ТУЧНЫЕ ГОДЫ

Если будущий историк захочет установить, когда именно учёные, более двух тысячелетий проникавшие в сущность света и атомов, сделали первый непосредственный шаг к лазерам, он, несомненно, вспомнит притчу о семи тучных и семи тощих коровах.

Кто из безымянных авторов Библии придумал эту притчу?

Урожайные годы бывают не только на полях, но и в лабораториях. В 1895 году А.С. Попов изобрёл радио. Тогда же Ж.Б. Перрен обнаружил отрицательный заряд катодных лучей Крукса и тем положил начало электронике. (Много лет спустя наш замечательный современник академик А.И. Берг объединил этих близнецов в синтетическую науку — радиоэлектронику.) В том же году В.К. Рентген, поддавшись всеобщему увлечению исследованиями катодных лучей, открыл новые икс-лучи, впоследствии названные его именем.

Следующий, 1896 год тоже принадлежал к тучным. Анри Беккерель, внук известного физика Антуана Беккереля, продолжал исследования свечения солей урана, таинственного явления, ставшего главным увлечением его отца Эдмона Беккереля. Оказывается, и в физике существуют династии: сын Анри Беккереля, Жан, тоже был известным физиком.

Но возвратимся к Анри Беккерелю, изучавшему люминесценцию ураниловых солей, которые ярко светились в темноте, если их до того выставляли под лучи солнца. Он открыл невидимое излучение солей урана, не связанное с предварительным освещением.

Узнав, что недавно открытые Рентгеном икс-лучи вызывают утечку электрического заряда с заряженного тела, Беккерель решил проверить, не способно ли к этому же открытое им излучение. Опыт подтвердил его догадку. Теперь он мог пользоваться двумя методами — фотографическим и электрическим. Прошло лишь два года, и супруги Кюри обнаружили, что торий обладает теми же свойствами, что и уран. Они ввели термин «радиоактивность» для обозначения особого свойства тех веществ, которые способны испускать «лучи Беккереля». Заметив, что некоторые минералы радиоактивнее тория и урана, они начали искать причину этого и обнаружили полоний, названный так в честь Польши — родины Марии Кюри, а затем радий, наиболее радиоактивный из всех известных до того радиоактивных элементов. На рубеже нашего века Беккерель обнаружил, что его лучи отклоняются магнитом, а Э. Резерфорд, о котором мир узнал лишь впоследствии, установил, что эти лучи состоят из двух частей. Он назвал одну из них альфа-излучением (она сильно поглощалась веществом), а другую — бета-излучением (она поглощалась значительно слабее).

Вскоре П. Вийяр обнаружил ещё более проникающую компоненту, совсем не отклоняемую магнитом. Он назвал её гамма-излучением.

Постепенно было установлено, что альфа-лучи заряжены положительно, бета-лучи — отрицательно, а гамма лучи совсем не несут заряда, чем напоминают лучи Рентгена. Удалось установить поразительный факт: частицы бета-лучей имеют различные скорости, а отношение их заряда к массе менялось в зависимости от скорости частиц. Это заставило вспомнить о старой мысли М. Абрагама, предположившего, что масса электрона, по крайней мере частично, зависит от окружающего его электромагнитного поля. Возник вопрос: не являются ли бета-лучи электронами?

Радиоактивные процессы возникают в самых глубинах атомов, в их ядрах, и сопровождаются выделением тепла. Пьер Кюри вместе с А. Лабордом изучили процесс и двумя способами определили, что каждый грамм радия ежечасно выделяет 100 калорий энергии. Откуда она берется?

Ещё раньше Мария Кюри предположила, что тепло выделяется радиоактивным веществом во время испускания лучей Беккереля и при этом радиоактивные вещества очень медленно изменяются. Но такая гипотеза противоречила всем основам науки — закону сохранения энергии (откуда берётся эта энергия?), закону сохранения вещества (как может изменяться радиоактивное вещество?) и интуитивному многовековому представлению о неизменности атомов.

Испугавшись собственной смелости, Мария выдвинула вторую гипотезу: радиоактивные вещества улавливают неизвестное внешнее излучение, недоступное нашим приборам, и преобразуют его в тепло и энергию радиоактивного излучения.

Время показало, что и в науке безграничная смелость лучше рабской осторожности. Все три грозных возражения против первой из гипотез превратились в её незыблемые доказательства.

ОЗАРЕНИЕ ДЖИ-ДЖИ

Исследования радиоактивности привели к открытию радиоактивных превращений атомов. Эйнштейн выявил глубокую связь между энергией и веществом и объединил два старых закона в единый закон сохранения энергии и вещества — в закон сохранения материи.

Все явственнее назревала необходимость осознать сложные законы радиоактивных превращений, представлявшихся учёным массой несвязанных эмпирических гипотез. Особенно настоятельным это стало после 1908 года, когда Резерфорд установил, что альфа-частицы, вылетающие из радиоактивных веществ, представляют собой полностью ионизированные атомы гелия. Гелий получается из радиоактивных элементов! Столь крамольное предположение стало реальностью.

Нужно было решиться приступить к решению загадки атома. До того существовало лишь старое и весьма общее предположение У. Праута о том, что атомы всех веществ каким-то способом образуются из водорода. Гипотеза, основанная на кратности атомных весов, верность которой стала сомнительной после уточнения измерения атомных весов ряда элементов, обнаруживших существенное отклонение от кратности. (Впоследствии, после открытия изотопов, это возражение отпало, однако гипотеза Праута уже была не нужна).

Первую модель атома предложил Джозеф Джон Томсон, знаменитый Джи-Джи, которого иногда путают с не менее знаменитым Уильямом Томсоном, впоследствии получившим титул лорда Кельвина.

Короткое время Джи-Джи считал, что хорошей моделью атома могут служить магнитики А. Майера. Майер подвешивал над сосудом с водой большой магнит, а на воду пускал маленькие пробочки с воткнутыми в них намагниченными иглами.

Маленькие магнитики устанавливаются в устойчивые конфигурации: один в центре, под большим магнитом, во круг него шесть магнитиков, образующих правильный шестиугольник, затем десятиугольник больших размеров и вокруг него двенадцатиугольник. Майер заметил, что, покачав большой магнит, можно заставить маленькие магнитики переместиться. И тогда внешние конфигурации превращаются в девяти— и тринадцатиугольники. Майер считал, что это напоминает поведение некоторых реальных тел, способных изменять свои свойства при затвердении.

Впрочем, вскоре Томсон понял, что эта модель слишком сложна и не может описать многие известные свойства атомов.

В игру включился Уильям Томсон. Он заметил, что опыты с лучами Крукса, как тогда называли катодные лучи, которые, по существу, являются потоком электронов, летящих в вакууме, и бета-частицами, свидетельствуют о том, что электроны пролетают не только между атомами, но и сквозь них. Он предполагал, что электрон, находящийся вне атома, притягивается к нему с силой, пропорциональной квадрату расстояний между их центрами. Если же электрон пролетает внутри атома, то притяжение пропорционально первой степени этого расстояния. Так могло быть, но только в том случае, если весь объём атома заполнен чем-то, имеющим положительный заряд, а размеры электронов много меньше размеров атомов.

Томсон считал, что нейтральность атома обеспечивается тем, что в нём существует ровно столько электронов, сколько нужно для компенсации положительного заряда. Они располагаются по сферическим поверхностям и, возможно, вращаются вокруг центра.

Такая модель, известная под названием «атома Томсона», просуществовала более десятилетия, хотя было ясно, что она не объясняет многих фактов и не отвечает требованиям устойчивости. Так ещё раз проявила свою иронию Её Величество Наука, милостивая к корифеям, покорно несущим её шлейф, и пренебрегающая провидцами, обгоняющими её неспешную величественную поступь.

