor;  18 — n occipitalis major.

N. intermédius, промежуточный нерв, является смешанным нервом. Он содержит афферентные (вкусовые) волокна, идущие к его чувствительному ядру (núcleus solitárius). и афферентные (секреторные, парасимпатические), исходящие из его вегетативною (секреторного) ядра (núcleus salivatórius supérior).

N. intermédius выходит из мозга тонким стволиком между n. faciális и n. vestibulocochleáris; пройдя некоторое расстояние между обоими этими нервами, он присоединяется к лицевому нерву, становится его составной частью, отчего n. intermédius называют pórtio intermédia n. faciális. Далее он переходит в chórda týmpani и n. petrósus májor. Чувствительные его волокна возникают из отростков псевдоуниполярных клеток gánglion genículi. Центральные отростки этих клеток идут в составе n. intermédius в мозг, где оканчиваются в núcleus solitárius. Периферические отростки клеток проходят в chórda týmpani, проводя вкусовую чувствительность от передней части языка и мягкого неба. Секреторные парасимпатические волокна от n. intermédius начинаются в núcleus salivatórius supérior и направляются по chórda týmpani к подъязычной и поднижнечелюстной железам (через посредство ganglion submandibuláre) и по n. petrósus májor через gánglion pterygopalatínum к железам слизистой оболочки носовой полости и неба. Слезная железа получает секреторные волокна из n. intermédius через n. petrósus májor, gánglion pterygopalatínum и анастомоз второй ветви тройничного нерва с n. lacnmalis Таким образом можно сказать, что от n. lacrimalis (рис. 330).

Таким образом можно сказать, что от n. intermédius иннервируются все железы, за исключением glándula parótis, получающей секреторные волокна от n. glossopharýngeus.

Рис. 330. Схема тройничного, лицевого (промежуточного) и языкоглоточного нервов и их связи с узлами.

1 — n. trigeminus; 2 — gangl. trigeminale; 3 — n. ophthalmicus; 4 — n. maxillaris; 5 — n. mandibularis; 6 — gangl. ciliare; 7 — gangl. oticum; 8 — gangl. submandibulare; 9 — n. oculomotorius;  10 — gangl. pterygopalatinum; 11 — n. facialis; 12 — n. glossopharyngeus; 13 — gl. laerimalis; 14 — n. auriculotemporalis; 15 — gl. sublingualis; 16 — gl. submandibularis;  17 — lingua.

Преддверно-улитковый нерв (VIII)

N. vestibulocochleáris, преддверно-улитковый, — обособившийся от лицевого нерва афферентный нерв, содержит соматически-чувствительные волокна, идущие от органа слуха и гравитации. Он состоит из двух частей — pars vestibuláris и pars cochleáris, которые по своим функциям различны, pars vestibuláris является проводником импульсов от статического аппарата, заложенного в преддверии (vestíbulum) и полукружных протоках лабиринта внутреннего уха, a pars cochleáris проводит слуховые импульсы от находящегося в улитке (cóchlea) спирального органа, воспринимающего звуковые раздражения.

Поскольку эти части чувствительные, каждая из них снабжена собственным нервным узлом, содержащим биполярные нервные клетки. Узел pars vestbuláris, называемый gánglion vestibuláre, лежит на дне внутреннего слухового прохода, а узел pars cochleáris — gánglion spirále — помещается в улитке.

Периферические отростки биполярных клеток узлов оканчиваются в воспринимающих приборах вышеуказанных отделов лабиринта, о чем подробнее см.: «Орган слуха» и «Орган гравитации и равновесия». Центральные их отростки, выйдя из внутреннего уха через pórus acústicus intérnus направляются в составе соответствующих частей нерва к мозгу; они вступают в него сбоку лицевого нерва, достигая своих ядер; pars vestibuláris — четырех и cochleáris — двух ядер.

Языкоглоточный нерв (IX)

N. glossopharýngeus, языкоглоточный нерв (рис. 331), нерв 3-й жаберной дуги, в процессе развития отделился от X пары нервов, n. vágus.

Рис. 331. Схема языкоглоточного нерва.

1 — n. facialis; 2 — n. tympanicus; 3 — gangl. inferius n. IX; 4 — n. glossopharyngeus; 5 — gangl. oticum; 6 — gangl. pterygopalatinum; 7 — gangl. trigeminale; 8 — n. petrosus minor; 9 — n. petrosus major.

Он содержит, в себе три рода волокон: 1) афферентные (чувствительные), идущие от рецепторов глотки, барабанной полости, слизистой оболочки языка (задней трети), миндалин и небных дужек; 2) эфферентные (двигательные), иннервирующие одну из мышц глотки (m. stylopharýngeus); 3) эфферентные (секреторные), парасимпатические, для glándula parótis. Соответственно своим компонентам он имеет три ядра : núcleus solitárius , к которому приходят центральные отростки клеток 2 афферентных узлов — gánglia supérius et inférius (см. ниже). Вегетативное (секреторное), парасимпатическое, ядро, núcleus salivatórius inférior (нижнее слюноотделительное ядро), состоит из клеток, рассеянных в formátio reticuláris около третьего ядра, двигательного, общего с n. vágus núcleus ambíguus (см. рис. 283). N. glossopharyngéus выходит своими корешками из продолговатого мозга позади оливы, над n. vágus, и вместе с последним покидает череп через forámen juguláre. В пределах последнего чувствительная часть нерва образует узел, gánglion supérius, и по выходе из отверстия — другой узел, gánglion inférius, лежащий на нижней поверхности пирамиды височной кости. Нерв спускается вниз, сначала между v. juguláris intérna и a. carótis intérna, а затем огибает сзади m. stylopharýngeus и по латеральной стороне этой мышцы подходит пологой дугой к корню языка, где он делится на свои конечные ветви (рис. 332).

Рис. 332. Нервы языка.

1 — n. hypoglossus; 2 — n. lingualis; 3 — gangl. submandibulare; 4 — n. glossopharyngeus; 5 — gl. sublingualis; 6 — gl. submandibularis.

Ветви языкоглоточного нерва:

1. N. tympánicus отходит от gánglion inférius и проникает в барабанную полость (cávitas týmpani), где образует сплетение, pléxus tympánicus, к которому подходят ветви и от симпатического сплетения внутренней сонной артерии Это сплетение иннервирует слизистую оболочку барабанной полости и слуховой трубы. По выходе из барабанной полости через верхнюю стенку в виде n. petrósus mínor нерв проходит в одноименной бороздке, súlcus n. petrósi minóris, по передней поверхности пирамиды височной кости и достигает gánglion óticum. Через этот нерв приносятся к gánglion óticum исходящие из núcleus salivatórius inférior парасимпатические секреторные волокна для около-ушной железы. После перерыва в узле секреторные волокна подходят к железе в составе n. auriculotempoáalis от третьей ветви тройничного нерва.

2. Ramus m. stylopharýngei к одноименной мышце.

3. Rámi tonsilláres к слизистой оболочке небных миндалин и дужек.

4. Rámi pharýngei к глоточному сплетению (pléxus pharýngeus).

5. Rámi liguáles (рис. 333), конечные ветви языкоглоточного нерва к слизистой оболочке задней трети языка, снабжающие ее чувствительными волокнами, среди которых проходят и вкусовые волокна к papíllae vallátae.

6. R. sínus carótici — чувствительный нерв к sínus caróticus (glómus caróticum) (см. рис. 197).

Рис. 333. Схема областей чувствительной иннервации языка (чувствительные поля).

Впереди пограничной борозды ( 1 ) — желобовидные сосочки ( 2 ), сзади ( 3 ) — область иннервации n. glossopharyngeus; передняя часть языка ( 4 ) — область иннервации n. lingualis; по краям языка ( 5 ) — область иннервации n. glossopharyngeus; у корня языка ( 6 ) — область иннервации языка ветвью верхнего гортанного нерва (n. laryngeus superior).

Блуждающий нерв (X)

N. vagus, блуждающий нерв (см. рис. 272; рис. 334, 335), развившийся из 4-й и последующих жаберных дуг, называется так вследствие обширности его распространения.

Рис. 334. Блуждающий и языко-глоточный нервы, шейная часть симпатического ствола.

1 — rr. cardiaci inferiores n. vagi; 2 — n. laryngeus inferior; 3 — rr. cardiaci superiores; 4 — plexus pharyngeus; 5 — n. hypoglossus; 6 — n. laryngeus superior; 7 — n. lingualis;  8 — rr. pharyngei n. vagi; 9 — n. glossopharyngeus; 10 , 11 — ветви n. accessorii; 12 , 15 , 17 , 19 — II, III, IV и V шейные спинномозговые нервы; 13 — gangl. cervicale superius; 14 , 16 — n. vagus; 15 — n. phrenicus; 20 — gangl. cervicale medius; 21 — plexus brachialis; 22 — gangl. cervicale inferius; 23 , 24 , 26 , 28 — II, III, IV и V грудные узлы truncus sympathicus; 25 — n. laryngeus recurrens; 27 — plexus pulmonalis. 

Рис. 335. Схема блуждающего и добавочного нервов.

1 — r. communicans n. vagi к n. facialis; 2 — n. glossopharyngeus; 3 — n. accessorius; 4 — r. communicans к n. hypoglossus; 5 — r. communicans к tr. sympathicus; 6 — lingua; 7 — os hyoideum;  8 — larynx; 9 — trachea; 10 — n. laryngeus recurrens dexter; 11 — n. laryngeus recurrens sinister; 12 — n. vagus sinister; 13 — aorta; 14 — pulmo sinister; 15 — cor; 16 — diaphragma; 17 — gaster; 18 — hepar; 19 — gangl. coeliacum dextrum; 20 — gangl. cardiacus; 21 — pulmo dexter; 22 — esophagus; 23 — разветвления n. laryngeus inferior в мышцах гортани; 24 — n. laryngeus superior; 25 — m. trapezius; 26 — m. sternocleidomastoideus; 27 — n. accessorius, проходящий через for. jugulare; 28 — ядра n. vagi и n. accessorii; 29 — ядро n. vagi; 30 — n. facialis.

Это самый длинный из черепных нервов. Своими ветвями блуждающий нерв снабжает дыхательные органы, значительную часть пищеварительного тракта (до cólon sigmoideum), а также дает ветви к сердцу, которое получает от него волокна, замедляющие сердцебиение. N. vágus содержит в себе троякого рода волокна:

1. Афферентные (чувствительные) волокна, идущие от рецепторов названных внутренностей и сосудов, а также от некоторой части твердой оболочки головного мозга и наружного слухового прохода с ушной раковиной к чувствительному ядру (núcleus solitárius).

2. Эфферентные (двигательные) волокна для произвольных мышц глотки, мягкого неба и гортани и исходящие от рецепторов этих мышц эфферентные (проприоцептивные) волокна. Эти мышцы получают волокна от двигательного ядра (núcleus ambíguus).

3. Эфферентные (парасимпатические) волокна, исходящие из вегетативного ядра (núcleus dorsális n. vági). Они идут к миокарду сердца (замедляют сердцебиение) и мышечной оболочке сосудов (расширяют сосуды). Кроме того, в состав сердечных ветвей блуждающего нерва входит так называемый n. depréssor, который служит чувствительным нервом для самого сердца и начальной части аорты и заведует рефлекторным регулированием кровяного давления. Парасимпатические волокна иннервируют также трахею и легкие (суживают бронхи), пищевод, желудок и кишечник до cólon sigmoídeum (усиливают перистальтику), заложенные в названных органах железы и железы брюшной полости — печень, поджелудочную железу (секреторные волокна), почки.

Парасимпатическая часть блуждающего нерва очень велика, вследствие чего он по преимуществу является вегетативным нервом, важным для жизненных функций организма. Блуждающий нерв представляет сложную систему, состоящую не только из нервных проводников разнородного происхождения, но и содержащую внутриствольные нервные узелки.

Волокна всех видов, связанные с тремя главными ядрами блуждающего нерва, выходят из продолговатого мозга в его súlcus laterális postérior, ниже языкоглоточного нерва, 10–15 корешками, которые образуют толстый ствол нерва, покидающий вместе с языкоглоточным и добавочным нервами полость черепа через forámen juguláre. В яремном отверстии чувствительная часть нерва образует небольшой узел — gánglion supérius, а по выходе из отверстия — другое ганглиозное утолщение веретенообразной формы — gánglion inférius. Тот и другой узел содержит псевдоуниполярные клетки, периферические отростки которых входят в состав чувствительных ветвей, идущих к названным узлам от рецепторов внутренностей и сосудов (gánglion inférius) и наружного слухового прохода (gánglion supérius), а центральные группируются в одиночный пучок, который заканчивается в чувствительном ядре, núcleus solitárius.

По выходе из полости черепа ствол блуждающего нерва спускается вниз на шею позади сосудов в желобке, сначала между v. juguláris intérna и а. саrótis intérna, а ниже — между той же веной и a. cárotis commúnis, причем он лежит в одном влагалище с названными сосудами. Далее блуждающий нерв проникает через верхнюю апертуру грудной клетки в грудную полость, где правый его ствол располагается спереди a. subclávia, а левый — на передней стороне дуги аорты. Спускаясь вниз, оба блуждающих нерва отходят сзади на той и другой сторонах корень легкого и сопровождают пищевод, образуя сплетения на его стенках, причем левый нерв проходит по передней стороне, а правый — по задней. Вместе с пищеводом оба блуждающих нерва проникают через hiátus esophágeus диафрагмы в брюшную полость, где образуют сплетения на стенках желудка. Стволы блуждающих нервов в утробном периоде располагаются симметрично по бокам пищевода. После поворота желудка слева направо левый vágus, перемещается вперед, а правый назад, вследствие чего на передней поверхности разветвляется левый vágus, а на задней — правый. От n. vágus отходят следующие ветви:

А. В головной части (между началом нерва и gánglion inférius):

1. Rámus meníngeus к твердой оболочке головного мозга в области задней черепной ямки.

2. Rámus auriculáris к задней стенке наружного слухового прохода и части кожи ушной раковины. Это единственная кожная веточка из черепных нервов, не относящаяся к n. trigéminus.

Б. В шейной части :

1. Rámi pharýngei вместе с ветвями n. glossopharýngeus и trúncus sympáthicus образуют сплетение, pléxus pharýngeus. Глоточные ветви блуждающего нерва иннервируют констрикторы глотки, мышцы небных дужек и мягкого неба (за исключением m. ténsor véli palatíni). Глоточное сплетение дает еще чувствительные волокна к слизистой оболочке глотки.

2. N. laryýgeus supérior снабжает чувствительными волокнами слизистую оболочку гортани выше голосовой щели, часть корня языка и надгортанника и двигательными — часть мышц гортани и нижний констриктор глотки.

3. Rámi cardíaci cervicáles superióres et inferióres, частью могут выходить из n. larýngeus supérior, образуют сердечное сплетение.

В. В грудной части:

1. N. larýngeus recúrrens, возвратный гортанный нерв, отходит в том месте, где n. vágus лежит спереди дуги аорты (слева) или подключичной артерии (справа). На правой стороне этот нерв огибает снизу и сзади a. subclávia, а на левой — также снизу и сзади дугу аорты и затем поднимается кверху в желобке между пищеводом и трахеей, давая им многочисленные ветви, rámi esophágei и rámi tracheáles. Конец нерва, носящий название n. larýngeus inférior, иннервирует часть мышц гортани, слизистую оболочку ее ниже голосовых связок, участок слизистой оболочки корня языка около надгортанника, а также трахею, глотку и пищевод, щитовидную и вилочковую железы, лимфатические узлы шеи, сердце и средостение.

2. Rámi cardíaci thorácici берут начало от n. larýngeus recúrrens и грудной части n. vágus и идут к сердечному сплетению.

3. Rámi bronchiáles et tracheáles вместе с ветвями симпатического ствола образуют на стенках бронхов сплетение, pléxus pulmonális. За счет ветвей этого сплетения иннервируется мускулатура и железы трахеи и бронхов, а кроме того, оно содержит в себе и чувствительные волокна для трахеи, бронхов и легких.

4. Rámi esophágei идут к стенке пищевода.

Г. В брюшной части :

Сплетения блуждающих нервов, идущие по пищеводу, продолжаются на желудок, образуя выраженные стволы, trúnci vagáles (передний и задний). Каждый trúncus vagális представляет собой комплекс нервных проводников не только парасимпатической, но также симпатической и афферентной анимальной нервной системы и содержит волокна обоих блуждающих нервов.

