НЕВЕДОМОЕ — ПЕРЕД НАМИ
ГОТОВЬТЕСЬ К НЕОЖИДАННОМУ
18 марта 1987 года в США состоялась научная конференция. У неё были две особенности. Во-первых, необычная тематика. Это была первая международная конференция по проблемам высокотемпературной сверхпроводимости. В наши дни каждый, кто регулярно читает газеты, слушает радио и смотрит телевизор, слышал о высокотемпературной сверхпроводимости. О создании новых материалов, которые способны проводить электрический ток без потерь, материалов, теряющих электрическое сопротивление при неожиданно высоких температурах.
Под высокой температурой в этом контексте подразумеваются минусовые температуры. Ещё недавно было трудно осознать, что в некоторых случаях температура –195 °C, которую на конференции часто называли высокой температурой, действительно может считаться высокой температурой по сравнению с температурой –250 °C (только ниже этого порога раньше наблюдалась сверхпроводимость). Наверно, этим объяснялась вторая особенность конференции — неслыханный ажиотаж вокруг неё.
Заседание было намечено на 7 часов 30 минут утра. Задолго до этого времени у входа собралась толпа. Зал на 1140 мест заполнили мгновенно после открытия дверей. Обсуждение длилось целый день и почти всю ночь. В 6 утра на следующий день, когда служащие принялись за уборку помещения, прения ещё продолжались.
Участники конференции ожесточённо спорили по всем вопросам, но были единодушны в одном: они были уверены, что являются свидетелями и участниками новой научно-технической революции. Революции, не только меняющей наши представления о том, что можно ожидать от науки, но, главное, открывающей захватывающие перспективы в технике. Прежде всего в самом фундаменте промышленного прогресса, в энергетике.
Одни докладчики уверяли, что скоро мы сможем передавать электрическую энергию на самые большие расстояния без потерь. Сегодня, когда она течёт по обыкновенным проводам, нагревая их и бесполезно рассеиваясь в окружающем пространстве, потери огромны. Новые провода из сверхпроводящих материалов будут передавать энергию от самых далёких электростанций до мест потребления без всяких утечек.
Другие выступающие живописали реальность мечты о широком использовании энергии Солнца и ветра. Будет выгодно перейти к повсеместному использованию этих, воистину вечных и чистых источников энергии, несмотря на то что их мощность, доступная в каждом месте Земли, всё время меняется, уменьшаясь до нуля и вновь возрастая. Залогом успеха, говорили энтузиасты, является открываемая высокотемпературными сверхпроводниками возможность без чрезмерных затрат накапливать огромные запасы энергии и расходовать их по мере надобности.
Участники конференции понимали, что трудно предвидеть всё новые возможности, вытекающие из этой революции. Поэтому часто мелькала фраза: готовьтесь к неожиданному! Её мы и привели в заглавии этого раздела. Кстати, фраза взята из статьи М. Р. Бисли и Т. X. Геболла, опубликовавших в 1984 году работу «Сверхпроводящие материалы». Уже тогда её авторы и другие учёные чувствовали приближение неведомого. Но неведомое, как всегда, возникло неожиданно.
Не прошло и двух лет после появления этой статьи, как совершился первый скачок. В апреле 1986 года работающие в Цюрихе Йоханнес Георг Беднорц, гражданин Швейцарии, и Карл Алекс Мюллер, гражданин ФРГ, направили в известный физический журнал «Цайтшрифт фюр физик» статью, где сообщали о том, что им удалось создать новый керамический материал, который переходит в сверхпроводящее состояние при температуре — 238 °C. Статья была опубликована в сентябре этого же года. Пять месяцев — короткий срок для современных научных журналов. Но впоследствии почтенная редакция несомненно сожалела о том, что не проявила чувства нового и не включила статью в самый ближайший номер журнала хотя бы и ценой некоторых убытков.
Почему же эта статья привела массы учёных в непривычное возбуждение?
Они узнали, что после многих лет медленного продвижения в глубь низких температур наконец совершён скачок. До того все исследования сверхпроводящих материалов, все практические применения сверхпроводников требовали охлаждения их жидким гелием. А это –269 °C. Литр жидкого гелия стоит около десяти рублей. Ещё совсем недавно приходилось платить за него много дороже, да и для его получения требуется чрезвычайно дорогое оборудование.
В шестидесятых годах в результате изучения свойств множества сплавов и соединений удалось продвинуться в самое начало зоны температур, получаемых при помощи жидкого водорода. Но водород, как известно, взрывоопасен, поэтому никто не думал о широком применении «водородных сверхпроводников» (так лабораторный жаргон окрестил материалы, становящиеся сверхпроводниками при температурах, превышающих температуру кипения жидкого водорода — 252 °C).
Но этот путь оборвался в 1973 году, когда были получены тонкие плёнки из соединения трёх атомов ниобия с одним атомом германия. Они становились сверхпроводящими при –249,96 °C, но получить из этого соединения сверхпроводящие проволочки не удалось.
И вот после тринадцати лет тщетных поисков скачок на 8 градусов выше температуры кипения неона: — 245,86 °C.
Неон, как и гелий, является инертным газом. Значит, он в отличие от водорода не взрывоопасен. Стоимость его получения меньшая, чем у гелия. Он отбирает от охлаждённого предмета много больше тепла, чем гелий. Значит, неон во всех отношениях более доступный и более эффективный хладагент, чем гелий.
Но не только это было причиной ажиотажа вокруг статьи Беднорца и Мюллера. Дело в том, что речь в ней шла не о металле или сплаве, а о сверхпроводящей керамике!
Конечно, сверхпроводящие керамики были известны учёным и ранее. Их интенсивно изучали, отыскивая среди них те, которые становились сверхпроводящими при всё более высокой температуре. Рекорд был поставлен в 1974 году, когда удалось изготовить керамику, превращающуюся в сверхпроводник при температуре –260 °C. Но он существенно, на 10 °C, уступал рекорду, достигнутому тонкой плёнкой из соединения ниобия и германия, упомянутого выше.
Физики готовились к неожиданному. Но никто не предполагал, что прорыв в зону жидкого неона будет совершён при помощи керамики. Ведь этот скачок по сравнению с рекордом, достигнутым для керамики раньше и продержавшимся 12 лет, составил сразу 22 °C!
Ни одна из теорий сверхпроводимости не могла предсказать подобной возможности. И ни одна из них не может и теперь объяснить, почему это произошло!
Но не вооружённые теорией экспериментаторы продвинулись ещё дальше на пути исследования всё новых типов керамики. Они уже преодолели важный температурный рубеж и уверенно работают в «зоне жидкого азота», при температурах, превышающих температуру его кипения: –195,8 °C.
Более того, в лабораториях учёные получают сверхпроводимость, охлаждая новые керамики всего до –20 °C! Правда, эти материалы ещё не стабильны.
Всё же энтузиазм и оптимизм учёных позволяют считать, что в недалёком будущем удастся изготовить материалы, приобретающие и сохраняющие способность к сверхпроводимости при комнатной температуре. Для таких материалов не будет нужды в охлаждении. Электрические кабели, изготовленные из них, смогут отлично работать в самых жарких странах, если их закопать в грунт на глубину 1,5–2 метра, где температура никогда не повышается выше 10–15 °C.
Мощные генераторы электрического тока и электродвигатели станут компактными и лёгкими. Их габариты при сверхпроводящих обмотках должны определяться только прочностью вращающейся оси и деталей ротора и статора, необходимых для передачи механических нагрузок. В жарких странах и в горячих цехах, возможно, придётся использовать обычные кондиционеры. Они станут излишними лишь тогда, когда удастся создать материалы, не теряющие сверхпроводимости и при повышенных температурах.
Выдающиеся научные достижения всегда возникают вдруг, но внезапные прорывы порождаются предшествующим систематическим развитием идей и накоплением знаний, полученных в практической деятельности людей или из специально поставленных экспериментов. Попытаемся проследить путь, приведший к овладению тайной высокотемпературной сверхпроводимости.
КТО ВИНОВАТ?
Странный случай, происшедший на одном из складов военной амуниции в Петербурге полтора столетия тому назад, можно, пожалуй, считать началом этой истории.
Как и всякий военный склад, этот тоже тщательно охранялся. Тем не менеё партия новеньких солдатских шинелей с победоносно поблескивающими оловянными пуговицами была приведена в негодность и представляла печальное зрелище. Шинели были перепачканы каким-то серым неприятным веществом, а пуговицы исчезли.
Виновник загадочного происшествия так и не был найден, хотя занимались расследованием не только следователи, но и Петербургская академия наук. Злодейству оловянной чумы было посвящено не одно её заседание. Тайна олова долго не давала спать седовласым учёным и чуть не подорвала престиж тогдашней науки.
А затем последовал ещё ряд событий, казалось, не связанных между собой.
В начале нашего века, отмеченного целым рядом героических попыток дорисовать карту Земли, к берегам Антарктиды направились экспедиционные корабли Роберта Скотта. Они подходили всё ближе и ближе к таинственной земле. Мороз мешал людям дышать и двигаться. Начались приготовления к высадке, как вдруг путешествие оборвалось самым неожиданным образом. Случилось то, что никогда ещё не случалось ни с одним кораблём в мире: развалились баки с горючим. Со швов сыпалась, как штукатурка, оловянная пайка.
Слух об этом происшествии тоже достиг высоких учёных собраний и стал предметом ожесточённых споров, предположений, догадок. Но объяснение в то время так и не было найдено. Оловянная чума сеяла панику. Она разгуливала по складам, и вместо аккуратных брусочков белого металла в них находили груды грязно-серого порошкообразного вещества, неведомо откуда взявшегося.
Однако инфекция была разборчива. Она посещала не все склады, а выбирала лишь неотапливаемые, как бы подстерегала момент, когда олово оказывалось на холоде, и набрасывалась на него.
Тайной оловянной чумы всерьёз занялись учёные. Это было не менеё увлекательно, чем чтение детективных романов.
СОЛНЕЧНЫЙ
До 1868 года его не видел ни один человек. Никто его не знал и ничего о нём не слышал.
Впервые его присутствие было обнаружено на Солнце. Он оставил следы в солнечном спектре. Их нашли сразу два астронома — француз П. Жансен, которому пришлось для этого совершить путешествие в Индию, и англичанин Н. Локьер, не думавший покидать Лондон.
Каждый из них тотчас сообщил о необыкновенных следах в Парижскую академию наук. И письма эти пришли в один и тот же день, что немало позабавило академиков. В честь этого удивительного события они даже заказали золотую медаль. Её украшали портреты Жансена, Локьера и бога Солнца Аполлона, восседающего на колеснице.
Вещество, найденное на Солнце, Локьер назвал именем Солнца — гелий.
Гелий увидели на расстоянии в 150 миллионов километров от Земли, и он ещё долго никого не подпускал к себе на более близкое расстояние. Но прошло 25 лет, и английскому учёному Джону Уильяму Рэлею удалось запереть его в колбу в собственной лаборатории. Однако учёный вначале даже не подозревал, кто его пленник.
Просто Рэлей хотел восполнить пробел, существовавший в «статистическом ведомстве» химии. Он решил точно измерить удельный вес всех известных химикам газов. На до было положить конец неразберихе, которая возникла из-за грубых, приближённых измерений.
Рэлей взял самые точные весы и без помех, не торопясь тщательно взвесил водород, потом кислород и занялся азотом, добыв его из воздуха. Веса газов он определил очень точно, вплоть до четвёртого знака после запятой. И был вполне доволен своей работой. Но чтобы ещё раз убедиться в правильности измерений, Рэлей стал снова измерять веса тех же газов, но добытых другим способом.
Так он проверил удельный вес водорода, кислорода и снова занялся азотом. Однако на этот раз добыл его не из воздуха, а из аммиака.
И тут работа застопорилась. Литр азота, добытого из аммиака, почему-то был легче, чем литр азота, взятого из воздуха! Меньше на пустяк, не хватало каких-то 6 миллиграммов. И всё же эта разница заставила Рэлея потрудиться. Сколько ни повторял он взвешивание, вес литра азота из аммиака не совпадал с весом, определённым первоначально. Ничтожный, блошиный вес не давал исследователю сдвинуться с места.
Рэлей был не таким учёным, который может отмахнуться от факта.
Он начал добывать азот из самых различных химических соединений и каждый раз заново его взвешивал. И удивительно: все веса совпадали с весом азота, добытого из аммиака. Воздушный азот был самым тяжёлым!
В эту на первый взгляд ничтожную проблему включился ещё один известный учёный — Уильям Рамзай, у которого, надо думать, были дела и поважнее. Но и он не мог оставить такой факт без внимания.
Как одержимые Рэлей и Рамзай перегоняли газы из одной колбы в другую, очищали, взвешивали… Им было недосуг ни пообедать, ни поговорить. Они не выходили из своих лабораторий, а вечерами обменивались письмами.
И вот оба, разными путями, пришли к одному и тому же выводу: выделенный из воздуха азот не является чистым азотом. Вернеё, это не просто азот. К нему явно примешан другой, неизвестный газ. Но какой?
Потянулись месяцы опытов и раздумий. И в конце концов в пробирке с «чистым» азотом учёные нашли… солнечное вещество. Но прежде чем они настигли его, в «воздушном азоте» были обнаружены сначала аргон, затем криптон — дотоле неизвестные газы, а потом уж гелий. К этому времени гелий был выделен и из минерала клевеита.
Солнечное вещество спустилось на Землю.
И на нашей планете его оказалось так много, что просто поразительно, почему же о нём столь долго ничего не знали химики. А узнав, почему так долго гонялись за ним?
Рамзай с присущим ему юмором сказал как-то: «Поиски гелия напоминают мне поиски очков, которые старый профессор ищет на ковре, на столе, под газетами и находит, наконец, у себя на носу».
РАЗДВОЕНИЕ
Гелий оказался газом без запаха и цвета, неспособным соединяться ни с какими другими элементами. Он был самым лёгким из семейства инертных газов. Казалось, это скромный труженик с покладистым характером; им наполняли дирижабли, применяли его и в металлургии, и в медицине. На первый взгляд ничем особенным не примечательный газ имел и второе лицо.
Странности начались тотчас, как гелий охладили. Учёные привыкли к тому, что в таких случаях газы уплотняются, превращаясь сначала в жидкость, а потом, замерзая, в твёрдое кристаллическое тело.
Было хорошо известно, что кислород сжижается при –183 °C, азот при –196 °C; водород — около –253 °C. Но гелий повёл себя совершенно иначе.
Многие пробовали его охладить. Была уже пройдена «точка кислорода», и «точка азота», и «точка водорода», а гелий не собирался сжижаться. Он упорно оставался газом.
Только в 1908 году голландскому физику Г. Каммерлинг-Оннесу, основателю и директору криогенной (изучающей процессы, связанные с низкими температурами. — И. Р.) лаборатории Лейденского университета, удалось сделать, казалось, невероятное: он заставил гелий превратиться в жидкость. И случилось это при температуре –269 °C! Такой низкой температуры человек не получал ещё никогда. До этого Каммерлинг-Оннес создал установку нового типа для сжижения воздуха. Именно он в 1906 году получил жидкий водород, а после сжижения гелия измерил основные характеристики этой жидкости.
При температуре, когда гелий превращается в жидкость, все другие газы становились твёрдыми, как кусок льда. А гелий напоминал прозрачную газированную воду. В нём всё время рождались и всплывали пузырьки. И эта безобидная на вид жидкость была в шестьдесят раз холоднее ледяной воды!
Кристаллизоваться же гелий не хотел даже вблизи абсолютного нуля — при –273 °C, самой низкой температуре, которая только возможна в природе. Этим он бросал вызов всей классической физике, провозглашавшей, что всякое движение при абсолютном нуле прекращается. Всё должно замерзнуть! А поскольку гелий оставался жидким, значит, его атомы все-таки двигались, они не подчинялись закону вечного покоя.
Учёные ещё не перестали удивляться странному поведению благородного газа, как новая сенсация завладела их вниманием. В 1911 году Каммерлинг-Оннес решил полюбопытствовать, что будет с ртутью, если её охладить до температуры, свойственной жидкому гелию. Каково же было его удивление, когда он обнаружил, что в ванне с жидким гелием электрическое сопротивление ртути исчезло! Легко представить себе, как подозрительно он поглядывал на прибор, регистрирующий эту величину; как, проверяя его работу, удостоверился, что прибор цел и невредим и все-таки продолжал указывать на исчезновение сопротивления ртути электрическому току. А потом оказалось, что ещё несколько чистых металлов повели себя в области низких температур таким же неподобающим образом, нарушив покой учёных. Самое большее, что учёные тогда смогли сделать, — это дать явлению название «сверхпроводимость». Многие годы оно бросало вызов теоретикам.
В 1913 году Каммерлинг-Оннес обнаружил, что сильные магнитные поля и сильные электрические токи, проникая в сверхпроводник, разрушают сверхпроводимость. В этом же году он был награждён Нобелевской премией за выдающийся вклад в физику низких температур.
Несмотря на то что в 1920 году голландец Виллем Хендрик Кеезом, ставший в это время директором Лейденской криогенной лаборатории, справился с гелием и заставил его затвердеть, призвав на помощь морозу высокое давление, зерно сомнения было посеяно. Гелий стал одним из свидетелей против классической физики. Физика не могла с помощью известных законов объяснить его поведение. Вскоре Кеезом совместно с польским учёным Мечиславом Вольфке обнаружил, что при температуре –271 °C по шкале Цельсия, или при температуре, равной 2,17К — по шкале Кельвина, жидкий гелий резко меняет свои свойства. Различие в поведении словно указывало на то, что существуют две различные жидкости. При температуре большей чем 2,17К, жидкий гелий I, а при температуре меньшей 2,17К — жидкий гелий II.