В декабре того же 1903 года, когда оба Томсона, более молодой Джи-Джи и маститый лорд Кельвин, закончили в общих чертах построение моделей атома, японский физик X. Нагаока сообщил Токийскому физико-математическому обществу о своей модели атома, построенной наподобие системы Сатурна и его колец. В следующем году это сообщение появилось в лондонском журнале «Природа», но не вызвало особого резонанса среди физиков. Сейчас мы можем лишь удивляться подобному невниманию и пытаться объяснить его гипнотизирующим влиянием авторитета, инерцией ума или традиционной ссылкой на судьбу идей, опередивших своё время.

Нагаока исходил из ясно осознанной необходимости объяснить закономерности спектральных серий и явления радиоактивности. Его статья называлась «О динамической системе, иллюстрирующей спектральные линии и явление радиоактивности». Он писал: «Атом состоит из большого числа частиц одинаковой массы, расположенных по кругу через равные угловые интервалы и взаимно отталкивающихся с силой, обратно пропорциональной расстоянию между ними. В центре круга помещается тяжёлая частица, которая притягивает другие частицы, образующие кольцо, по тому же закону… Рассмотренная система будет реализована, если по кольцу разместятся электроны, а положительный заряд в центре».

Модель Нагаоки могла объяснить отклонения альфа частиц, наблюдавшиеся X. В. Гайгером и Э. Марсденом при прохождении альфа-частиц через тонкие листы металлической фольги. Модель атома Томсона была здесь бессильна. Несмотря на все это, планетарная модель атома прочно ассоциируется с именем Резерфорда, который обосновал её в 1913 году, когда пришло время, и при его участии были получены опытные факты, превратившие планетарную модель из гипотезы в очевидную реальность.

Один из решающих доводов в пользу планетарной модели получил ассистент Резерфорда Г. Мозли из наблюдений спектров рентгеновских лучей. «Атому присуща характерная величина, регулярно увеличивающаяся при переходе от атома к атому (в периодической системе Менделеева). Эта величина не может быть ничем иным, как зарядом внутреннего ядра», — написал он.

Результат, полученный Мозли, прекрасно сочетается с законом превращения радиоактивных элементов, открытым Ф. Соди и Резерфордом за десять лет до того и вызвавшим резкие возражения консервативных сторонников традиционной точки зрения о вечности и неизменности атомов.

В модели Резерфорда всё стало на свои места: в положительно заряженном ядре происходят все радиоактивные превращения, вокруг ядра вращаются электроны, ответственные за возникновение спектров и за химические взаимодействия.

Основной слабостью планетарной модели Нагаоки, не устранённой и Резерфордом, была невозможность количественно связать эту модель с явлением излучения и поглощения света и рентгеновских волн. Модель не позволяла рассчитать длины излучаемых и поглощаемых волн, более того, её нельзя было примирить с фактом существования атомов. Ведь в соответствии с теорией Дж. К. Максвелла вращающийся по орбите электрон должен непрерывно излучать электромагнитные волны, передавая им часть своей кинетической энергии. При этом орбита электрона должна всё более сжиматься, и он должен быстро упасть на ядро.

Если и была надежда когда-нибудь в будущем объяснить этим радиоактивные превращения, то совместить такую модель с существованием стабильных атомов было совершенно невозможно.

Модель Резерфорда ждала неизбежная гибель. Но она не успела подвергнуться поруганию и забвению потому, что в лаборатории Резерфорда уже около года работал молодой датский физик Нильс Бор.

ЕРЕТИК

Бор отчётливо ощущал обширные возможности, содержащиеся в планетарной модели атома, и поставил себе целью спасти её от анафемы, которой ей грозила классическая физика.

Спасителями могли быть только еретический квант действия, вошедший в науку, несмотря на все опасения его создателя М. Планка, и не менее крамольный фотон, отец которого, Эйнштейн, потом долгие годы был основным оппонентом Бора по самым сложным и глубоким проблемам современной физики.

Цитата, которую я привожу ниже, возможно, слишком длинна, но она лучше всего покажет возникновение наиболее драматического скачка в науке, вознёсшего человечество над стройными громадами классической физики. Бор писал:

«Существование элементарного кванта действия выражает новое свойство индивидуальности физических процессов, совершенно чуждое классическим законам механики и электромагнетизма; оно ограничивает их справедливость теми явлениями, в которых величины размерности действий велики по сравнению со значением единичного кванта, даваемым новой атомистической постоянной Планка. Такое условие ни в какой мере не выполняется для электронов в атомах, хотя ему с избытком удовлетворяют явления в обычных физических опытах. И действительно, только существование кванта действия препятствует слиянию электронов с ядром в нейтральную тяжёлую частицу практически бесконечно малого размера.

Признание такого положения тотчас же навело на мысль описывать удержание каждого электрона полем вокруг ядра как непрерывный ряд индивидуальных процессов. Процессов, которые переводят атом из одного, так называемого стационарного, состояния в другое состояние с испусканием освобождённой энергии в виде единичного кванта электромагнитного излучения — фотона. (Это очень важное место в размышлениях Бора, так как тут выражено интуитивное предчувствие принципа, лёгшего в основу работы лазера.) Эта идея внутренне сродни эйнштейновскому успешному толкованию фотоэлектрического эффекта, столь убедительно подтверждённому прекрасными работами Дж. Франка и Г. Герца над возбуждением спектральных линий ударами электронов об атомы. Она дала не только прямое объяснение загадочных законов линейчатых спектров, распутанных И. Я. Бальмером, И. Р. Ридбергом и В. Ритцем. Но и постепенно привела к систематической классификации, на основе спектроскопических данных, типов стационарной связи каждого электрона в атоме. Это дало полное объяснение замечательным зависимостям между физическими и химическими свойствами элементов, зависимостям, выраженным в знаменитой таблице Д. И. Менделеева. Такое толкование свойств материи казалось осуществлением древнего идеала — свести формулирование законов природы к рассмотрению только чисел, — превосходящим даже мечты пифагорейцев. Основное предположение об индивидуальности атомных процессов означало в то же время неизбежный отказ от установления детальной причинной связи между физическими событиями, существование которой было в течение столетий бесспорной основой философии естествознания».

Как поразительно работает интуиция гения: она предчувствует то, что ещё не стало осознанной реальностью.

Бор сформулировал свои идеи в виде трёх постулатов: атом может находиться в ряде определённых стационарных состояний, не теряя энергии на излучение; излучение возникает при переходе из одного стационарного состояния в другое; частота излучения определяется отношением разности энергий, соответствующих двум стационарным состояниям, между которыми совершается переход, к постоянной Планка.

В этих постулатах уже содержалась суть лазеров, но об этом пока никто не знал.

Бор применил эти постулаты к простейшему атому водорода, вокруг ядра которого вращается только один электрон. Каждый шаг был триумфом. Радиус орбиты электрона хорошо совпал с радиусом атома водорода, известным из опытов с газами. Подсчёт частот, связанных с переходами между простейшими стационарными состояниями, совпал с известными сериями линий Бальмера и Ф. Пашена и позволил вычислить постоянную Ридберга, определённую ранее только из опыта.

Бор применил свою теорию к иону гелия — системе, также имеющей только один электрон, но вчетверо более тяжёлое ядро, чем ядро атома водорода. Так он получил серию частот, совпадавшую с серией спектральных линий, наблюдавшихся в некоторых звёздах и в то время приписывавшихся водороду. Впоследствии правота Бора стала ещё одним триумфом его теории.

Но попытки применить теорию к неионизированному атому гелия — системе с двумя электронами — и к более сложным атомам натолкнулись на непреодолимые математические трудности.

Эти трудности в существенной мере преодолел теоретик старшего поколения А. Зоммерфельд. Он ввёл в модель Бора наряду с круговыми орбитами более сложные эллиптические орбиты электронов. Это позволило ему вывести расчётным путём комбинационный принцип, полученный Ритцем из простого сопоставления данных опыта. Затем Зоммерфельд, оценив скорости движения электронов по их орбитам, установил, что они столь велики, что для расчётов нужно применять теорию относительности Эйнштейна.