Продолжение левого блуждающего нерва, спускающегося с передней стороны пищевода на переднюю стенку желудка, образует сплетение, pléxus gástricus antérior, расположенное в основном вдоль малой кривизны, от которого отходят перемешивающиеся с симпатическими ветвями rámi gástrici anterióres к стенке желудка (к мышцам, железам и слизистой оболочке). Некоторые веточки через малый сальник направляются к печени. Правый n. vágus на задней стенке желудка в области малой кривизны образует также сплетение, pléxus gástricus postérior, дающее rámi gástrici posterióres; кроме того, бóльшая часть его волокон в виде rámi coelíaci идет по тракту a. gástrica sinístra к gánglion coeliácum, а отсюда по ветвям сосудов вместе с симпатическими сплетениями к печени, селезенке, поджелудочной железе, почкам, тонкой и толстой кишке до cólon sigmoídeum. В случаях одностороннего или частичного повреждения X нерва нарушения касаются главным образом его анимальных функций. Расстройства висцеральной иннервации могут быть сравнительно нерезко выражены. Это объясняется, во-первых, тем, что в иннервации внутренностей имеются зоны перекрытия, а во-вторых, тем, что в стволе блуждающего нерва на периферии имеются нервные клетки — вегетативные нейроны, играющие роль в автоматической регуляции функций внутренностей.

Добавочный нерв (XI)

N. accessórius, добавочный нерв (см. рис. 272, 335), развивается из последних жаберных дуг, мышечный, содержит эфферентные (двигательные) и афферентные (проприоцептивные) волокна и имеет два двигательных ядра , заложенных в продолговатом и спинном мозге. Соответственно ядрам в нем различают церебральную и спинальную части. Церебральная часть выходит из продолговатого мозга тотчас ниже n. vágus. Спинальная часть добавочного нерва формируется между передними и задними корешками спинномозговых нервов (С2—С5) и отчасти из передних корешков трех верхних шейных нервов, поднимается в виде нервного стволика вверх и присоединяется к церебральной части. Поскольку n. accessórius является отщепившейся частью блуждающего нерва, он и выходит с ним из полости черепа через forámen juguláre иннервирует m. trapézius и отделившийся от него m. sternocleidomastoídeus. Церебральная порция добавочного нерва в составе n. larýngeus recúrrens идет для иннервации мышц гортани.

Спинальная порция добавочного нерва принимает участие в двигательной иннервации глотки, достигая ее мышц в составе блуждающего нерва, от которого добавочный нерв отщепился не полностью.

Общность и близость добавочного и языкоглоточного нервов с блуждающим объясняются тем, что IX, X и XI пары черепных нервов составляют одну группу жаберных нервов — группу вагуса, из которой выделился IX нерв и отщепился XI.

Нервы, развивающиеся в связи с головными миотомами

К этой группе относятся III, IV и VI пары черепных нервов, соответствующие передним корешкам спинномозговых нервов, выходящие из среднего мозга, в котором и заложены их ядра. Ядро VI пары вторично сместилось из среднего мозга в область ромбовидной ямки. Эти нервы являются двигательными корешками головных миотомов, поэтому они иннервируют мышцы глазного яблока, развившиеся из этих миотомов.

Глазодвигательный нерв (III)

N. oculomotórius, глазодвигательный нерв, по развитию — двигательный корешок первого предушного миотома, является мышечным нервом. Содержит: 1) идущие из его соматически-двигательного ядра эфферентные (двигательные) волокна к большинству наружных мышц глазного яблока; 2) идущие от núcleus accessórius парасимпатические волокна к внутренним глазным мышцам (m. sphíncter pupíllae и m. ciliáris) (см. рис. 272). N. oculomotórius выходит из мозга по медиальному краю ножки мозга, а затем идет до fissúra orbitális supérior, через которую входит в глазницу. Вступая в глазницу, делится на две ветви:

1. Верхнюю ветвь, rámus supérior, к m. réctus supérior и m. levátor pálpebrae superióris.

2. Нижнюю ветвь, rámus inférior, к m. réctus inférior, m. réctus mediális и m. oblíquus inférior. От нижней ветви отходит к gánglion ciliáre корешок нерва, rádix oculomotória, несущий парасимпатические волокна для m. sphíncter pupíllae и m. ciliáris.

Блоковой нерв (IV)

N. trochleáris, блоковой нерв, по развитию — двигательный корешок второго предушного миотома, является мышечным нервом и содержит идущие от его соматически-двигательного ядра эфферентные (двигательные) волокна к верхней косой мышце глаза. Выйдя с дорсальной стороны верхнего мозгового паруса, огибает латерально ножку мозга и через fissúra orbitális supérior входит в глазницу; оканчивается в m. oblíquus supérior (см. рис. 272).

Отводящий нерв (VI)

N. abducens, отводящий нерв, — двигательный корешок третьего предушного миотома, является мышечным нервом и содержит идущие из его соматически-двигательного ядра , заложенного в мосту, эфферентные (двигательные) волокна к латеральной прямой мышце глаза. Выходит из мозга у заднего края моста, проходит через fissúra orbitális supérior в глазницу и вступает в m. réctus laterális (см. рис. 272).

Афферентные (пронриоцептивные) волокна для наружных глазных мышц, соответствующие эфферентным волокнам III, IV и VI нервов, идут в составе первой ветви V нерва, n. ophthálmicus.

Многие авторы допускают наличие афферентных (проприоцептивных) волокон во всех трех двигательных нервах глазного яблока.

Нервы — производные мозга

К этой группе относятся nn. olfactórii и n. ópticus (см. рис. 272).

Обонятельные нервы (I)

Nn. olfactórii, обонятельные нервы, развиваются из обонятельного мозга, возникшего в связи с рецептором обоняния. Они содержат висцерально-чувствительные волокна, идущие от органов восприятия химического раздражения. Поскольку нервы являются выростами переднего мозга, они не имеют узла, а представляют собой совокупность тонких нервных нитей, fíla olfactória, числом 15–20, которые являются центральными отростками обонятельных клеток, залегающих в régio olfactória слизистой оболочки носовой полости. Fíla olfactória проходят через отверстия lámina cribrósa в верхней стенке носовой полости и затем оканчиваются в búlbus olfactórius, продолжающуюся в tráctus et trigónum olfactórium.

Зрительный нерв (II)

N. ópticus, зрительный нерв, в процессе эмбриогенеза вырастает как ножка глазного бокала из промежуточного мозга, а в процессе филогенеза связан со средним мозгом, возникающим в связи с рецептором света, чем и объясняются его прочные связи с этими отделами головного мозга. Он является проводником световых раздражений и содержит соматически-чувствительные волокна. Как производное мозга он не имеет узла, так же как и I пара черепных нервов, а входящие в его состав афферентные волокна составляют продолжение нейритов мультиполярных нервных клеток сетчатки глаза. Отойдя от заднего полюса глазного яблока, n. ópticus покидает глазницу через canális ópticus и, войдя в полость черепа вместе с таким же нервом другой стороны, образует перекрест, chiásma ópticum, лежащий в súlcus chiasmátis клиновидной кости (перекрест неполный, перекрещиваются лишь медиальные волокна нерва). Продолжением зрительного пути за хиазмой служит tráctus ópticus, оканчивающийся в córpus geniculátum laterále, púlvinar thálami и в верхнем холмике крыши среднего мозга (подробно см. «Орган зрения»). Между обеими сетчатками имеется связь посредством нервного пучка, идущего через передний угол перекреста. Эта связь аналогична комиссуральным связям полушарий мозга. Наличие указанной связи объясняет тот факт, что при повреждениях или заболеваниях одного глаза имеются выпадения поля зрения и в другом глазу.

Топография ядер черепных нервов, места входа их в мозг или выхода из него и из полости черепа представлены в табл. 2.

ПЕРИФЕРИЧЕСКАЯ ИННЕРВАЦИЯ СОМЫ

Каждый нерв распределяется посредством своих волокон в пределах определенной кожной или мышечной зоны, вследствие чего вся кожа и вся мускулатура могут быть поделены на зоны, соответствующие области разветвления данного кожного или мышечного нерва. Такая иннервация называется периферической, или зональной. Знание ее весьма важно для диагностики поражения нервов. На рис. 336 представлена периферическая иннервация кожи.

Рис. 336. Схема периферической чувствительной иннервации.

1 — n. ophthalmicus (V пара, 1-я ветвь); 2 — n. maxillaris (V пара, 2-я ветвь); 3 — n. mandibularis (V пара, 3-я ветвь); 4 — n. auricularis magnus (от plexus cervicalis); 5 — n. occipitalis minor (от plexus cervicalis); 6 — n. occipitalis major ( C 11); 7 — r. auricularis n. vagi;  8 — n. transversus coin (от plexus cervicalis); 9 , 21 — задние ветви шейных нервов; 10 — rr. supraclaviculares mediales et intermedii (от plexus cervicalis); 11  — n. axillaris (от plexus brachialis); 12 — nn. intercostales (rr. cutanei anteriores); 13 — nn. intercostales (rr. cutanei laterales); 14 — n. iliohypogastricus (от plexus lumbalis); 15 , 16 — r. femoralis и r. genitalis n. genitofemoralis (от plexus lumbalis); 17 — n. cutanens femoris lateralis (от plexus lumbalis);  18 — rr. cutanei anteriores (от n. femoralis); 19 — r. cutaneus n. obturatorii; 20 — rr. perineales n. cutanei femoris posterioris; 22 — rr. dorsales nn. thoracicorum; 23 — rr. dorsales nn. lumbalium; 24 — rr. dorsales nn. sacralium (от nn. clunium medii); 25 — nn. clunium siperiores; 26 — nn. clunium inferiores; 27 — n. cutaneus femoris posterior.

Что касается иннервации мышц, то о ней говорилось при описании каждой мышцы. Схема периферической иннервации мышц показана на рис. 337.

Рис. 337. Корешковая и периферическая иннервация мышц (схема).

Мышца 2 иннервируется I и II спинно-мозговыми сегментами; мышца 1 иннервируется I, II и  III спинномозговыми сегментами; 3 , 4 — нервы; 5 , 6 , 7 — корешки; 8 , 9 — группы клеток в передних рогах; 10 — задний рог.

Так как большинство нервов человеческого тела смешанные, то при их поражении расстройства чувствительности почти всегда сочетаются с двигательными. Область чувствительных расстройств в общем соответствует области, снабжаемой данным нервом. Однако соответствие оказывается далеко не полным, и зоны анестезии в действительности всегда значительно меньше указанных на схеме. Это зависит от частичного «перекрытия» данного нерва соседними и от их многочисленных связей. С этой точки зрения каждую область данного нерва можно разделить на три зоны:

1. Автономная зона, снабжаемая только данным нервом; при повреждении его наступает полная анестезия.

2. Смешанная зона, снабжаемая данным нервом и отчасти соседними; при повреждении данного нерва наблюдается частичное выпадение чувствительности — гипестезия.

3. Максимальная зона, снабжаемая полностью соседними нервами и лишь частично данным; при повреждении последнего чувствительность совсем не нарушается, так как сохраняется за счет соседних нервов.

Сегментарная, или корешковая, иннервация (рис. 338).

Рис. 338. Сегментарное распределение волокон задних корешков в коже. Буквы и цифры указывают сегменты спинного мозга, к которым в основном подходят афферентные волокна от данного участка кожи.

Сообразно сегментарному строению организма каждый нервный сегмент (невромер) связан с соответствующим сегментом тела (сомитом). Поэтому каждый задний корешок спинномозгового нерва и каждый спинномозговой узел имеют отношение к иннервации того сегмента кожи (дерматома), который связан с ним в процессе эмбрионального развития. Точно так же и каждый передний корешок иннервирует те мышцы, которые произошли вместе с ним из данного сегмента (миотома) и вместе образуют нервно-мышечный сегмент. В результате вся кожа и вся мускулатура могут быть разделены на ряд последовательных корешковых зон, или поясов, иннервируемых соответствующими задними или передними нервными корешками. Это и составляет корешковую, или сегментарную, иннервацию тела, которая представлена на рис. 338. В отличие от зон периферической иннервации отдельных кожных нервов зоны корешковой иннервации имеют ту особенность, что волокна, относящиеся к одному заднему корешку или к одному сегменту, хотя бы они и шли в составе различных нервов, снабжают на коже определенную сплошную область, соответствующую всему данному нервному сегменту, или корешку, и потому называемую корешковым поясом. Корешковые, или сегментарные, зоны чувствительной иннервации идут на коже полосами, как показано на рис. 338. Поэтому в типичных случаях не представляет труда отличить сегментарное расстройство чувствительности от периферического. Так, при воспалении заднего корешка (радикулит) появляются опоясывающие боли или опоясывающий лишай, точно соответствующий данному корешковому поясу кожи. В практическом отношении важно знать, что соседние нервные сегменты целиком перекрывают друг друга, так что каждый сегмент кожи иннервируется тремя соседними нервными сегментами. Поэтому при перерезке одного корешка не удается обнаружить никаких расстройств чувствительности. Чтобы выпала чувствительность в одном сегменте кожи, надо перерезать три соседних нервных корешка, что следует учитывать при операциях. Также и при определении области поражения спинного мозга надо учитывать перекрытие сегментов и локализовать ее выше границ кожной анестезии на 1–2 сегмента.

ЗАКОНОМЕРНОСТИ РАСПРЕДЕЛЕНИЯ НЕРВОВ

1. Соответственно группировке органов тела вокруг нервной системы нервы расходятся в стороны от срединной линии, на которой располагается центральная нервная система (спинной и головной мозг).

2. Соответственно строению тела по принципу двусторонней симметрии нервы являются парными и идут симметрично.

3. Соответственно метамерному строению туловища нервы этой области сохраняют сегментарное строение (nn. intercostáles, ilioinguinális, iliohypogástricus).

4. Нервы идут по кратчайшему расстоянию от места выхода из спинного или головного мозга к органу. Этим объясняется отхождение коротких ветвей к близлежащим органам и длинных — к отдаленным, идущих, однако, приблизительно по прямой линии, например n. ischiádicus.

При перемещении органа от места первичной закладки в область окончательного расположения его после рождения нерв растет и следует за органом.

5. Нервы мышц отходят от сегментов спинного мозга, соответствующих миотомам, из которых происходит данная мышца. Поэтому даже при последующем перемещении мышцы она получает иннервацию от источника, расположенного вблизи первоначальной закладки. Этим объясняется иннервация трункопетальных мышц туловища, переместившихся на туловище с головы — от черепных нервов (n. accessórius), а с шеи — от шейного сплетения, или трункофугальных мышц конечностей от основного нервного сплетения данной конечности, например мышц пояса верхней конечности от плечевого сплетения. Этим же объясняется иннервация диафрагмы, закладывающейся на шее, от n. phrénicus, происходящего из шейного сплетения.

Таким образом, по месту происхождения нерва можно определить область эмбрионального развития органа, ибо существует соответствие между происхождением нерва и местом закладки органов.

6. Если мышца представляет собой продукт слияния нескольких миотомов, то она иннервируется несколькими нервами (например, иннервация широких мышц живота межреберными нервами и ветвями поясничного сплетения). То же наблюдается в отношении висцеральных мышц, развивающихся из материала нескольких жаберных дуг. Так, переднее брюшко двубрюшной мышцы, возникающее из 1-й жаберной дуги, иннервируется тройничным нервом, а заднее брюшко, производное 2-й жаберной дуги, — лицевым нервом.

7. Поверхностные нервы (кожные) сопровождают подкожные вены, глубокие нервы сопровождают артерии, вены и лимфатические сосуды, образуя вместе с ними сосудисто-нервные пучки.

8. Нервы, заложенные в сосудисто-нервных пучках, как и эти последние, располагаются на сгибательных поверхностях данной области тела в защищенных, укрытых местах.

ВЕГЕТАТИВНАЯ (АВТОНОМНАЯ) НЕРВНАЯ СИСТЕМА

Выше отмечалась коренная качественная разница в строении, развитии и функции неисчерченных (гладких) и исчерченных (скелетных) мышц. Скелетная мускулатура участвует в реакции организма на внешние воздействия и отвечает на изменение среды быстрыми и целесообразными движениями. Гладкая мускулатура, заложенная во внутренностях и сосудах, работает медленно, но ритмично, обеспечивая течение жизненных процессов организма. Эти функциональные различия связаны с разницей в иннервации: скелетная мускулатура получает двигательные импульсы от анимальной, соматической части нервной системы, гладкая мускулатура — от вегетативной.

Вегетативная нервная система управляет деятельностью всех органов, участвующих в осуществлении растительных функций организма (питание, дыхание, выделение, размножение, циркуляция жидкостей), а также осуществляет трофическую иннервацию (И. П. Павлов).

Трофическая функция вегетативной нервной системы определяет питание тканей и органов применительно к выполняемой ими функции в тех или иных условиях внешней среды (адаптационно-трофическая функция).

Известно, что изменения в состоянии высшей нервной деятельности отражаются на функции внутренних органов и, наоборот, изменение внутренней среды организма оказывает влияние на функциональное состояние центральной нервной системы. Вегетативная нервная система усиливает или ослабляет функцию специфически работающих органов. Эта регуляция имеет тонический характер, поэтому вегетативная нервная система изменяет тонус органа. Так как одно и то же нервное волокно способно действовать лишь в одном направлении и не может одновременно повышать и понижать тонус, то сообразно с этим вегетативная нервная система распадается на два отдела, или части: симпатическую и парасимпатическую — pars sympáthica и pars parasympáthica.

Симпатический отдел по своим основным функциям является трофическим. Он осуществляет усиление окислительных процессов, потребление питательных веществ, усиление дыхания, учащение деятельности сердца, увеличение поступления кислорода к мышцам.