Мы должны прервать рассказ и более подробно пояснить, что означает в предыдущих фразах температура 2,17К.
В 1848 году знаменитый английский физик Уильям Томсон, изучавший тепловые явления, установил, что многие формулы, описывающие зависимость свойств вещества от температуры, можно упростить. Для этого при измерениях температуры следует отказаться от условных шкал температуры, введённых Цельсием, Реомюром или Фаренгейтом, и ввести абсолютную шкалу температур, нуль которой соответствует температуре –273,15 шкалы Цельсия, а «шаги» в один градус совпадают со шкалой Цельсия. В честь У. Томсона, получившего в 1892 году титул лорда Кельвина, температуру, отсчитанную по абсолютной шкале, теперь обозначают буквой «К». Таким образом запись 2,17К означает 2,17° по абсолютной шкале температур, или 2,17° выше абсолютного нуля температуры. Если в дальнейшем после каких-либо цифр будет стоять буква «К», это будет означать температуру по шкале Кельвина. Уильям Томсон доказал, что не может существовать температуры ниже абсолютного нуля.
В 1933 году Кеезом, работая вместе со своей дочерью, обнаружил необычайно высокую теплопередачу через тоненькие трубочки, заполненные жидким гелием. Эта аномалия возникала каждый раз, когда температура жидкого гелия опускалась ниже 2,17К, причём она проявлялась спонтанно, скачком.
Вот к каким странным, не предусмотренным тогдашней наукой событиям привёл след гелия в солнечном спектре.
ЕЩЁ РАЗ «СВЕРХ…»
Непонятные метаморфозы олова, неблагородное поведение одного из благородных газов и тайна сверхпроводящих металлов взбудоражили научную общественность. Что это: случайные, разрозненные явления, ничем между собой не связанные? Или это внешние проявления одной непонятной ещё причины? Всё это противоречило основным, казалось бы незыблемым, принципам науки.
Учёные оказались в куда более затруднительном положении, чем малыши перед кубиками, никак не складывающимися в картинку. Им предстояло поставить на свои места отдельные, разрозненные явления, но, увы, картинки-образца у них не было.
Между тем опыты с гелием всё больше проявляли тёмные стороны его характера. Выяснилось, что в опытах Кеезома и его дочери, в условиях неслыханного холода, именно жидкий гелий, а не охлаждённые стенки трубочек, начинал в миллиард раз быстрее проводить тепло. Казалось, тепло в нём распространяется без всякого сопротивления (не промелькнула ли сейчас тень металлов, без всякого сопротивления проводящих электрический ток?).
Гелий становился в миллион раз более подвижным и менеё вязким. Капнув жидкий гелий на гладкую охлаждённую поверхность, исследователи в изумлении наблюдали, как быстро растекается он в тончайшую плёночку. Как будто не испытывает никакого сопротивления со стороны поверхности!
Если проделать такой же опыт с любой другой жидкостью, ничего подобного не увидишь. Капля как бы застынет, чуть сплющившись.
И даже это было ещё не самым удивительным.
Что, если бы вы увидели человека, бегущего вверх по отвесной стене? Это невозможно? Закон тяготения этого не допускает! Приблизительно то же подумали учёные, когда увидели, как жидкий гелий с необычайной быстротой ползёт вверх по стенкам сосуда. Это невозможно, ужаснулись многие из них, а трение, а вязкость?!
И ещё более изумились, услышав мнение советского учёного Петра Леонидовича Капицы: у жидкого гелия вблизи абсолютного нуля вовсе нет вязкости. Это сверхтекучая жидкость.
Так впервые в 1938 году мир услышал удивительное слово «сверхтекучесть». Через год Капица был избран членом Академии наук СССР.
Вывод Капицы был результатом долгих и кропотливых экспериментов, итогом многих раздумий. Почему так молниеносно распространяется тепло внутри жидкого гелия? Ведь остальные жидкости ведут себя иначе. Их слои перемешиваются, и менее тёплые нагреваются от более тёплых, а это требует времени. Но в жидком гелии тепло переносится молниеносно. Как же так, ведь слои всегда трутся друг о друга, а это должно мешать быстрому перемешиванию. А если вязкость не препятствует? Значит, её нет!
И Капица подтверждает свою догадку блестящим экспериментом. Он пропускает жидкий гелий сквозь мельчайшие щели и трубки — капилляры, через которые обычная вязкая жидкость если и проходит, то ей нужно затратить на это многие миллиарды лет. А гелий, охлаждённый до 2° выше абсолютного нуля, просочился буквально на глазах, получив «диплом» первой в истории науки сверхтекучей жидкости.
Жидкость без вязкости! Это было одним из поразительных открытий нашего века. Как такая жидкость отнеслась бы к инородному телу, погружённому в неё? Оказала бы ему сопротивление или нет?
И экспериментатор спешит поставить такой опыт: он опускает в жидкий гелий подвешенный на тончайшей нити вращающийся маятник (паучок Капицы). Жидкость без трения, без вязкости не должна остановить его. Но что это? Совершается непонятное: маятник быстро прекращает движение, останавливается… Жидкий гелий повёл себя в этом опыте как самая обычная, тривиальная жидкость.
Есть от чего прийти в смятение! В одном случае (с капилляром) жидкий гелий не имеет вязкости, в другом (с маятником) — имеет. Всё происходит так, как будто одновременно в нём заключены… две жидкости.
Так оно и оказалось. Вот как описал ни на что не похожее поведение жидкого гелия замечательный советский физик, будущий академик Лев Давидович Ландау: «…часть жидкости будет вести себя как нормальная вязкая жидкость, «цепляющаяся» при движении… Остальная же часть массы будет вести себя как не обладающая вязкостью сверхтекучая жидкость».
Так гелий доказал, что знакомая нам при нормальных температурах жизнь веществ в области предельного холода подчиняется совсем иным законам. Здесь отношения между атомами и молекулами диктуются законами микроскопического мира, неподвластными классической физике. Это поняли два замечательных советских физика и не только поняли, но и доказали: Капица — рядом убедительных экспериментов, Ландау — серией виртуозных логических и математических построений, которые он оформил в 1940 году в виде теории сверхтекучести. Они подарили миру прозрение тайны низких температур…
КРОССВОРД
С этого времени положение в науке о низких температурах резко меняется. Учёные узнали главное: законы, правящие в царстве холода. Теперь оставалось выяснить нормы поведения, которые законы микромира — квантовые законы — диктуют различным веществам.
В конце тридцатых годов «столица холода» перемещается из Голландии в Советский Союз. Вокруг Капицы и Ландау сплачивается группа молодых учёных, работы которых в новой области физики становятся ведущими. И если раньше исследователи двигались только по серому следу оловянной чумы и следу гелия, то теперь изыскания ведутся сразу во многих направлениях. Фронт исследований простирается от Москвы до Ленинграда, от Харькова до Тбилиси и Свердловска.
Кольцо вокруг тайны холода сужается. Теперь учёные наблюдают уже не случайные, непредвиденные явления. Они стараются получить результаты, предсказанные теорией сверхтекучести. Для того чтобы объяснить «механизм «сверхтекучести, Ландау пришлось представить себе «квантовую жидкость», то есть признать, что квантовые законы справедливы не только в микромире, в мире молекул, атомов и элементарных частиц, но и в макромире. Пришлось признать, что свойства жидкости, которую можно создать, охлаждая гелий, невозможно понять, оставаясь в рамках классической физики.
Жидкий гелий I резко отличается от жидкого гелия II даже по виду. Первый бурно кипит по всему объёму, второй — спокойная жидкость с гладкой поверхностью и совершенно без пузырьков. Это объясняется огромной теплопроводностью жидкого гелия II, открытой Кеезомом. Согласно теории Ландау, жидкий гелий при температурах менеё 2,17 К представляет собой двухкомпонентную смесь: первый компонент — обычная жидкость (гелий I), второй — сверхтекучая (гелий II). Количество гелия I в этой смеси быстро уменьшается, когда температура стремится к абсолютному нулю. При нагревании до температуры 2,17 К сверхтекучая часть жидкости внезапно исчезает, превращаясь в гелий I.
Двухкомпонентность сверхтекучего гелия объясняет ряд наблюдаемых явлений, о которых мы ещё скажем.
Существенный шаг к построению квантовой теории сверхтекучести сделал в 1947 году академик Н. Н. Боголюбов. Он показал, что при температуре 2,17 К атомы гелия объединяются, образуя особое состояние: Бозе-конденсат. При этом они теряют индивидуальность. Они не испытывают индивидуальных тепловых движений, не взаимодействуют с окружающими телами поодиночке. Именно это придаёт их коллективу — Бозе-конденсату — свойство сверхтекучести, способность перемещаться вдоль окружающих тел, не ощущая их присутствия.
Последовательная теория сверхтекучести, полностью учитывающая квантовые свойства сверхтекучей жидкости, ещё не создана. Но и приближённая теория сверхтекучести сыграла решающую роль в понимании загадки сверхпроводимости, открытой много раньше и долго ждавшей объяснения.
Прежде чем возвратиться к сверхпроводимости, ещё несколько слов о сверхтекучести. Недавно ею занимались многие физики.
Э.Л. Андроникашвили, избранный впоследствии действительным членом Академии наук Грузинской ССР, изучал свойства вращающегося гелия. Гелий остаётся верным себе. Он и вращается не как другие жидкости. Если очень закрутить его, он начинает вести себя уже не как жидкость, а как упругое тело. Отдельные слои становятся упругими жгутами, которые упираются и противятся вращению. Учёный упорно искал отгадку очередного фокуса квантовой жидкости.
А.И. Шальников, позже ставший академиком, чтобы изучить взаимодействие нормальной и сверхтекучей частей жидкого гелия, «подкрашивал» его электронами. По их движению он надеялся проследить за отношением этих двух разных жидкостей.
Доктор физико-математических наук В. П. Пешков обнаружил «второй звук» в гелии, предсказанный теорией Ландау. Оказалось, что, кроме обычного звука, представляющего собой волны сжатия и разрежения, в сверхтекучем гелии возможны незатухающие тепловые волны, названные Ландау вторым звуком.
Что бы вы сказали, если бы обнаружили, что вода в чайнике никак не нагревается даже при сильном огне? Сам чайник уже раскалён, а вода в нём ещё холодная. Нечто подобное обнаружил Капица ещё в далёкие дни первых опытов с гелием.
Объяснить это странное явление удалось лишь ученику Ландау, доктору физико-математических наук И. М. Халатникову, тоже ставшему академиком. Оказывается, жидкий гелий нагревается вовсе не так, как вода в чайнике — от соприкосновения с его стенками. Гелий нагревают неслышимые звуковые волны, исходящие от стенок сосуда при их нагревании. А процесс этот и не быстрый и не такой уж эффективный…
Так, шаг за шагом, учёные разоблачали тайны необычного характера гелия.
Много интересных явлений предсказали в области низких температур и экспериментально подтвердили московские физики: действительные члены Академии наук СССР А. А. Абрикосов, В. Л. Гинзбург, И. Я. Померанчук, Е. М. Лифшиц и многие другие. Но и их работами далеко не исчерпываются исследования всех замечательных и многообразных явлений, связанных со сверхтекучестью гелия.
Кстати, за свои работы, сделанные в 50-е годы, Гинзбург и Абрикосов получили Нобелевскую премию в 2003 году! Гинзбургу было уже 87 лет …Абрикосов уже много лет работал в Америке…
ВТОРОЙ СЛЕД
Куда же привёл учёных след сверхпроводящих металлов? Туда же, куда и след гелия. Причины сверхтекучести гелия и сверхпроводимости металлов оказались чрезвычайно близкими.
Все, конечно, замечали, как вода просачивается сквозь песок. Так и электрический ток представляет собой движение электронов, просачивающихся между атомами металла. Электроны тормозятся атомами, которые находятся в тепловом движении и непрестанно колеблются. На столкновения с ними уходит энергия электронов, полученная от электрической батареи.
Атомы металла, получив дополнительную энергию, paскачиваются ещё больше и ещё сильнее мешают продвижению электрического тока. Таков механизм сопротивления металлов электрическому току. Это не было для учёных откровением — явление давно изучено. Но то, чему учёные стали свидетелями в сверхпроводниках, было действительно откровением. Куда девается способность металлов сопротивляться электрическому току? Что в них происходит?
Если металл охладить, тепловые колебания атомов уменьшаются. Они меньше мешают электрическому току. А при очень низкой температуре почти совсем не мешают.
Но такое «замерзание» сопротивления не может привести к сверхпроводимости. Хотя тепловые колебания, в соответствии с классической физикой, убывают вместе с температурой. Квантовая физика показала, что даже при абсолютном нуле движения частиц вещества не прекращаются полностью — остаются так называемые нулевые колебания атомов, полей и элементарных частиц.
Однако опыт показывает, что при постепенном охлаждении сверхпроводящих металлов и сплавов их сопротивление сначала убывает вместе с уменьшением температуры (как предсказывает классическая физика), но при какой-то температуре, характерной для данного сверхпроводника, сопротивление внезапно, скачком, падает до нуля.
При этом происходит своеобразное явление, не имеющее прецедентов ни в одной другой области науки. Вблизи абсолютного нуля, когда тепловые колебания атомов крайне ослаблены, электроны начинают вести себя совсем по-особому. Их поведение кажется просто непостижимым. Дальше мы узнаем, как физики-теоретики сделали кажущееся непостижимым — хорошо понятным, но сейчас ещё несколько фактов.
Между электронами вдруг возникают силы притяжения! Электроны, несмотря на то что отрицательно заряженным телам полагается отталкиваться, начинают стремиться друг к другу!
Для ряда металлов это стремление оказывается настолько интенсивным, что оно пересиливает отталкивание между электронами. При достижении определённой температуры они внезапно связываются между собой, объединяясь в дружный, слаженный коллектив.
Отдельные электроны в сверхпроводнике вблизи абсолютного нуля сливаются в электронный поток, свободно текущий без всякого сопротивления. Электроны, слившиеся в коллектив, перестают взаимодействовать с атомами вещества. Так образуется ток сверхпроводимости, текущий внутри вещества, как в пустом пространстве, но не выходящий в окружающее пространство.
Это удивительное явление до сих пор поражает воображение учёных, до сих пор с трудом переводится на общедоступный язык образов и аналогий.
Такое состояние электронов неустойчиво и капризно. Если постепенно нагревать сверхпроводник, то атомы начнут колебаться сильнее и при той же температуре, при которой возникла сверхпроводимость, они снова разобьют сверхтекучую жидкость на отдельные электроны, которые будут в одиночку с трудом пробираться в металле.
Но сверхпроводимость исчезает не только при увеличении температуры. Ещё в 1913 году Каммерлинг-Оннес обнаружил, что состояние сверхпроводимости разрушается под влиянием сильных магнитных полей и больших электрических токов. Это была ещё одна загадка.
Продолжая изучать сверхпроводимость, то есть полное исчезновение сопротивления электрическому току, Каммерлинг-Оннес пришёл к дерзкому умозаключению: значит, решил он, стоит возбудить электрический ток в кольце из сверхпроводника, и этот ток будет течь вечно!
Но как этого достичь? Ведь у кольца нет концов, к которым можно присоединить источник тока.
Исследователь призвал на помощь хорошо известное явление электрической индукции: электрический ток в кольце можно возбудить, изменяя величину магнитного поля, проходящего через это кольцо.
Он поместил кольцо, изготовленное из металла, способного к сверхпроводимости, в криостат, расположенный в поле электромагнита. Затем он пустил сквозь электромагнит электрический ток. Возникшее магнитное поле породило электрический ток в кольце. Но при комнатной температуре кольцо обладало сопротивлением. Поэтому ток в нём быстро прекратился.
Затем Каммерлинг-Оннес налил в криостат жидкий гелий. Кольцо стало сверхпроводящим. Теперь можно было выключить электромагнит. Исчезая, его магнитное поле снова возбудило в кольце электрический ток. Но теперь, когда кольцо обладало сверхпроводимостью, ток в нём должен был течь вечно.
Как в этом убедиться? Достаточно поднести компас. Его стрелка повернётся под действием магнитного поля, порождённого током сверхпроводимости. Много позже было установлено, что сопротивление сверхпроводника меньше чем 10–20 ома на сантиметр длины (10–20 — это единица, делённая на сто миллиардов миллиардов).
В 1924 году Каммерлинг-Оннес пошёл дальше: он соединил в кольцо два различных материала, способных переходить в сверхпроводящее состояние, и начал их охлаждать. Когда была достигнута критическая точка перехода к сверхпроводимости одного из полуколец, возбудить в кольце незатухающий ток не удалось. Этому мешало сопротивление второго полукольца. Но при дальнейшем охлаждении, при переходе критической точки материала второго полукольца, незатухающий ток удалось возбудить так же легко, как в кольце, изготовленном полностью из одного материала. По способности к сверхпроводимости различные материалы не различаются между собой, если температура опускается ниже самой низкой из критических температур сравниваемых материалов. Ещё один шаг к знанию и пониманию законов царства холода, мостик между металлами и сплавами.