Так он смог объяснить существование многих спектральных линий, не входивших в известные спектральные серии. Оказалось, что они возникают вследствие того, что эллиптические орбиты в соответствии с требованиями теории относительности вращаются вокруг ядра так, что электрон движется не по замкнутому эллипсу, а по своеобразной бесконечной розетке. Впрочем, и после усовершенствования теория была слишком сложной, а главное, не все её предсказания согласовывались с опытом.

Постепенно у физиков крепло сознание необходимости перемен.

ПОВОРОТ К ЛАЗЕРУ

В 1917 году Эйнштейн сделал шаг, последствия которого он ещё не мог предвидеть. Шаг заключался в применении к атому Бора того статистического подхода, который сам Эйнштейн и польский учёный М. Смолуховский применили к расчётам таинственного броуновского движения — безостановочной пляске мельчайших частиц, плавающих в жидкости.

Эйнштейн заметил, что акты излучения и поглощения света должны подчиняться таким же вероятностным закономерностям, как радиоактивный распад. Каждый единичный акт непредсказуем и случаен, но в среднем проявляются чёткие закономерности, соответствующие объективным законам природы.

Он предположил, что в атомах, не подвергающихся внешним воздействиям, электроны переходят из состояний с более высокой энергией в состояние с более низкой энергией с вполне определённой вероятностью, обусловленной строением атома. Интенсивность излучения, связанного с такими спонтанными, самопроизвольными переходами, пропорциональна числу возбуждённых атомов, то есть атомов, находящихся в состоянии высокой энергии.

Если же атомы находятся в поле излучения, частота которого совпадает с одной из боровских частот, то вероятность электронного перехода, связанного с излучением или поглощением фотона этой частоты, пропорциональна интенсивности поля.

Эти два предположения имели два важнейших следствия.

Из них непосредственно вытекает формула Планка для излучения «чёрного тела», устранившая опасность «ультрафиолетовой катастрофы». Это давало уверенность в правоте Эйнштейна.

Но второе следствие настораживало.

Из предположений Эйнштейна неизбежно получалось, что фотон уносит из атома не только энергию, но и импульс, что элементарный акт излучения света не может быть описан сферической волной. Так в науку вновь вошла необходимость объединения волновых и корпускулярных свойств света, ибо теперь фотоны, обретя импульс, ещё ближе уподобились частицам. Теперь в физику по-настоящему вторглись законы случая, и их уже нельзя рассматривать просто как путь упрощения слишком громоздких вычислений в задачах о множестве частиц. Вероятностные законы оказались связанными с элементарными единичными актами. Лишь много позднее выяснилось, что всё это связано с лазерами, что теория лазеров уже работает, ещё неосознанно, но уже подготавливая почву для озарения. Пока учёные это осознали, в науке должно было произойти много важных событий.

СУМАСШЕДШИЙ?

Шёл 1911 год. В науку входил один из интереснейших умов. Луи де Бройль начал свою самостоятельную жизнь с получения степени бакалавра, а затем лиценциата литературы по разделу истории. Но его влекла деятельность, которой посвятил себя его брат. И вот Луи, через брата, знакомится с докладами, обсуждавшимися на физическом конгрессе. Доклады были посвящены квантам. Кванты решили судьбу юноши.

Начал он с того, что стал работать в лаборатории своего брата. Первые его труды посвящены рентгеновскому излучению и фотоэффекту. Истории было суждено прервать своеобразный старт — началась Первая мировая война. Историк — физик — солдат пять лет отдаёт армии. А вернув шись в 1919 году из армии, он полностью подпадает под обаяние эйнштейновской теории световых квантов — фотонов. Его подхлестнуло именно то, что маститым немецким физикам казалось подозрительным в дерзкой теории.

Эйнштейн и не претендовал на то, чтобы объяснить при помощи квантов появление цвета в тонких плёнках, например радужной окраски разлитой по воде нефти, и других интерференционных явлений. Если считать, что свет — только частицы, этого не объяснишь. Он был слишком глубоким физиком, чтобы идти облегчённым путём. То была бы грубая работа.

Творец фотонов оставлял эту задачу волновой оптике. Ей было легче, так как исходила она из того, что свет — это волны. Он исходил из двойственности природы света. В одних условиях свет существует как непрерывная волна, а в других он, не менее реально, выступает как поток квантов, которые позднее получили название фотонов.

Эйнштейн был одинок в своём подходе к природе света. Даже впоследствии, когда он после создания теории относительности был поставлен рядом с Ньютоном, квантовая теория света осталась непонятой и забытой. Она помогла Бору в создании теории атома, но и это не обеспечило ей признания. Сам Эйнштейн, поглощённый всё более трудными задачами, возникавшими по мере развития его основного труда, не возвращался к этим работам.

Луи де Бройль подхватил идеи Эйнштейна. Ещё в ранней молодости его поразила аналогия уравнений, управляющих движением волн и поведением сложных механических систем. Теперь же непостижимое появление целых чисел в правилах, позволяющих вычислять орбиты атома водорода, навело его на мысль о родстве этих правил с законами волнового движения, в которых постоянно возникают простые целые числа.

Руководствуясь идеями Эйнштейна, в частности его соображениями о связи массы и энергии, вытекающими из теории относительности, де Бройль проделал для частиц работу, обратную той, которую Эйнштейн провёл для волн света. Эйнштейн связал электромагнитные волны с частицами света; де Бройль связал движение частиц вещества с распространением волн, которые он назвал волнами материи. В конце лета 1923 года в «Докладах Французской академии наук» появились три статьи, три шедевра, в которых были заключены основные принципы новой волновой механики.

А в докторской диссертации де Бройля идеи волновой механики были развиты и отшлифованы так тонко, что жюри знаменитой Сорбонны, в состав которого входили такие корифеи французской науки, как Поль Ланжевен и Жан Перрен, без колебаний оценило её «как бриллиант первой величины», а Эйнштейн рекомендовал прочесть её всем физикам, хоть и кажется, что писал её сумасшедший.

НЕ ДУМАЯ

Через год двадцатипятилетний геттингенец Вернер Гейзенберг опубликовал свою знаменитую матричную механику. Она была удивительным порождением интуиции одного учёного и в известном смысле освобождала других от необходимости… думать… Основной труд уходил на освоение непривычных математических методов. Дальше всё шло удивительно просто. Нужно было записать условия очередной задачи в символической матричной форме (для этого, конечно, нужно поломать голову). Но дальше можно действовать по раз навсегда разработанным правилам. В конце этой почти механической работы возникало решение. Разглядеть его среди леса формул всегда помогал опыт.

Молодой профессор из Цюриха Эрвин Шрёдингер весной 1926 года прорубил ещё одну просеку в дремучем лесу микромира. Шрёдингер получил замечательное уравнение, известное теперь под названием волнового и носящее его имя. Он показал, что в сложных случаях, когда в процессе участвует сразу много частиц, соответствующая волна, описывающая их движение, становится очень сложной. Она уже не помещается в пределах обычного трёхмерного пространства. Для её описания нужно вообразить пространство со многими измерениями!

Теперь в физику микромира прочно вошло абстрактное многомерное пространство, дотоле бывшее многолетней вотчиной классической математики.

Так в результате вдохновенной работы де Бройля, Гейзенберга и Шрёдингера родилась новая квантовая механика — удивительное, не совсем понятное, заряженное математической взрывчаткой оружие для дальнейших походов в микромир.

В преодоление трудностей, возникавших на пути триединой теории, включались всё новые силы. Но главное направление здесь вело не к лазерам, а к атомной бомбе и атомной электростанции. Поэтому мы оставим этот путь и вернёмся назад, чтобы проследить за развитием других идей, имеющих непосредственное отношение к нашей теме.