Роль парасимпатического отдела охраняющая: сужение зрачка при сильном свете, торможение сердечной деятельности, опорожнение полостных органов.

Сравнивая область распространения симпатической и парасимпатической иннервации, можно, во-первых, обнаружить преобладающее значение одного какого-либо вегетативного отдела. Мочевой пузырь, например, получает в основном парасимпатическую иннервацию, и перерезка симпатических нервов не изменяет существенно его функции; только симпатическую иннервацию получают потовые железы, волосковые мышцы кожи, селезенка, надпочечники. Во-вторых, в органах с двойной вегетативной иннервацией наблюдается взаимодействие симпатических и парасимпатических нервов в форме определенного антагонизма. Так, раздражение симпатических нервов вызывает расширение зрачка, сужение сосудов, ускорение сердечных сокращений, торможение перистальтики кишечника; раздражение парасимпатических нервов приводит к сужению зрачка, расширению сосудов, замедлению сердцебиения, усилению перистальтики.

Однако так называемый антагонизм симпатической и парасимпатической частей не следует понимать статически, как противопоставление их функций. Эти части взаимодействующие, соотношение между ними динамически меняется на различных фазах функции того или иного органа; они могут действовать и антагонистически, и синергически.

Антагонизм и синергизм — две стороны единого процесса. Нормальные функции нашего организма обеспечиваются согласованным действием этих двух отделов вегетативной нервной системы. Эта согласованность и регуляция функций осуществляются корой головного мозга. В этой регуляции участвует и ретикулярная формация.

Автономия деятельности вегетативной нервной системы не является абсолютной и проявляется лишь в местных реакциях коротких рефлекторных дуг. Поэтому предложенный PNA термин «автономная нервная система» не является точным, чем и объясняется сохранение старого, более правильного и логичного термина «вегетативная нервная система». Деление вегетативной нервной системы на симпатический и парасимпатический отделы проводится главным образом на основании физиологических и фармакологических данных, но имеются и морфологические отличия, обусловленные строением и развитием этих отделов нервной системы.

Поэтому охарактеризуем сначала морфологические особенности вегетативной нервной системы в сравнении с анимальной. Опишем прежде всего центры вегетативной нервной системы (рис. 339).

Рис. 339. Общая схема вегетативной нервной системы.

Пунктиром обозначены постганглионарные волокна симпатической системы, идущие к органам; непрерывной линией — преганглионарные волокна парасимпатической и симпатической систем. Область центров симпатической системы в спинном мозге заштрихована.

1 — центры парасимпатической системы в головном мозге (краниальный отдел); 2 — центры симпатической системы; 3 — центры парасимпатической системы в нижнем конце спинного мозга (крестцовый отдел); 4 — половые органы; 5 — мочевой пузырь;  6 — толстая кишка; 7 — тонкая кишка;  8 — почка; 9 — надпочечник; 10 — поджелудочная железа; 11 — печень; 12 — желудок; 13 — сердце; 14 — легкие; 15 — сосуды головы; 16 ,  17 — слюнные железы; 18 — глаз; 19 — полосатое тело.

Анимальные нервы выходят из мозгового ствола и спинного мозга на всем их протяжении сегментарно, причем эта сегментарность сохраняется частично и на периферии. Вегетативные нервы выходят только из нескольких отделов (очагов) центральной нервной системы. Имеются 4 таких очага, откуда выходят вегетативные нервы:

1. Мезэнцефалический отдел в среднем мозге (nucl. accessórius и непарное срединное ядро III пары черепных нервов).

2. Бульбарный отдел в продолговатом мозге и мосте (ядра VII, IX и X пар черепных нервов). Оба эти отдела объединяются под названием краниального.

3. Тораколюмбальный отдел в боковых рогах спинного мозга на протяжении сегментов СVIII, ThI—LIII.

4. Сакральный отдел в боковых рогах спинного мозга на протяжении сегментов SII—SIV.

Тораколюмбальный отдел относится к симпатической системе, а краниальный и сакральный — к парасимпатической (см. рис. 339; рис. 340).

Рис. 340. Схема парасимпатической нервной системы. Пpeганглионарные волокна изображены сплошными линиями, постганглионарные — стрелками.

1 — подчревное сплетение: парасимпатические преганглионарные волокна подходят в составе тазовых нервов, постганглионарные направляются к прямой кишке, мочевому пузырю, половым органам. Постганглионарные волокна: 2 — к почкам; 3 — к поджелудочной железе; 4 — к печени; 5 — к кишечнику; 6 — к желудку; 7 — к бронхам;  8 — к сердцу (преганглионарные волокна 2–8 подходят в составе блуждающего нерва); 9 — поднижнечелюстной узел: преганглионарные волокна подходят по нерву, носящему название барабанной струны (ветвь лицевого нерва), постганглионарные направляются к поднижнечелюстной и подъязычной слюнным железам; 10 — ушной узел: преганлионарные волокна подходят по ветви языкоглоточного нерва; постганглионарные направляются к околоушной железе; 11 — крылонебный узел: преганглионарные волокна подходят по большому каменистому нерву (ветвь лицевого нерва), постганглионарные направляются к слезной железе и железам полости рта и носа; 12 — ресничный узел: преганглионарные волокна подходят по глазодвигательному нерву, постганглионарные направляются к сфинктеру зрачка и ресничной мышце глаза.

Над этими очагами доминируют высшие вегетативные центры, которые не являются симпатическими или парасимпатическими, а объединяют в себе регуляцию обоих отделов вегетативной нервной системы. К ним относится и ретикулярная формация. Они являются надсегментарными и расположены в стволе и плаще мозга, а именно:

1. Задний мозг: сосудодвигательный центр на дне IV желудочка; мозжечок, которому приписывают регуляцию ряда вегетативных функций (сосудодвигательные рефлексы, трофика кожи, скорость заживления ран и др.).

2. Средний мозг, серое вещество водопровода.

3. Промежуточный мозг: hypothálamus (túber cineréum).

4. Конечный мозг: кора полушарий большого мозга.

Наибольшее значение для вегетативной регуляции имеет гипоталамическая область, которая является одним из самых древних отделов головного мозга, хотя и в ней различают более старые образования и филогенетически более молодые.

Гипоталамо-гипофизарная система, действуя с помощью инкретов гипофиза, является регулятором всех эндокринных желез.

Гипоталамическая область регулирует деятельность всех органов растительной жизни, объединяя и координируя их функции.

Объединение вегетативных и анимальных функций всего организма осуществляется в коре большого мозга, особенно в премоторной зоне.

Кора, будучи, по И. П. Павлову, комплексом корковых концов анализаторов, получает раздражения от всех органов, в том числе и от органов растительной жизни, и через посредство своих эфферентных систем, в том числе и вегетативной нервной системы, оказывает влияние на эти органы. Следовательно, существует двусторонняя связь коры и внутренностей — кортиковисцеральная связь. Благодаря этому все вегетативные функции подчиняются коре головного мозга, которая ведает всеми процессами организма.

Таким образом, вегетативная нервная система есть не автономная система, как это считали до И. П. Павлова, а специализированная часть единой нервной системы, подчиненная высшим отделам ее, включая и кору большого мозга. Поэтому, как и в анимальной нервной системе, в вегетативной можно различать центральный и периферический ее отделы. К центральному отделу относятся описанные выше очаги и центры в спинном и головном мозге, а к периферическому — нервные узлы, нервы, сплетения и периферические нервные окончания.

В последнее время установлено, что вегетативные узлы имеют свою афферентную иннервацию, благодаря которой они находятся под контролем центральной нервной системы.

Значительные отличия имеет рефлекторная дуга (рис. 341[рисунка нет]). Клеточное тело воспринимающего нейрона как для анимальной, так и для вегетативной нервной системы помещается в спинномозговом узле, gánglion spinále, куда стекаются афферентные пути как от органов животной жизни, так и от органов растительной жизни и который, таким образом, является смешанным анимально-вегетативным узлом. Клеточное тело вставочного нейрона вегетативной нервной системы в отличие от анимальной нервной системы помещается в боковых рогах спинного мозга. При этом аксон вставочного анимального нейрона, исходящий из клеток заднего рога, заканчивается в пределах спинного мозга среди клеток его передних рогов. Что же касается вставочного нейрона вегетативной нервной системы, то он в спинном мозге не заканчивается, а выходит за его пределы, к нервным узлам, расположенным на периферии. Выйдя из спинного мозга, аксон вставочного нейрона подходит или к узлам симпатического ствола, gánglia trúnci sympáthici, относящимся к симпатическому отделу вегетативной нервной системы (они образуют симпатический ствол), или волокна не заканчиваются в этих узлах, а направляются к предпозвоночным узлам, расположенным более периферично, между симпатическим стволом и органом (gánglia coeliáca, gánglia mesentérica). Эти узлы также относятся к симпатической системе. Наконец, волокна могут доходить, не прерываясь, до узлов, лежащих или около органа (околоорганные узлы, например gánglia ciliáre, óticum и др.), или в толще органа (внутриорганные, интрамуральные узлы); и те и другие называют конечными узлами (gánliga terminália). Они относятся к парасимпатическому отделу вегетативной нервной системы. Кроме макроскопически видимых обособленных узлов, по ходу вегетативных нервов встречаются мигрировавшие сюда в ходе эмбрионального развития небольшие группы эффекторных нейронов — микроганглии. Все волокна, идущие до узлов первого, второго или третьего порядка и являющиеся аксонами промежуточного нейрона, называются предузловыми волокнами, rámi preganglionáres. Они покрыты миелином.

Третий, эффекторный, нейрон анимальной рефлекторной дуги помещается в передних рогах спинного мозга, а эффекторный нейрон вегетативной рефлекторной дуги вынесен в процессе развития из центральной нервной системы в периферическую, ближе к рабочему органу, и располагается в вегетативных нервных узлах. Из такого расположения эффекторных нейронов на периферии вытекает главный признак вегетативной нервной системы — двухнейронность эфферентного периферического пути: первый нейрон — вставочный; тело его лежит в вегетативных ядрах черепных нервов или боковых рогах спинного мозга, а нейрит идет к узлу; второй — эфферентный, тело которого лежит в узле, а нейрит достигает рабочего органа. Эффекторные нейроны симпатических нервов начинаются в gánglia trúnci sympáthici (узлы первого порядка) или gánglia intermédia (узлы второго порядка), а для парасимпатических нервов — в около- или внутриорганных узлах, gánglia terminália (третьего порядка); так как в названных узлах осуществляется связь вставочных и эфферентных нейронов, то отмеченная разница между симпатическим и парасимпатическим отделами вегетативной нервной системы связана именно с этими нейронами.

Аксоны эфферентных вегетативных нейронов почти лишены миелина — безмиелиновые (серые). Они составляют послеузловые волокна, rámi postganglionáres. Послеузловые волокна симпатической нервной системы, отходящие от узлов симпатического ствола, расходятся в двух направлениях. Одни волокна идут к внутренностям и составляют висцеральную часть симпатической системы. Другие волокна образуют rámi communicántes grisei, соединяющие симпатический ствол с анимальными нервами. В составе последних волокна достигают соматических органов (аппарата движения и кожи), в которых иннервируют непроизвольную мускулатуру сосудов и кожи, а также железы.

Совокупность описанных эфферентных вегетативных волокон, идущих от узлов симпатического ствола до органов сомы, составляет соматическую часть симпатического отдела. Такая структура обеспечивает функцию вегетативной нервной системы, которая регулирует обмен веществ всех частей организма применительно к непрерывно изменяющимся условиям среды и условиям функционирования (работы) тех или иных органов и тканей.

Соответственно этой наиболее универсальной своей функции, связанной не с какими-либо отдельными органами и системами, а со всеми частями, со всеми органами и тканями организма, вегетативная нервная система и морфологически характеризуется универсальным, повсеместным распространением в организме.

Следовательно, симпатический отдел иннервирует не только внутренности, но и сому, обеспечивая в ней обменные и трофические процессы.

В результате каждый орган, по И. П. Павлову, находится под тройным нервным контролем, в связи с чем он различает три вида нервов: 1) функциональные, осуществляющие функцию данного органа; 2) сосудодвигательные, обеспечивающий доставку крови к органу, и 3) трофические, регулирующие усвоение из доставленной крови питательных веществ.

Висцеральная часть симпатического отдела содержит все эти три вида нервов для внутренностей, а соматическая часть — только сосудодвигательные и трофические. Что же касается функциональных нервов для органов сомы (скелетная мускулатура и др.), то они идут в составе соматической, анимальной, нервной системы.

Таким образом, основное отличие эфферентной части вегетативной нервной системы от эфферентной части анимальной заключается в том, что анимальные, соматические, нервные волокна, выйдя из центральной нервной системы, идут до рабочего органа, нигде не прерываясь, тогда как вегетативные волокна на своем пути от мозга до рабочего органа прерываются в одном из узлов первого, второго или третьего порядка. Вследствие этого эфферентный путь вегетативной нервной системы разбивается на две части, из которых он и состоит: предузловые миелиновые волокна, rami preganglionares, и послеузловые, лишенные миелина (безмиелиновые) волокна, rámi postganglionáres.

Наличие узлов в эфферентной части рефлекторной дуги составляет характерный признак вегетативной нервной системы, отличающий ее от анимальной (см. рис. 341).

Определенные отличия имеют и нервы. Афферентные пути вегетативной нервной системы не имеют характера макроскопически видимых нервов, а их волокна идут в составе других нервов (nn. splánchnici májor et minor, n. vágus, задние корешки и др.). При этом для симпатического отдела характерно то, что связанная с ним чувствительная иннервация может распространяться на значительные расстояния и, следовательно, симпатический отдел может рассматриваться как система окольной иннервации.

Так, например, афферентные спинальные нервные волокна, участвующие в формировании чревного сплетения, иннервирующего органы брюшной полости, происходят из многочисленных спинномозговых узлов (СV—LIII). Это обстоятельство определяет множественность и многосегментарность путей и источников афферентной иннервации органов брюшной полости. Этим же объясняется и то, что чувство боли от внутренностей может передаваться как по вегетативным, так и по анимальным нервам.

Существуют также собственные афферентные нейроны вегетативной нервной системы, замыкающиеся в вегетативных ганглиях, которые могут рассматриваться как периферические центры.

Наряду с этим имеется не только диффузность в отношении распределения чувствительных нейронов и их волокон, но и преимущественное участие определенных спинномозговых узлов в иннервации внутренностей. Следовательно, среди источников и путей афферентной иннервации внутренностей можно выделить основные и дополнительные. Это деление тесно связано с представлением об окольных путях афферентной спинальной иннервации внутренностей. Окольные пути в патологических условиях (перерыв спинного мозга и др.) могут играть роль компенсаторных путей, возмещающих функцию нарушенных основных путей, компенсаторных приспособлений в виде «перекрытия» в афферентной иннервации органов.

Что же касается эфферентных путей вегетативной нервной системы, то они образуют ясно выраженные нервы и узлы. Поэтому можно говорить о двух центробежных путях единой нервной системы: один путь — это анимальные, соматические, двигательные нервы, а другой — вегетативные. Вегетативные нервы образуют сплетения вокруг кровеносных сосудов, вместе с которыми они подходят и входят в органы. Наличие сплетений вокруг сосудов составляет характерный признак вегетативной нервной системы, отличающий ее от анимальной.

Как уже отмечалось, вегетативная нервная система характеризуется универсальным, повсеместным распространением в организме. Она имеет широкую область эфферентной иннервации, охватывающую все органы и ткани тела, не исключая и скелетной мускулатуры (последнюю она тонизирует). В этом и состоит морфологическая особенность вегетативной нервной системы в противоположность анимальной, которая иннервирует центробежными волокнами только скелетные мышцы, т. е. имеет сравнительно ограниченную область эфферентной иннервации.

Для понимания строения необходимо учитывать развитие вегетативной нервной системы.

Гладкая мускулатура беспозвоночных регулируется ганглиозно-сетевидной нервной системой, которая, кроме этой специальной функции, регулирует также и обмен веществ. Приспособление уровня обмена веществ к изменяющейся функции органов называется адаптацией (adaptáre — прилаживать), а соответственная функция нервной системы — адаптационно-трофической (Л. А. Орбели). Адаптационно-трофическая функция есть наиболее общая и весьма древняя функция нервной системы, существовавшая у примитивных предков позвоночных. В дальнейшем ходе эволюции сильнее всего прогрессировали аппарат движения (развитие твердого скелета и скелетной мускулатуры) и органы чувств, т. е. органы животной жизни. Поэтому та часть нервной системы, которая была связана с ними, т. е. анимальная часть нервной системы, претерпела наиболее резкие изменения и приобрела новые признаки, в частности: изоляция волокон при помощи миелиновых оболочек, большая скорость проведения возбуждения (100–120 м/с). Напротив, органы растительной жизни претерпели более медленную и менее прогрессивную эволюцию, поэтому связанная с ними часть нервной системы сохранила за собой наиболее общую функцию — адаптационно-трофическую. Эта часть нервной системы и есть вегетативная нервная система.