Немецкий физик В. Ф. Мейснер в 1923 году основал в Берлине криогенную лабораторию. Он сумел открыть много сверхпроводящих металлов и сплавов. В 1932 году он вместе с Р. Хольмом подробно изучил исчезновение контактного сопротивления между двумя металлами, когда оба они становятся сверхпроводниками. Учёные работали очень тщательно и обеспечивали полное отсутствие слоёв окислов в месте контакта. Они должны были пожалеть об этом через тридцать лет, когда английский студент Б. Ю. Джозефсон сделал удивительное предсказание. Но об этом позже.
В 1933 году В. Мейснер вместе с Р. Оксенфельдом продолжили изучение открытого Каммерлинг-Оннесом процесса разрушения сверхпроводимости сильным магнитным полем. Оказалось, что вещество, переходя в сверхпроводящее состояние, выталкивает из себя магнитное поле, если это поле меньше того, критического, которое, как показал за двадцать лет до того Каммерлинг-Оннес, разрушает сверхпроводимость. Это поразительное явление, названное эффектом Мейснера, стало ещё одной из загадок сверхпроводимости.
Итак, странное поведение гелия и металлов при низких температурах имеет общие корни. Явления сверхтекучести и сверхпроводимости очень схожи по своему механизму и подчиняются близким квантовым законам. Так же как сверхтекучая жидкость при низких температурах без всякого трения проходит через самые узкие щели, так и электронная жидкость в металле — электрический ток — свободно, без трения, просачивается через «щели» между атомами и молекулами.
В 1958 году голландский физик X. Казимир, который в 1933 году вместе с С. Гортером на основе термодинамики создал первый вариант теории сверхпроводимости, с сожалением констатировал: «В настоящее время объяснение явления сверхпроводимости остаётся вызовом физику-теоретику».
Но вызов этот физики приняли уже тогда. Над проблемой сверхпроводимости размышляли английский учёный Фрелих, американцы Бардин, Купер и Шриффер, австралийцы Шаффрот, Батлер и Блат… Советскую группу по «борьбе» с тайной сверхпроводимости возглавлял математик академик Боголюбов, любимой областью которого стало применение математики к преодолению загадок физики.
В тот момент, когда Казимир произнёс свою полную горечи фразу, под загадкой сверхпроводимости подводилась черта. Полувековая тайна доживала последние часы. Но сдавалась она не без боя.
ШАГ ЗА ШАГОМ
Ещё в 1950 году англичанин Г. Фрелих наметил путь решения проблемы сверхпроводимости. Он понял причины странного поведения электронов в металле близ абсолютного нуля. Он догадался, что сверхпроводимость обусловлена взаимодействием электронов с колебаниями решётки металлов, с фононами (элементарными долями звука), и составил уравнение, содержащее, по его мнению, путь к решению задачи, но…решить его не сумел. Хотя, надо подчеркнуть, он высказал ряд правильных гипотез о природе математических трудностей.
Через два года экспериментаторы обнаружили зависимость температуры перехода к сверхпроводимости от массы атомов металла. При этом они сравнивали два образца металла, содержащие различные изотопы. Это доказывало справедливость идеи Фрелиха.
Перед учёными встала задача расшифровки уравнения Фрелиха, которое обещало прояснить картину сверхпроводимости. Над этой задачей работали многие.
Важную физическую идею о природе математических трудностей уравнения Фрелиха высказали австралийские учёные. Потом в эту работу включилась группа американских учёных, но…
Задача Фрелиха оказалась и им не по зубам.
Это несколько напоминает историю со знаменитой тринадцатой задачей Давида Гильберта. Известный немецкий математик решил много задач, считавшихся неразрешимыми, но свою собственную, под таким несчастливым номером, так и не смог одолеть. За неё брались многие математики, но безуспешно. Задача была поставлена в 1904 году. Прошло полвека, а она всё не поддавалась. Многие даже шутили по этому поводу: «Старику Гильберту следовало бы пропустить при обозначении несчастливый номер: этим он облегчил бы труд тех, кто пытается найти ответ его задачи № 13».
Несчастливую задачу решил Володя Арнольд, студент 4-го курса Московского государственного университета (ныне член-корреспондент АН СССР), ученик замечательного математика А. Н. Колмогорова.
Задача Гильберта являлась чисто абстрактной, она представляла соблазн просто как курьёз, как математический орешек, на котором математикам стоило поточить зубы. Никаких практических обещаний она не давала, впрочем, так же, как и другие знаменитые нерешённые задачи: теорема Ферма, поставленная лет сто назад, и Диофантовы уравнения, которым уже более тысячи лет.
С задачей сверхпроводимости дело обстояло совсем иначе, ведь это была насущная задача не только фундаментальной науки, но и техники.
Поэтому задача сверхпроводимости была решена гораздо быстрее. И сделали это Боголюбов с группой сотрудников и американские учёные Купер, Бардин и Шриффер. Они решили даже не уравнение Фрелиха, а математическую задачу, обогащённую по сравнению с этим уравнением более точными данными о явлении, задачу более полную, точнее рисующую сложное поведение электронов в некоторых охлаждённых металлах и сплавах.
Картина сверхпроводимости оказалась до тонкости похожей на картину сверхтекучести. Поэтому учёные использовали теорию сверхтекучести как фундамент для построения теории сверхпроводимости. Боголюбов за раскрытие тайны сверхпроводимости был удостоен Ленинской премии 1958 года.
ВСЁ НАОБОРОТ
А след оловянной чумы? Не затерялся ли он в путанице многочисленных следов, покрывающих недавно ещё девственные просторы царства холода? Если его отыскать и пойти по нему, он приведёт в Харьков, в одну из старейших лабораторий низких температур. Действительный член Академии наук УССР Б. Г. Лазарев и его сотрудники В. И. Хоткевич, И. А. Гиндин, Я. Д. Стародубцев натолкнулись в своих исследованиях на давнюю загадку олова.
Изучая поведение металлов при низких температурах, физики обнаружили интереснейшие вещи.
Что, если заморозить воду? Конечно, она превратится в лёд. И может даже показаться, что, замёрзнув, лёд так и останется льдом. Но лёд льду рознь. Учёным уже известен почти десяток видов льда, отличающихся между собой своей структурой, причём одна из структур превращается в другую при вполне определённой температуре.
Экспериментаторы замораживали не только воду, но и такие металлы, как литий, натрий, висмут, бериллий, ртуть, цезий, и обнаружили аналогичные превращения. Так говорил рентгено-структурный анализ, фиксируя новую структуру.
В чём же дело? Несомненно, учёные имели дело всё с теми же исходными веществами. Это были те же металлы. Но оказывается, при понижении температуры их атомы, так же как атомы льда, изменяли своё взаимное расположение, как физкультурники по команде инструктора.
Харьковчанами раскрыт и секрет олова. Оно тоже испытывает превращения, названные низкотемпературным полиморфизмом. При определённой температуре белое олово превращается в серое порошкообразное вещество, то, которое полтора столетия тому назад было обнаружено на петербургском складе. Это было олово, но изменившее свою внутреннюю структуру. Такое превращение может произойти и при более высокой температуре, если потрясти металл. Удар, сотрясение ускоряет перерождение. Как видно, по этой причине развалились баки с горючим на экспедиционных кораблях Роберта Скотта. Поэтому теперь радиотехническую аппаратуру, подверженную тряске, никогда не паяют чистым оловом.
Но всё-таки олово не раскрыло своей тайны до конца. Если другие охлаждённые металлы сохраняют металлические свойства, то олово ведёт себя совсем неожиданно… Оно превращается в полупроводник…
Необъяснимым остаётся и другое. В большинстве случаев строение охлаждённых металлов становится экономнеё, атомы и молекулы упаковываются плотнее. В этом учёные убеждались не раз. Низкие температуры поступают с металлами так же, как высокие давления.
Этому правилу подчиняются литий, натрий и многие другие металлы.
А олово — нет. Оно поступает как раз наоборот. Аккуратные белые брусочки распухают и превращаются в рыхлое месиво.
Почему оно ведёт себя именно так? Почему при охлаждении и деформации оно стремится занять побольше места? Ответа на это пока нет.
Но стоит ли об этом думать? Может быть, это вовсе не так важно?
Нет, и обращение олова в полупроводник, и увеличение его объёма при охлаждении не случайность. Это, несомненно, проявление общей закономерности. И учёные трудятся над её выявлением, ибо знание необходимо для управления поведением металлов, для создания материалов с наперёд заданными свойствами.
Ставя опыт с охлаждёнными металлами, харьковские учёные обнаружили совсем уж курьёзное явление, объяснить которое поначалу не брались даже самые опытные теоретики.
Результаты опытов упорно настаивали на том, что металл в куске может обладать совсем иными свойствами, чем тот же металл, но… в виде плёнки.
На первый взгляд это кажется просто абсурдным, противоречащим всему опыту общения с металлами. Однако…
Как садовник сажает семена растений, так физики «сажали» атомы висмута и бериллия, натрия и калия на охлаждённую жидким гелием пластинку. Сажали не торопясь, один за другим. Только так можно было получить действительно сверхтонкую пленку. Конечно, это происходило не на воздухе, а под колпаком, из-под которого специальные насосы откачивали воздух. И атомы сажали не руками. Они испарялись с поверхности расплавленного металла и, не испытывая помех, постепенно осаждались на холодную пластинку.
Изучая свойства бериллиевой плёнки и пропуская через неё электрический ток, учёные оказались свидетелями непредвиденного эффекта. Плёнка покорилась току, не оказав ему сопротивления.
На первый взгляд в этом явлении в наши дни уже нет ничего загадочного. Как гром средь бела дня оно поразило Каммерлинг-Оннеса в начале нашего века, когда, охладив ртуть до температуры жидкого гелия, он обнаружил в ней полное отсутствие сопротивления электрическому току. Явление сверхпроводимости действительно несколько десятилетий оставалось необъяснимым. Но теперь, как мы уже сказали, трудами советских и зарубежных физиков создана стройная теория этого удивительного явления.
Тем более интересна «ошибка» с бериллием, который уверенно причисляли к металлам, ни при каких условиях не способным к сверхпроводимости. Как ни охлаждали бериллий, присущая ему кристаллическая решётка препятствовала прохождению электрического тока.
И вдруг… плёночка бериллия спутала все карты. Правда, раньше учёным был известен ещё один металл — висмут, плёнки которого вопреки правилам становились сверхпроводящими. Но это долго считалось единственным исключением из общего правила.
А теперь и бериллий. Два случая — это уже не исключение. Значит, бериллий и висмут — представители группы веществ, не подчиняющихся известным нормам поведения. Это указывало на то, что теория сверхпроводимости не полна. Ведь из неё не следовали такие отклонения.
Что же заставляет эти металлы изменять свои свойства? — размышляли учёные. И нет ли здесь связи с явлением низкотемпературного полиморфизма, то есть изменения кристаллической структуры, которому подвержены оба металла? Может быть, при принудительной конденсации атомов висмута и бериллия на охлаждённую пластинку образуется искусственная решётка, склонная к сверхпроводимости?
На справедливость этих предположений указывал простой опыт. Когда исследователи многократно нагревали, а затем замораживали плёнку, она постепенно теряла свойства сверхпроводника. Так как при этом она не подвергалась никакой деформации, её атомы, возможно, постепенно возвращались к своему обычному порядку — восстанавливалась решётка, не склонная к сверхпроводимости.
Не кроется ли в том, что подметили харьковские учёные, намёк на богатую перспективу направленного изменения свойств металлов? Если один и тот же металл может проявлять различные качества в зависимости от способа его получения, если его атомы можно заставить строиться по-разному, значит, перед техникой будущего открываются заманчивые возможности управления свойствами вещества!
ЛАЗЕЙКА ДЛЯ ПРИМИРЕНИЯ
Не только бериллий и висмут, железо тоже считалось металлом, абсолютно неспособным к сверхпроводимости. До недавнего времени никто ни при каких условиях не мог получить сверхпроводящее железо. Но это учёных не удивляло. Этому имеется весьма веское основание.
Ведь сверхпроводимость и магнетизм — исконные враги.
Силовые магнитные линии упорно избегают сверхпроводник. В этом убеждает элементарный опыт. Если на пути магнитного поля поместить проволочку в сверхпроводящем состоянии, магнитное поле обежит её, как морская волна бревно. Но если быть очень настойчивым и, увеличивая силу магнитного поля, стремиться втолкнуть его внутрь проволоки, оно действительно проникнет туда, однако… состояние сверхпроводимости в проволоке исчезнет.
Таким образом, одной из особенностей низких температур является несовместимость сильного магнитного поля и состояния сверхпроводимости.
Поэтому железо, которое является материалом магнитным, никак не может стать сверхпроводником. Разве только железо немагнитное… Но возможно ли такое в природе?
Правда, немагнитное железо в нагретом состоянии никого бы не удивило. Французский учёный Пьер Кюри давно заметил: нагретое выше определённой температуры железо всегда теряет магнитные свойства. Температура, при которой размагничиваются стальные магниты, называется точкой Кюри. Она лежит выше 700 °C. Но немагнитное железо в холодном состоянии! Это невероятно. Сверхпроводящее железо — это был бы просто парадокс.
И всё-таки учёные получили его, получили вопреки научной логике, наперекор природе. Произошло это в Ленинградском физико-техническом институте Академии наук СССР в лаборатории низких температур.
Поначалу не обошлось без сомнений. Вряд ли это возможно, говорили многие видавшие виды учёные, прочтя публикацию о получении сверхпроводящего железа. И как винить их за скептицизм? Сомнения поддерживал многовековой человеческий опыт.
…Люди издавна привыкли к замечательному свойству железа образовывать вокруг себя магнитное поле и подчиняться ему. Стрелка компаса, послушная магнитным силовым линиям Земли, смотрит одним концом на север. Да и каждый атом железа подобен такой стрелке, на одном конце таящей свой миниатюрный северный полюс, а на другом — южный.
В теле железа можно натолкнуться на маленькие области, в которых целые полчища магнитиков выстроены в строгом порядке. Все северные полюсы их смотрят в одном направлении, южные — в противоположном. Магнитные силы стрелочек складываются, и в этом маленьком участке образуется чрезвычайно сильное магнитное поле. Такие области названы доменами, и в каждом куске железа их множество.
Но есть области, где все магнитики так же дружно «смотрят» совсем в другую сторону. По всей толще большого и маленького куска железа чередуются магнитные области, ориентированные самым хаотическим образом. Магнитные поля внутри отдельных доменов очень сильны, но сами домены ориентированы совершенно хаотически и в среднем уравновешивают друг друга, поэтому силовые линии не выходят на поверхность металла. Вот почему как сильно ни охлаждать кусок железа, сверхпроводником он не станет: сверхпроводимость разрушается сильными внутренними магнитными полями, всегда существующими в отдельных доменах.
Но физики-теоретики, которым ничего не стоит в своём воображении оставить от куска железа совсем крошечный кусочек, тоненькую плёночку или даже просто горсть атомов, а потом с помощью формул и уравнений ощупать их, заглянуть в самую суть, и на этот раз выведали у железа секрет его сверхпроводимости.
Они рассуждали примерно так. Крошечные атомы-магнитики в куске железа не закреплены намертво. Под влиянием различных сил они свободно поворачиваются друг относительно друга. Но управлять ими в куске металла очень трудно. Они дружно, всем коллективом, образующим домен, противодействуют внешним влияниям.
А если атомы железа осторожно, один за другим «наклеивать» на очень холодную поверхность? Ведь тогда они накрепко примёрзнут к своим местам и не смогут объединять свои слабые магнитные поля в единое поле домена. Вот тут-то, пожалуй, и можно получить несколько слоёв атомов немагнитного железа. Чтобы атомы, не успев повернуться, примёрзли к пластинке, её надо охладить до температуры жидкого гелия. Значит, если плёнка будет немагнитной, она вполне может при такой температуре стать сверхпроводящей.
Лазейка для примирения магнитного железа и сверхпроводимости была найдена. Оставалось провести очень тонкий и весьма сложный эксперимент: получить сверхпроводящее железо не на бумаге, а в жизни. Ленинградские учёные создали оригинальную установку, и им это удалось. Так люди впервые увидели сверхпроводящее, а значит, немагнитное железо.
Попытки получить тот же результат при охлаждении плёнки железа, первоначально нанесённой на тёплую поверхность, не увенчались успехом.
Даже нанесение плёнки на холодную поверхность надо проводить медленно и осторожно. При повышении температуры эти плёнки разрушаются и, отделяясь от стеклянной поверхности в виде тончайших чешуек, осыпаются. По-видимому, при нанесении атомов железа на холодную поверхность действительно образуется новая, ранее неизвестная разновидность металлического железа, в котором не возникают области самопроизвольного намагничивания, препятствующие возникновению сверхпроводящего состояния.
Изучение плёнок металлов вызывает не только научный интерес. Эти плёнки могут служить прекрасным материалом для создания сверхминиатюрных ячеек кибернетических машин.
Представьте себе крошечное колечко из плёнки сверхпроводника. Возбуждённый в плёнке ток будет циркулировать по колечку сколь угодно долго, не меняя своей величины, запоминая, какой сигнал вызвал появление этого тока. Такие плёночные ячейки ещё миниатюрнее и совершеннее, чем элементы памяти из сверхпроводящей проволоки (криотроны, персистатроны, персисторы). А это прямой путь превратить современные ЭВМ в малюток.
Учёные уже используют в ячейках памяти плёнки олова, свинца и ниобия. Но ведётся широкая цепь исследований для получения плёнок из других металлов и сплавов, которые сделают элементы памяти надёжнее, дешевле, проще в изготовлении.