СКАЧОК

Отступим к началу нашего века, когда в науку входил юноша из Одессы Леонид Мандельштам.

В эти столь бурные годы Мандельштама привлекли работы Планка, стремившегося понять, почему свет, проходящий через прозрачную, незамутненную среду, ослабляется. Причиной могло быть только рассеяние. Но что может рассеивать свет в чистом, однородном газе?

И как быть с опытами, безупречными опытами, с удивительной точностью подтверждавшими ранее господствующую теорию рассеяния? Всё в ней представлялось бесспорным и как бы протестовало против вмешательства.

Мандельштама не смутило совпадение результатов опытов с прежней теорией. Об одном из таких опытов он написал в 1907 году: «Это совпадение должно рассматриваться как случайное».

Целым рядом работ Мандельштам показал, что беспорядочное движение молекул не делает газ однородным. В реальном газе всегда имеются мельчайшие разрежения и уплотнения, образующиеся в результате хаотического теплового движения. Вот они-то и приводят к рассеянию света, так как нарушают оптическую однородность воздуха.

Мандельштам писал: «Если среда оптически неоднородна, то, вообще говоря, падающий свет будет рассеиваться в стороны».

Много позже, в 1917 году, Мандельштам и независимо от него французский учёный Леон Бриллюэн задались вопросом о том, как же происходит рассеяние света в прозрачных однородных жидкостях и твёрдых телах, плотность которых неизмеримо больше плотности воздуха?

Оказалось, что и здесь большую роль играют флуктуации плотности, подчиняющиеся законам, родственным тем, которые приводят в движение броуновские частицы.

Но в жидкостях и твёрдых телах, которые физики объединяют обобщающим понятием — конденсированные среды, в процесс рассеяния света вмешивается новый фактор, корни которого простираются до 1820 года, когда французы П. Дюлонг и А. Пти установили замечательный факт равенства удельной теплоёмкости всех твёрдых тел. Попытки объяснить эту закономерность дали толчок многим далеко идущим исследованиям. Но причина столь удивительного равенства так и осталась неясной, и опытный факт со временем превратился в закон Дюлонга и Пти. Лишь более чем через половину века цюрихский профессор X. Вебер обнаружил, что удельные теплоёмкости алмаза, графита, бора и кремния резко отклоняются в меньшую сторону от закона Дюлонга и Пти. Он же установил, что повышение температуры уменьшает обнаруженное им отклонение.

Эйнштейн, в студенческие годы слушавший лекции Вебера, не мог остаться равнодушным к его открытию. Он представил себе атомы твёрдых тел колеблющимися вокруг устойчивых положений равновесия, определяемых взаимодействием их электрических полей. Свойства таких атомных систем напоминают в общих чертах поведение системы грузиков, связанных пружинками. Эйнштейн стремился во всех случаях описать сложную систему при помощи наиболее простых моделей и наиболее простых формул, лишь бы они воспроизводили существенные черты реальных явлений. Этот путь и здесь привёл его к успеху. Применив к своей модели формулы Планка, он смог объяснить наблюдения Вебера.

Впоследствии П. Дебай развил работу Эйнштейна и показал, что тепловые колебания твёрдых тел имеют ту же природу, что и звуковые колебания, но частоты их занимают несравненно больший диапазон, чем слышит наше ухо. То были ультразвуковые и гиперзвуковые колебания, много позже освоенные техникой. Но звуковые волны связаны с сжатием и разрежением, с изменением плотности вещества. Если эти волны порождаются тепловыми движениями, то их наложение приводит к хаотическим изменениям, к флуктуациям плотности. Достаточно было осознать это, и механизм рассеяния света в конденсированных средах становился ясным. Теперь этот процесс известен как рассеяние Мандельштама — Бриллюэна. Он приобрёл новое значение после создания лазеров.

НАХОДКА

Много лет спустя, в 1925 году, став заведующим кафедрой Московского университета, Мандельштам продолжил исследования рассеяния света совместно с искусным экспериментатором Г. С. Ландсбергом.

Результаты совместной работы были неожиданны и необычайны. Учёные обнаружили совсем не то, чего ожидали, не то, что было предсказано теорией. Она открыли совершенно новое явление. Но какое? В рассеянном свете появилась целая комбинация частот, которых не было в падающем на вещество свете. Не ошибка ли это?

На фотографиях спектра рассеянного света упорно появлялись слабые и тем не менее вполне явные линии, свидетельствующие о наличии в рассеянном свете «лишних» частот. Многие месяцы учёные искали объяснение этому явлению. Откуда в рассеянном свете появились «чужие» частоты?

И настал день, когда Мандельштама осенила изумительная догадка. Это было удивительное открытие, то самое, которое и теперь считается одним из важнейших открытий XX века.

Глубокая интуиция и ясный аналитический ум Мандельштама подсказали учёному, что обнаруженные изменения частоты рассеянного света не могут быть вызваны теми межмолекулярными силами, которые выравнивают случайные неоднородности плотности воздуха или вызывают ультразвуковые — дебаевские — волны в твёрдых телах. Учёному стало ясно: причина, несомненно, кроется внутри самих молекул вещества и явление вызвано внутримолекулярными колебаниями атомов, образующих молекулу. Такие колебания происходят с гораздо более высокой частотой, чем те, что сопровождают образование и рассасывание случайных неоднородностей среды. Вот эти-то колебания атомов в молекулах и сказываются на рассеянном свете. Атомы как бы метят его, оставляют на нём свои следы, зашифровывают дополнительными частотами.

Таким образом, для объяснения нового явления, которое получило название «комбинационное рассеяние света», достаточно было теорию молекулярного рассеяния, созданную Мандельштамом, дополнить данными о влиянии колебаний атомов внутри молекул.

Следует отметить, что одновременно индийские исследователи Ч. Раман и К. Кришнан искали оптическую аналогию эффекта А. X. Комптона, открывшего изменение длины волны рентгеновского излучения при рассеянии его электронами вещества и тем подтвердившего предсказание, сделанное Эйнштейном. Они тоже нашли не то, что искали. Они тоже открыли комбинационное рассеяние света.

Впоследствии из этого «сдвоенного» открытия была извлечена огромнейшая польза, оно получило ценное практическое применение. Сейчас же для нас важно одно: комбинационное рассеяние стало основой одного из типов лазеров.

ЭЙНШТЕЙН И ЛАЗЕРЫ

Мы уже знаем, как Эйнштейн сделал первый шаг к лазерам. Но в то время никто не понял, куда ведёт тропинка, на которую он ступил. Не понял этого и он сам. Его интересовало другое. Он стремился лишь к тому, чтобы устранить назревшее противоречие между оптикой и термодинамикой.

Оптикам и до Эйнштейна было известно, что самопроизвольное излучение атомов не зависит от внешних условий, а определяется только свойствами самих атомов. Эйнштейн установил, что наряду с поглощением существует вынужденное испускание и оба процесса растут вместе с интенсивностью падающего на вещество света.

Это был чисто теоретический вывод. Вынужденное излучение, возникающее в результате вынужденного испускания, не поддавалось наблюдению: его маскировало более сильное поглощение.

Советский физик В. А. Фабрикант обратил внимание на то, что вынужденное излучение ненаблюдаемо только потому, что в обычных условиях этому препятствует закон Больцмана. В соответствии с ним атомы предпочитают находиться в состояниях с малой энергией, подобно тому как молекулы воздуха скапливаются в нижних слоях атмосферы. Внизу воздух плотнее, с высотой он становится всё более разреженным.

Так и атомы. В состояниях с малой энергией их много, в верхних состояниях меньше. А так как, по теории Эйнштейна, внешнее электромагнитное поле с равной вероятностью побуждает единичный атом поглотить фотон и повысить свою энергию или испустить фотон и избавиться от избыточной энергии, то результат определяется законом Больцмана: в обычных условиях число атомов, способных к поглощению, преобладает.