Наряду с некоторой специализацией она сохранила ряд древних примитивных черт: отсутствие у большинства нервных волокон миелиновых оболочек (безмиелиновые волокна), меньшая скорость проведения возбуждения (0,3-10 м/с), а также меньшая концентрация и централизация эффекторных нейронов, оставшихся разбросанными на периферии, в составе ганглиев, нервов и сплетений. При этом эффекторный нейрон оказался расположенным вблизи рабочего органа или даже в толще его.

Такое периферическое расположение эффекторного нейрона обусловило главную морфологическую особенность вегетативной нервной системы — двухнейронность эфферентного периферического пути, состоящего из вставочного и эффекторного нейронов.

С появлением туловищного мозга (у бесчерепных) возникающие в нем импульсы адаптации идут по вставочным нейронам, обладающим большей скоростью возбуждения; выполняется же адаптация непроизвольной мускулатурой и железами, к которым подходят эффекторные нейроны, отличающиеся медленной проводимостью. Это противоречие разрешается в процессе эволюции благодаря развитию специальных нервных узлов, в которых устанавливаются контакты вставочных нейронов с эффекторными, причем один вставочный нейрон вступает в связь со многими эффекторными (примерно 1:32). Этим достигается переключение импульсов с миелиновых волокон, обладающих большой скоростью проведения раздражений, на безмиелиновые, обладающие малой скоростью. В результате весь эфферентный периферический путь вегетативной нервной системы разбивается на две части — предузловую и послеузловую, а сами узлы становятся трансформаторами темпов возбуждения с быстрых на медленные.

У низших рыб, когда образуется головной мозг, в нем развиваются центры, объединяющие деятельность органов, вырабатывающих внутреннюю среду организма.

Так как в этой деятельности, кроме гладкой мускулатуры, принимает участие и скелетная (исчерченная), то возникает потребность в координации работы гладких и поперечно-полосатых мышц. Например, жаберные крышки приводятся в движение скелетной мускулатурой, так же и у человека в акте дыхания участвует как гладкая мускулатура бронхов, так и скелетные мышцы грудной клетки. Такую координацию осуществляет развивающийся в заднем мозге специальный рефлекторный аппарат в виде системы блуждающего нерва (бульбарный отдел парасимпатической части вегетативной нервной системы).

В центральной нервной системе возникают и другие образования, которые подобно блуждающему нерву выполняют функцию координации совместной деятельности скелетной мускулатуры, обладающей быстрой скоростью возбуждения, и гладкой мускулатуры и желез, обладающих медленной скоростью. Сюда относится та часть глазодвигательного нерва, которая осуществляет при помощи исчерченных и неисчерченных мышц глаза стандартную установку ширины зрачка, аккомодации и конвергенции соответственно силе освещения и расстоянию до рассматриваемого объекта по тем же принципам, как это делает фотограф (мезэнцефалический отдел парасимпатической части вегетативной нервной системы). Сюда относится и та часть крестцовых нервов (II–IV), которые осуществляют стандартную функцию тазовых органов (мочевого пузыря и прямой кишки) — опорожнение, в которой участвуют как непроизвольные мышцы этих органов, так и произвольные мышцы таза и брюшного пресса — сакральный отдел парасимпатической части вегетативной нервной системы.

В среднем и промежуточном мозге развился центральный адаптационный аппарат в виде серого вещества вокруг водопровода и серого бугра (hypothálamus).

Наконец, в коре мозга возникли центры, объединяющие высшие анимальные и вегетативные функции.

Развитие вегетативной нервной системы в онтогенезе (эмбриогенезе) идет иначе, чем в филогенезе.

Вегетативная нервная система возникает из общего с анимальной частью источника — нейроэктодермы, чем доказывается единство всей нервной системы.

Из общего зачатка нервной системы выселяются симпатобласты, которые скапливаются в определенных местах, образуя сначала узлы симпатического ствола, а затем промежуточные узлы, а также нервные сплетения. Отростки клеток симпатического ствола, объединяясь в пучки, образуют rámi communicántes grísei.

Сходным образом развивается и часть вегетативной нервной системы в области головы. Зачатки парасимпатических узлов выселяются из продолговатого мозга или ганглиозной пластинки и совершают дальнюю миграцию вдоль ветвей тройничного, блуждающего и других нервов, оседая по их ходу или образуя интрамуральные ганглии.

СИМПАТИЧЕСКАЯ ЧАСТЬ ВЕГЕТАТИВНОЙ НЕРВНОЙ СИСТЕМЫ

Исторически симпатическая часть возникает как сегментарный отдел, поэтому и у человека она частично сохраняет сегментарный характер строения.

ЦЕНТРАЛЬНЫЙ ОТДЕЛ СИМПАТИЧЕСКОЙ ЧАСТИ

Центральный отдел симпатической части располагается в боковых рогах спинного мозга на уровне СVIII, ThI—LIII, в substántia intermédia laterális. От него отходят волокна, иннервирующие непроизвольные мышцы внутренних органов, органов чувств (глаза), железы. Кроме того, здесь располагаются сосудодвигательные и потоотделительные центры. Считают (и это подтверждается клиническим опытом), что различные отделы спинного мозга оказывают влияние на трофику, терморегуляцию и обмен веществ.

ПЕРИФЕРИЧЕСКИЙ ОТДЕЛ СИМПАТИЧЕСКОЙ ЧАСТИ

Периферический отдел симпатической части образуется прежде всего двумя симметричными стволами, trúnci sympáthici déxter et sinister, расположенными по бокам позвоночника на всем его протяжении от основания черепа до копчика, где оба ствола своими каудальными концами сходятся в одном общем узле. Каждый из этих двух симпатических стволов слагается из ряда нервных узлов первого порядка, соединяющихся между собой посредством продольныхмежузловых ветвей , rámi interganglioriáres , состоящих из нервных волокон. Кроме узлов симпатических стволов (gánglia trúnci sympáthici), в состав симпатической системы входят указанные выше gánglia intermédia.

Симпатический ствол, начиная с верхнего шейного узла, содержит также элементы парасимпатической части вегетативной и даже анимальной нервных систем.

Отростки клеток, заложенных в боковых рогах тораколюмбального отдела спинного мозга, выходят из спинного мозга через передние корешки и, отделившись от них, идут в составе rámi communicántes álbi к симпатическому стволу (см. рис. 341). Здесь они или соединяются синапсом с клетками узлов симпатического ствола, или же, пройдя через его узлы без перерыва, достигают одного из промежуточных узлов. Это так называемый преганглионарный путь. От узлов симпатического ствола или (если там не было перерыва) от промежуточных узлов отходят безмиелиновые волокна постганглионарного пути, направляющиеся к кровеносным сосудам и внутренностям.

Поскольку симпатическая часть имеет соматическую часть, она связана со спинномозговыми нервами, обеспечивающими иннервацию сомы. Эта связь осуществляется посредством серых соединительных ветвей, rámi communicántes grísei, которые представляют собой участок постганглионарных волокон на протяжении от узлов симпатического ствола до n. spinális. В составе rámi communicántes grísei и спинномозговых нервов постганглионарные волокна распространяются в сосудах, железах и мышцах, поднимающих волосы кожи туловища и конечностей, а также в скелетной мускулатуре, обеспечивая ее трофику и тонус.

Таким образом, симпатическая часть соединяется с анимальной нервной системой посредством двоякого рода соединительных ветвей: белых и серых, rámi communicántes álbi et grísei. Белые соединительные ветви (миелиновые) имеют в своем составе преганглионарные волокна. Они идут от центров симпатической части через передние корешки к узлам симпатического ствола. Поскольку центры лежат на уровне грудных и верхних поясничных сегментов, то и rámi communicántes álbi имеются лишь в пределах от I грудного до III поясничного спинномозгового нерва. Rámi communicántes grísei, постганглионарные волокна, обеспечивают вазомоторные и трофические процессы сомы; они соединяют симпатический ствол со спинномозговыми нервами на всем его протяжении. Шейный отдел симпатического ствола имеет связь и с черепными нервами. Следовательно, все сплетения анимальной нервной системы содержат в составе своих пучков и нервных стволов волокна симпатической части, чем подчеркивается единство этих систем.

Симпатический ствол

Каждый из двух симпатических стволов подразделяют на четыре отдела: шейный, грудной, поясничный (или брюшной) и крестцовый (или тазовый).

Шейный отдел простирается от основания черепа до шейки I ребра; располагается позади сонных артерий на глубоких мышцах шеи. В его состав входят три шейных симпатических узла: верхний, средний и нижний.

Gánglion cervicále supérius является самым крупным узлом симпатического ствола, имея длину около 20 мм и ширину 4–6 мм. Лежит он на уровне II и части III шейных позвонков позади внутренней сонной артерии и медиально от n. vágus.

Gánglion cervicále médium небольшой величины, располагается обыкновенно в месте перекреста a. thyroídea inférior с сонной, артерией, нередко отсутствует или может распадаться на два узелка.

Gánglion cervicále inférius довольно значительной величины, расположен позади начальной части позвоночной артерии; нередко сливается с I, а иногда и II грудным узлом, образуя общий шейно-грудной, или звездчатый, узел, gánglion cervicothorácicum s. gánglion stellátum.

От шейных узлов отходят нервы для головы, шеи и груди. Их можно разделить на восходящую группу, направляющуюся к голове, на нисходящую — опускающуюся к сердцу, и группу для органов шеи.

Нервы для головы отходят от верхнего и нижнего шейных узлов и делятся на группу, проникающую в полость черепа, и группу, подходящую к голове снаружи.

Первая группа представлена n. caróticus intérnus, отходящим от верхнего шейного узла, и n. vertebrális, отходящим от нижнего шейного узла. Оба нерва, сопровождая одноименные артерии, образуют вокруг них сплетения: pléxus caróticus intérnus и pléxus vertebrális; вместе с артериями они проникают в полость черепа, где анастомозируют между собой и дают ветви к сосудам мозга, оболочкам, гипофизу, стволам III, IV, V, VI пар черепных нервов и барабанному нерву.

PIéxus caróticus intérnus продолжается в pléxus cavernósus, которое окружает а. carótis intérna на участке прохождения ее через sínus cavernósus.

Ветви сплетений распространяются, кроме самой внутренней сонной артерии, также по ее разветвлениям. Из ветвей pléxus caróticus intérnus следует отметить n. petrósus profúndus, который присоединяется к n. petrósus májor и вместе с ним образует n. canális pterygoídei, подходящий через одноименный канал к gánglion pterygopalatínum.

Вторая группа симпатических нервов головы, наружная, составляется двумя ветвями верхнего шейного узла, nn. carótici extérni, которые, образовав сплетение вокруг наружной сонной артерии, сопровождают ее разветвления на голове. От этого сплетения отходит стволик к ушному узлу, gangl. oticum; от сплетения, сопровождающего лицевую артерию, отходит ветвь к поднижнечелюстному узлу, gangl. submandibulare.

Через посредство ветвей, входящих в сплетения вокруг сонной артерии и ее ветвей, верхний шейный узел дает волокна к сосудам (вазоконстрикторы) и железам головы: потовым, слезной, слизистым и слюнным, а также к мышцам волос кожи и к мышце, расширяющей зрачок (см. «Орган зрения»), m. dilatátor pupíllae. Центр расширения зрачка, céntrum ciliospinále, находится в спинном мозге на уровне от VIII шейного до II грудного сегмента.

Органы шеи получают нервы от всех трех шейных узлов; кроме того, часть нервов отходит от межузловых участков шейного отдела симпатического ствола, а часть — от сплетений сонных артерий.

Веточки от сплетений следуют по ходу ветвей наружной сонной артерии, носят одноименные названия и вместе с ними подходят к органам, в силу чего число отдельных симпатических сплетений равно числу артериальных ветвей. Из нервов, отходящих от шейной части симпатического ствола отмечают гортанно-глоточные ветви от верхнего шейного узла — rámi laryngopharýngei, которые частью идут с n. larýngeus supérior (ветвь n. vági) к гортани, частью спускаются к боковой стенке глотки; здесь они вместе с ветвями языкоглоточного, блуждающего и верхнего гортанного нервов образуют глоточное сплетение, pléxus pharýngeus.

Нисходящая группа ветвей шейной части симпатического ствола представлена nn. cardíaci cervicáles supérior, médius et inférior, отходящими от соответствующих шейных узлов. Шейные сердечные нервы спускаются в грудную полость, где вместе с симпатическими грудными сердечными нервами и ветвями блуждающего нерва участвуют в образовании сердечных сплетений (см. иннервацию сердца).

Грудной отдел симпатического ствола располагается впереди шеек ребер, прикрыт спереди плеврой. В его состав входят 10–12 узлов более или менее треугольной формы. Грудной отдел характеризуется присутствием белых соединительных ветвей, rámi communicántes álbi, соединяющих передние корешки спинномозговых нервов с узлами симпатического ствола. Ветви грудного отдела: 1) nn. cardíaci thorácici отходят от верхних грудных узлов и участвуют в образовании pléxus cardíacus (подробное описание сердечных сплетений см. при описании сердца); 2) rámi communicántes grísei, безмиелиновые — к межреберным нервам (соматическая часть симпатического отдела); 3) rámi pulmonáles — к легким, образуют pléxus pulmonális; 4) rámi aórtici образуют сплетение на грудной аорте, pléxus aórticus thorácicus, и частью на пищеводе, pléxus esophágeus, а также на грудном протоке (во всех указанных сплетениях принимает участие и n. vágus); 5) nn. splánchnici májor et mínor, большой и малый внутренностные нервы; n. splánchnicus májor начинается несколькими корешками, отходящими от V–IX грудных узлов; корешки n. splánchnicus májor идут в медиальном направлении и сливаются на уровне IX грудного позвонка в один общий ствол, проникающий через промежуток между мышечными пучками ножек диафрагмы в брюшную полость, где он входит в состав pléxus coelíacus; n. splánchnicus minor начинается от X–XI грудных узлов и также входит в pléxus coelíacus, проникая через диафрагму с большим внутренностным нервом. В этих нервах проходят сосудосуживающие волокна, как это видно из того обстоятельства, что при перерезке этих нервов сосуды кишечника сильно переполняются кровью; в nn. splánchnici содержатся волокна, тормозящие движение желудка и кишок, а также волокна, служащие проводниками ощущений от внутренностей (афферентные волокна симпатической части).

Поясничный, или брюшной, отдел симпатического ствола состоит из четырех, иногда из трех узлов. Симпатические стволы в поясничном отделе расположены на более близком расстоянии один от другого, чем в грудной полости, так что узлы лежат на переднебоковой поверхности поясничных позвонков вдоль медиального края m. psóas májor. Rámi communicántes álbi имеются только с двумя или тремя верхними поясничными нервами.

От брюшного отдела симпатического ствола на всем протяжении отходит большое количество ветвей, которые вместе с nn. splánchnici májor et mínor и брюшными отделами блуждающих нервов образуют самое большое непарное чревное сплетение, pléxus coelíacus. В формировании чревного сплетения участвуют также многочисленные спинномозговые узлы (С5—L3), аксоны их нейроцитов (Д. М. Голуб, 1963). Оно лежит на передней полуокружности брюшной аорты, позади поджелудочной железы, и окружает начальные части чревного ствола (trúncus cóeliacus) и верхней брыжеечной артерии. Сплетение занимает участок между почечными артериями, надпочечниками и аортальным отверстием диафрагмы и включает парный чревный узел, gánglion cóeliacum, и иногда непарный верхний брыжеечный узел, gánglion mesentéricum supérius.

От чревного сплетения отходит ряд меньших парных сплетений к диафрагме, надпочечникам, почкам, а также pléxus testiculáris (ováricus), следующих по ходу одноименных артерий. Имеется также ряд непарных сплетений к отдельным органам по стенкам артерий, название которых они носят. Из последних верхнее брыжеечное сплетение, pléxus mesentéricus supérior, иннервирует поджелудочную железу, тонкую и толстую кишку до половины протяжения поперечной ободочной.

Вторым главным источником иннервации органов полости живота является сплетение на аорте, pléxus aórticus abdominális. составленное из двух стволов, отходящих от чревного сплетения, и веточек от поясничных узлов симпатического ствола. От аортального сплетения отходит нижнее брыжеечное сплетение, pléxus mesentéricus inférior, для поперечной и нисходящей части ободочной кишки, сигмовидной и верхних отделов réctum (pléxus réctaIs superiór). У места отхождения pléxus mesentéricus inférior располагается одноименный узел, gangl. mesentéricum inférius. Его постганглионарные волокна идут в тазе в составе nn. hypogástrici.

Аортальное сплетение продолжается вначале в непарное верхнее подчревное сплетение, pléxus hypogástricus supérior, которое у мыса раздваивается и переходит в сплетение таза, или нижнее подчревное сплетение (pléxus hypogástricus inférior s. pléxus pelvínus).

Волокна, происходящие из верхних поясничных сегментов, по своей функции являются сосудодвигательными (вазоконстрикторами) для полового члена, двигательными для матки и сфинктера мочевого пузыря.

