В Европе компании часто обращаются к математикам по самым разным вопросам: оптимизация, планирование, прогноз, анализ данных. Очень приятно видеть свои результаты внедренными на практике. И все-таки для нас, математиков, главная мотивация не в этом. Мы любим теорию. Мы любим найти новую интересную теорему, долго и мучительно к ней подступать и отступать, пока вдруг не возникнет полная ясность. Невозможно передать всю радость и удовлетворение от безупречной точности математических выкладок и от короткой записи «ч. т. д.» – что и требовалось доказать. Именно ради этого ощущения мы и работаем – больше, чем ради чего-либо другого. Как сказал один наш молодой коллега: «Мы все подсажены на “эврику”».
Противоречит ли это работе над приложениями? Конечно нет! Наоборот, в нашей книге много примеров, показывающих, что приложения стали источником новых математических теорий. Так, в мы рассказывали о линейном программировании и его применении для составления расписаний. Основатель линейного программирования, замечательный советский математик Леонид Витальевич Канторович заинтересовался этими задачами именно благодаря их ценности для практики. Другой пример – теория массового обслуживания, которая возникла из практической задачи анализа телефонной станции и нашла применение во многих системах, где есть заявки, очереди и обслуживающий прибор. Будь то супермаркет, поликлиника, кол-центр или веб-сервер, посылающий вам нужную веб-страничку через интернет. О задаче балансировки нагрузки на веб-сервере мы говорили в .
Конечно, далеко не вся наука основана на приложениях. Фундаментальная наука зачастую движима исключительно любопытством ученых. Согласно источникам, таким ученым был Нильс Бор. Одного упоминания этого имени достаточно, чтобы понять, как важно доверять ученым в выборе собственных интересов. В мы рассказали о том, как любимая игра ума математиков – теория чисел – сегодня стала совершенно необходимой для шифрования конфиденциальных данных, которые мы ежедневно передаем по каналам интернета.
Математика полна нерешенных, чисто теоретических задач. Например, в комбинаторике есть задача нахождения так называемого хроматического числа. Допустим, нам нужно раскрасить плоскость так, чтобы любые две точки, находящиеся на расстоянии ровно 1 метра друг от друга, были разного цвета. Вопрос: какое минимальное количество красок понадобится? Точный ответ неизвестен. Мы знаем только то, что это число между 4 и 7. Если нам нужно раскрасить трехмерное пространство, то минимальное число красок лежит между 6 и 15, а для четырехмерного пространства – между 9 и 54. В принципе непонятно, зачем красить пространство, тем более четырехмерное! Но задачи нахождения хроматических чисел привели к мощному развитию комбинаторики, в том числе и прикладной. Хроматические числа используются, например, для расстановки вышек мобильной связи.
В нашей книге мы рассказали лишь об очень маленькой доле того огромного влияния, которое оказывает математика на жизнь каждого из нас. Мы выбрали всего несколько тем, имеющих отношение к компьютерным технологиям и нашим собственным исследованиям, и надеемся, что даже с помощью этой небольшой выборки смогли убедить вас, что современные технологии невозможны без математики, такой красивой, такой точной и такой невероятно полезной науки. Что и требовалось доказать.