Значит, сказал Фабрикант, нужно создать необычные условия, в которых закон Больцмана уже не властен. Для этого необходимо нарушить тепловое равновесие среды, и нарушить так сильно, чтобы атомов с большой энергией стало больше, чем атомов с малой. Тогда такая среда вместо поглощения света будет усиливать его…

Шли годы. Началась Вторая мировая война. Гитлеровцы предательски напали на нашу Родину. Народ бросил все силы на борьбу с врагом. Вместе со всеми, конечно, были и учёные.

Но вот пришла долгожданная победа. Люди возвращались к мирному труду. Вся страна, каждый человек занялись неотложными делами. Только через пять лет Фабрикант смог вспомнить о своей давнишней работе. В те годы каждый думал прежде всего о непосредственной пользе. И Фабрикант, конечно, увидел, что и его докторская диссертация может найти техническое применение. Он вместе с несколькими сотрудниками принялся за работу. Ее итог — заявка на изобретение способа усиления электромагнитных волн при помощи вынужденного излучения. Дата приоритета — 1951 год. В заявке указывалось несколько путей достижения желаемого результата в газовых средах. Однако, несмотря на все усилия, авторы не смогли реализовать ни одного из них.

К сожалению, публикация заявки затянулась до 1959 года, так что приоритет авторов приобрёл в значительной мере формальный характер, и она практически не оказала влияния на последующие работы других учёных.

В том же 1951 году известный физик Э. Пэрселл и молодой радиофизик Р. Паунд сумели на короткий срок столь сильно нарушить тепловое равновесие вещества, что оно стало активным и вынужденное испускание в нём превосходило поглощение электромагнитных волн. Прав да, то были не световые, а радиоволны, но от этого опыт не становился менее важным. Опыт был очень простым. Физики помещали кристалл фтористого лития в поле сильного магнита. Кристалл намагничивался. Большинство ядер атомов лития и фтора, являющихся подобием маленьких магнитиков, поворачивалось вдоль поля магнита так, чтобы их энергия в поле была минимальной. Затем кристалл нужно было быстро вынуть из поля, перевернуть так, чтобы та его сторона, которая была обращена к северному полюсу магнита, обратилась к южному, и всунуть кристалл обратно.

Теперь большинство ядер-магнитиков было направлено против поля, а их энергия в поле стала максимальной. Позиция, в которой они стремятся избавиться от избыточной энергии и излучают радиоволны. Это излучение происходит спонтанно — самопроизвольно. Но Пэрселл и Паунд не догадались, что стоит направить на кристалл внешнюю радиоволну — и она будет усилена. Пэрселл и Паунд стояли на пороге открытия, но не сделали решающего шага.

ПЕРВЫЕ

Для того чтобы понять, почему глубокие идеи Эйнштейна и Дирака, конкретные предложения Фабриканта и замечательный опыт Пэрселла и Паунда не привели непосредственно к созданию лазеров, ни даже к возникновению квантовой электроники, нужно на время отвлечься от судьбы исследований света.

Мысленно посетим старый ФИАН — Физический институт Академии наук СССР, который помещался в то время на 3-й Миусской улице Москвы. В 1939 году в нём появился выпускник Ленинградского университета Саша Прохоров. Он хотел заниматься радиофизикой и включился в исследования распространения радиоволн, которые проводились под руководством учёных друзей — Л.И. Мандельштама и Н.Д. Папалекси, основавших знаменитую Лабораторию колебаний.

В Лаборатории колебаний все были проникнуты стремлением к познанию основных закономерностей, объединяющих между собой разнообразные явления. Главным руководством служила общая теория колебаний, которая в то время находилась в стадии построения своей наиболее сложной — нелинейной — части. Эта теория позволяла рассмотреть с единой точки зрения работу лампового генератора радиоволн и работу человеческого сердца, распространение радиоволн и распространение звука, таинственный люксембургско-горьковский эффект и прохождение света через кристаллы. Всего не перечесть.

Здесь учили пользоваться безмерной мощью математики, но старались по возможности привлекать наиболее простые и наглядные методы. Через оптические явления перебрасывались мосты в мир атомов, в лишь недавно освоенную квантовую область. Отсюда проходили пути к предельным скоростям, в мир теории относительности. И главное, тут учили замыкать связь между идеей и её техническим воплощением. Словом, Прохоров попал в одну из самых передовых школ современной физики, и он пришёлся здесь ко двору. Теория перемежалась с экспериментом, лабораторная работа сочеталась с экспедициями. Белое море, Кавказ, Рыбинское море.

Но пробыл он в лаборатории недолго. Грянула война, и ему пришлось сменить романтику научного поиска на будни армейской разведки. После войны из-за последствий тяжёлого ранения он долго не мог участвовать в полевых экспериментальных исследованиях. Пришлось работать только в лаборатории, изменить научную тематику. Но и в этих условиях он продолжал вносить свой вклад в общее дело, работал над повышением точности радиолокационных и радионавигационных систем.

Он стал аспирантом профессора С. М. Рытова, члена корреспондента АН СССР, глубокого и интересного учёного, и через три года трудных теоретических и экспериментальных исследований защитил кандидатскую диссертацию.

В это время в лаборатории появился студент-практикант Николай Басов. Война оставила свой мрачный след и в его жизни. Призванный в армию, он был послан в Военно медицинскую академию. Не успев кончить академию, попал на фронт. После победы участвовал в демонтаже заводов, на которых гитлеровцы изготовляли отравляющие вещества, перенёс сильное отравление, долго болел.

После демобилизации Басов выбрал Московский инженерно-физический институт. Физика казалась ему неотделимой от техники. Он правильно понял дух нашего века. Постепенно его начала всё сильнее привлекать к себе теоретическая физика, её покоряющая мощь, её гигантские успехи, её захватывающие тайны. Может быть, это произошло потому, что кафедрой теоретической физики в институте руководил академик И. Е. Тамм, блестящий представитель школы Мандельштама. Басов стал одним из лучших студентов кафедры. Но, попав на практику в Физический институт, в лабораторию к Прохорову, на чисто экспериментальную работу, он включился в неё со всей присущей ему энергией и вскоре на год раньше установленного срока защитил дипломный проект. Здесь экспериментальным исследованиям было уделено не меньше места, чем теоретическим.

Басов вместе с Прохоровым увлёкся радиоспектроскопией. Одно из исследований в этой области стало темой его кандидатской диссертации.

Дружная работа молодых радиофизиков, одинаково хорошо владеющих искусством тонкого эксперимента и методами современной теории, обладающих исключительной интуицией и чувством нового, привела к переломному пункту их научной судьбы — к созданию молекулярного генератора радиоволн, к открытию фундаментальных принципов, ставших основой новой области науки, которую они назвали квантовой радиофизикой.

Примерно в то же время далеко за океаном, в Колумбийском университете города Нью-Йорка, почти тем же путём входил в науку молодой физик Чарлз Таунс. Колумбийский университет, основанный в 1754 году, превратился в крупный научный центр ещё до того, как разгул фашизма в Италии и Германии, а затем захват гитлеровцами стран Центральной и Западной Европы вызвали массовую эмиграцию учёных. Впрочем, даже в двадцатые годы нашего века Колумбийский университет был единственным местом в многомиллионном городе, где можно было заниматься физикой.

К началу Второй мировой войны здесь сформировался первоклассный центр по исследованию атомных пучков. Основатель его, Изидор Раби, взял старт в Европе, в лаборатории О. Штерна, патриарха подобных исследований. Но Раби сделал существенный шаг вперёд: он сочетал технику атомных пучков с радиотехникой. Так, по существу, родилась радиоспектроскопия.

Радио объединилось с атомами и молекулами. Появилась возможность чрезвычайно точно исследовать многие свойства атомных ядер, но это ещё не привело к возникновению новой области науки.