Крестцовый, или тазовый, отдел имеет обычно четыре узла; располагаясь на передней поверхности крестца вдоль медиального края передних крестцовых отверстий, оба ствола книзу постепенно сближаются друг с другом и затем оканчиваются в одном общем непарном узле — gánglion ímpar; находящемся на передней поверхности копчика. Узлы тазового отдела, как и поясничного, связаны между собой не только продольными, но и поперечными стволиками.

От узлов крестцового отдела симпатического ствола отходит ряд ветвей, которые соединяются с ветвями, отделяющимися от нижнего брыжеечного сплетения, и образуют пластинку, протягивающуюся от крестца к мочевому пузырю; это так называемое нижнее подчревное, или тазовое, сплетение, рléхus hypogástricus inférior s. pléxus pelvínus. Сплетение имеет свои узелки — gánglia pelvína. В сплетении различают несколько отделов: 1) передненижний отдел , в котором выделяют верхнюю часть, иннервирующую мочевой пузырь. — pléxus vesicális, и нижнюю, снабжающую у мужчин предстательную железу (pléxus próstaticus), семенные пузырьки и семявыносящий проток (pléxus deferentiális) и пещеристые тела (nn. cavernósi pénis); 2) задний отдел сплетения снабжает прямую кишку (pléxus rectáles médii et inferióres). У женщин выделяют еще средний отдел, нижняя часть которого дает ветви к матке и влагалищу (pléxus uterovaginális), пещеристым телам клитора (nn. cavernósi clitóridis), а верхняя — к матке и яичникам.

От узлов крестцового отдела симпатического ствола отходят соединительные ветви, rámi communicántes, присоединяющиеся к спинномозговым нервам, иннервирующим нижнюю конечность. Эти соединительные ветви составляют соматическую часть симпатического отдела вегетативной нервной системы, иннервирующую нижнюю конечность. В составе rámi communicántes и спинномозговых нервов нижней конечности находятся постганглионарные волокна, которые распространяются в сосудах, железах и мышцах волос кожи, а также в скелетной мускулатуре, обеспечивая ее трофику и тонус.

ПАРАСИМПАТИЧЕСКАЯ ЧАСТЬ ВЕГЕТАТИВНОЙ НЕРВНОЙ СИСТЕМЫ

Парасимпатическая часть (см. рис. 340) исторически развивается как надсегментарный отдел, и поэтому центры ее располагаются не только в спинном мозге, но и в головном.

Центры парасимпатической части

Центральная часть парасимпатического отдела состоит из головного, или краниального, отдела и спинномозгового, или сакрального, отдела. Некоторые авторы считают, что парасимпатические центры располагаются в спинном мозге не только в области крестцовых сегментов, но и в других отделах его, в частности в пояснично-грудном отделе между передним и задним рогом, в так называемой интермедиарной зоне. Центры дают начало эфферентным волокнам передних корешков, вызывающих расширение сосудов, задержку потоотделения и торможение сокращения непроизвольных мышц волос в области-туловища и конечностей.

Краниальный отдел в свою очередь состоит из центров, заложенных в среднем мозге (мезэнцефалическая часть), и в ромбовидном мозге — в мосту и продолговатом мозге (бульбарная часть).

1. Мезэнцефалическая часть представлена núcleus accessórius n. oculomotórii и срединным непарным ядром, за счет которых иннервируется мускулатура глаза — m. sphincter pupillae и m. ciliáris.

2. Бульбарная часть представлена nucleus salivatórius supérior n. faciális (точнее, n. intermédius), núcleus salivatórius inférior n. glossopharýngei и núcleus dorsális n. vági (см. соответствующие нервы).

Сакральный отдел (рис. 342). Парасимпатические центры лежат в спинном мозге, в substántia intermedialaterális бокового рога на уровне II–IV крестцовых сегментов.

Рис. 342. Схема иннервации мочевого пузыря.

а — чувствительный путь к спинному мозгу; б — n. splanchnicus pelvinus; с — кортико-спинальный путь; d — n. pudendus; е — rr. communicantes;  f — n. iliohypogastricus; g — nn. mesenterici; h — nn. hypogastrici; 1 — симпатический ствол; 2 — gangl. mesentericum inferius;  3 — plexus hypogastricus и расположенные поблизости терминальные узлы парасимпатической системы; 4 — vesica urinaria; 5 — m. detrusor vesicae; 6 — m. sphincter vesicae; 7 — m. sphincter urethrae.

Периферический отдел парасимпатической части

Периферическая часть краниального отдела парасимпатической системы представлена: 1) преганглионарными волокнами, идущими в составе III, VII, IX и X пар черепных нервов (возможно, и в составе I и XI); 2) терминальными узлами, расположенными вблизи органов, а именно: gánglia ciliáre, pterygopalatínum, submandibuláre, óticum, и 3) постганглионарными волокнами; постганглионарные волокна имеют или самостоятельный ход, как, например, nn. ciliáres bréves, отходящие от gánglion ciliáre, или идут в составе каких-либо нервов, как, например, постганглионарные волокна, отходящие от gánglion óticum и идущие в составе n. auriculotemporális. Некоторые авторы указывают, что парасимпатические волокна выходят также и из других сегментов спинного мозга и идут через передние корешки, направляясь к стенкам туловища и конечностей.

Периферическая часть сакрального отдела парасимпатической системы представлена волокнами, которые в составе передних корешков II–IV крестцовых нервов и далее в составе их передних ветвей, образующих pléxus sacrális (анимальное сплетение), входят в малый таз. Здесь они отделяются от сплетения и в виде nn. splánchnici pelvíni направляются к pléxus hypogástricus inférior, иннервируя вместе с последним тазовые внутренности: прямую кишку с cólon sigmoideum, мочевой пузырь, наружные и внутренние половые органы. Раздражение nn. splánchnici pelvíni вызывает сокращение прямой кишки и мочевого пузыря (m. detrúsor vésicae) с ослаблением их сфинктеров. Волокна симпатического подчревного сплетения задерживают опорожнение этих органов; они же возбуждают сокращение матки, тогда как nn. splánchnici pelvíni его тормозят. Nn. splánchnici pelvíni содержат в себе еще сосудорасширяющие волокна (nn. erigéntes) для córpora cavernósa pénis et clitóridis, обусловливающие эрекцию. Парасимпатические волокна, отходящие от сакрального отдела спинного мозга, идут в тазовые сплетения не только в составе nn. erigéntes и nn. splánchnici pelvíni, но и в составе nérvus pudéndus (преганглионарные волокна). Половой нерв является сложным нервом, содержащим в своем составе, кроме анимальных волокон, также и вегетативные (симпатические и парасимпатические), входящие в нижнее подчревное сплетение. Симпатические волокна, отходящие от узлов крестцового отдела симпатического ствола в качестве постганглионарных, присоединяются к половому нерву в полости малого таза и проходят через нижнее подчревное сплетение к тазовым органам.

К парасимпатической нервной системе относится также так называемая интрамуральная нервная система.

В стенках ряда полостных органов находятся нервные сплетения, содержащие мелкие узлы (терминальные) с ганглиозными клетками и безмиелиновыми волокнами, — ганглиозно-сетевидная, или интрамуральная, система.

Интрамуральная система особенно выражена в пищеварительном тракте, где она представлена несколькими сплетениями.

1. Мышечно-кишечное сплетение, pléxus myentéricus — между продольной и кольцевой мускулатурой пищеварительной трубки.

2. Подслизистое сплетение, pléxus submucósus, находящееся в подслизистой основе. Последнее переходит в сплетение желез и ворсинок.

К периферии от названных сплетений располагается диффузная нервная сеть. К сплетениям подходят нервные волокна от симпатической и парасимпатической систем. В интрамуральных сплетениях происходит переключение предузловых волокон парасимпатической системы на послеузловые.

Интрамуральные сплетения, как и экстраорганные сплетения полостей туловища, являются по своему составу смешанными. В последнее время в интрамуральных сплетениях пищеварительного тракта обнаружены и клетки симпатической природы.

КРАТКИЙ ОБЗОР ВЕГЕТАТИВНОЙ ИННЕРВАЦИИ ОРГАНОВ [37]

Иннервация глаза. В ответ на определенные зрительные раздражения, идущие от сетчатки, осуществляются конвергенция и аккомодация зрительного аппарата.

Конвергенция глаз — сведение зрительных осей обоих глаз на рассматриваемом предмете — происходит рефлекторно, сочетанным сокращением поперечно-полосатых мышц глазного яблока. Этот рефлекс, необходимый для бинокулярного зрения, связан с аккомодацией глаза. Аккомодация — способность глаза ясно видеть предметы, находящиеся от него на различных расстояниях, зависит от сокращения мышц глаза — m. ciliáris и m. sphíncter pupíllae. Поскольку деятельность мускулатуры глаза осуществляется совместно с сокращением его поперечно-полосатых мышц, вегетативная иннервация глаза будет рассмотрена вместе с анимальной иннервацией его двигательного аппарата.

Афферентным путем от мышц глазного яблока (проприоцептивная чувствительность) являются, по данным одних авторов, сами анимальные нервы, иннервирующие данные мышцы (III, IV, VI черепные нервы), по данным других — n. ophthálmicus (n. trigémini).

Центры иннервации мышц глазного яблока — ядра III, IV, и VI пар. Эфферентный путь — III, IV и VI черепные нервы. Конвергенция глаза осуществляется, как указывалось, сочетанным сокращением мышц обоих глаз.

Надо иметь в виду, что изолированных движений одного глазного яблока вообще не существует. В любых произвольных и рефлекторных движениях всегда участвуют оба глаза. Эта возможность сочетанного движения глазных яблок (взора) обеспечивается особой системой волокон, связывающей между собой ядра III, IV и VI нервов и носящей название медиального продольного пучка .

Медиальный продольный пучок начинается от ядра в ножках мозга, соединяется с ядрами III, IV, VI нервов при помощи коллатералей и направляется по мозговому стволу вниз в спинной мозг, где заканчивается, по-видимому, в клетках передних рогов верхних шейных сегментов. Благодаря этому движения глаз сочетаются с движениями головы и шеи.

Иннервация гладких мышц глаза — m. sphíncter pupíllae и m. ciliáris происходит за счет парасимпатической системы, иннервация m. dilatátor pupíllae — за счет симпатической. Афферентными путями вегетативной системы являются n. oculomotórius и n. ophthálmicus.

Эфферентная парасимпатическая иннервация . Преганглионарные волокна идут из добавочного ядра глазодвигательного нерва (мезэнцефалический отдел парасимпатической нервной системы) в составе n. oculomotórius и по его rádix oculomotória достигают gánglion ciliáre (рис. 343), где и оканчиваются. В ресничном узле начинаются постганглионарные волокна, которые через nn. ciliáres bréves доходят до ресничной мышцы и сфинктера зрачка. Функция: сужение зрачка и аккомодация глаза к дальнему и близкому видению.

Рис. 343. Ресничный узел (схема).

1  — r. commuriicans albus; 2 — gangl. cervicale superius; 3 — a. ophthalmica; 4 — r. sympathicus от gangl. ciliare; 5 — gangl. ciliare; 6 — n. nasociliaris; 7 — n. oculomotorius; 8 — radix oculomotoria (парасимпатические преганглионарные волокна); 9 — nn. ciliares breves.

Эфферентная симпатическая иннервация . Преганглионарные волокна идут из клеток substántia intermediolaterális боковых рогов последнего шейного и двух верхних грудных сегментов ( С VIII — Th II céntrum ciliospinále), выходят через две верхние грудные rámi communicántes álbi, проходят в составе шейного отдела симпатического ствола и оканчиваются в верхнем шейном узле. Постганглионарные волокна идут в составе n. caróticus intérnus в полость черепа и вступают в pléxus caróticus intérnus и pléxus ophtálmicus, после этого часть волокон проникает в rámus commúnicans, соединяющуюся с n. nasociliáris, и nérvi ciliáres lóngi, а часть направляется к ресничному узлу, через который проходит, не прерываясь. в nérvi ciliáres bréves. И те и другие симпатические волокна, проходящие через длинные и короткие ресничные нервы, направляются к дилататору зрачка. Функция: расширение зрачка, а также сужение сосудов глаза.

Иннервация желез — слезной и слюнных . Афферентным путем для слезной железы является n. lacrimális (ветвь n. ophthálmicus от n. trigémini), для поднижнечелюстной и подъязычной — n. linguális (ветвь n. mandibuláris от n. trigémini) и chórda týmpani (ветвь n. intermédius), для околоушной — n. auriculotemporális и n. glossopharýngeus.

Эфферентная парасимпатическая иннервация слезной железы . Центр лежит в верхнем отделе продолговатого мозга и связан с ядром промежуточного нерва (núcleus salivatórius supérior). Преганглионарные волокна идут в составе n. intermédius. далее n. petrósus major до gánglion pterygopalatínum (рис. 344). Отсюда начинаются постганглионарные волокна, которые в составе n. maxilláris и далее его ветви, n. zygomáticus, через связи с n. lacrimális достигают слезной железы.

Рис. 344. Крылонебный узел (схема).

1 — n. maxillaris; 2 — n. petrosus major; 3 — n. petrosus profundus; 4 — nn. palatini; 5 — nn. nasales posteriores; 6 — n. zygomaticus.

Эфферентная парасимпатическая иннервация поднижиечелюстной и подъязычной желез . Преганглионарные волокна идут от núcleus salivatórius supérior в составе n. intermédius, далее chórda týmpani и n. linguális до gánglion submandibuláre, откуда начинаются постанглионарные волокна, достигающие желез.

Эфферентная парасимпатическая иннервация околоушной железы . Преганглионарные волокна идут от núcleus salivatórius inférior в составе n. glossopharýngeus, далее n. tympánicus, n. petrósus mínor до gánglion óticum (рис. 345). Отсюда начинаются постганглионарные волокна, идущие к железе в составе n. auriculotemporális. Функция: усиление секреции слезной и названных слюнных желез; расширение сосудов желез.

Рис. 345. Ушной узел (схема).

1 — n. mandibularis; 2 — n. petrosus minor; 3 — n. auriculotemporalis; 4 — a. meningea media; 5 — симпатические волокна.

Эфферентная симпатическая иннервация всех названных желез . Преанглионарные волокна начинаются в боковых рогах верхних грудных сегментов спинного мозга и заканчиваются в верхнем шейном узле симпатического ствола. Постганглионарные волокна начинаются в названном узле и доходят до слезной железы в составе pléxus caróticus intérnus, до околоушной — в составе pléxus caróticus extérnus и до поднижнечелюстной и подъязычной желез — через pléxus caróticus extérnus и затем через pléxus faciális. Функция: задержка отделения слюны (сухость во рту); слезотечение (влияние не резкое).

Иннервация сердца (рис. 346). Афферентные пути от сердца идут в составе n. vágus, а также в среднем и нижнем шейных и грудных сердечных симпатических нервах. При этом по симпатическим нервам проводится чувство боли, а по парасимпатическим — все остальные афферентные импульсы.

Рис. 346. Схема иннервации сердца.

А — ядро сердечных волокон блуждающего нерва в продолговатом мозге: Тh I- Тh III — сегменты спинного мозга, в которых расположены клетки, отдающие симпатические нервные волокна к сердцу. Сплошные линии — преганглионарные волокна блуждающего и симпатических нервов: пунктирные — постгаглионарные волокна блуждающего нерва в сердце; прерывистые линии — постганглионарные симпатические волокна, идущие к сердцу. Стрелками показано направление влияния коры мозга, передаваемое через гипоталамус на ядра блуждающего нерва и симпатические центры

Эфферентная парасимпатическая иннервация . Пpeанглионарные волокна начинаются в дорсальном вегетативном ядре блуждающего нерва и идут в составе последнего, его сердечных ветвей (rámi cardiáci n. vági) и сердечных сплетений (см. иннервацию сердца) до внутренних узлов сердца, а также узлов околосердечных полей. Постганглионарные волокна исходят от этих узлов к мышце сердца. Функция: торможение и угнетение деятельности сердца; сужение венечных артерий.

Эфферентная симпатическая иннервация . Преганглионарные волокна начинаются из боковых рогов спинного мозга 4–5 верхних грудных сегментов, выходят в составе соответственных rámi communicántes álbi и проходят через симпатический ствол до пяти верхних грудных и трех шейных узлов. В этих узлах начинаются постганглионарные волокна, которые в составе сердечных нервов, nn. cardiáci cervicáles supérior, médius et inférior и nn. cardiáci thorácici, достигают сердечной мышцы. Перерыв осуществляется только в gánglion stellátum. Сердечные нервы содержат в своем составе преганглионарные волокна, которые переключаются на постганглионарные в клетках сердечного сплетения. Функция: усиление работы сердца (это установил И. П. Павлов в 1888 г., назвав симпатический нерв усиливающим) и ускорение ритма (это впервые установил И. Ф. Цион в 1866 г.), расширение венечных сосудов.

Иннервация легких и бронхов . Афферентными путями от висцеральной плевры являются легочные ветви грудного отдела симпатического ствола, от париетальной плевры — nn. intercostáles и n. phrénicus, от бронхов — n. vágus.