В ЦАРСТВЕ ХОЛОДА
Путь по следам оловянной чумы пройден недаром. Он привёл в царство холода. И путешественник стал осматриваться, обживаться, знакомиться с новыми порядками, задумываться: не могут ли они быть полезны? Оказалось, что могут и послужить, и помочь, и пригодиться. Могут решить многие насущные проблемы техники.
Даже воздух, обыкновенный воздух в царстве холода становится другим, податливым, и легко отдаёт свой кислород. В 1946 году Капица разработал очень эффективный и удобный способ выделения кислорода из воздуха в огромных количествах — десятками тонн в час. Теперь кислород широко используется во всём мире для автогенной сварки, для принудительного дутья в доменных, мартеновских, бессемеровских печах.
А водород, превратившись при низкой температуре в сжиженный газ, много легче расстаётся со своим тяжёлым изотопом — дейтерием. Дейтерий очень сложно получить в обычных условиях. Но для атомных исследований он нужен в больших количествах. Когда о новом способе получения этого ценного продукта, разработанном советскими учёными, рассказал на первой Женевской конференции по мирному использованию атомной энергии доктор технических наук М. П. Малков, его сообщение было встречено с большим интересом.
По мнению Капицы, низкие температуры несут много новых надежд радиотехнике. Он приводил простой и убедительный пример. Радиоприёмник на специальных элементах, некоторые части которого охлаждены до температуры жидкого гелия, приобретает такую повышенную чувствительность, как будто мощность радиостанции при этом подскочила в сотни раз. Конечно, гораздо легче проделать такую операцию, чем увеличивать на колоссальную цифру мощность передатчика.
Для химии область низких температур — страна чудес.
Многие химические соединения, в нормальных условиях очень активные и опасные, можно обезопасить, «разорвав» на куски — радикалы, а затем хранить в замороженном виде, не боясь взрыва. Если их потом отогреть, они соединятся вновь. Эти консервированные радикалы не теряют своих свойств, так же как замороженные фрукты — витаминов.
Когда ядерной физике понадобилась лёгкая частица, учёные остановили свой выбор на ядре изотопа гелия. В отличие от обычного гелия, названного гелием-4, его обозначают гелий-3. Но в естественном гелии его содержится так мало, что надо переработать 20 тонн обычного гелия, чтобы получить всего один грамм изотопа. Процесс этот сложный, долгий, кропотливый. Вот почему гелий-3 — самый дорогой в мире газ.
Харьковские учёные, изучая сверхтекучесть гелия, нашли более лёгкий способ получения гелия-3. Они охладили гелий до 2,17К. После этого гелий-4 приходит в состояние сверхтекучести, но его изотоп гелий-3 не принимает в этом участия. Он становится сверхтекучим при намного меньшей температуре. Поэтому когда сверхтекучая часть при температуре около 2К просачивается через тончайший фильтр в дне сосуда, в сосуде остается изотоп гелия-3.
Инженеры воспользовались низкой температурой для создания изящных вакуумных установок. В них использовано свойство древесного угля в изобилии поглощать воздух при низкой температуре. В новых установках воздух не выкачивается, а его атомы просто прилипают к охлаждённому древесному углю, как мухи к липкой бумаге, создавая в установке вакуум.
Сверхпроводящие металлы позволили создать фантастические электромагниты, поддерживающие огромные магнитные поля без затраты электроэнергии. Они в этом отношении напоминают постоянные магниты из закалённой стали или специальных сплавов. Для того чтобы намагнитить кусок стали, достаточно поместить его внутрь проволочной обмотки и на мгновение пропустить через неё электрический ток. Сталь намагничивается и сохраняет свои магнитные свойства и после выключения тока в обмотке.
Если возбудить круговой электрический ток в сплошном куске сверхпроводника или в замкнутой обмотке из сверхпроводящей проволоки, то ток в них, не встречая сопротивления, будет существовать и после выключения возбудившего его источника. А пока существует электрический ток, действует и окружающее магнитное поле.
Так работает «постоянный» магнит из сверхпроводника. Он остаётся магнитом, пока сохраняется состояние сверхпроводимости, а некоторые сплавы остаются сверхпроводящими и при температурах около 20° выше абсолютного нуля.
Если обмотка магнита сделана из олова или свинца, то достижимое магнитное поле не очень велико. Обмотка же из ниобия позволяет получить в десятки раз более сильное поле. Но самые современные сверхпроводниковые магниты делаются из соединения ниобия с оловом и цирконием. Оно остаётся сверхпроводящим до –255 °C, а магнит с такой обмоткой, помещённый в жидкий гелий, даёт магнитное поле в десятки тысяч эрстед.
Но это, конечно, не предел. Теория, разработанная советскими физиками, лауреатами Ленинской премии Л. Д. Ландау, А. А. Абрикосовым, В. Л. Гинзбургом и Л. П. Горьковым, позволяет по-новому подходить к задаче поиска сверхпроводящих сплавов. Она уже вскрыла ряд удивительных свойств сверхпроводящих плёнок и позволила ближе подойти к возможности получения сверхпроводящего состояния при обычных температурах.
Впервые эта возможность была перенесена из области мечты в разряд серьёзных научных задач американским учёным В. А. Литтлом. Он предположил, что некоторые полимеры могут оказаться сверхпроводниками и сохранять это свойство при высоких температурах. Однако расчёты Литтла были недостаточно убедительными. Лишь впоследствии молодые физики Ю.П.Бычков, Л. П. Горьков и И. Е. Дзялошинский доказали, что линейный сверхпроводник Литтла может существовать. Но большинство физиков считали, что создать двумерный плёночный сверхпроводник, о котором писал Гинзбург, легче, и именно он откроет эру сверхпроводников из полимеров. Пока это была только теория. Учёные понимали — впереди много работы. Может быть, более перспективными окажутся не линейные полупроводники, а сверхпроводящие плёнки. Во всяком случае, теоретически «тёплый» сверхпроводник уже не казался монстром. Он стал целью, трудной, но реальной целью. Однако жизнь показала, что путь, указанный Литтлом и Гинзбургом, труден. И в конце концов цель была достигнута совершенно иным способом.
КВАЗИЧАСТИЦЫ
Путь к созданию высокотемпературных сверхпроводников оказался более длинным, чем думали оптимисты. Пока одни учёные прокладывали этот путь, другие расширяли наши знания о мире низких температур. И мы многое потеряем в понимании путей прогресса, если не познакомимся с некоторыми из этих работ.
Пожалуй, одна из самых впечатляющих находок в стране абсолютного нуля — квазичастицы. Как сказать о них? О частицах — протонах, нейтронах, электронах и так далее и так далее (число их всё время увеличивается!) — рассказать нетрудно. Они есть, они существуют. Каждая имеет свое лицо, свою биографию, у каждой есть паспорт, где указаны и место жительства, и род занятий.
Но то, что учёные назвали компромиссным словом «квазичастицы», не частицы в обычном смысле. Это скорее явления, но явления очень специфические. Да, они, не настоящие частицы, оказывают влияние на окружающий мир, как настоящие. Как самые настоящие частицы, они участвуют в его жизни, взаимодействуют друг с другом. Они были названы квазичастицами, от латинского слова, означающего «якобы», «как бы».
Без этих чудо-частиц учёные не в состоянии справиться с задачей объяснения сложных законов, царящих в микромире, управляющих явлениями, протекающими в обычных телах.
И среди них одна из интереснейших — полярон. Эта квазичастица, обладающая рядом удивительных свойств, родилась в 1946 году под пером киевского физика-теоретика профессора С. И. Пекара. Теория поляронов разработана совместно Л. Д. Ландау и С. И. Пекаром.
Как за человеком в солнечный день движется его тень, так за электроном внутри кристаллической решётки движется облако поляризации, образованное его электрическим зарядом.
Встречные атомы, настигнутые облаком, поляризуются им, как бы связываются с электронами невидимыми нитями. И электрону эта связь с окружающими его атомами не обходится даром: он словно становится тяжелее — его масса увеличивается в шесть раз. Эту комбинацию электрона с окружающим его состоянием поляризации и назвали поляроном.
В теории такая комбинация электрона с его облаком поляризации казалась вполне ясной, обоснованной, реально существующей. Но как эту частицу-явление обнаружить, какими средствами подтвердить её существование? Без доказательства теория всегда остаётся под сомнением.
Полярон стал предметом пристального внимания физиков. Появились десятки исследований, посвящённых этой псевдочастице. Но в большинстве это были теоретические изыскания, так как ни одному физику-экспериментатору не удалось непосредственно наблюдать полярон в движении.
Иногда эта затея казалась безнадёжной. Стоит ли гоняться за тенью, призраком?
Но ленинградские учёные проявили упрямство. Они решили оттолкнуться от уже известных вещей. Итак, масса полярона в шесть раз больше массы обычного электрона. Если можно было бы непосредственно взвесить тот и другой, мы получили бы самое лучшее доказательство правильности теории. Но облако взвесить нельзя. Тогда, решили физики, надо проделать такой опыт, в котором масса электрона и полярона проявилась бы косвенным путём. Такой опыт вскоре был проделан.
Если поместить крупинки металла в сильное магнитное поле и воздействовать на них радиоволнами, электроны в металле начнут двигаться по окружности, черпая у радиоволн энергию. Электроны будут «танцевать «по кругу в определённом ритме. А если на месте электронов окажутся поляроны? Они тяжелее и, очевидно, «затанцуют» по-другому.
Такая мысль и пришла в голову учёным. Они решили испытать полярон в аналогичном опыте.
Но прежде чем приступить к этому эксперименту, надо было устранить одно мешающее обстоятельство — тепловое хаотическое движение атомов кристалла. Ведь оно разрушает поляронное облако, сопровождающее электрон. Избавиться от этого препятствия помогла техника низких температур. Когда вещество было сильно охлаждено, удалось осуществить задуманный опыт и впервые обнаружить несомненное проявление движущегося полярона. Вот как это случилось.
ПОЛЯРОНЫ ЗАТАНЦЕВАЛИ!
На охоту за поляроном вышел доктор физико-математических наук Н. М. Рейнов в сопровождении молодых физиков: теоретика А. И. Губанова и экспериментатора Н.И. Кривко.
В качестве поля для охоты они избрали хорошо изученный кристалл закиси меди, а в качестве оружия — мощную технику сантиметровых радиоволн и огромных магнитных полей. Для того чтобы облегчить охоту, они решили вести её в сверхарктических условиях, погрузив кристалл закиси меди в жидкий гелий.
Можно представить себе, с каким волнением учёные приступили к опыту. Кристалл закиси меди погружён в криостат. Криостат заполнен жидким гелием. Движения атомов в кристалле ослабевают, они как бы замерзают, погружаются в зимнюю спячку. Кривко включает генератор радиоволн. Радиоволны легко проникают сквозь кристалл, практически не поглощаясь им. Затем он включает ток, проходящий через обмотку огромного электромагнита, и медленно увеличивает его силу. Магнитное поле постепенно увеличивается до 1000, 2000, 3000 эрстед…
Исследователи внимательно следят за приборами, готовясь уловить момент, когда мощность радиоволн резко упадёт. Это будет значить, что электроны в кристалле затанцевали, отобрав энергию, нужную для своего танца, у радиоволн.
Напряжённость магнитного поля достигла уже 3500 эрстед, но поглощения радиоволн в кристалле всё ещё не наблюдается.
Если бы при этом присутствовал посторонний наблюдатель, знающий лишь, что поглощение, связанное с танцем электронов, должно наблюдаться при поле около 2300 эрстед, он пришёл бы в волнение. Но учёные спокойны. Они вновь уменьшают ток в обмотке электромагнита, и магнитное поле убывает до нуля. Это был контрольный опыт: при температуре 4,2° выше абсолютного нуля в закиси меди слишком мало свободных электронов, чтобы можно было наблюдать поглощаемую ими энергию. Их танец не заметен.
Учёные зажигают яркую электрическую лампу и при помощи системы линз направляют её свет сквозь стенки стеклянных сосудов и сквозь жидкий гелий на кристалл закиси меди. Лучи света выбивают из атомов кристалла электроны, которые начинают беспорядочно двигаться внутри него. Теория предсказывает, что при этом должны возникать и таинственные поляроны.
Разговоры стихают. Все настораживаются. Вновь плавно возрастает сила тока в обмотке электромагнита, и вдруг… Когда поле достигает 2350 эрстед, приборы показывают сильное поглощение радиоволн.
Губанов быстро проводит расчёт. Ему ясно, что это заплясали электроны, выбиваемые светом.
Ток в обмотке электромагнита продолжает возрастать. Теперь волнуются и учёные. Спокойны лишь приборы. Стрелка амперметра — указателя силы тока — медленно движется вправо. Сила тока непрерывно увеличивается. Но стрелка прибора, показывающего поглощение радиоволн, всё ещё неподвижна — поглощение прекратилось.
Медленно идёт время, медленно возрастает магнитное поле — 4000 эрстед, 5000… 10 000. Почему же нет поглощения? 15 000 эрстед… 17… 18… 19…
Внимание! Теория говорит: ожидай здесь! Если в закиси меди есть поляроны, поглощение радиоволн близко. 19 500 эрстед… Победа! Поглощение радиоволн возросло, плавно увеличилось и, достигнув максимума при 19 600 эрстед, вновь уменьшилось.
Так был впервые обнаружен подвижный полярон с массой, в 6 раз превышающей массу электрона. Но теория требовала продолжения опыта. И действительно, при 21 600 эрстед был обнаружен ещё один максимум поглощения радиоволн, соответствующий полярону, масса которого не в 6, а в 6,6 раза больше массы электрона.
Хотя учёные и дальше увеличивали силу тока, достигнув напряжённости магнитного поля огромной величины — в 30 000 эрстед, новых максимумов поглощения радиоволн не возникало.
Два максимума поглощения, наблюдавшиеся во время опыта, были вызваны двумя типами поляронов. Один из них был порождён электронами, другой, как это ни парадоксально, — отсутствием электронов, или, как говорят учёные, дырками. В соответствии с предсказанием теории массы обоих типов поляронов несколько различались.
Так, в Физико-техническом институте, в Ленинграде, в 1959 году впервые наблюдался движущийся полярон — квазичастица, дотоле скрывавшаяся от физиков-экспериментаторов.
Ещё раньше там же несколько иным способом, но тоже с помощью тонкого и сложного эксперимента в условиях низких температур изучались свойства другой, не менеё своеобразной квазичастицы.
Речь идёт об экситоне, свойства которого предсказал видный советский физик Я. И. Френкель. Он предположил и подтвердил теоретическими расчётами, что атомы и ионы в кристаллической решётке в некоторых случаях, поглощая свет, переходят в особое возбуждённое состояние. Поглотив свет, атом, подобно заряженному ружью или натянутому луку, может длительное время сохранять избыточную энергию. Более того, строй атомов, образующих решётку кристалла, может по цепочке передавать друг другу эту энергию подобно тому, как если бы по шеренге солдат передавалось заряженное ружье. Так внутри кристалла от одного узла решётки к другому передаётся избыточный запас энергии — то, что было названо экситоном.
Если за поляроном учёные охотились пятнадцать лет, то экспериментальные поиски экситона отняли у них ненамного меньше времени. И здесь одним из камней преткновения была, во-первых, невозможность «опознать» экситон прямым путём, и, во-вторых, снова мешало тепловое движение атомов кристалла, которое нарушало регулярный процесс передачи экситона от атома к атому, усложняло его, мешало рассмотреть детали.
Только благодаря проведению сложного эксперимента в условиях сверхнизких температур, когда замирают атомы, учёные доказали, что и экситон Френкеля — реальное состояние молекул в кристалле.
…Вы идёте по лесу и не можете налюбоваться его летним нарядом, наслушаться весёлых птичьих песен. Вокруг всё цветёт, живёт, дышит, напоённое теплом.
А зимой, повторяя тот же маршрут на лыжах, вы находите не менее прекрасный, но совершенно другой мир. Поёживаются от холода деревья, одетые в пушистые снежные шапки. Там, где летом нежно журчал ручей, потрескивает сковавший его лед.
«Хорошо, красиво, — думаете вы, растирая озябшие руки, — но холодно…»
Есть на Земле места, где царит такой мороз, что человек, без предосторожности вдохнувший глоток воздуха, моментально застудит лёгкие. За минуты на таком морозе унты становятся твёрдыми, жидкое топливо становится вязким, железо делается хрупким, а обычная резина разваливается на мелкие куски…
Как люди могли не задуматься над причиной изменения привычных свойств веществ? Как могли не попытаться разузнать что-либо о законах, правящих в царстве Деда Мороза, о том, что может принести он в дар человеку не в призрачном мире сказки, а в реальной действительности?
А можно ли достичь абсолютного нуля? Можно ли отобрать от частиц вещества всю их тепловую энергию? Наука отвечает на этот вопрос отрицательно. Можно сколько угодно близко подойти к абсолютному нулю температуры, когда до него останутся лишь тысячные доли градуса, но достичь его невозможно. Причиной этому является неотъемлемое внутреннеё движение, присущее материи. Это движение связано с запасами внутренней энергии, полностью уничтожить которые невозможно. Даже в самом пустом пространстве всегда присутствует энергия электромагнитных полей. А вследствие неизбежных связей, существующих между частицами и полями и между отдельными частицами, эти запасы энергии будут переходить в нулевую, остаточную энергию, препятствующую абсолютной неподвижности, а следовательно, и достижению абсолютного нуля температуры.