Радиоспектроскопия родилась вторично и начала бурно развиваться после Второй мировой войны, когда физикам стала доступна техника сантиметровых радиоволн, созданная в ходе развития радиолокации.

Ранние публикации Таунса в области радиоспектроскопии относятся к 1946 году. Первая содержала несколько строчек. То была лишь аннотация, по английской терминологии «абстракт», об исследовании молекулы аммиака. Вторая составила уже примерно страничку, содержащую письмо в редакцию журнала «Физические обозрения» об исследовании молекулы воды. Работы не произвели особого впечатления. В то время исследования аммиака и воды уже велись широким фронтом во многих лабораториях, пожалуй, на более высоком уровне.

За первым шагом последовал быстрый разбег: в следующем году два письма и три абстракта, уже с новыми интересными результатами, а ещё через год Таунс стал одним из ведущих специалистов в области радиоспектроскопии газов.

ОН РОДИЛСЯ!

Многие переломные даты представляются крайне условными. Это относится не только к началу нашей эры, но и к началу века пара, века электричества… Лишь в начале атомного века стоит страшная зарубка взрыва, всколыхнувшего пустыню штата Нью-Мексико.

Рождение квантовой радиофизики относится к 1954 году, когда Басов и Прохоров в Физическом институте имени П. Н. Лебедева в Москве и Таунс вместе с Гордоном и Цайгером в Колумбийском университете в Нью-Йорке практически одновременно и совершенно независимо добились генерации радиоволн при помощи молекул. Это был прибор нового типа. Молекулярный генератор — назвали его в Москве, мазер — окрестили его в Нью-Йорке. Слово «мазер» образовалось из первых букв английской фразы, описывающей принцип, лежащий в основе работы прибора («усиление радиоволн при помощи вынужденного испускания» — «Microwave Amplification by Stimulated Emission of Radiation»).

Но поскольку молекулярный генератор был действующим прибором, его появление означало рождение близнецов. Из квантовой радиофизики возникла квантовая электроника — так впоследствии назвали техническое направление новой науки.

Атомы, комбинируясь в различных сочетаниях, образуют всё многообразие мира. Даже если атомы однотипны, они могут группироваться по-разному. Так, углерод может предстать невзрачным коксом, блестящим чёрным графитом и ослепительным алмазом. Всё зависит от условий, созданных природой или человеком. Так, будничная окись хрома, попав в бесцветный корунд, превращает его в прекрасный рубин, а войдя в столь же бесцветный берилл, порождает изумруд, считающийся более драгоценным камнем, чем бриллиант.

В молекулярном генераторе объединились и выкристаллизовались идеи и методы многих замечательных людей.

Вобрав их в себя, он подвёл итоги целой эпохи и открыл перед человечеством новые перспективы.

Советский и американский варианты молекулярных генераторов — настоящие близнецы. Генетически они тождественны. Но, развиваясь в различных условиях, приобрели некоторые внешние различия.

Сердцем обоих приборов является объёмный резонатор. Под влиянием его электромагнитного поля происходят акты вынужденного испускания фотонов молекулами. Он реализует обратную связь, связь между молекулами, уже успевшими излучить квант энергии, и теми, которым это только предстоит. Он обеспечивает высокую упорядоченность такого коллективного излучения. Упорядоченность, несвойственную ранее излучению молекул и атомов, но являющуюся отличительной особенностью радиоволн. Итак, сердце в обоих приборах исполняет одинаковую функцию и действует в соответствии с едиными законами. Здесь сочетаются вынужденное испускание волн и обратная связь. Несколько различаются лишь размеры резонаторов, но это почти не сказывается на работе прибора.

И в Москве, и в Нью-Йорке рабочим веществом был аммиак — газ, ставший пробным камнем радиоспектроскопии. Его молекулы обладают самыми интенсивными спектральными линиями в диапазоне сантиметровых волн, наиболее удобном для проведения экспериментов. Свойства молекулы хорошо изучены и позволяют просто совершить важнейший шаг, без которого молекулярный генератор остался бы грудой металла. Речь идёт о нарушении теплового равновесия, нарушении столь сильном, что в результате молекул, находящихся на более высоком энергетическом уровне, становится больше, чем оставшихся на нижнем уровне. Если это достигнуто, совокупность молекул, попав в поле резонатора, будет излучать радиоволны, усиливая поле. Если же равновесие нарушено недостаточно сильно или не нарушено совсем, то в совокупности молекул будут преобладать энергетически слабые молекулы, что приведёт к обычному поглощению энергии радиоволн.

Но продолжим сравнение близнецов. Все их существенные детали расположены внутри металлических кожухов. Конечно, форма кожухов различна, но назначение одинаково. Внутри должен быть обеспечен вакуум. Доступ воздуха недопустим. Вакуум обеспечивается специальными насосами. Насосы поступили с различных заводов, но и они близнецы. Они способны в должной мере откачать из прибора воздух, но не могут справиться с массой аммиака, которая, по расчётам, должна поступать в приборы во время их работы. И в Физическом институте, и в Колумбийском университете на помощь насосам призван жидкий азот. Он охлаждает специальные металлические поверхности до температуры 77°К и аммиак намерзает на них, постепенно образуя слой, похожий на иней. Его можно видеть через смотровые окна, имеющиеся в приборах. Аммиак поступает в приборы из баллонов. Сперва он попадает в цилиндрик, одна из стенок которого сделана из металлической фольги со множеством мельчайших отверстий. Через отверстия в вакуум вылетает пучок молекул аммиака. Молекулярный пучок, по терминологии физиков, — это пучок молекул, вылетающих в вакуум таким образом, что они летят почти параллельно друг другу, практически не сталкиваясь между собой. Таких условий можно добиться, подбирая размеры отверстий в фольге и давление газа перед нею в соответствии с правилами, определяемыми свойствами газов.

Важнейшей деталью молекулярного генератора является квадрупольный конденсатор — конденсатор, образованный четырьмя стерженьками специальной формы, присоединёнными через один к положительному и отрицательному полюсам высоковольтного выпрямителя. Конденсатор установлен между источником молекулярного пучка и входным отверстием резонатора. Поле конденсатора действует на молекулы аммиака так, что те из них, которые находятся в нижних энергетических состояниях, отбрасываются в стороны, а находящиеся в высших энергетических состояниях направляются в резонатор. Таким образом, в резонатор попадает пучок молекул, подавляющее большинство которых обладает избытком внутренней энергии. Физики называют такой пучок инвертированным. Под действием поля резонатора молекулы пучка отдают полю избыток своей внутренней энергии. Так молекулы генерируют радиоволны.

Логика науки держала физиков в жёстких рамках. Именно поэтому обе группы шли столь схожими путями, как если бы они постоянно обменивались мыслями, обсуждали планы, достижения и неудачи. Может ли быть более убедительный пример единства научного процесса!

Басов, Прохоров и Таунс много потрудились над исследованием и усовершенствованием молекулярного генератора. Но это был лишь первый шаг в новом направлении. Узенькая тропинка в неведомое быстро расширялась, переходя в широкую дорогу, от которой ответвлялось всё больше новых путей. И по-прежнему перед первопроходцами возникали острые камни и пропасти, а за ними оставалась гладкая дорога. И если оглянуться далеко назад, видно, как там, вдали, она уже покрыта асфальтом и по ней мчатся машины, а вдоль тротуаров счастливые родители катят в колясках своих малышей.

Изберём же ту из дорог, которая приведёт к лазеру.

МОЛНИЯ

В середине сентября 1959 года вблизи Нью-Йорка, в тихом местечке Хай Вью, собралась разноязычная компания учёных. Это были участники первой международной конференции по квантовой электронике. По сравнению с масштабами других международных конференций, учёных было так мало, что организаторы смогли поместить в томе трудов конференции список всех её участников. Здесь наряду с Басовым, Прохоровым и Таунсом можно найти имена многих знаменитых современных физиков.