Эфферентная парасимпатическая иннервация . Преганглионарные волокна начинаются в дорсальном вегетативном ядре блуждающего нерва и идут в составе последнего и его легочных ветвей к узлам pléxus pulmonális, а также к узлам, расположенным по ходу трахеи, бронхов и внутри легких. Постганглионарные волокна направляются от этих узлов к мускулатуре и железам бронхиального дерева. Функция: сужение просвета бронхов и бронхиол и выделение слизи.

Эфферентная симпатическая иннервация . Преганглионарные волокна выходят из боковых рогов спинного мозга верхних грудных сегментов ( Th II — Th VI ) и проходят через соответствующие rámi communicántes álbi и симпатический ствол к звездчатому и верхним грудным узлам. От последних начинаются постганглионарные волокна, которые проходят в составе легочного сплетения к бронхиальной мускулатуре и кровеносным сосудам. Функция: расширение просвета бронхов; сужение.

Иннервация желудочно-кишечного тракта (до сигмовидной кишки), поджелудочной железы, печени . Афферентные пути от указанных органов идут в составе n. vágus, n. splánchnicus májor et minor, pléxus hepáticus, pléxus coelíacus, грудных и поясничных спинномозговых нервов и в составе n. phrénicus.

По симпатическим нервам передается чувство боли от этих органов, по n. vágus — другие афферентные импульсы, а от желудка — чувство тошноты и голода.

Эфферентная парасимпатическая иннервация . Преганглионарные волокна из дорсального вегетативного, ядра блуждающего нерва проходят в составе последнего до терминальных узлов, находящихся в толще названных органов. В кишечнике это клетки кишечных сплетений (pléxus myentéricus, submucósus). Постганглионарные волокна идут от этих узлов к гладким мышцам и железам. Функция: усиление перистальтики желудка, расслабление сфинктера привратника, усиление перистальтики кишок и желчного пузыря, расширение сосудов. В составе блуждающего нерва имеются волокна, возбуждающие и тормозящие секрецию.

Эфферентная симпатическая иннервация . Преганглионарные волокна выходят из боковых рогов спинного мозга V–XII грудных сегментов, идут по соответствующим rámi communicántes álbi в симпатический ствол и далее без перерыва в составе nn. splánchnici majóres (VI–IX) до промежуточных узлов, участвующих в образовании чревного, верхнего и нижнего брыжеечных сплетений (gánglia coeliaca и gánglion mesentéricum supérius et inférius). Отсюда возникают постганглионарные волокна, идущие в составе pléxus coeliacus и pléxus mesentéricus supérior к печени, páncreas, к тонкой кишке и к толстой до середины cólon transvérsum; левая половина cólon transvérsum и cólon descéndens иннервируется из pléxus mesentéricus inférior. Указанные сплетения снабжают мускулатуру и железы названных органов. Функция: замедление перистальтики желудка, кишок и желчного пузыря, сужение просвета кровеносных сосудов и угнетение секреции желез.

К этому нужно заметить, что задержка движений желудка и кишечника достигается также и тем, что симпатические нервы вызывают активное сокращение сфинктеров: sphíncter pylóri, сфинктеры кишечника и др.

Иннервация сигмовидной и прямой кишки и мочевого пузыря . Афферентные пути идут в составе pléxus mesentéricus inférior, pléxus hypogástricus supérior et inférior и в составе nn. splánchnici pelvÍni.

Эфферентная парасимпатическая иннервация . Преганглионарные волокна начинаются в боковых рогах спинного мозга II–IV крестцовых сегментов и выходят в составе соответствующих передних корешков спинномозговых нервов. Далее они идут в виде nn. splánchnici pelvíni до внутриорганных узлов названных отделов толстой кишки и околоорганных узлов мочевого пузыря. В этих узлах начинаются постганглионарные волокна, которые достигают гладкой мускулатуры названных органов. Функция: возбуждение перистальтики сигмовидной и прямой кишки, расслабление m. sphíncter áni intérnus, сокращение m. detrúsor vésicae и расслабление m. sphíncter vésicae.

Эфферентная симпатическая иннервация . Преганглионарные волокна идут от боковых рогов поясничного отдела спинного мозга через соответствующие передние корешки в rámi communicántes álbi, проходят, не прерываясь, через симпатический ствол и достигают gánglion mesentéricum inférius. Здесь начинаются постганглионарные волокна, идущие в составе nn. hypogástrici до гладкой мускулатуры названных органов. Функция: задержка перистальтики сигмовидной и прямой кишки и сокращение внутреннего сфинктера прямой кишки. В мочевом пузыре симпатические нервы вызывают расслабление m. detrúsor vésicae и сокращение сфинктера мочевого пузыря.

Иннервация половых органов: симпатическая — см. «Симпатический ствол», парасимпатическая — см. «Периферический отдел парасимпатической системы». Иннервация других внутренних органов приводится после их описания.

Иннервация кровеносных сосудов . Степень иннервации артерий, капилляров и вен неодинакова. Артерии, у которых более развиты мышечные элементы в túnica média, получают более обильную иннервацию, вены — менее обильную; v. cáva inférior и v. pórtae занимают промежуточное положение.

Более крупные сосуды, расположенные внутри полостей тела, получают иннервацию от ветвей симпатического ствола, ближайших сплетений вегетативной нервной системы и прилежащих спинномозговых нервов; периферические же сосуды стенок полостей и сосуды конечностей получают иннервацию от проходящих поблизости нервов. Нервы, подходящие к сосудам, идут сегментарно и образуют периваскулярные сплетения, от которых отходят волокна, проникающие в стенку и распределяющиеся в адвентиции (túnica extérna) и между последней и túnica média. Волокна иннервируют мышечные образования стенки, имея различную форму окончаний. В настоящее время доказано наличие рецепторов во всех кровеносных и лимфатических сосудах.

Первый нейрон афферентного пути сосудистой системы лежит в спинномозговых узлах или узлах вегетативных нервов (nn. splánchnici, n. vágus); далее он идет в составе кондуктора интероцептивного анализатора (см. «Интероцептивный анализатор»). Сосудодвигательныи центр лежит в продолговатом мозге. К регуляции кровообращения имеют отношение glóbus pállidus, таламус, а также серый бугор. Высшие центры кровообращения, как и всех вегетативных функций, заложены в коре моторной зоны головного мозга (лобная доля), а также впереди и сзади нее. Корковый конец анализатора сосудистых функций располагается, по-видимому, во всех отделах коры. Нисходящие связи головного мозга со стволовыми и спинальными центрами осуществляются, по-видимому, пирамидными и экстрапирамидными трактами.

Замыкание рефлекторной дуги может происходить на всех уровнях центральной нервной системы , а также в узлах вегетативных сплетений (собственная вегетативная рефлекторная дуга).

Эфферентный путь вызывает вазомоторный эффект — расширение или сужение сосудов. Сосудосуживающие волокна проходят в составе симпатических нервов, сосудорасширяющие волокна идут в составе всех парасимпатических нервов краниального отдела вегетативной нервной системы (III. VII, IX, X), в составе передних корешков спинномозговых нервов (признается не всеми) и парасимпатических нервов сакрального отдела (nn. splánchnici pelvíni).

ЕДИНСТВО ВЕГЕТАТИВНОЙ И АНИМАЛЬНОЙ ЧАСТЕЙ НЕРВНОЙ СИСТЕМЫ

Необходимо помнить, что вегетативная нервная система есть часть единой нервной системы. Поэтому в целом организме постоянно наблюдается сочетанная деятельность вегетативной и анимальной частей нервной системы с вовлечением центров, находящихся на различных уровнях нервной системы.

Рассмотрим такую сочетанную деятельность на примере регуляции акта мочеиспускания.

В едином акте мочеиспускания участвуют непроизвольные мышцы (m. detrúsor vesícae и m. sphincter vesicae), иннервируемые вегетативными нервами, и произвольная (m. sphíncter uréthrae), иннервируемая анимальными. При этом вытеснитель мочи сокращается, а оба сфинктера расслабляются, хотя каждый из них иннервируется из разных частей нервной системы: сфинктер пузыря — из вегетативной, а сфинктер мочеиспускательного канала — из анимальной. Это происходит благодаря наличию общего центра координации в головном мозге, поскольку вегетативная и анимальная части составляют единую нервную систему.

В интеграции анимальной и вегетативной нервных систем большую роль играет лимбическая система.

Зоны Захарьина-Геда. В настоящее время имеются сведения об афферентной иннервации внутренностей анимальной нервной системой, что отмечалось выше. Возможно, этим объясняется давно известный симптом отраженных болей, наблюдаемый в клинике. Заболевания некоторых внутренних органов постоянно сопровождаются отраженными болями в определенных местах кожи. Таковы, например, боли в левой лопатке и левой руке при стенокардии, боли между лопатками при язве желудка, боли в правой подвздошной ямке при аппендиците и др. Эти боли локализуются в определенных кожных сегментах, соответствующих тем сегментам спинного мозга, куда поступают афферентные (чувствительные) волокна из пораженного внутреннего органа. Такие кожные сегменты, или зоны, называются зонами Захарьина — Геда по имени, описавших их авторов. Приводим схему этих зон (рис. 347).

Рис. 347. Зоны отраженных болей (зоны Захарьина-Геда ) при заболеваниях внутренних органов.

Знание зон Захарьина — Геда помогает судить по болям в наружных покровах тела о состоянии органов внутри его полостей. Возможно, что зоны Захарьина-Геда обусловливают воздействие на внутренние органы применяемых в китайской медицине прижиганий или вкалываний игл (акупунктура) в определенные кожные точки.

Сегментарная иннервация органов. Внутриорганные нервы паренхиматозных органов распределяются, как и сосуды, соответственно сегментам органов. Так, в легких различают 10 нервных сегментов. В печени число их весьма варьирует и может достигать восьми. В почке отмечается 5 сегментов иннервации.

 

Общий обзор основных проводящих путей нервной системы

Как уже отмечалось, интеграция организма в единое целое осуществляется нейрогуморальной регуляцией при ведущей роли нервной системы. Нервная система обеспечивает и единство организма и среды. Рассмотрим морфологическую основу этой интеграции.

В основе деятельности нервной системы лежит рефлекторная дуга.

Короткая рефлекторная дуга (см. рис. 264) построена следующим образом. На первом этапе развития центральной нервной системы, когда не было еще головного мозга, рефлекторная дуга замыкалась только в пределах туловищного мозга. Как отражение этого этапа, у человека сохранился собственный аппарат спинного мозга, построенный по принципу трехчленной рефлекторной дуги.

Первый (афферентный, чувствительный) нейрон этой дуги представлен клетками спинномозгового узла, периферические отростки которых идут в составе нервов от органов и тканей, где начинаются рецепторами, а центральные входят в составе задних корешков в спинной мозг. Каждый центральный отросток, войдя в белое вещество спинного мозга, Т-образно разделяется на две ветви — восходящую и «исходящую, от которых в свою очередь отходит несколько боковых веточек (коллатералей). Все эти веточки заканчиваются в задних рогах и substántia intermédia centrális серого вещества нескольких соседних сегментов. Лежащие здесь клетки являются вторым (замыкательным) нейроном простой рефлекторной дуги. Отростки их также делятся на восходящую и нисходящую ветви с боковыми коллатералями, заканчивающимися на клетках передних рогов в пределах нескольких соседних сегментов. Клетки передних рогов составляют третий (эфферентный, двигательный) нейрон ; отросток его выходит из спинного мозга в составе передних корешков и далее в составе нервов достигает эффекторов. В результате такого строения простой рефлекторной дуги один чувствительный нейрон вступает в связь с несколькими промежуточными нейронами, а через их разветвления — с еще большим числом двигательных нейронов, вследствие чего раздражение из одной точки тела может передаваться не только на соответственный сегмент, но и на ряд ближайших. Благодаря этому простой рефлекс может стать более распространенным, с вовлечением в ответную реакцию большой группы мышц.

В спинном мозге человека имеются и двучленные дуги, лишенные промежуточного нейрона (см. рис. 351). Примером может служить сухожильный коленный рефлекс, вызываемый постукиванием молоточка по ligaméntum patéllae при согнутой в колене ноге. В этом случае раздражение передается с сухожильного рецептора на периферический отросток лежащего в спинномозговом ганглии чувствительного нейрона, центральный отросток которого, вступив в составе задних корешков в спинной мозг, достигает серого вещества переднего рога, где и заканчивается на его клетках. Последние образуют второй, двигательный, нейрон, отросток которого в составе переднего корешка и далее мышечного нерва доходит до заложенного в мышцах эффектора. В результате в ответ на постукивание молоточком по сухожилию четырехглавой мышцы бедра наблюдаются ее сокращение и рефлекторное разгибание голени. Двучленная дуга считается молодым приобретением животных, а трехчленный рефлекторный аппарат спинного мозга является филогенетически древним аппаратом. На его базе с возникновением головного мозга стал развиваться более молодой проводниковый аппарат, связывающий спинной мозг с развивающимся головным.

По мере развития головного мозга возникают и разрастаются двусторонние связи спинного мозга с головным, вследствие чего с возникновением каждого нового этажа последнего увеличивается число связанных с ним афферентных и эфферентных нейронов. Рефлекторная дуга усложняется, так что вместо одного нейрона в каждой ее части появляются цепи нейронов, образующих афферентные и эфферентные проводящие пути. Следовательно, проводящими путями в нервной системе называются тесно расположенные одно возле другого нервные волокна, соединяющие различные отделы ее и объединенные в системы пучков, характеризующиеся общностью строения и функции. С помощью проводящих путей и достигаются единство организма и его связь со средой. Чтобы понять их строение, нужно учитывать основные этапы эволюции центральной нервной системы, последовательное развитие отделов головного мозга (см. «Филогенез»). У человека существуют одновременно и старые, и новые проводящие пути, благодаря которым спинной мозг оказывается связанным со всеми отделами головного мозга (см. рис. 270).

1. С продолговатым мозгом :

а) восходящие — fascículus grácilis и fascículus cuneátus, идущие от спинномозговых ганглиев через задние канатики спинного мозга до соименных ядер продолговатого мозга, núcleus grácilis и núcleus cuneátus;

б) нисходящие — от ядер, имеющих отношение к равновесию и координации движений, до передних рогов спинного мозга — tráctus vestibulospinális, tráctus reticulospinális и tráctus olivospinális.

2. С мозжечком :

а) восходящие — tráctus spinocerebelláris postérior и tráctus spinocerebelláris antérior; они заканчиваются в коре древней части мозжечка, т. е. в черве. Из них задний состоит из отростков клеток núcleus thorácicus задних рогов на своей стороне и входит в мозжечок в составе нижних его ножек — прямой спинно-мозжечковый путь. Передний состоит из отростков клеток substántia intermédia centrális своей и противоположной стороны. Он поднимается до среднего мозга и входит в мозжечок в составе его верхних ножек. Его волокна переходят на противоположную сторону, образуя перекрещенный спинно-мозжечковый путь;

б) нисходящие — от мозжечка к спинному мозгу через средний мост и продолговатый мозг.

3. Со средним мозгом :

а) восходящие — tráctus spinotectális, идущий от задних рогов через ствол мозга до крыши (téctum) среднего мозга; на пути он перекрещивается в commissúra álba спинного мозга;

б) нисходящие (к передним рогам): tráctus tectospinális — от téctum среднего мозга и tráctus rubrospinális — от красного ядра.

4. С передним мозгом :

а) восходящие идут от клеток nucleus proprius задних рогов спинного мозга к таламусу — tráctus spinothálamicus laterális et antérior и перекрещиваются на своем пути в commissúra álba спинного мозга;

б) нисходящие — tráctus thalamospinális — от таламуса к передним рогам спинного мозга.

С передним мозгом связаны и пути, идущие от нижележащих отделов головного мозга: lemníscus mediális — идет от ядер fascículus grácilis et cuneátus продолговатого мозга к таламусу, перекрещиваясь на пути в decussátio lemniscórum.

5. С развитием коры большого мозга возникают ее связи с нижележащими отделами, над которыми она становится надстройкой. У человека имеются:

а) восходящие — tráctus thalamocorticális — от таламуса к коре большого мозга;

б) нисходящиеá — tráctus pyramidális — от коры большого мозга к ядрам черепных нервов, заложенным в мозговом стволе — tráctus corticonucleáris, и к передним рогам спинного мозга — tráctus corticospinális (pyramidális). Чем более развита кора большого мозга, тем более развиты и исходящие из нее пирамидные пути, достигающие наивысшего развития у человека соответственно наивысшему развитию у него новой коры.

Кроме названных основных пучков нервных волокон, возникают и другие пути, связывающие отдельные части спинного и головного мозга между собой. Благодаря им устанавливается единство всей нервной системы.

СХЕМА ПРОВОДЯЩИХ ПУТЕЙ НЕРВНОЙ СИСТЕМЫ

Проводящие пути с точки зрения направления проведения импульса могут быть разделены на две большие группы — афферентные и эфферентные. Афферентные проводящие пути составляют среднее звено — кондуктор того или иного анализатора; поэтому часть их будет рассмотрена вместе с соответствующими анализаторами (см. «Органы чувств»).