Достичь абсолютного нуля невозможно, но на пути к нему учёные уже, как вы знаете, встретились с рядом неожиданных, поразительных фактов. Несомненно, много замечательных открытий ещё лежит в неисследованных далях этого пути.
За последние десятилетия рухнула не одна крепость царства мороза. Образовалась целая область науки — физика низких температур. В середине нашего века мы стали свидетелями рождения физики сверхнизких температур. Так учёные называют область, лежащую между десятой долей градуса и абсолютным нулём.
Многие лаборатории мира уже чувствуют себя как дома на этом абсолютном полюсе холода. Здесь особенно удобно исследовать тонкие особенности строения ядер, силы, приводящие к соединению атомов в причудливые конструкции решёток кристаллов, и многие явления, маскируемые тепловым движением материи.
Обнаружив новое явление, поначалу полное таинственности, экспериментаторы обычно не торопятся с выводами и с нетерпением ожидают, что же скажет по этому поводу теория. А бывает и так. Теория предсказывает новый эффект, новое явление, какое-то неожиданное свойство знакомого вещества, но эксперимент столь сложен и тонок, что проходит немало времени, прежде чем утверждения формул получат воплощение в жизни.
Сложная теория и тончайшая, ювелирная точность техники эксперимента — вот особенности этой области физики. Она обогащает не только наши знания о природе веществ, но уже даёт и практический выход.
Охота за тайнами низких температур в полном разгаре.
ПОЧЕМУ ВОЗНИКАЕТ СВЕРХПРОВОДИМОСТЬ?
На предыдущих страницах мы познакомились с историей сверхпроводимости. Замечательным открытием, порождённым извечной любознательностью человека.
«Что будет, если…» — подумал Каммерлинг-Оннес и погрузил сосудик с ртутью в жидкий гелий. И был вознаграждён. Он совершил одно из величайших открытий, обнаружил неведомое. Сверхпроводимость! Он заслуженно получил Нобелевскую премию, но около полувека никто не знал, почему и как вещество внезапно теряет электрическое сопротивление.
В 1935 году физик-теоретик Ф. Лондон предположил, что сверхпроводимость обусловлена квантовыми свойствами вещества. Так впервые была высказана мысль о том, что учёт квантовых закономерностей, управляющих процессами микромира, иногда определяет и закономерности явлений макромира, в которых участвуют большие коллективы микрочастиц. Он указал, что кусок металла в состоянии сверхпроводимости ведёт себя как огромная молекула. При обычных температурах электроны хаотически и независимо движутся внутри металла. При кратковременном присоединении к нему источника напряжения они приобретают дополнительное коллективное движение. Но оно быстро прекращается вследствие того, что каждый электрон взаимодействует с атомами металла независимо. Результатом является только небольшое нагревание куска металла из-за усиления хаотических тепловых колебаний.
При низкой температуре квантовые свойства вещества допускают объединения электронов в общий коллектив. При этом для отдельного электрона, входящего в коллектив, изменение движения, вызванное его индивидуальным взаимодействием с отдельным атомом, невозможно. А весь коллектив «не реагирует» на такое «индивидуальное» взаимодействие. Здесь входит в действие принцип, действующий в разнообразных ситуациях: в единении сила, в разобщённости слабость.
Фриц Лондон и его брат Гейнц придумали формулы, описывающие главные особенности сверхпроводимости, обусловленной коллективным состоянием электронов. Затем они изучили взаимосвязь между сверхпроводимостью и магнитным полем. Сумели применить сверхпроводимость для создания сильных магнитных полей. Но вопросы — почему и как возникает коллективное состояние электронов? — оставались без ответа. Итог этому раннему периоду в понимании явления сверхпроводимости подвели в 1950 году Гинзбург и Ландау. Они обобщили теорию братьев Лондонов и создали эффективную феноменологическую (описательную) теорию, объясняющую сверхпроводимость как сверхтекучий поток электронов в веществе.
Первый шаг к пониманию деталей, приводящих к возникновению сверхпроводимости, сделал в 1956 году американский физик Л. Купер. Возможно, его подвели к этому идеи советского физика И. Е. Тамма, предположившего, что между двумя одинаковыми частицами может возникнуть притяжение, если они обмениваются между собой третьей частицей. Наглядной иллюстрацией (не имеющей реальной общности с явлениями микромира) могут служить два человека, по очереди кидающие друг другу мяч. Первый кинул — второй поймал. Второй кинул — первый поймал. Издали, когда мяч не виден, создаётся впечатление, что на этих людей действуют какие-то силы, не дающие им далеко отойти друг от друга и мешающие сблизиться вплотную.
Тамм хотел объяснить на этом примере, как возникают силы, удерживающие ядерные частицы внутри ядра, отведя роль «мяча «электрону. Однако расчёт показал, что обмен электронами не связан с силами, действующими в ядре.
В 1935 году японский физик X. Юкава сделал смелый шаг. Он предположил, что ядерные частицы обмениваются не электронами, а другими частицами, примерно в 200 раз более тяжёлыми, чем электрон. Но в то время такие частицы были неизвестны науке. Цифра «200» возникла из требования, чтобы теория соответствовала результатам опыта. Недостаток места не позволяет рассказать здесь увлекательную историю открытия мезона (так назвал Юкава свою гипотетическую частицу). Говоря коротко, первой была открыта частица с массой, примерно соответствующей предсказанию Юкавы, но, как оказалось впоследствии, не имевшая отношения к ядерным силам. Позже мезон Юкавы был обнаружен английским физиком С. Ф. Пауэллом.
Купер предположил, что электроны, участвующие в образовании электрического тока в металлах, тоже действуют по описанной нами схеме: они тоже могут обмениваться между собой своеобразным мячом. Это фононы — кванты звука. Это не частицы, а квазичастицы, вошедшие в науку, когда физики начали углублять теорию распространения звука в кристаллах. Для этого пришлось обратиться к квантовой физике, а она к тому времени установила, что частицы микромира ведут себя в различных опытах то как волны, то как частицы.
В кристаллах, в том числе и в металлах, фононы тесно связаны с колебаниями атомов, образующих кристалл. Эти колебания, как ещё в 1912 году показал немецкий физик П. Дебай, порождают в кристаллах целый набор волн, напоминающих звуковые волны.
Фононы связаны с волнами, реально существующими в кристаллах, подобно тому, как кванты света — фотоны — связаны со световыми волнами. Фононы как бы сигнализируют о колебаниях атомов кристалла вокруг положения равновесия. Фононы могут взаимодействовать с атомами, образующими решётку кристалла, и между собой. Таким образом возникают многообразные явления в кристаллах.
Купер показал, что между двумя электронами, обменивающимися между собой фононами, возникают особые силы притяжения. Он предположил, что при очень низких температурах, когда тепловые движения слабы, силы, возникающие между электронами при обмене фононами, могут пересилить взаимное отталкивание одноимённых отрицательных зарядов электронов, и электроны объединятся в пары. Но они не могут слиться между собой, как не могут сблизиться вплотную люди, играющие мячом. Переходя от аналогии к существу дела, следует учесть, что силы электростатического отталкивания одноимённых зарядов электронов, чрезвычайно быстро растущие при уменьшении расстояния между электронами, уравновешивают силы притяжения, возникающие при обмене фононами.
Равновесие достигается уже при сравнительно больших расстояниях между электронами, объединившимися в пару. (Это играет большую роль в явлении сверхпроводимости.)
Далее, рассуждал Купер, нужно принять во внимание, что в металле имеется множество электронов, участвующих в передаче электрического тока. При достаточно низкой температуре все они объединятся в пары.
Если хаотические тепловые движения атомов кристалла столь малы, что они не разрушают пары связанных между собой электронов, то эти пары не замечают атомов, образующих кристалл. Они единым потоком перемещаются внутри кристалла, не ощущая сопротивления, испытываемого одиночными электронами. В этом явлении неожиданно возникает общность и аналогия сверхпроводимости и сверхтекучести.
Совокупность куперовских пар (так учёные называют пары электронов, объединённых между собой в результате обмена фононами) перемещается внутри металла подобно тому, как сверхтекучая жидкость протекает через мельчайшие отверстия сита. В этом состоит упомянутая выше глубокая общность сверхпроводимости и сверхтекучести. И то и другое описывает перемещение потока частиц при сверхнизких температурах. И то и другое разрушается под влиянием нагревания выше некоторой температуры, вполне определённой для каждого вещества.
Но есть и отличия: сверхтекучесть — очень редкое явление. Оно существует только у жидкого гелия, у гелия-4 при температуре ниже 2,17К и у гелия-3 при температуре ниже 0,026К, причём гелий-3 становится сверхтекучим только при высоком давлении — оно более чем в 34 раза превышает нормальное давление атмосферы. Напротив, сверхпроводимость наблюдается во многих металлах, сплавах и соединениях, причём для каждого существует своя температура, при которой они становятся сверхпроводниками.
Только осознав это, учёные вспомнили, что ещё в 1947 году Н. Н. Боголюбов утверждал, что при низких температурах спектр коллектива микрочастиц обладает теми же свойствами, что и спектр сверхтекучего гелия.
В 1957 году А. А. Абрикосов, получивший вместе с Гинзбургом в 2003 году Нобелевскую премию, опубликовал теорию сверхпроводимости, описывающую поведение особого класса сверхпроводников, впервые обнаруженных за двадцать лет до того Л. В. Шубниковым. Опираясь на теорию Гинзбурга — Ландау, он предсказал, что сверхпроводящее состояние этих материалов объясняется возникновением в них сверхпроводящих «нитей», каждая из которых несёт один квант потока энергии. В то время работа Абрикосова не привлекла внимания учёных, но теперь она является основой для понимания свойств этого класса сверхпроводников.
В том же году (вскоре после того как Купер высказал мысль о том, что в сверхпроводниках электроны объединяются в пары) группа американских физиков, Дж. Бардин, Л. Купер и Дж. Шриффер, на основе представлений о куперовских парах построила теорию сверхпроводимости, позволившую производить вычисление многих характеристик сверхпроводящих металлов и сплавов.
Главной изюминкой в их теории было объяснение «механизма», возникающего в металлах при низких температурах и заставляющего электроны объединяться в пары. Известно, что в пустоте электроны, имеющие отрицательный заряд, отталкиваются один от другого. Двигаясь в металлах, каждый электрон притягивает положительно заряженные ионы, образующие кристаллическую решётку металла, и притягивается к ним. Это приводит к деформации решётки, а у движущегося электрона возникает «хвост» положительного заряда. Этот хвост исчезает не сразу и может притягивать другой электрон. Таким образом, в металле наряду с обычным взаимным отталкиванием электронов возникает экзотическое явление — взаимное притяжение электронов за счёт смещения ионов решётки.
Теперь можно уточнить аналогию с игрой в мяч. Фононы, которыми обменивается каждая пара электронов, порождаются колебаниями атомов металла. В игру, в обмен фононами между каждой парой электронов, одновременно вовлечено множество атомов металла.
Сверхпроводимость возникает, когда взаимное притяжение электронов, обусловленное их взаимодействием с колебаниями решётки, превзойдёт по величине обычное отталкивание их зарядов.
Формулы, выражающие эту простую картину, объясняют, почему сверхпроводимость возникает только при очень низких температурах. Они объясняют и другие явления, показывают, за счёт чего температура, при которой данный металл переходит в сверхпроводящее состояние, различна для различных металлов, почему сверхпроводимость с трудом возникает в лучших проводниках, таких, как серебро и медь, но легко наблюдается в плохих проводниках, например в олове и свинце.
Формулы говорят, что высокая проводимость серебра и меди обеспечивается тем, что в них электроны слабо взаимодействуют с решёткой. При этом энергия, придаваемая электронам электрическим полем, почти не передаётся кристаллической решётке, не приводит к нагреванию металла. Но слабость взаимодействия электронов с атомами решётки металла приводит к тому, что «хвост» положительного заряда слаб и не может побороть действия теплового движения решётки даже при очень низких температурах. Именно поэтому хорошие проводники с трудом становятся сверхпроводниками.
Формулы говорят о том, как отдельные куперовские пары образуют сверхтекучую электронную жидкость — коллектив куперовских пар, движущийся внутри металла без затраты энергии. Формулы показывают, что в сверхпроводниках равновесие между притяжением и отталкиванием в каждой куперовской паре достигается уже на сравнительно больших расстояниях между электронами, образующими пару. Среднее расстояние между электронами, входящими в пару, равно нескольким тысячам расстояний между атомами металла, образующими его решётку. Поэтому каждая пара обладает объёмом, в котором одновременно находятся миллиарды других электронных пар. Вследствие этого отдельные пары оказываются неразличимыми и одновременно связанными в единый коллектив. Так возникает тот макроскопический коллектив, о существовании которого догадался Лондон. Пример удивительной прозорливости, зрелости и глубокой интуиции. Пример того, как размышляет настоящий физик.
Годом позже Боголюбов на основе своей прежней работы, в которой были описаны свойства сверхтекучести, с учётом представления о куперовских парах, построил теорию сверхпроводимости, более сложную, но более корректную с математической точки зрения. Независимость и математическую ясность теории Боголюбова подчёркивал Бардин.
Но Бардин указывал и на ограниченность теории. В 1957 году в одной из своих статей он отмечает, что множество физиков приложили усилия к совершенствованию теории сверхпроводимости.
Хотя в то время теория и не достигла уровня, достаточного для предсказания пути, по которому должны были двигаться учёные, чтобы получить материалы с более высокой температурой возникновения сверхпроводимости, она позволяла разобраться в деталях явления и делать предсказания. А это — высшая цель каждой новой теории.
«ВПЕРВЫЕ ПОЧУВСТВОВАЛ СЕБЯ ФИЗИКОМ…»
В 1973 году Нобелевская премия по физике была присуждена трём учёным: Лео Исаки, Ивару Гиаверу и Бриану Джозефсону. Все они изучали туннельный эффект, и все открыли путь к важным практическим применениям этого эффекта. Первый из них изучал туннельный эффект в по лупроводниках и изобрёл транзистор, общеизвестный теперь миниатюрный прибор, заменивший в большинстве случаев электронную лампу.
Прежде чем идти дальше, следует немного разобраться в сути туннельного эффекта.
Для того чтобы железная дорога пересекла горный хребет, существует два способа. Можно проложить рельсы через хребет, а можно построить туннель под этим хребтом. В первом случае для преодоления подъёма локомотив должен затратить энергию, пропорциональную высоте хребта и массе поезда. Туннель экономит эту энергию.
Так обстоят дела в макромире, где царствуют законы классической физики.
В микромире, мире атомов и элементарных частиц, эти законы теряют силу, и их место занимают другие законы квантовой физики. Законы поразительные и в каждом частном проявлении неожиданные и противоречащие всему опыту наблюдений обычного мира.
Для поезда надо строить туннель. Но микрочастицы, подходящие к препятствию, даже те, что не обладают энергией, достаточной для его преодоления, имеют тем не менеё определённую вероятность пройти сквозь него даже при отсутствии какого-либо подобия туннеля.
Слово «вероятность» имеет при этом смысл — «могут преодолеть препятствие после многих неудачных попыток». В большинстве случаев, происходящих в макромире, частица, ударяющаяся о барьер, отражается от него или застревает в нём, как пуля в толстом слое песка. Но в микромире изредка происходит процесс, совершенно немыслимый с точки зрения классической физики: частица, подходя к барьеру, исчезает, а с другой стороны барьера возникает, рождается (тут невозможно найти точное слово) такая же частица, имеющая совершенно ту же скорость, которой обладала исчезнувшая частица.
Физики называют это туннельным переходом. Он совершается без какой-либо затраты энергии. Внутри барьера не остаётся никакого туннеля, никакого следа. Процесс исчезновения и рождения частицы происходит вне барьера. Таково свойство микромира. К этому нужно привыкнуть!
Это не чудо, а реальный процесс. Его вероятность уменьшается, если энергия, нужная для преодоления барьера классическим путём — путём подъёма на барьер, увеличивается.
После этого отступления давайте обратимся к рассказу Гиавера, который он адресовал тем, кто присутствовал при вручении ему Нобелевской премии.
Он сказал: «В одной из газет Осло я недавно обнаружил следующий заголовок — ”Мастер по биллиарду и бриджу, едва не провалившийся на экзамене по физике, получает Нобелевскую премию». Речь шла о моих студенческих годах в Трондхейме. Должен сознаться, что это сообщение не лишено оснований, поэтому я не только не буду пытаться делать вид, что этого не было, но признаюсь также, что я чуть не провалился и по математике. В те дни меня не очень интересовали инженерное дело и учёба вообще».
Гиавер всё же окончил университет, но в поисках работы ему пришлось покинуть Норвегию. Он поступил на работу в канадскую фирму «Дженерал электрик». Ему предложили пройти трёхгодичный курс инженерного дела и прикладной математики.
«На этот раз, — сказал он, — я понял, что к делу надо относиться серьёзно, поскольку это, возможно, мой последний шанс…» Ему поручили работать с тонкими плёнками, о которых он не имел понятия. Но ему повезло. Он был связан по работе с Д. Фишером. Тот тоже начинал как инженер, но заинтересовался теоретической физикой. От Фишера он услышал о туннельных переходах, возможных в таких плёнках.