Конференция как в зеркале отразила основные направления оптической науки. Большинство докладов и кулуарных бесед касались молекулярных генераторов, атомных часов, парамагнитных усилителей. Речь шла об их исследованиях и применениях. Это было естественно. Но главным в конференции было не это. Здесь прозвучали фанфары, возвещавшие вторжение радиофизиков в исконную вотчину оптиков. Ещё в 1958 году Таунс вместе с А. Шавловым указали этот путь. В свою очередь Прохоров напомнил, что оптический эталон, носящий имена Ш. Фабри и А. Перо, является по существу резонатором для оптических волн.

Басов и Прохоров предложили добиваться инверсии состояний — превосходства высших состояний (по энергии) над низшими путём накачки. Так они назвали воздействие электромагнитных волн на частицы вещества.

После конференции многие лаборатории взялись за новую тематику. Радиофизики подходили к оптическим задачам со своих позиций. Результаты появились быстро.

В начале I960 года в лондонском журнале «Природа» было напечатано коротенькое сообщение американца Т. Меймана о том, что он создал принципиально новый генератор световых волн.

В лабораторию к Мейману началось паломничество. Там стоял небольшой, ничем с виду не примечательный прибор. Но посетители не сводили глаз с ящика, на верхней крышке которого лежал металлический цилиндр размером с литровую консервную банку. В середине его торца виднелось небольшое отверстие.

После кратких пояснений Мейман нажимал кнопку, вмонтированную в корпус прибора. В середине листа, прикреплённого к стене лаборатории, на мгновение ослепительно вспыхивало небольшое ярко-красное пятно!

Но те, кто смотрел не на стену, а на прибор, видели, как из отверстия в его торце вылетал луч толщиной не больше карандаша. Почти не расширяясь, луч упирался в стену, оканчиваясь ослепительным круглым пятнышком. В комнате было совсем светло, но красный луч выглядел примерно так же, как луч солнца, проходящий в затемнённую комнату через отверстия шторы.

После нескольких вспышек металлический цилиндр обычно открывали. Но в нём не было ничего необычного. Разве лишь два тривиальных предмета. Спиральная лампа вспышка, похожая на те, которыми пользуются фотографы, и бледно-розовый прозрачный стерженёк длиной и диаметром с обычную сигарету. Концы его блестели как зеркало. Они действительно были покрыты зеркальным слоем серебра и образовывали оптический резонатор.

Мейман рассказывал коллегам, что стерженёк сделан из искусственного рубина. Такой же рубин, но ещё более светлый, применяется в мазерах для усиления радиоволн. Лампа-вспышка осуществляет оптическую накачку кристалла.

В поглощении света участвует не весь материал, образующий кристалл, а только ионы хрома, которых здесь лишь доли процента. Свойства рубина подробно изучены при разработке мазеров. Облучая его радиоволной, можно заставить ионы хрома усиливать радиоволны.

Мейман первый догадался, что, облучая рубин светом лампы-вспышки, можно заставить его усиливать свет. Опыт работы с мазерами и статья Таунса (а может быть, он читал статьи Прохорова и Басова) говорили о том, что, применив обратную связь, можно превратить усилитель в генератор — генератор света, действующий совершенно так же, как обычный радиопередатчик. Какой резонатор можно применить при работе со светом, тоже было известно — пару параллельных зеркал. Проще всего отполировать торцы рубинового стержня и прямо на них нанести зеркальный слой серебра.

Новый прибор оказался настолько похожим на мазер, что Мейман в его названии заменил лишь одну букву, превратив мазер в лазер. Буква «л» — сокращение слова «лайт» (свет). Остальные буквы означают «усиление при помощи вынужденного испускания». Он сказал: «Это потому, что принцип действия обоих приборов одинаков. Различаются только диапазоны длин волн, в которых они работают».

В лазере источником света служат миллиарды миллиардов электронов, входящих в состав ионов хрома, рассеянных в толще рубинового стержня. И все эти электроны испускают свет не независимо, не хаотически, не самопроизвольно. Они испускают его под влиянием резонатора — двух посеребрённых торцов стержня — более согласованно, чем звучат скрипки в хорошем оркестре.

Оптики называют такое совпадение основных характеристик световых волн когерентностью. Почти все умопомрачительные достижения лазеров так или иначе связаны с когерентностью. С тем, что вынужденное испускание света отдельными частицами в результате обратной связи оказывается жёстко связанным и вся масса активного вещества генерирует как одно целое.

До появления лазера оптики почти всегда имели дело с не когерентным светом. Лазер впервые показал, что и в оптике слаженный коллектив приобретает качества и возможности, недоступные хаотическому сборищу индивидуальностей.

Физики имели дело с вынужденным испусканием электромагнитных волн в сантиметровом диапазоне радиоволн. Там оно привело к недостижимой ранее стабильности генераторов, к предельной чувствительности приёмников.

Теперь им было ясно, что вынужденное испускание в оптике даёт гораздо больше, чем простое усиление света, о котором писал Фабрикант в своей диссертации. Вынужденное испускание в оптике открывает путь для небывалой концентрации энергии, для её передачи на огромные расстояния с очень малыми потерями, для создания новых систем связи… Впрочем, здесь могут возникнуть перспективы, о которых никто ещё не мечтал.

Первый лазер на вид странно прост. Почти примитивен. Кусок искусственного рубина… Лампа-вспышка, только размерами отличающаяся от применяемых фотографами… И больше ничего. Но один из зарубежных исследователей, случайно попавший под луч лазера на расстоянии мили от него, получил тяжёлое повреждение зрения. Яркость этого луча в миллион раз больше яркости Солнца! Луч лазера мгновенно пробивает отверстие в стальных пластинах. Вот почему он стал незаменимым инструментом для обработки алмазов и сверхтвёрдых сплавов. Его применяют для ускорения потоков заряженных частиц и для управления химическими реакциями.

Басов вскоре после изобретения молекулярного генератора увлёкся идеей создания лазеров на полупроводниках. Здесь открывалась заманчивая перспектива прямого преобразования электричества в световые волны. И уже его мерная совместная работа с Б. М. Вулом и Ю. М. Поповым заложила теоретические основы для построения таких приборов. Но трудности на пути к практике были столь велики, что долгое время в создание лазеров на полупроводниках не верил никто, кроме самих участников работы.

Однако Басов, Крохин и Попов всё же додумались, как, пропуская через полупроводник электрический ток, полностью, почти без потерь, превращать его в луч света. Работа закипела в лабораториях Басова и Вула в Москве и Д. Н. Наследова в Ленинграде. Ленинградцы первые получили обнадёживающие результаты. Вскоре удивительный лазер засветился в США и в СССР. Большой цикл работ советских учёных, приведших к созданию полупроводниковых лазеров, был удостоен Ленинской премии за 1964 год. А потом Басов и его сотрудники опять добились успеха. Их новый лазер светился благодаря бомбардировке полупроводника пучком электронов.

Над созданием и применением новых приборов — мазеров и лазеров — теперь работают тысячи учёных в сотнях лабораторий. Но главную, ведущую роль здесь сыграли Басов, Прохоров и Таунс. Это признала мировая научная общественность. Их деятельность по достоинству оценила Шведская академия наук, присудив им Нобелевскую премию.

НОБЕЛЕВСКАЯ

…10 декабря 1964 года… Зал Стокгольмского концертхауса переполнен. Под звуки фанфар входят Басов, Прохоров и Таунс. Учёные идут тем же путём, каким до них входили сюда многие замечательные исследователи.

Этот зал помнит Эйнштейна, Планка, Бора…

Высокий статный старик, король Швеции, приветствует новых лауреатов. Адольф VI, король-профессор, который каждый год брал трёхмесячный творческий отпуск для научной работы, отлично понимал значение открытия, сделанного одновременно и независимо в СССР и США. Но для королевы и её фрейлин, да и для большинства сидящих в зале речь одного из шведских академиков, произнесённая на родном шведском языке, была не более понятна, чем средневековая латынь.