АФФЕРЕНТНЫЕ (ВОСХОДЯЩИЕ) ПРОВОДЯЩИЕ ПУТИ

Поскольку организм получает раздражение как из внешней среды, так и из внутренней, имеются пути, несущие импульсы от рецепторов, воспринимающих внешние раздражения, и от рецепторов, воспринимающих внутренние раздражения.

Проводящие пути от рецепторов внешних раздражений

Рецепторы, воспринимающие внешние раздражения, называются экстероцепторами. На ранних стадиях эволюции они были заложены главным образом в наружных покровах тела, что необходимо для восприятия внешних раздражений, почему и у человека они развиваются в эмбриогенезе из наружного зародышевого листка — эктодермы. Исключение представляет орган вкуса, тесно связанный функционально с пищеварительной системой и поэтому развивающийся из энтодермы (эпителия глоточных карманов). В дальнейшем с усложнением организации животных и усложнением их образа жизни те из экстероцепторов, которые имели жизненно важное значение, начали усиленно развиваться и усложняться в своей организации, приобретая строение особых органов, воспринимающих раздражения, источники которых находятся на известном расстоянии от организма и потому называемые дистантными. Это — рецепторы слуха, зрения и обоняния. Остальные рецепторы наружных покровов остались заложенными в коже, составляя периферическую часть кожного анализатора. Проводящие пути от рецепторов звука, света, вкуса и обоняния будут рассмотрены при описании соответствующих анализаторов в разделе эстезиологии. Здесь будут изложены проводящие пути кожного анализатора.

Проводящие пути кожного анализатора

Афферентные волокна кожного анализатора несут в кору большого мозга тактильные раздражения, чувство стереогноза (узнавание предмета на ощупь), болевые и температурные раздражения. В связи с этим их можно разбить на несколько групп.

Проводящие пути тактильной чувствительностикожи (чувство осязания) (рис. 348[рисунка нет]). Tractus gangliospinothalamocorticális. Рецептор находится толще кожи. Кондуктор состоит из 3 нейронов. Клеточное тело первого нейрона помещается в спинномозговом узле, который представляет собой скопление клеток периферических нейронов всех видов чувствительности. Отходящий от клеток этого узла отросток делится на две ветви, из которых периферическая идет в составе кожного нерва от рецептора, а центральная в составе заднего корешка идет в задние канатики спинного мозга, где в свою очередь делится на восходящую и нисходящую ветви. Концевые разветвления и коллатерали одной части волокон заканчиваются в задних рогах спинного мозга в substántia gelatinósa (эта часть тракта носит название tráctus gangliospinális), другая часть восходящих волокон не заходит в задние pora, а идет в задних канатиках спинного мозга и достигает в составе fascículus grácilis et cuneátus соименных ядер продолговатого мозга, núcleus grácilis и núcleus cuneátus (эта часть тракта называется tractus gangliobulbáris).

В задних рогах спинного мозга и в названных ядрах продолговатого мозга помещается клеточное тело второго нейрона . Аксоны клеток, заложенных в задних рогах, пересекают срединную плоскость в commissúra álba и входят в состав расположенного в боковом канатике противоположной стороны tráctus spinothálamicus laterális, который они и образуют (см. рис. 270).

Важно иметь в виду, что перекрест волокон спинно-таламических пучков происходит не на уровне вступления соответствующего заднего корешка в спинной мозг, а на 2–3 сегмента выше. Этот факт имеет существенное значение для клиники, так как при одностороннем повреждении этого пучка расстройство кожной чувствительности на противоположной стороне наблюдается не на уровне поражения, а книзу от него.

Этот пучок через стволовую часть головного мозга достигает таламуса. По пути он устанавливает связь с двигательными ядрами мозгового ствола и черепных нервов, по которым возникают головные рефлексы при раздражении кожи, например движение глаз при раздражении кожи руки. Аксоны клеток второго звена, заложенных в ядрах продолговатого мозга, также достигают таламуса по тракту, носящему название lemníscus mediális, который в продолговатом мозге переходит на противоположную сторону, образуя перекрест медиальной петли (decussátio lemniscórum) (рис. 349).

Рис. 349. Проекция хода медиальной петли на латеральную поверхность мозгового ствола.

lm — lemniscus medialis; 1 , 2 , 3 — поперечные сечения продолговатого мозга, моста и среднего мозга с обозначением положения медиальной петли ( lm ) в толще этих образований; 4 — nucl. lateralis thalami; 5 — пути заднего канатика спинного мозга;  6 — tr. gangliospinothalamicus; 7 — decussatio lemniscorum.

Таким образом, для каждой половины тела в спинном мозге имеются как бы два тракта, передающих импульсы прикосновения: 1) один, неперекрещенный, — в заднем канатике той же стороны и 2) другой, перекрещенный, — в боковом канатике противоположной стороны. Поэтому при одностороннем поражении спинного мозга тактильная чувствительность может оставаться ненарушенной, так как сохраняется соответствующий пучок на здоровой стороне.

В таламусе находится клеточное тело третьего нейрона , аксоны которого направляются в кору большого мозга в составе tr. thalamocorlicális, в постцентральную извилину (поля 1, 2, 3) и верхнюю теменную до льку (поля 5, 7), где находится корковый конец кожного анализатора (рис. 350, см. рис. 299).

Тактильная и болевая чувствительность имеет разлитую локализацию в коре головного мозга, что объясняет их меньшее нарушение при ограниченных корковых очагах повреждения.

Рис. 350. Схема-модель трех главных чувствительных систем левого полушария большого мозга, восходящих к клеткам его коры.

1 — область общей чувствительности коры полушария; 2 — зрительная область коры полушария; 3 — медиальное коленчатое тело; 4 — латеральное коленчатое тело; 5 — латеральное ядро таламуса; 6 — слуховая область коры головного мозга.

Проводящие пути пространственной кожной чувствительности — стереогноза (узнавание предметов на ощупь) (см. рис. 270). Этот вид кожной чувствительности имеет, как и тактильная чувствительность, идущая по fascículus grácilis et cuneátus, три звена: 1) спинномозговые ганглии, 2) núcleus grácilis et cuneátus в продолговатом мозге, 3) таламус и, наконец, корковый конец кожного анализатора в верхней теменной дольке (поля 5, 7).

Проводящие пути болевой и температурной чувствительности. Клеточное тело первого нейрона лежит в спинномозговом узле, клетки которого связаны периферическими отростками с кожей, а центральными — с задними рогами спинного мозга (núclei próprii), где помещается клеточное тело второго нейрона (tráctus gángliospinalis). Аксон второго нейрона переходит на другую сторону в составе commissúra álba и поднимается в составе tráctus spinothalámicus laterális до таламуса. Следует отметить, что tráctus spinothalámicus laterális в свою очередь делится на две части — переднюю и заднюю, из которых по передней передается болевая чувствительность, а по задней — термическая. В таламусе лежит клеточное тело третьего нейрона , отросток которого в составе tráctus thalamocorticális направляется в кору большого мозга, где заканчивается в постцентральной извилине (корковый конец кожного анализатора).

Некоторые полагают, что чувство боли воспринимается не только в коре, но и в таламусе, где различные виды чувствительности приобретают эмоциональную окраску. Болевые и температурные импульсы от отделов или органов головы приходят по соответствующим черепным нервам — V, VII, IX, X парам к их чувствительным ядрам и от этих ядер к таламусу и далее в кору постцентральной извилины (нижний отдел).

Вследствие перекреста волокон второго нейрона проводящих путей, идущих от экстероцепторов, импульсы болевой, температурной и частично тактильной чувствительности передаются в постцентральную извилину с противоположной стороны тела. Поэтому следует запомнить, что поражение первого нейрона или второго нейрона до перекреста вызывает расстройство чувствительности на стороне поражения. Если же пострадали волокна второго нейрона после перекреста или третий нейрон, то расстройство тех же видов чувствительности наблюдается на стороне, противоположной очагу поражения.

Проводящие пути от рецепторов внутренних раздражений

Проводящие пути от рецепторов внутренних раздражений могут быть разделены на проводящие пути от аппарата движения (собственно тела), т. е. от проприоцепторов (próprius — собственный), составляющих кондуктор двигательного анализатора, и пути от рецепторов внутренностей и сосудов, т. е. интероцепторов; вторая группа путей является кондуктором интероцептивного анализатора.

Проводящие пути двигательного анализатора

Двигательный анализатор воспринимает глубокую проприоцептивную чувствительность, к которой относятся мышечно-суставное чувство, вибрационная чувствительность, чувство давления и веса (гравитация). Основной вид проприоцептивной чувствительности — это мышечно-суставное чувство, т. е. импульсы, которые возникают в связи с изменениями степени натяжения суставной сумки, сухожилий и напряжения мышц; благодаря этим импульсам у человека создается представление о положении тела и частей его в пространстве и об изменении этого положения (что имеет, в частности, значение при полетах в космос, где создается состояние невесомости).

Проводящими путями двигательного анализатора являются tráctus gangliobulbothalamocorticális и tráctus spinocerebelláris antérior et postérior.

Tráctus gangliobulbothalamocorticális (см. рис. 349). Рецепторы находятся в костях, мышцах, сухожилиях, суставах, т. е. в собственно теле, отчего называются проприоцепторами (рис. 351).

Рис. 351. Пути трехчленной ( а ) и двучленной ( б ) проприоцептивных рефлекторных дуг.

1 — мышечные волокна; 2 — двигательные окончания;  3 — сухожилие; 4 — чувствительное окончание в сухожилии; 5 — периферическое волокно чувствительного нейрона; 6 — двигательное волокно; 7 — передний корешок; 8 — спинномозговой узел;  9 — задний корешок; 10 — восходящий чувствительный путь заднего канатика; 11 — нисходящий двигательный путь (боковой пирамидный путь); 12 — двигательная клетка переднего рога; 13 — вставочный нейрон.

Кондуктор состоит из трех нейронов. Клеточное тело первого нейрона помещается в спинномозговом узле. Аксон этой клетки делится на две ветви — периферическую, идущую в составе мышечного нерва от проприоцептора, и центральную, идущую в составе задних корешков в задние канатики спинного мозга, fasciculus grácilis и fasciculus cuneátus, до продолговатого мозга (см. рис. 270, 348, 349). Здесь они оканчиваются в соименных ядрах названных канатиков — núcleus grácilis и nucleus cuneátus (tráctus gangliobulbáris).

В этих ядрах помещаются тела вторых нейронов . Аксоны их в составе lemníscus mediális достигают латеральных ядер таламуса, где начинается третье звено . Аксоны клеток последнего направляются через cápsula intérna (см. рис. 297) в кору предцентральной извилины , где помещается корковый конец двигательного анализатора (поля 4, 6; см. рис. 299). По проприоцептивным путям (пройдя спинномозговые нервы) в кору головного мозга поступают нервные импульсы: по fascículus grácilis — от мускулатуры нижних конечностей и нижней половины туловища и по fascicúlus cuneátus — от верхней половины туловища и верхней конечности. Проприоцептивные волокна от мышц головы проходят по черепным нервам: тройничному (V) — от мышц глаза и от жевательной мускулатуры, VII — от мимической мускулатуры, IX, X, XI и XII — от языка, от мускулатуры глотки и других мышц бывшего жаберного аппарата.

При выпадении глубокой (проприоцептивной) чувствительности больной утрачивает представление о положении частей своего тела в пространстве и о перемене положения; движения теряют свою четкость, согласованность, наступает расстройство координации движений — атаксия. В отличие от мозжечковой (двигательной) атаксии она называется сенсорной (чувствительной).

Не все пути проприоцептивной чувствительности доходят до коры. Подсознательные проприоцептивные импульсы направляются в мозжечок, который является важнейшим центром проприоцептивной чувствительности.

Проприоцептивные пути к мозжечку (рис. 352). Чувствительные подсознательные импульсы от аппарата движения (костей, суставов, мышц и сухожилий) достигают мозжечка посредством спинальных, проприоцептивных путей, из которых главнейшие — tráctus spinocerebelláris postérior et antérior (см. рис. 270).

Рис. 352. Восходящие и нисходящие пути мозжечка.

1 — tr. spinocerebellaris posterior; 2 , 3 — tr. spinocerebellaris anterior;  2 — часть, перекрещивающаяся в среднем мозге; 3 — часть, перекрещивающаяся в спинном мозге; 4 — tr. rubrospinalis; 5 — tr. vestibulospinalis; 6 — tr. olivospinalis; 7 — tr. thalamocorticalis; 8 — thalamus; 9 — nucl. ruber; 10 — червячок мозжечка;  11 — nucl. dentatus cerebelli; 12 — олива и ядра pars vestibularis VIII пары черепных нервов; 13 — связи мозжечка и красного ядра; 14 — tr. corticopontocerebellaris.

1. Tráctus spinocerebelláris postérior. Клеточное тело первого нейрона лежит в спинномозговом узле, аксон делится на две ветви, из которых периферическая идет в составе мышечного нерва от рецептора, заложенного в той или иной части аппарата движения, а центральная в составе заднего корешка проникает в задние рога спинного мозга и при помощи своих концевых ветвей и коллатералей разветвляется вокруг núcleus thorácicus. В núcleus thorácicus лежат клетки второго нейрона , аксоны которых и образуют tráctus spinocerebelláris postérior. Núcleus thorácicus, как показывает название, лучше выражено в грудном отделе на уровне от последнего шейного сегмента до II поясничного. Дойдя в составе бокового канатика спинного мозга до продолговатого по своей стороне, этот тракт в составе нижних мозжечковых ножек достигает коры червя. На своем пути в спинном и продолговатом мозге он не перекрещивается, отчего его называют прямым мозжечковым трактом. Однако, войдя в мозжечок, он большей своей частью перекрещивается в черве.

2. Tráctus spinocerebelláris antérior. Первый нейрон тот же, что и у заднего тракта. В substántia intermédia centrális серого вещества спинного мозга помещаются клетки вторых нейронов , аксоны которых, образуя tráctus spinocerebelláris antérior, входящий в передние отделы бокового канатика своей и противоположной стороны через commissúra álba, совершают в ней перекрест. Тракт поднимается через продолговатый мозг и мост до верхнего мозгового паруса, где снова происходит перекрест. После этого волокна входят в мозжечок через его верхние ножки, где заканчиваются в коре червя. В результате весь этот путь оказывается перекрещенным дважды; вследствие этого проприоцептивная чувствительность передается на ту же сторону, с которой поступила.

Таким образом, оба мозжечковых пути соединяют одноименные половины спинного мозга и мозжечка.

Мозжечок получает также проприоцептивные импульсы от núcleus grácilis и núcleus cuneátus, расположенных в продолговатом мозге. Отростки клеток, заложенных в этих ядрах, идут в мозжечок через его нижние ножки. Все пути глубокой (подсознательной) чувствительности заканчиваются в черве, т. е. в древней части мозжечка, paleocerebéllum.

Интероцептивный анализатор

Интероцептивный анализатор в отличие от других не имеет компактной и морфологически строго очерченной проводниковой части, хотя он и сохраняет специфичность на всем своем протяжении.

Рецепторы его, называемые интероцепторами, рассеяны во всех органах растительной жизни; внутренностях, сосудах, в непроизвольной мускулатуре и железах кожи и др.

Кондуктор состоит из афферентных волокон вегетативной нервной системы, идущих в составе симпатических, парасимпатических и анимальных нервов и далее в спинном и головном мозге до коры. Часть кондуктора интероцептивного анализатора составляют афферентные волокна, идущие в составе черепных нервов (V, VII, IX, X) и несущие импульсы от органов растительной жизни, расположенных в области распространения иннервации каждого из этих нервов. Образуемый ими афферентный путь разбивается на 3 звена: клетки первого звена лежат в узлах этих нервов (gánglion trigeminále, gánglion genículi, gánglion inférius); клетки второго нейрона находятся в ядрах этих нервов (núcleus spinális n. trigémini, núcleus solitárius nn. VII, IX, X). Исходящие из этих ядер волокна переходят на другую сторону, направляясь к таламусу. Наконец, клетки третьего звена заложены в таламусе.

Значительную часть кондуктора интероцептивного анализатора образует блуждающий нерв, являющийся главным компонентом парасимпатической иннервации. Идущий по нему афферентный путь также разбивается на 3 звена: клетки первых нейронов лежат в gánglion inférius n. vági, клетки вторых нейронов — в núcleus solitárius.

Исходящие из этого ядра волокна блуждающего нерва вместе с отростками вторых нейронов языкоглоточного нерва переходят на противоположную сторону, перекрещиваясь с волокнами противоположной стороны, и поднимаются по стволовой части мозга. На уровне верхних холмиков крыши среднего мозга они присоединяются ко вторым нейронам кожного анализатора (lemníscus mediális) и достигают таламуса, где лежат клетки третьих нейронов . Отростки последних идут через заднюю треть задней ножки внутренней капсулы к нижнему отделу постцентральной извилины.

В этом месте располагается одна из частей коркового конца интероцептивного анализатора, связанного с парасимпатическими волокнами черепных нервов и областью их иннервации.