В это время Гиавер только одолевал квантовую механику. «Поэтому, — сказал он, — представление о том, что частица может проходить сквозь барьер, казалось мне чем-то удивительным. Для инженера весьма странно звучит утверждение, что если вы будете бросать теннисный мяч в стену достаточное число раз, то он в конце концов пройдет сквозь стену, не разрушив ее и не разрушившись сам». «Да, — продолжал он, — трудный путь лежит к Нобелевской премии! Фокус, конечно, состоит в том, чтобы использовать очень маленькие мячи и взять их много». Точнее, скажем мы, это должны быть не маленькие мячи, а микрочастицы, например электроны, подчиняющиеся законам квантовой физики.
Гиавер и Фишер начали изучать процесс перехода электронов через энергетический барьер. Это была трудная задача. Первые опыты кончились неудачей. Но «в конце концов мы оба понимали кое-что в технике».
Они попытались реализовать энергетический барьер при помощи тончайшей полимерной плёнки, разделяющей два металла. «Однако в таких плёнках неизбежно имеются маленькие дырочки…» Эти микроскопические, но реальные туннели препятствовали опытам. Друзья решили изготавливать изолирующие плёнки, испаряя металлы в вакууме и конденсируя их пары на удобных подложках. Нанеся первый слой, они окисляли его поверхность. При этом возникал тонкий изолирующий слой окисла. Затем напыливали второй слой металла. Теперь опыты стали воспроизводимыми. Всё шло согласно квантовой теории, с которой Гиавер уже познакомился. Он знал, что электроны иногда ведут себя не как частицы, а как волны, и свыкся с тем, что они способны проходить сквозь энергетический барьер.
Дни шли за днями, заполненными увлекательными опытами.
«В то время мне казалось странным, — вспоминал Гиавер, — получать зарплату, занимаясь тем, что я считал просто забавой, и совесть моя была неспокойна. Но, как и в случае с изучением квантовой механики, вы постепенно привыкаете, так что теперь я отстаиваю противоположную точку зрения: мы не должны жалеть денег на то, чтобы люди занимались чистыми исследованиями».
Продолжая эксперименты, Гиавер изучал физику и дошёл до сверхпроводимости.
«Ясное дело, — сказал он, — я не поверил, что сопротивление падает в точности до нуля, но что действительно привлекло мое внимание, так это упоминание об энергетической щели в сверхпроводнике. Эта щель была одним из центральных пунктов новой теории Бардина, Купера, Шриффера».
Энергетическая щель, о которой говорил Гиавер, это частный случай энергетического барьера. В металлах энергетической щелью называют разность между энергией электронов, остающихся в составе атомов (точнее, в составе ионов), образующих решётку металла, и энергией, присущей электронам, участвующим в образовании электрического тока сквозь этот металл. Энергетическая щель — это совокупность значений энергии, которую не может иметь ни один электрон в металле. Поэтому, увеличивая энергию электрона, невозможно плавно перевести его через энергетическую щель. Но в соответствии с квантовыми закономерностями он может преодолеть энергетическую щель посредством туннельного перехода.
«Я никогда не делал экспериментов, где бы требовались низкие температуры и жидкий гелий — они казались мне чересчур сложными. Однако, — продолжал Гиавер, — чем хорошо работать в большой лаборатории?.. Вокруг вас всегда имеются люди, хорошо осведомлённые почти в любой области».
Гиавер изготовил плёнку из алюминия, дал её поверхности окислиться, нанёс на неё плёнку свинца, а затем прикрепил к обеим плёнкам тонкие проводники.
Пройдя по коридору, чтобы посоветоваться с У. де Сорба, Гиавер сделал небольшую установку для работы с жидким гелием, поместил в неё свои плёнки, вывел проводники наружу и залил в установку жидкий гелий. Вспомним, что температура жидкого гелия равна 4,2 К. Неудивительно, что плёнка свинца стала сверхпроводящей. Ведь она становится сверхпроводящей уже при более высокой температуре +7,2 К. Плёнка алюминия осталась в обычном состоянии, так как алюминий становится сверхпроводником при более низкой температуре –1,2 К.
После ряда неудачных попыток (плёнки окисла получались слишком толстыми) ему удалось достигнуть успеха — создать плёнки толщиной в 30*10-6 сантиметров. При этом уже можно было надеяться зафиксировать прохождение электронов сквозь энергетический барьер.
Вот что говорит учёный о своей работе: «Для меня самый волнующий момент в любом эксперименте наступает как раз перед тем, как я должен узнать, является ли определённая идея правильной или нет? Таким образом, даже неудача волнует, и должен сознаться, что большинство моих идей были, конечно, неправильными. Но на этот раз идея работала! Это было потрясающе! Я немедленно повторил свой опыт с другим образцом — тот же результат! Ещё один образец — и опять тот же результат! Всё говорило о том, что я прав! Но как убедиться окончательно?»
Следовало проверить, как влияет на результат магнитное поле. Гиавер знал, что сильное магнитное поле разрушает сверхпроводимость. Теперь он прошёл через всё здание, чтобы прибегнуть к помощи И. Жакобса, изучавшего магнетизм при низких температурах. В магнитном поле, превышающем 2400 гаусс, эффект исчезал.
Чем ещё хорошо работать в большом коллективе? — продолжим мысль Гиавера. Кто-нибудь объяснит тебе, что же ты сделал. И на этот раз нашёлся сотрудник — Ч. Бин, который объяснил Гиаверу всё значение его экспериментов. И распространил это по всей лаборатории.
«Помню, меня беспокоил тот факт, что величина щели, которую я измерил, не совсем согласовывалась с более ранними измерениями. Бин успокоил меня, сказав, что отныне другие люди должны будут беспокоиться о том, чтобы их измерения согласовывались с моими, что мой эксперимент станет эталоном, — я был польщён и впервые почувствовал себя физиком».
Обдумывая свои опыты, Гиавер пришёл к выводу, что туннельный переход между двумя сверхпроводниками должен обладать ещё более интересными свойствами.
Теперь ему пришлось перейти в соседнее здание, где работали при ещё более низких температурах. Там он восстановил старую установку, заброшенную, когда появились более совершенные. Она была вполне пригодна для его целей.
Идея сработала сразу. Как только при температуре 1,2 К превратился в сверхпроводник не только свинец, но и алюминий, стало ясно, что при этой температуре комбинация «сверхпроводник — диэлектрик — сверхпроводник» может служить основой для создания электронных устройств.
Гиавер продолжал интенсивно работать, привлекая к экспериментам то одного, то другого сотрудника.
После многих экспериментов, подтверждавших теорию Бардина, Купера и Шриффера, возникло неожиданное явление. На кривой (на экспериментальном графике) появились изгибы, не совместимые с этой теорией.
«Мы были счастливы потому, что всё, что давали до сих пор туннельные эксперименты, полностью подтверждало теорию БКШ (так физики для краткости называют теорию Бардина, Купера и Шриффера. — И. Р.), а это совсем не то, что хотелось бы экспериментатору. Всякий экспериментатор мечтает показать, что общепризнанная теория неправильна, и в данном случае мы попали-таки в слабое место теории… Однако, как это часто случается, теоретики обратили наши результаты против нас. Они ловко использовали наличие изгибов на кривых, соответствующим образом обобщили теорию и доказали, что теория БКШ в действительности является правильной».
Любовь к переменам не изменила Гиаверу и на сей раз. Посчитав, что туннелирование в сверхпроводниках понято в основной своей части, Гиавер заскучал и перешёл к другим исследованиям.
«Затем кто-то познакомил меня с короткой заметкой Б. Джозефсона в журнале “Физикс леттерс” и спросил, что я думаю по этому поводу? Признаюсь, я не понял этой работы, но вскоре мне представился случай познакомиться с Джозефсоном в Кембридже, и эта встреча произвела на меня огромное впечатление. Один из эффектов, предсказанных Джозефсоном, состоял в том, что через барьер из окисла может проходить сверхпроводящий ток без падения напряжения, если металлы по обе стороны от барьера являются сверхпроводящими; это так называемый стационарный эффект Джозефсона.
Мы наблюдали этот эффект много раз… Однако у меня было уже готово объяснение этого явления — сверхпроводящий ток шёл по металлической закоротке или мостику. (Имеется в виду реальный туннель, металлический мостик, проходящий через слой окисла и соединяющий между собой оба сверхпроводника. — И.Р.) Таким образом, все образцы, которые показывали эффект Джозефсона, мы отбрасывали как имевшие закоротки. На этот раз я оказался слишком простодушен! С тех пор меня часто спрашивали, не ругал ли я себя за то, что проглядел этот эффект. Я твёрдо отвечаю “нет”, так как, чтобы сделать экспериментальное открытие, мало наблюдать какой-то эффект, нужно также понимать смысл и значение этого наблюдения, а в данном случае я и близко не подошёл к этому. Даже после того как я узнал о стационарном эффекте Джозефсона, мне казалось, что его нельзя отличить от эффекта закороток, поэтому я ошибочно считал, что только так называемый нестационарный эффект Джозефсона подтвердит или опровергнет теорию Джозефсона».
Мы ещё раз нашли подтверждение тому, что «открыть» не значит «увидеть», а значит — «понять»…
В заключительной части своего рассказа Гиавер сказал: «Я считаю, что дорога к научному открытию редко бывает прямой и что для удачи не обязательно быть большим специалистом. Более того, я убеждён, что часто новичок в данной области имеет больше шансов именно потому, что он невежда и не знает всех тех сложных причин, по которым данный эксперимент не следует ставить».
В других выражениях эту мысль ранее высказывал Эйнштейн.
СТУДЕНТ — «НЕУДАЧНИК»
В 1962 году Бриан Д. Джозефсон, студент-дипломник Кембриджского университета, изучая теорию сверхпроводимости, пришёл к удивительному выводу. Общеизвестная теория БКШ выбрала именно его, чтобы сказать ему: если два сверхпроводника разделены тонким диэлектрическим (изоляционным) слоем, то через этот непроводящий слой возможен туннельный переход. Удивительный туннельный переход, через который может протекать электрический ток, даже если к нему не приложено электрическое напряжение!
Ток без напряжения! Почему это так поразило Джозефсона? Ток, сколь угодно долго циркулирующий внутри замкнутого, не имеющего разрывов сверхпроводника без напряжения, приложенного к этому сверхпроводнику, был открыт Камерлинг-Оннесом ещё в 1911 году. Это стало привычным и уже никого не удивляло. При температуре жидкого гелия возможны всяческие чудеса. Много позже теория БКШ объяснила, как это происходит. Стало понятным: электроны, объединившись в пары и образовав коллектив, не испытывают сопротивления своему движению через сверхпроводник. Если нет сопротивления, то ток течёт даже в том случае, если не приложено напряжение.
Но ведь Джозефсон в свой работе натолкнулся на другой случай: на пути тока в сверхпроводнике имелось препятствие — диэлектрик, а каждый знает, что ток не может проходить сквозь диэлектрик.
Почему же диэлектрик в опыте Джозефсона перестал быть изолятором — препятствием для электрического тока?
Теория БКШ, объяснявшая многие тонкости сверхпроводимости, здесь скромно молчала.
В это время Кэмбридж посетил профессор П. В. Андерсон. В своих лекциях он говорил о том, что в сверхпроводниках нарушается обычная симметрия, характерная для электронов в металлах, находящихся в нормальном состоянии. Андерсон обратил внимание слушателей на теорию сверхпроводящего состояния, построенную Л. П. Горьковым, одним из учеников Ландау. В его теории содержится эта же идея.
Идея нарушенной симметрии настолько захватила Джозефсона, что он всё время спрашивал себя, можно ли каким-нибудь образом наблюдать её экспериментально.
Ответ, по существу, основывался на том, что часть из куперовских пар, совокупность которых образует сверхпроводящий ток, может проходить через достаточно тонкий слой диэлектрика.
Это, по существу, соответствует квантовому туннельному переходу частиц через энергетический барьер. При таком переходе частицы не обладают энергией, достаточной для того, чтобы они могли «перевалить» через барьер. Но для каждой из них существует определённая вероятность исчезнуть с одной стороны барьера и одновременно возникнуть с другой его стороны. Это и есть механизм прохождения куперовских пар сквозь энергетический барьер. Конечно, никакого реального проникновения частиц сквозь диэлектрик не происходит. В этом случае реального туннеля не возникает.
Этот эффект — проникновение куперовских пар сквозь потенциальный барьер, образованный тонким диэлектрическим слоем, разделяющим два сверхпроводника, — называют стационарным эффектом Джозефсона.
Стационарный эффект Джозефсона возможен при одном, но жёстком, ограничении. Стационарный джозефсоновский ток может быть только очень слабым и не должен превышать определённого — критического — значения.
Руководитель Джозефсона, профессор Пиггард, предложил ему попытаться обнаружить туннельный сверхпроводящий ток экспериментально. Результат был отрицательным. Тогда профессор Пиггард провёл расчёты, показавшие ему, что вероятность того, что два электрона могут одновременно туннелировать через изолирующий барьер, столь мала, что не приведёт к наблюдаемым эффектам. Он ошибся потому, что провёл расчёт для двух независимых электронов, а его ученик говорил о куперовской паре электронов. Ведь, образуя куперовскую пару, электроны ведут себя как одна частица, проходящая сквозь барьер, как единое целое.
Однако вскоре Андерсон понял причину неудачи эксперимента Джозефсона. Оказывается, шумы установки, предназначенной для измерения эффекта, были достаточными, чтобы в образцах, исследованных Джозефсоном, туннельный ток превышал критическое значение, при котором эффект исчезал. Вскоре Андерсон и Роувелл обнаружили стационарный эффект Джозефсона, проведя измерения на образцах с малым сопротивлением (в них мал мешающий шум).
Джозефсон задумался над тем, что произойдёт, если на туннельный переход наложить сразу два напряжения: постоянное и переменное? Он пришёл к выводу, что при этом постоянный сверхпроводящий ток будет изменяться скачками — ступеньками. Он будет следовать за частотой переменного тока. А частота, изменяясь, примет определённые значения, зависящие от отношения постоянной Планка к заряду электрона. Это было неожиданным предсказанием. «Смущающим обстоятельством во всей этой теории, — говорит Джозефсон, — было то, что предсказанные эффекты были слишком велики».
В течение некоторого времени имелись только косвенные доказательства существования предсказанного Джозефсоном переменного сверхпроводящего тока. Он сам пытался его обнаружить, но неудачно. Причина неудачи осталась неясной.
Этот эксперимент должен был стать второй главой дипломной работы Джозефсона, предполагаемое название которой было таким: «Два неудачных эксперимента по электронному туннелированию между сверхпроводниками». В первой главе должна была быть описана его неудачная попытка обнаружить предсказанный им стационарный эффект.
Гиаверу же удалось обнаружить переменный сверхпроводящий ток, используя метод, аналогичный тому, которым неудачно воспользовался сам Джозефсон. В том же 1965 году появилась статья советских учёных И. К. Янсона, В. М. Свистунова, И. М. Дмитриенко, сумевших наблюдать излучение сверхпроводящего тока при помощи обычного детектора.
Так, в ходе выполнения дипломной работы студент Джозефсон, используя всем известную теорию, сумел сделать на её основе два удивительных предсказания, не замеченных авторами теории и их последователями, и дважды потерпел неудачу при выполнении экспериментов.
Повторим эти предсказания. Первое: электрический ток может без сопротивления протекать не только через сверхпроводники, но и через разделяющий их тонкий слой диэлектрика. Это явление называют стационарным эффектом Джозефсона.
Второе: если между двумя сверхпроводниками существует тонкий промежуток, заполненный диэлектриком, то из этого промежутка могут излучаться электромагнитные волны, что указывает на присутствие там переменного тока. Это явление называют нестационарным эффектом Джозефсона. Эффекты Джозефсона стали не только большим вкладом в науку, ибо они впервые позволили наблюдать квантовые эффекты в макромире, но открыли возможность создания новых приборов, например чувствительных детекторов радиоволн, сверхчувствительных измерителей магнитного поля. Они явились основой нового естественного эталона единицы напряжения — вольта и новых методов определения точного значения фундаментальных постоянных, так как частота электромагнитного излучения, возникающего при нестационарном эффекте Джозефсона, тесно связана с отношением постоянной Планка к заряду электрона. Так студент-неудачник стал лауреатом Нобелевской премии.
НЕ БОГИ ГОРШКИ ОБЖИГАЮТ!
Горшки обжигают люди. Они начали обжигать глиняные горшки в глубокой древности. Много позже на смену рыжей глине, лежащей под ногами почти повсюду, пришли редкостные светлые глины. Ещё позже мастера стали обжигать посуду, изготовленную из каолина — белой глины. Так появился фарфор.
И вновь прошли века. И наступил век электричества. И из белой глины начали делать изоляторы, чтобы крепить на них электрические провода. И в обиход вошло новое слово — керамика.
Керамика — обобщённое название разнообразных материалов, изготовляемых из природных окислов металлов или их смесей путём формования и последующего обжига. Обжиг придаёт керамике прочность. Если изделие из керамики разбить, то скол будет иметь характерную мелкокристаллическую структуру.
До того как человечество вступило в эру пластмасс, керамика была лучшим из диэлектриков, материалов, обладающих большим сопротивлением электрическому току, наиболее надёжным изолятором, практически не пропускающим сквозь себя электрический ток.
Возникла целая наука, позволившая сделать хрупкую керамику ударопрочной.
Ещё позже твёрдость и жаропрочность керамики, способной выдерживать механические нагрузки и удары, сделали её одним из лучших конструктивных материалов, вытесняющих металл в двигателях внутреннего сгорания, в турбинах, в космической технике.