Неудивительно, что в зале шёпотом переговаривались:

Что они изобрели?

Генератор…

Мало ли генераторов на свете?

Но это необыкновенный генератор…

Необыкновенно мощный?

Нет, необыкновенно немощный…

Господи, тогда зачем же он?!

Законный вопрос… Каждый образованный человек знает, что генераторы электрического тока достигли в наши дни огромных мощностей в 300, 500 тысяч и даже в миллион киловатт. Какова же мощность молекулярного генератора? Около одной миллиардной доли ватта! Жужжание комара куда сильнее…

Так что же привлекательного в этом немощном приборе? В своей нобелевской речи Прохоров рассказал о том, что излучение молекул и атомов привлекательно не мощностью, а точностью.

В молекулярном приборе нет радиоламп, конденсаторов, сопротивлений — всех тех деталей, порча которых терзает нервы владельцев радиоприёмников и телевизоров. Нерукотворные молекулы, дружно излучающие электромагнитные волны, сообщают новому прибору свои качества — неизменность и постоянство. Расчёты показывали: с его помощью можно так точно измерять время, как это никогда не удавалось людям раньше. Часы, управляемые молекулами, могут обладать поразительным постоянством хода: ошибка в одну секунду набежит лишь через 3000 лет…

Конечно, в обыденной жизни такие часы ни к чему. Но они необходимы штурманам кораблей и самолётов, нужны для управления космическими ракетами, для решения многих технических задач.

Прохоров подчеркнул, что лазеры и мазеры вобрали в себя самые новейшие достижения науки. Они стоят на трёх китах. Это явление парамагнитного резонанса, открытое академиком Завойским, и особый метод приведения квантовых систем в излучающее состояние, предложенный Басовым и Прохоровым, и техника работ при сверхнизких температурах, разработанная академиком Капицей.

На словах путь к лазеру казался простым и скорым! На самом деле он не менее тернист, чем путь от осознания атомной структуры материи до атомной электростанции, от первых полётов братьев Райт над песками Китти-Хоук до космического старта Гагарина.

Этот путь привёл к революционной ломке прежних физических представлений. Ведь лазер, рождённый сегодняшней действительностью, даже если он совсем невелик по размерам, может излучать свет во много миллионов раз более интенсивный, чем все светильники, предложенные прежней оптикой, вместе взятые, и даже более яркий, чем у гиперболоида инженера Гарина — лазера, придуманного писателем-фантастом.

При взаимодействии такого мощного луча с окружающей средой возникают явления, не предвиденные ни прежней физикой, ни человеческим воображением. Они-то и стали предметом изучения квантовой радиофизики и квантовой электроники — новых областей физики и техники, возникших в результате находок Басова, Прохорова и Таунса.

Сегодня пишутся только первые страницы этой науки. Своим появлением лазеры вызвали рождение новых идей, отраслей знания, дали толчок развитию новых технологических процессов в промышленности.

Прохоров в своей нобелевской речи нарисовал примерную картину будущей лазерной техники.

…Механический завод, где лучи лазеров ведут точнейшую обработку самых твёрдых материалов, придавая изделиям любую нужную конфигурацию. Завод управляется математической машиной, все элементы которой работают на лучах света, обмениваясь ими через тончайшие нити световоды, заменяющие электрические провода. Быстродействие машины и объём её памяти в тысячи раз превосходят существующие, а размеры много меньше…

…Автоматические телефонные станции, в которых нет ни одного реле — работает только свет и вместо толстых многожильных кабелей лежат тонкие жгуты световодов. Станции включены в глобальную систему связи, использующую серию космических спутников, радиоволны и лучи света. Такая система обеспечит не только все потребности связи на Земле, но и общение с покорителями соседних планет…

Прохоров мог рассказать ещё о десятках самых неожиданных применений лазеров. Он знал: учёных этим не удивишь и не испугаешь. Они уверены, что сухие формулы и лабораторные установки способны породить и более поразительные реальности.

И если бы Прохоров не обладал такой безоговорочной, даже безрассудной верой в силу человеческого интеллекта, в безграничность познания и в то, что каждый шаг в глубь тайн природы несёт открытия, мы не увидели бы сегодня в его лабораториях всего того, о чём он мечтал, что обещал тогда, в 1964 году.

РЫЦАРЬ ОРДЕНА ОГУРЦА

11 июля 1966 года … Банкетный зал затих, и юноша, долго взывавший к порядку, мог начать свою речь. Он открыл адрес в красивом переплёте, и вот что мы услышали:

«Дорогой коллега!

В день Вашего юбилея Вас приветствует и поздравляет Лапутянская академия наук.

Вы являетесь славным продолжателем научных исследований по квантовой электронике, начатых в нашей академии примерно 250 лет назад. Упоминание об этих исследованиях содержится в летописи академии, отрывок из которой позвольте здесь прочесть.

Летописец пишет: «Первый учёный, которого я посетил, был тощий человек с закопчённым лицом и руками, с длинными, всклокоченными и местами опалёнными волосами и бородой. Его платье и кожа были такого же цвета. Восемь лет он разрабатывал проект извлечения солнечных лучей из огурцов. Добытые таким образом лучи он собирал в герметически закупоренные склянки, чтобы затем пользоваться ими для согревания воздуха в случае холодного и дождливого лета».

И далее пишет летописец: «…Учёный не сомневался, что через восемь лет он будет иметь возможность продавать солнечные лучи для губернаторских садов по умеренной цене, однако жаловался, что запасы его невелики, и просил меня дать ему что-нибудь в качестве поощрения, тем более что огурцы в этом году были очень дороги. Я предложил профессору несколько монет»…

Дружный смех долго не давал оратору закончить это приветствие, но тренированный физик перекричал аудиторию и прочитал адрес до конца:

«Вы видите, дорогой юбиляр, что наука всегда зависела как от состояния сельского хозяйства, так и от расположения благодетелей.

Поняв это, Вы научились добывать деньги из такого пустяка, как атомы и молекулы…

Велики Ваши заслуги перед физикой. Вы заменили огуречное семя более твёрдым телом и, вооружившись им, уверенно идёте к высотам науки…

Учитывая Ваши успехи и главным образом Ваше личное обаяние, Лапутянская академия наук избрала Вас почётным членом.

Мы надеемся, что теперь, став членом нашей академии, Вы получите доступ к отчёту за 1726 год, написанному неким Джонатаном Свифтом (под шифром «Путешествие Гулливера»), и найдёте там много свежих идей для Вашей дальнейшей деятельности.

Позвольте поздравить Вас и вручить Вам мантию почётного члена Лапутянской академии наук».

Под одобрительные возгласы молодые физики натянули на высоченную фигуру юбиляра — Александра Михайловича Прохорова — чёрную мантию и повесили на шею эмблему: огромный огурец на тесёмке. Чёрную шапочку юбиляр надел сам: его почти двухметровый рост не позволил это сделать его инициативным ученикам…

Это было, когда Александр Михайлович праздновал свое пятидесятилетие и одновременно избрание его действительным членом Академии наук СССР.

…Большинство исследователей видят основную цель своей деятельности в открытии нового. Они ставят и решают важнейшие вопросы: как устроен атом? Что обеспечивает сходство потомков с предками? И многие другие. Установив, что вокруг атомного ядра вращаются электроны, а наследственная информация заключена в генах, они считают свою задачу выполненной.

Но есть другой тип учёных. Для них главным является вопрос «почему?». Они не могут успокоиться, не выяснив, в силу каких причин атомы стабильны, хотя законы классической механики и электродинамики предсказывают неустойчивость их планетарной модели.

История науки свидетельствует, что попытки ответить на вопрос — проклятый вопрос — «почему?» часто приводят к радикальной ломке устоявшихся взглядов, к настоящей революции идей.