Афферентные пути от органов растительной жизни идут также в составе задних корешков спинномозговых нервов. Клетки первых нейронов в этом случае лежат в спинномозговых узлах. Мощный коллектор афферентного пути от органов растительной жизни проходит через внутренностные нервы (nn. splánchnici májor et mínor). Различные группы нервных волокон этих нервов восходят в спинном мозге в составе его задних и боковых канатиков. Афферентные волокна задних канатиков передают интероцептивные импульсы, достигающие через таламусы коры большого мозга.

Афферентные волокна боковых канатиков оканчиваются в ядрах ствола мозга, мозжечка и таламуса (núcleus ventrális postérior). Итак, в таламусе лежат клетки третьих нейронов всего кондуктора интероцептивного анализатора, связанного как с симпатической, так и с парасимпатической иннервацией. Поэтому в таламусе происходит замыкание интероцептивных рефлекторных дуг и возможен «выход» на эфферентные пути.

Замыкание для отдельных рефлексов может происходить и на других, более низких уровнях. Этим объясняется автоматическая, подсознательная, деятельность органов, управляемых вегетативной нервной системой. Корковый конец интероцептивного анализатора, кроме постцентральной извилины, находится в премоторной зоне, где заканчиваются афферентные волокна, идущие от таламуса. Интероцептивные импульсы идут по внутренностным нервам, достигают также коры пред- и постцентральных извилин в зонах кожно-мышечной чувствительности.

Возможно, что эти зоны содержат первые корковые нейроны эфферентных путей вегетативной нервной системы, осуществляющие кортикальную регуляцию вегетативных функций. С этой точки зрения эти первые корковые нейроны могут рассматриваться как своего рода аналоги пирамидных клеток, являющихся первыми нейронами пирамидных путей.

Как видно из вышеизложенного, интероцептивный анализатор в структурном и функциональном отношениях сходен с экстероцептивными анализаторами, однако площадь коркового конца интероцептивного анализатора значительно меньше по сравнению с экстероцептивными. Этим объясняется его «грубость», т. е. меньшая тонкость, точность дифференцировок по отношению к сознанию.

На всех уровнях центральной нервной системы: в спинном мозге, мозжечке, в таламусах и коре большого мозга — имеется весьма тесное перекрытие путей и зон представительства анимальных и вегетативных органов. Висцеральные и соматические афферентные импульсы могут адресоваться к одному и тому же нейрону, «обслуживающему» и вегетативные, и соматические функции. Все это обеспечивает взаимодействие анимальной и вегетативной частей единой нервной системы. Высшая интеграция анимальных и вегетативных функций осуществляется в коре головного мозга, особенно в премоторной зоне.

До сих пор были рассмотрены афферентные пути, связанные с определенной специализацией нейронов, проводящие те или иные специфические импульсы (тактильные, проприоцептивные, интероцептивные). Вместе с проводящими путями от органов зрения, слуха, вкуса, обоняния они составляют так называемую специфическую афферентную систему. Наряду с этим существует афферентная система , представленная так называемой ретикулярной формацией, относящаяся к неспецифическим структурам. Ретикулярная формация воспринимает все без исключения импульсы: болевые, световые, звуковые и т. д. Но в то время как специфические импульсы от каждого органа чувств поступают по специальным проводниковым системам в кору соответствующих анализаторов, в ретикулярной формации не существует специализации нейронов; одни и те же нейроны воспринимают различные импульсы и передают их во все слои коры. Таким образом, ретикулярная формация составляет вторую афферентную систему.

ВТОРАЯ АФФЕРЕНТНАЯ СИСТЕМА ГОЛОВНОГО МОЗГА — РЕТИКУЛЯРНАЯ ФОРМАЦИЯ, FORMATIO RETICULARIS

Под этим названием подразумевают совокупность структур, расположенных в центральных отделах мозгового ствола и отличающихся следующими морфологическими особенностями:

1. Нейроны ретикулярной формации имеют отличающее их от других нейронов строение: дендриты их ветвятся очень слабо, нейриты, наоборот, делятся на восходящую и нисходящую ветви, которые отпускают от себя многочисленные коллатерали, благодаря чему аксон может контактировать с огромным числом нервных клеток (при длине в 2 см — с 27 500).

2. Нервные волокна идут в самых различных направлениях, напоминая под микроскопом сеть, что и послужило основанием для Дейтерса назвать ее 120 лет тому назад сетчатой, или ретикулярной, формацией.

3. Клетки ретикулярной формации местами рассеяны, а местами образуют ядра, начало выделению которых положил В. М. Бехтерев, описавший ретикулярное ядро покрышки моста (núcleus reticuláris tegménti póntis).

В настоящее время описано 96 отдельных ядер.

Область распространения ретикулярной формации точно еще не установлена. На основании физиологических данных, она расположена по всей длине мозгового ствола и занимает центральное положение в продолговатом мозге, мосте, среднем мозге, в гипоталамической области и даже в медиальной части таламусов. Как филогенетически более древняя ретикулярная формация локализуется в покрышке ствола головного мозга.

Связи ретикулярной формации. Ретикулярная формация связана со всеми отделами центральной нервной системы. Различают: 1) ретикулопетальные связи, идущие от всех отделов головного мозга; 2) ретикулофугальные связи, идущие к серому веществу и ядрам головного и спинного мозга; 3) ретикулоретикулярные связи (восходящие и нисходящие) между различными ядрами самой ретикулярной формации.

Функция. В настоящее время считают, что ретикулярная формация является «генератором энергии» и регулирует процессы, совершающиеся в других отделах центральной нервной системы, включая и кору большого мозга. Особенно важно, что ретикулярная формация оказывает общее (генерализованное) неспецифическое активизирующее воздействие на всю кору головного мозга, (П. К. Анохин), что обеспечивается наличием восходящих про водящих путей от сетчатой формации ко всем долям мозговых полушарий. Поэтому ее называют также восходящей активирующей ретикулярной системой. Будучи связана коллатералями аксонов своих клеток со всеми проходящими через ствол мозга специфическими афферентными проводящими путями, она получает от них импульсы и несет неспецифическую информацию в мозговую кору.

В результате через мозговой ствол проходят в кору мозга две афферентные системы: одна специфическая — это все специфические чувствительные проводящие пути, несущие импульсы от всех рецепторов (экстероинтеро- и проприоцепторов) и заканчивающиеся на телах клеток преимущественно IV слоя коры; другая — неспецифическая, образованная ретикулярной формацией и заканчивающаяся на дендритах всех слоев коры.

Взаимодействие обеих этих систем обусловливает окончательную реакцию корковых нейронов. Таково современное представление о двух афферентных системах головного мозга.

Учитывая столь большое значение ретикулярной формации и ее влияние на кору мозга, некоторые зарубежные исследователи преувеличивают ее роль, считая, что она, располагаясь в центральных частях мозга, составляет особую «центрэнцефалическую» систему, выполняющую функцию сознания и интеграции. Стремление спустить высший уровень интеграции из коры мозга в подкорку не имеет под собой фактических оснований и является антиэволюционным, так как в процессе эволюции наибольшего развития достигает наивысший отдел мозга, т. е. его плащ, а не ствол. Это стремление противоречит материалистической идее нервизма и отражает фрейдизм — идеалистическое учение о ведущей роли не коры, а подкорки. Строение и функция ретикулярной формации полностью еще не раскрыты и составляют предмет дальнейших изысканий.

ЭФФЕРЕНТНЫЕ (НИСХОДЯЩИЕ) ПРОВОДЯЩИЕ ПУТИ

Нисходящие двигательные пути идут от коры головного мозга — tráctus corticonucleáris et corticospinális (пирамидная система), от подкорковых ядер переднего мозга — экстрапирамидная система и от мозжечка.

Корково-спинномозговой (пирамидный) путь, или пирамидная система.

Клеточное тело первого нейрона лежит в предцентральной извилине коры большого мозга (гигантские пирамидные клетки). Аксоны этих клеток через coróna radiáta спускаются во внутреннюю капсулу (колено и передние две трети задней ножки), далее в básis pedúnculi cérebri (срединный ее отдел), а затем в pars basiláris моста и продолговатый мозг. Здесь часть волокон пирамидной системы вступает в связь с ядрами черепных нервов. Эта часть пирамидной системы, проходящая через колено внутренней капсулы и связывающая кору большого мозга с ядрами черепных нервов, называется tráctus corticonucleáris. Волокна этого тракта частью переходят на другую сторону, частью остаются на своей стороне. Аксоны клеток, заложенных в ядрах черепных нервов (клеточные тела вторых нейронов), в составе соответственных нервов оканчиваются в скелетной мускулатуре, иннервируемой этими нервами.

Другая часть пирамидной системы, проходящая в передних двух третях задней ножки внутренней капсулы, служит для связи с ядрами спинно-мозговых нервов, спускается до передних рогов спинного мозга и потому называется tráctus corticospinális. Этот тракт, пройдя в мозговом стволе до продолговатого мозга, образует в нем пирамиды. В последних перекрещивается часть волокон tráctus corticospinális (decussátio pyramídum), которая, спускаясь в спинной мозг, ложится в боковой его канатик, образуя, tráctus corticospinális (pyramidális) laterális . Оставшаяся неперекрещенной часть tráctus corticospinális спускается в переднем канатике спинного мозга, образуя его tráctis corticospinális (pyramidális) antérior (см. рис. 270).

Волокна этого пучка постепенно по протяжению спинного мозга также переходят на другую сторону в составе commissúra álba, в результате чего весь tráctus corticospinális оказывается перекрещенным. Благодаря этому кора каждого полушария иннервирует мускулатуру противоположной стороны тела.

Двигательные и чувствительные перекресты, происходящие в различных отделах мозга (decussátio pyramídum, commissúra álba, decussátio lemniscórum и др.), представляют, по И. П. Павлову, приспособление нервной системы, направленное на сохранение иннервации при повреждении мозга в каком-либо месте одной его стороны. Аксоны, составляющие tráctus corticospinális (pyramidális), вступают в связь с двигательными клетками передних рогов спинного мозга, где начинается второе звено. Аксоны лежащих здесь клеток идут в составе передних корешков и далее мышечных нервов к скелетной мускулатуре туловища и конечностей, иннервируемой спинно-мозговыми нервами. Таким образом, tráctus corticonucleáris и tráctus corticospinális составляют единую пирамидную систему, служащую для сознательного управления скелетной мускулатурой (рис. 353). Эта система особенно развита у человека в связи с прямохождением и сознательным пользованием своим аппаратом движения в процессах труда и членораздельной речью.

Нисходящие пути подкорковых ядер переднего мозга — экстрапирамидная система

Пирамидная система, как уже отмечалось выше, начинается в коре большого мозга (V слой, пирамидные клетки). Экстрапирамидная система (рис. 354, 355) слагается из подкорковых образований. В ее состав входят córpus striátum, thalámus, núcleus hypothalámicus postérior, núcleus rúber, substántia nígra и связывающие их проводники белого вещества. Экстрапирамидная система отличается от пирамидной по своему развитию, строению и функции. Она является старейшим в филогенетическом отношении моторно-тоническим аппаратом, который встречается уже у рыб, у которых имеется еще только бледный шар, pallídum (paleostriátum), у амфибий появляется уже скорлупа, putámen (neostriátum).

Рис. 354. Связи стриопаллидарной системы и экстрапирамидная система.

6—4s — поля премоторной и двигательной зоны коры мозга;  1 — волокна, восходящие из таламуса в кору; 2 — путь от «тормозных» участков поля 4s в хвостатое ядро ( N. caud ); Gl. pall . — бледный шар; N. h.  — гипоталамическое ядро; N. ruber — красное ядро; S. n .  — черная субстанция; F. r .  — ретикулярная формация продолговатого мозга. Стрелки указывают направление и «станцию назначения» импульсов.

Рис. 355. Схема экстрапирамидной системы.

се — кора мозжечка; сl — claustrum; N. h . — гипоталамическое ядро; nd — nucl. dentatus cerebelli; nr — nucl. ruber; pa — pallidum; sn — substantia nigra; st — striatum (nucl. caudatus и putamen); th — thalamus;  1 — tr. corticostrialis; 2 — fibrae thalamopallidales: 3 — fibrae strioppallidales; 4 , 5 — связи с substantia nigra и nucl. ruber; 6 , 8 — эфферентные волокна гипоталамического ядра; 7 — волокна pedunculus cerebellaris superior; 9 — эфферентные волокна substantia nigra; 10 — tr. rubrospinalis.

На этой стадии развития, когда пирамидная система еще отсутствует, экстрапирамидная система является высшим отделом головного мозга, воспринимающим раздражение от рецепторов органов и посылающим импульсы к мускулатуре через автоматические механизмы спинного мозга. В результате возникают сравнительно простые движения (автоматизированные). У млекопитающих по мере развития переднего мозга и его коры образуется новая кинетическая система — пирамидная, соответствующая новой форме двигательных актов, связанных со все большей специализацией небольших групп мышц. В результате у человека в полной мере развиваются две системы:

1. Пирамидная система — филогенетически более молодая, представлена экранными центрами коры, ведающими сознательными движениями человека. Через пирамидную систему осуществляется также в движениях корковая деятельность, основанная на условных рефлексах.

2. Экстрапирамидная система — филогенетически более старая, состоящая из подкорковых ядер. У человека она играет подчиненную роль и осуществляет высшие безусловные рефлексы, поддерживая тонус мускулатуры и автоматически регулируя ее работу (непроизвольная автоматическая иннервация скелетной мускулатуры). Эта автоматическая регуляция мышц осуществляется благодаря связям всех компонентов экстрапирамидной системы между собой и с núcleus rúber, от которого идет нисходящий двигательный путь к передним рогам серого вещества спинного мозга, tráctus rubrospinális. Этот тракт начинается в клетках красного ядра, переходит через срединную плоскость на уровне верхних холмиков крыши среднего мозга, образуя вентральный перекрест (decussátio ventrális tegménti), и спускается через мозговой ствол в боковые канатики спинного мозга, после чего заканчивается на двигательных нейронах передних рогов серого вещества. Таким образом, экстрапирамидная система действует на спинной мозг через красное ядро, которое составляет важнейшую часть этой системы.

К работе экстрапирамидной системы имеют отношение нисходящие мозжечковые пути, а также ретикулярно-спинномозговой путь, которому в настоящее время придается большое значение в регуляции двигательной активности спинного мозга.

Нисходящие двигательные пути мозжечка

Мозжечок принимает участие в контроле двигательных нейронов спинного мозга (мышечная координация, поддержание равновесия, сохранение мышечного тонуса и преодоление инерции и силы тяжести). Это осуществляется с помощью tráctus cerebellorubrospinális (см. рис. 352). Клеточное тело первого звена этого пути лежит в коре мозжечка (грушевидные нейроциты). Их аксоны заканчиваются в núcleus dentátus cerebélli и, возможно, в других ядрах мозжечка, где начинается второе звено . Аксоны вторых нейронов идут через верхние мозжечковые ножки к среднему мозгу и оканчиваются в núcleus rúЬег. Здесь помещаются клетки третьего звена , аксоны которых в составе tráctus rubrospinális, переключившись в двигательных нейронах передних рогов спинного мозга (четвертое звено ), достигают скелетной мускулатуры.

Нисходящие пути коры большого мозга к мозжечку

Кора большого мозга, ведающая всеми процессами организма, держит в своем подчинении и мозжечок как важнейший проприоцептивный центр, связанный с движениями тела. Это достигается наличием специального нисходящего пути от коры большого мозга к коре мозжечка — tráctus corticopontocerebelláris (см. рис. 352).

Первое звено этого пути состоит из нейронов, клеточные тела которых заложены в коре большого мозга, а аксоны спускаются к ядрам моста, núclei (próprii) póntis. Эти нейроны составляют отдельные пучки, которые соответственно различным долям мозга называются tráctus frorttopontínus, occipitopontínus, temporopontínus et parietopontínus. В ядрах моста начинаются вторые нейроны , аксоны которых образуют tráctus роntocerebelláris, идущий на противоположную сторону моста, и в составе средних мозжечковых ножек он достигает коры полушарий мозжечка (neocerebellum).

Таким образом, устанавливается связь между корой большого мозга и полушариями мозжечка. (Полушария головного мозга связаны с противоположными полушариями мозжечка.) Оба эти отдела головного мозга являются более молодыми и в своем развитии взаимосвязаны. Чем сильнее развиты кора и полушария большого мозга, тем сильнее развиты кора и полушария мозжечка. Так как связь этих отделов головного мозга осуществляется через мост, то и степень развития последнего определяется развитием мозговой коры.

Следовательно, три пары ножек мозжечка обеспечивают его многосторонние связи: через нижние ножки он получает импульсы из спинного мозга и продолговатого мозга, через средние — из коры полушарий большого мозга; в составе верхних ножек проходит главный эфферентный путь мозжечка, по которому мозжечковые импульсы передаются на клетки передних рогов спинного мозга. Связь полушарий головного мозга с полушариями мозжечка, т. е. с его новой частью (neocerebéllum), перекрестная, связь же червя, т. е. старой части мозжечка (paleocerebéllum), со спинным мозгом главным образом прямая, гомолатеральная.