В начале семидесятых годов керамики преподнесли учёным новый сюрприз. Обнаружились керамики — плохие изоляторы, а затем и керамики, способные проводить электрический ток. Металлические керамики!
Объединились два свойства, казавшиеся несоединимыми! Эти керамики не имеют ничего общего с металлокерамикой, материалом, который изготавливается из металлического порошка путём прессования при высокой температуре. Новые, электропроводящие керамики получают обжигом порошков, приготовленных из комбинации некоторых окислов, каждый из которых является диэлектриком.
Общеизвестно, что лучшими проводниками электрического тока являются чистые металлы — серебро, медь, алюминий.
Классическая физика объясняла электропроводность металла тем, что электроны, входящие в состав атомов металлов, разделяются на две части. Большая часть прочно связана с атомами и не может перемещаться внутри металла. Остальные электроны способны свободно перемещаться внутри атома металла. Их назвали электронами проводимости. Они образуют внутри металла своеобразный электронный газ. Под действием электрического напряжения, приложенного к металлу, электронный газ перемещается от отрицательного полюса к положительному. При этом электроны проводимости обтекают атомы металла, соударяются с ними, затрачивая на это часть своей энергии. Так возникает сопротивление электрическому току.
В веществах, не проводящих электрический ток (в диэлектриках), все электроны прочно связаны с атомами вещества и не могут перемещаться внутри него. Атомы в твёрдом теле способны лишь колебаться, каждый относительно своего положения равновесия. Электроны, входящие в состав атомов диэлектрика, участвуют в этих колебаниях, не покидая своего атома. Эта простая картина, наглядно объясняющая свойства проводников электрического тока и изоляторов — металлов и диэлектриков, не могла описать того, что диэлектрики в некоторых случаях (например, при нагревании) начинают проводить электрический ток. Положение ещё более усложнилось, когда было открыто существование материалов, не входящих ни в класс металлов, ни в класс диэлектриков. Их назвали полупроводниками.
Классическая физика должна была прибегать к искусственным предположениям лишь для того, чтобы объяснить, почему эти вещества при охлаждении становятся диэлектриками, а по мере повышения температуры приобретают способность проводить электрический ток. Но дальнейший нагрев не превращал их в металлы.
Позже пришлось признать, что существуют вещества, не превращающиеся в диэлектрики даже при приближении температуры к абсолютному нулю. Но они и при нагревании не приобретали присущей металлам способности хорошо проводить электрический ток. Их назвали полуметаллами, но никакой ясности не возникло.
Распутать этот клубок, в котором сплелись многие нити, смогла лишь квантовая физика. Она показала, что внутри вещества электроны могут обладать весьма различной энергией. Если они обладают малой энергией, то прочно связаны с атомами. Нужно придать им большую дополнительную энергию, чтобы оторвать от атомов и сообщить способность мигрировать внутри вещества. Такие вещества не проводят электрический ток. Они также плохо передают тепло. Это диэлектрики.
В этом крайнем случае квантовая теория даёт то же самое, что и классическая теория, добавляя лишь менее существенные детали поведения вещества и позволяя разобраться в том, как это поведение зависит от внешних воздействий.
В другом крайнем случае, в металлах, электроны разделены на две части. Большинство из них обладает малой энергией, и они тесно связаны с атомами. Остальные обладают сравнительно большой энергией. Такой, что напряжение слабенькой батареи легко отрывает их от «родного» атома, и они свободно переходят от одного атома к другому, несмотря на то что энергия электрона меньше, чем энергия, связывающая его с ближайшим атомом. Это электроны проводимости, участвующие в передаче электрического тока. Эти же электроны участвуют в передаче тепла, обеспечивая металлам большую теплопроводность.
Новая картина близка к представлению классической физики о свободном электронном газе, но позволяет более подробно описать процесс взаимодействия электронов проводимости с атомами металла.
Квантовая теория легко объясняет отличие полупроводников от металлов, полуметаллов от диэлектриков. В полупроводниках большинство электронов обладает малой энергией, и потому они тесно связаны с атомами и не участвуют в передаче электрического тока. Наряду с ними в по лупроводниках, при комнатной температуре, есть малая часть электронов, энергия которых не намного превышает энергию остальных электронов. Эти электроны могут перемещаться внутри полупроводника, обеспечивая им некоторую способность проводить электрический ток и теплоту.
Физики говорят, что между двумя группами электронов, точнее, между их энергиями существует запрещённая зона. Иногда её называют энергетической щелью. Почему? Да потому, что в полупроводнике нет электронов, энергия которых лежала бы внутри запрещённой зоны, внутри энергетической щели, отделяющей электроны, участвующие в образовании электрического тока от всех остальных. Мы уже встречались с «энергетической щелью», знакомясь с отрывками из нобелевской лекции Гиавера.
При нагревании не все электроны приобретают одинаковую дополнительную энергию. На долю одних приходятся меньшие порции энергии, и они остаются вблизи своих атомов. На долю других выпадает достаточное количество для того, чтобы они перескочили через запрещённую зону в зону проводимости. Так при нагревании увеличивается способность полупроводника пропускать электрический ток, их электрическое сопротивление ослабевает.
Более подробное рассмотрение движения электрона в кристалле показывает, что оно связано с движениями соседних атомов. В результате с движущимся электроном связана масса, превосходящая массу самого электрона. Имея это в виду, физики говорят, что электрон, движущийся в кристалле, является квазичастицей, то есть как бы частицей, масса которой зависит от свойств кристалла.
Так мы снова повстречались с квазичастицами, но не как с любопытной гипотезой или экзотической теорией. В этом случае они являются обыкновенными электронами проводимости, превратившимися в квазичастицы в результате взаимодействия с атомами кристалла.
РАЗБЕГ
В начале семидесятых годов физики и химики активно изучали окислы металлов, а также керамики, получаемые обжигом комбинаций различных окислов. Были среди них и керамики, пропускавшие электрический ток.
В 1973 году впервые была изготовлена керамика, обладающая электропроводностью, типичной для металлов. Для того чтобы убедиться в этом, требовалось провести исследование зависимости электропроводности от температуры.
В 1979 году учёные Института общей и неорганической химии АН СССР (ИОНХ) изготовили керамики из окислов меди, редкоземельного элемента лантана и одного из щёлочноземельных элементов — кальция, бария или стронция. Они показали, что эти керамики имеют зависимость электропроводности от температуры, типичную для металлов.
В этом же году Ф. Стеглич и его сотрудники сообщили, что керамика, состоящая из окислов меди, кремния и церия, превращается в сверхпроводник при очень низкой температуре, равной 0,5К. Они показали, что в этой керамике электроны становятся квазичастицами с необычно большой массой, на два порядка превышающей массу свободного электрона.
Прошло пять лет, и к 1984 году Клод Мишель и Бернар Рави исследовали керамику (на основе окислов бария, лантана и меди) на её способность проводить ток от гелиевых температур до азотных и не обнаружили в ней сверхпроводимости. Только после открытия Беднорца и Мюллера стала ясна причина неудачи: они прокаливали свои образцы на воздухе, в присутствии кислорода! А для появления высокотемпературной сверхпроводимости следует прокаливать их так, чтобы в них возникал некоторый дефицит кислорода. Требуется и небольшой дефицит лантана.
Так это началось. Началось покорение высокотемпературной сверхпроводимости.
Вскоре оказалось, что соединения двух металлов, один из которых уран, а второй бериллий или платина, тоже становятся сверхпроводниками за счёт превращения части электронов в сверхтяжёлые квазичастицы. Но осталось неизвестным, как эти квазичастицы взаимодействуют при появлении сверхпроводимости.
Затем были обнаружены удивительные сверхпроводники с очень малой концентрацией свободных электронов.
Фурор произвело обнаружение предсказанных Гинзбургом и Литтлом тонких сверхпроводящих полимерных плёнок и волокон. Сперва это были плёнки и волокна из неорганических материалов, а затем плёнки и волокна из органических соединений.
Правда, все они становились сверхпроводниками при очень низких температурах.
Так происходило новое постепенное проникновение учёных в страну сверхпроводимости. При этом выяснилось, что далеко не все эксперименты могли быть объяснены на основе существующей теории сверхпроводимости, основанной на спаривании электронов, обменивающихся фононами при движении внутри решётки кристаллов.
Наконец наступил 1986 год, когда Беднорц и Мюллер обнаружили, что керамика из окислов меди, лантана и бария становится сверхпроводящей при неожиданно высокой температуре: 40 K.
Эта керамика была подобна той, в которой сотрудники ИОНХ обнаружили металлическую электропроводность.
Можно представить себе, как они теперь сожалеют, что не продолжили свои исследования в области более низкой температуры. Ведь они упустили Нобелевскую премию, которую получили Беднорц и Мюллер за беспримерный скачок к высокотемпературной сверхпроводимости.
Появление журнала со статьей Беднорца и Мюллера вызвало не только интерес, но настоящий шквал экспериментов и теоретических соображений.
Ведь изготовление керамик не требует ни дорогого сырья, ни сложной аппаратуры. Уже известен десяток методов, некоторыми из них может воспользоваться даже школьник. Нужно лишь, чтобы в химической лаборатории были соответствующие окислы или такие соединения (например, нитраты или карбонаты), из которых могут быть получены эти окислы.
Нужна и обычная муфельная печь, ибо обжиг проходит при температурах около 1000 °C (от 900 °C до 1100°). И конечно, нужна возможность работать с жидким азотом (жидкий гелий слишком дорог для применения в школах).
В начале 1987 года группы исследователей из Токийского университета, из трёх лабораторий в США и Института физики АН КНР сообщили о том, что и они тоже получили керамики, сверхпроводящие при температуре 40 К.
Напомним, что первая научная конференция, обсуждавшая в США перспективы высокотемпературной сверхпроводимости, собрала массу учёных. Зал на 1140 мест был заполнен через несколько минут после того, как распахнулись его двери. Заседание было открыто в полвосьмого утра 18 марта 1987 года.
Зал наполнился громом аплодисментов, когда председательствующий представил аудитории Карла Алекса Мюллера из лаборатории ИБМ в Цюрихе, Соджи Танаку из университета Токио, Пауля С. В. Чу из университета Хьюстона, Жонгксиана Жао из Института физики в Пекине и Бертрана Батлокга из лаборатории Белл фирмы АТТ, сказав: «Леди и джентльмены, это некоторые из людей, которые дали толчок этому делу».
Сотни физиков слушали доклады и сообщения, стоя в проходах и наблюдая за происходящим в зале на экранах телевизоров, установленных в фойе и коридорах. Каждому докладчику предоставлялось лишь по пять минут для выступления. Сотни участников заседания оставались в зале до трёх часов ночи, когда председательствующий объявил о закрытии заседания. Но и после этого многие оставались в зале. Мы уже писали, что обсуждение прекратилось только в 6 часов утра следующего дня, когда служащие отеля начали уборку зала.
Нечто подобное вскоре повторилось в Москве, а затем в Токио, где состоялась международная конференция по высокотемпературной сверхпроводимости.
Теперь, когда пишутся эти строки, керамики, сверхпроводящие при температуре жидкого азота и при температуре лишь на несколько десятков градусов ниже 0 °C, получают во многих лабораториях.
Несмотря на то что большинство из них не всегда удаётся воспроизвести, из них уже делают сверхпроводящие плёнки и сверхпроводящие проволоки. Последнее, конечно, потребовало высокого экспериментального искусства.
Учёные семимильными шагами движутся по стране сверхпроводимости, чтобы превратить в реальность, ставшую столь близкой, заманчивую мечту о сверхпроводящих материалах, работающих при комнатной температуре и выдерживающих действие больших магнитных полей.
Теперь в работу включились инженеры и технологи. Ведь без остроумия инженеров и искусства технологов нельзя думать о том, что сверхпроводящие керамики можно в промышленных масштабах, без чрезмерных затрат, превращать в элементы электронных вычислительных машин. Машин, обладающих огромным быстродействием и недостижимыми сейчас объёмами памяти, из которой можно очень быстро извлекать требуемую информацию. Без инженеров и технологов невозможно наладить производство сверхпроводящих кабелей, способных передавать на большие расстояния энергию, вырабатываемую турбинами современных гидроэлектростанций, тепловых электростанций, расположенных около крупных угольных разрезов далеко от промышленных районов. Эти кабели позволят строить атомные электростанции в удалённых малонаселённых местах, располагать в южных пустынях солнечные электростанции, использовать энергию ветра и морских волн и энергию приливов там, где они особенно велики.
Катушки с намотанными на них сверхпроводящими проволоками станут эффективными накопителями электроэнергии, запасающими её в дневное время от солнечных электростанций и возвращающими в электрические сети по ночам. Или накопителями энергии ветра, когда он дует, и отдающими её в безветренное время.
Промышленность уже включилась в освоение новых высокотемпературных сверхпроводников. Но это не значит, что физики исчерпали проблему.
Ведь до сих пор физики-экспериментаторы ставят опыты интуитивно, основываясь на аналогиях, идут извилистым и трудоёмким путём проб и ошибок.
Они с надеждой следят за усилиями физиков-теоретиков, которые поняли, что теория Боголюбова, как и теория Бардина, Купера и Шриффера в их существующем виде не применимы к объяснению, а тем более к предсказанию свойств сверхпроводящих керамик. Эти теории нужно уточнить, чтобы они могли помочь экспериментаторам в выборе новых объектов исследования, новых технологических приёмов, способных улучшить свойства керамик без уменьшения достигнутого значения температуры перехода в сверхпроводящее состояние.
Сейчас предложено несколько вариантов уточнения существующей теории сверхпроводимости и делаются попытки построить более точные теории на новых основах. Теоретики заметили, что сверхпроводимость в диапазоне температур 40–100К может быть объяснена при помощи общепризнанной теории, если некоторые величины в ней сочетаются благоприятным образом. Но для более высоких температур эта полумера не достаточна. Многие считают, что в новой области температур обмен фононами не может обеспечить существование куперовских пар. По их мнению, нужно привлечь различные тяжёлые квазичастицы, с которыми мы встречались выше, например поляроны и экситоны. Предполагается, что в высокотемпературных сверхпроводниках роль куперовских пар электронов играют биполяроны — пары поляронов.
Учёные вспомнили, что подобные варианты обсуждались ещё в начале пятидесятых годов, но были заброшены после появления современной теории. Возможная роль экситонов (в частности, плазмонов) в возникновении высокотемпературной сверхпроводимости была понята ещё в середине шестидесятых годов, когда Гинзбург и Литтл выдвинули идею о создании сверхпроводящих плёнок и нитей, изготовленных из органических веществ.
Делаются попытки понять: не возникает ли высокотемпературная сверхпроводимость керамик в результате их специфического строения? Ведь керамика представляет собой хаотический конгломерат мелких кристаллов, на границах которых могут возникать сверхпроводящие слои (плёнки) или сверхпроводящие нити, формирующиеся там, где соприкасаются рёбра кристалликов.
Особый интерес физиков возбуждают «невоспроизводимые сверхпроводники», случаи, когда наблюдение сверхпроводимости, например в хлористой меди, не могли быть повторены в новых экспериментах. Считалось, что сообщения об обнаружении сверхпроводимости в таких случаях — ошибка экспериментатора. Но теперь эти эксперименты повторяют в различных вариантах, исходя из того, что положительный результат возникает из сочетания трудно воспроизводимых деталей опыта.
В работу включилось такое множество учёных, что большой конференц-зал Физического института АН СССР не мог вместить всех желающих обсудить на теоретическом семинаре, руководимом академиком Гинзбургом, достижения и пути дальнейшей работы в области сверхпроводимости. Учёным пришлось пойти на беспрецедентное разделение или, лучше сказать, расширение этого семинара. Теперь еженедельно по утрам в среду учёные обсуждают теоретические проблемы, а во второй половине дня рассматривают новейшие достижения экспериментаторов.
Дружная работа физиков, материаловедов, инженеров и технологов несомненно приведёт к тому, что к моменту выхода из печати этой книги мы станем свидетелями новых впечатляющих научных достижений и первых сообщений о практическом применении высокотемпературных сверхпроводников. Газеты и журналы, как и теперь, будут оперативно информировать нас об этом. Ибо создание и применение высокотемпературных сверхпроводников, работающих при комнатной температуре и даже при температуре жидкого азота, может повлиять на нашу жизнь не меньше, чем освоение атомной и термоядерной анергии. К сожалению, помимо мирных применений и это достижение науки может быть обращено во вред человечеству, применено для создания нового оружия.
Не иначе чем по военным соображениям в США поток публикаций по высокотемпературной сверхпроводимости резко сократился.
А когда по приглашению министерства энергетики США в июле 1987 года в Вашингтон прибыло около трёх тысяч учёных, чтобы обсудить состояние и перспективы высокотемпературной сверхпроводимости, среди них не было ни Беднорца, ни Мюллера. Их даже не пригласили. По сообщению цюрихской газеты «Вельтвохе» один оратор заявил от имени устроителей, что «ноу-хау», то есть технологические подробности, представляемые на этой встрече, не должны попасть в руки иностранцев.
Так первооткрыватели Беднорц и Мюллер оказались для администрации США нежелательными иностранцами, а их хозяева из американской корпорации ИБМ смирились с этой ситуацией.
Ещё есть время для того, чтобы содружество учёных, инженеров и политиков создало надёжную преграду тем, кто видит смысл всякого научно-технического прогресса прежде всего в его применении в интересах эгоистического меньшинства, в развёртывании новой гонки вооружения.
Если силы мира возобладают, то, как предполагают учёные, путь мирной науки может привести к созданию сверхпроводящих бактерий, способных воспроизводить себе подобных. Так откроется ещё одна глава биотехнологии, способной реализовать мечты о суперкомпьютерах. Они будут обладать способностью решать задачи не последовательными шагами, присущими современным ЭВМ, а путём разбиения задачи на отдельные блоки, одновременно обрабатываемые всей логической и вычислительной мощностью ЭВМ. При этом логические и вычислительные системы будут совмещены с системами памяти. Это будет революцией в мире ЭВМ: станут ненужными многократные обращения оперативных блоков к блокам памяти, на что сейчас уходит основное время, затрачиваемое современными ЭВМ на решение сложных задач.
Станут несравненно компактнее и дешевле медицинские томографы, основанные на явлении ядерного магнитного резонанса, при помощи которых уже теперь медики могут ставить на ранней стадии болезни точные диагнозы опасных заболеваний, проявлявших себя только на поздней стадии, когда лечение весьма затруднительно или практически невозможно. Сейчас ядерными томографами оборудованы только самые крупные клиники. Высокотемпературная сверхпроводимость сделает их доступными для рядовых лечебных заведений. Ведь современные томографы, работающие с применением жидкого гелия, стоят около 100 тысяч рублей, а расходы по их эксплуатации достигают 50 тысяч рублей в год.
Войдут в эксплуатацию железнодорожные поезда на сверхпроводящей магнитной подушке, потомки экспериментальных конструкций, основанных на применении обычных магнитов или на сверхпроводящих магнитах, охлаждённых жидким гелием.
Высокотемпературные сверхпроводники станут базой разнообразных новых измерительных приборов и датчиков, основанных на эффекте Джозефсона, с которым мы познакомились выше.
Явление сверхпроводимости, несмотря на трудности работы с жидким гелием, уже нашли применение, главным образом при создании уникальных приборов. Например, в ускорителях элементарных частиц, установках для изучения термоядерных реакций и в некоторых других.
В августе 1987 года японские учёные Ихара и ещё семь человек сообщили о возможности достижения сверхпроводимости при температуре 65 °C. Это действительно высокая температура, если отсчитывать её от абсолютного нуля. Материалом, который становится сверхпроводящим при этой температуре, явилась керамика, в состав которой входят стронций, барий, иттрий, медь и кислород.
Физики, конечно, не остановятся на этом. Но уже есть поле деятельности для технологов. Теперь представляются реальными сверхпроводящие проволоки и ленты для электрических машин, магнитов и линий передачи электроэнергии, работающих без охлаждения.
Представляются реальными сверхчувствительные радиоприёмники и магнитофоны и, главное, сверхбыстродействующие ЭВМ с огромной памятью. Впереди много интересного и полезного.
КАК ЭТО НАЧИНАЛОСЬ
Когда Шведская академия наук объявила о присуждении Йоханнесу Георгу Беднорцу и Карлу Алексу Мюллеру Нобелевской премии по физике за 1987 год, эти имена ещё не были знакомы даже многим физикам. Однако стоит подробнеё узнать о жизни и работе этих скромных учёных, незаметно совершивших революцию в физике.
Беднорц родился в 1950 году в Нойнкирхене, ФРГ. Он досрочно окончил университет в Мюнстере, где его особенно увлекали минералогия и кристаллография. Затем он учился в Федеральной высшей политехнической школе в Цюрихе, Швейцария. Это учебное заведение больше известно как Цюрихский политехникум. Его окончили многие выдающиеся учёные, среди них Альберт Эйнштейн. В 1982 году Беднорц получил здесь учёную степень доктора и начал работать в лаборатории цюрихского филиала американской компании ИБМ, одной из ведущих в области электронных вычислительных машин, где уже много лет работал Мюллер.
Мюллер родился в 1927 году в Базеле, Швейцария. В 1958 году окончил Цюрихский политехникум, а затем пять лет работал в Женеве. В 1962 году он получил степень доктора за диссертацию в области физики твёрдого тела. В 1970 году стал профессором. Мюллер — один из ведущих сотрудников цюрихского филиала ИБМ и один из наиболее квалифицированных специалистов в области применения электронного парамагнитного резонанса для изучения структурных переходов, сопровождающихся резким изменением взаимного расположения атомов в твёрдом теле.
В 1983 году появилась первая совместная публикация Беднорца и Мюллера в области структурных переходов в твёрдых телах. Они изучали переходы некоторых диэлектриков в сегнетоэлектрическое состояние, сопровождающиеся скачком диэлектрических свойств в десятки и сотни раз.
Публикация, содержавшая сообщение о сверхпроводимости керамического материала при 30–35К, была встречена учёными весьма сдержанно, вероятно, потому, что авторы до этого не работали в области сверхпроводимости. Их открытие получило мощный резонанс после того, как в декабре 1986 года С. Танака и его сотрудники из Токийского университета подтвердили результаты Беднорца и Мюллера на заседании Общества материаловедения.
Присуждение Нобелевской премии в октябре 1987 года за работу, опубликованную в сентябре 1986 года, уникально в практике Нобелевского комитета. Считается, что это очень быстрая реакция. Ведь комитет иногда запаздывает с признанием выдающихся работ на десятилетия! (Вспомним Гинзбурга и Абрикосова, ожидавших полвека!) Но это и знаменательно: наше время — время стремительного движения человечества во всех сферах жизни. Это и пугает, и обнадёживает. Здравомыслящих людей больше, чем тех, кто играет судьбами человечества. Будем надеяться, что прогресс знаний принесёт нам только сладкие плоды.
Прежде чем закончить рассказ о необыкновенном научном событии наших дней о получении высокотемпературной сверхпроводимости, задержимся у дверей лаборатории Беднорца и Мюллера и попристальнее вглядимся в их работу, послушаем, что они сами думают о ней…
В начале 1987 года корреспондент одного из научно-популярных журналов спросил Беднорца: почему он и его сотрудники выбрали соединение бария, лантана, меди и кислорода как вещество, способное к сверхпроводимости при повышенных температурах?
Учёный ответил приблизительно так: в 1983 году, когда мы (вместе с доктором К. А. Мюллером. — И. Р.) начали исследования, нам в голову пришла необычная идея (необычная идея это плод интуиции, а не результат логических рассуждений. — И. Р.). Её суть в том, что высокотемпературная сверхпроводимость может возникать в окислах металлов (сверхпроводимость некоторых окислов при очень низких температурах уже была известна. — И. Р.). Речь идёт о классе веществ, отличных от соединений некоторых металлов между собой. Мы думали об окислах, содержащих ионы определённых металлов, например титана, меди, вольфрама или никеля. Они принадлежат к так называемым переходным металлам, расположенным в средней части таблицы Менделеева.
Мы начали, продолжал он, с окислов лантана и никеля, имеющих структуру пировскита.
(Здесь сработала интуиция! Пировскит — один из хорошо изученных кристаллов, но на особую тайну его структуры не намекали ни одна из теорий сверхпроводимости. Ближе всех сюда приводили структуры, изученные Гинзбургом и Литтлом, но для того чтобы прийти от них к пировскитам, нужен интуитивный скачок. — И. Р.)
В течение почти трёх лет Беднорц и Мюллер провели множество экспериментов, но не продвинулись к цели.
В конце 1985 года Беднорц натолкнулся на статью французских учёных, показавшуюся ему интересной. Статья была очень далека от задач сверхпроводимости — посвящена химическому катализу, ускорению химических реакций под влиянием некоторых веществ, не расходуемых при соответствующей реакции. Авторы изучали смешанный оксид лантана, бария и меди и зависимость его характеристик от температуры. Они обнаружили, что при повышении температуры кислород выделялся из кристаллической решётки этого соединения, а при понижении температуры он возвращался в неё.
«Принимая во внимание изменения температуры, — сказал Беднорц, — и учитывая, что это вещество удовлетворяет другим критериям, вытекающим из нашей идеи, я почувствовал, что оно будет одним из кандидатов в сверхпроводники…»
«Так я натолкнулся на систему барий, лантан, медь, кислород, — продолжал Беднорц. — Конечно, нам немного повезло при открытии высокотемпературной сверхпроводимости…»
Читатель вправе считать, что и здесь ему помогла интуиция. Иначе он не смог бы перекинуть мостик от катализа к сверхпроводимости.
Далее речь зашла о том, почему Мюллер и Беднорц направили свою первую статью именно в журнал «Цайтшрифт фюр физик».
То, о чём далее говорил Беднорц, относилось не непосредственно к научной работе, а к атмосфере, в которой протекали их исследования. Впрочем, эта атмосфера весьма типична для научных учреждений. Поэтому интересно взглянуть на неё изнутри.
Вот что рассказал об этом Беднорц:
«После завершения рукописи будущей статьи доктор Мюллер и я обсуждали, где её опубликовать. Мы знали, что это будет очень возбуждающая статья. С другой стороны, мы знали, что очень легко немедленно повторить наш эксперимент. Если рукопись будет разослана нескольким рецензентам, то возможна утечка информации. По этому мы опасались, что до того, как она будет напечатана, некий специалист в области сверхпроводимости узнает о наших результатах и опубликует более полные данные в другом журнале…»
Добавим, что ко времени окончания рукописи они ещё не были способны провести окончательную проверку сверхпроводимости их вещества. Для этого надо было провести исследование взаимодействия вещества с магнитным полем, а в лаборатории не было для этого соответствующего оборудования. Заказав его, они ожидали, что оно прибудет в начале 1986 года.
При выборе журнала они исходили из того, что рецензенты журнала не должны быть узкими специалистами, но обязательно должны быть восприимчивы к новым идеям.
«Ведь наши идеи действительно были необычными, — пояснил Беднорц и добавил: — Кроме того, мы хотели бы, чтобы рецензенты журнала были порядочными людьми, чтобы не допустить утечки информации».
Первый признак сверхпроводимости они уловили 27 января 1986 года. Затем Беднорц выполнил много экспериментов, их цель — проверка изменений электрического сопротивления от состава вещества и его термообработки.
Наконец, в апреле 1986 года авторы решили опубликовать статью в общефизическом журнале, не связанном непосредственно со сверхпроводимостью. Они выбрали «Цайтшрифт фюр физик», серия Б — «Конденсированные среды». Отчасти их выбор объяснялся тем, что один из редакторов этого журнала работал в тех же лабораториях фирмы ИБМ в Цюрихе, где работали они. Рукопись представили именно ему.
Статья попала в журнал в апреле и была опубликована в сентябре 1986 года.
Оборудование, которое ожидалось в начале 1986 года, прибыло позже и было готово к работе только в начале сентября. Беднорц и Мюллер пригласили принять участие в экспериментах японского учёного доктора М. Такашиге, работавшего в одной из лабораторий фирмы ИБМ и хорошо разбиравшегося в сверхпроводимости.
Таким образом, в присутствии доктора Такашиге они убедились в том, что уже при 35К наблюдается эффект Мейсснера — выталкивание внешнего магнитного поля из сверхпроводящего материала. Основываясь на этих результатах, они направили следующую статью в журнал «Еврофизик леттерс».
«Тридцатого ноября 1986 года, — вспоминает Беднорц, — я пригласил доктора Такашиге и его семью в свой дом. Госпожа Такашиге сказала мне, что она прочитала статью в японской газете “Асахи симбун” от 28 ноября. В ней говорилось о том, что профессор Танака и его группа подтвердили сверхпроводимость нашего вещества».
Кто-то из присутствующих заметил:
«Некоторые говорят, что Вы и доктор Мюллер должны получить Нобелевскую премию…»
Вот ответ учёного:
«Для меня является некоторым грузом сознание, что публика и многие коллеги возлагают большие надежды на то, что такое признание состоится. Сейчас в области физики имеется много различных — очень хороших и важных — исследовательских работ. Однако они не получили такой рекламы, которую получили мы. Нобелевская премия зависит от качества, а не только от рекламы. Мы рады и горды тем, что уже получили большое признание после нашего открытия. Мы были поражены и счастливы, получив премию памяти Фрица Лондона. (Одного из первых физиков, указавших на физические причины сверхпроводимости. — И. Р.) Это большая честь, особенно в связи со столь быстрым присуждением. Тем более что мы не были членами низкотемпературного сообщества».
При получении Нобелевской премии Беднорц и Мюллер, как и другие лауреаты этой премии, должны были выступить с лекцией, посвящённой их открытию. При этом всегда присутствуют члены шведской королевской семьи и многочисленная публика, весьма далёкая от науки. Поэтому принято, чтобы Нобелевская лекция была общедоступной. Однако понятие доступности по-разному понимается каждым из нобелевских лауреатов.
Коллективную лекцию произнёс Беднорц. Он не сумел обойтись без математических формул и многочисленных графиков, которые в аудитории специалистов способствуют пониманию при одновременном сокращении текста лекции. Но для не физиков графики не приносят понимания того, что излагается словами. О существе дела читатель этой книги осведомлён. Но кроме этого, лекция содержит много интересного, относящегося не только к физике, но и к истории рождения открытия. Поэтому мы добавим кое-что ещё.
Первые исследования Мюллера, начатые в шестидесятые годы и посвящённые исследованию структуры семейства кристаллов, в которое входят те, среди которых позднее была обнаружена высокотемпературная сверхпроводимость, опубликованы в 1971 году. Выполняя эти исследования, Мюллер ещё не интересовался сверхпроводимостью.
Интерес к высокотемпературной сверхпроводимости возник у него в том же году при чтении статьи Т. Шнейдера и Э. Штоля, относящейся к совершенно иной области. Она касалась возможности получения металлического водорода (физическая задача, требующая отдельного рассказа. — И. Р.). Лишь глубокая интуиция учёного могла перекинуть мостик от гипотетического металлического водорода к высокотемпературной сверхпроводимости.
В это же время Беднорц работал над докторской диссертацией в Цюрихском политехникуме. Он проводил исследование при низких температурах тех же кристаллов, которые интересовали Мюллера. Тогда Беднорц тоже не думал о высокотемпературной сверхпроводимости.
Его интерес к сверхпроводимости возник только в 1978 году. Толчком был телефонный звонок Г. Рорера, руководителя Г. Биннинга, принятого на работу в лабораторию ИБМ. Но вскоре Биннинг и Рорер потеряли интерес к этим исследованиям и занялись реализацией оригинальной идеи, которая привела их к созданию удивительного нового прибора — сканирующего туннельного микроскопа — и к Нобелевской премии 1986 года. Беднорц продолжал изучать явление сверхпроводимости, оставаясь в рамках общепризнанной теории и традиционных экспериментов.
В конце 1983 года Мюллер спросил Беднорца, хотел бы он заняться совместной работой по поиску сверхпроводимости в оксидах — соединениях металлов с кислородом. Обычно такие соединения не проводят электрического тока, но некоторые из них похожи в этом отношении на металлы, причём они могут становиться сверхпроводниками, хотя и при очень низких температурах. Беднорц немедленно согласился. Так это началось.
К тому времени ряд исследователей занимался подобными работами, а Д. Джонсон с сотрудниками и 1973 году сумел получить оксид, становящийся сверхпроводящим при 13К. В 1979 году Б. К. Чакраверти показал путём теоретического анализа, что повышению температуры перехода в сверхпроводящее состояние могут способствовать поляроны, с которыми мы уже знакомы.
Итак, Беднорц и Мюллер начали совместный поиск высокотемпературной сверхпроводимости в 1983 году. Интенсивные исследования длились около двух лет и приводили к противоречивым результатам. Возник вопрос: идут ли они к цели или в тупик?
Работа вошла в критическую фазу в 1985 году, когда они получили возможность работать при помощи более совершенных приборов. В конце этого года в работе наступил перелом. Толчком стала публикация французских учёных С. Мишеля, Л. Эр-Рахо и Б. Раво, посвящённая проблеме катализа. (Об этой работе Беднорц, как мы помним, говорил корреспонденту.)
Теперь уже Беднорц проявил незаурядную интуицию, совершив мысленный скачок от катализа к высокотемпературной сверхпроводимости. Он энергично взялся за работу.
К концу дня образцы, предназначенные для исследования, были готовы. «Но, — сказал Беднорц, — измерения были отложены, так как было объявлено о визите доктора Ральфа Гомори, нашего научного директора. Эти визиты всегда время от времени отвлекали людей, заставляя готовиться к соответствующим отчётам. Пережив этот важный визит и возвратившись из затянувшегося отпуска в середине 1986 года, я вновь вспомнил прочитанную статью… и решил опять начать изучение новых соединений».
Предоставим снова слово Беднорцу.
«Состав соединений и методика их изготовления менялись, и в течение двух недель мы смогли сдвинуть начало падения сопротивления до 35К. Это было неправдоподобно высокое значение по сравнению с наиболее высокотемпературными сверхпроводниками».
Ажиотаж, последовавший после публикации первой статьи Беднорца и Мюллера, нарастает до сих пор и будет продолжаться ещё долго, вовлекая в исследования всё новых учёных, технологов и инженеров. Одни из них продолжают атаку на таинственные процессы, приводящие к высокотемпературной сверхпроводимости, другие стремятся найти вещества, остающиеся сверхпроводниками при температурах, близких к нулю градусов Цельсия и при более высоких температурах, третьи ищут возможности практического применения тех веществ, которые уже созданы и сохраняют сверхпроводимость при температурах, превышающих температуру жидкого азота.
Все они опираются на глубокие познания, самоотверженный труд и на интуицию, без которой трудно выбрать правильный путь в неведомое.