Это занятие составлено в форме вариаций на тему известной задачи о трех мудрецах. Его содержание в значительной степени позаимствовано из статьи М. Милга «Что сказал проводник?», опубликованной в журнале «Квант» (1973 г., № 8, стр. 38).

Задачи о мудрецах и колпаках сложнее большинства метаголоволомок предыдущего занятия по двум причинам.

Во-первых, одну задачу можно рассматривать как серию задач возрастающей сложности: каждый мудрец делает вывод на основании вывода предыдущего, который анализировал высказывание предыдущего, который анализировал… Чем выше уровень рекурсии, тем сложнее рассуждать за соответствующего мудреца. Во-вторых, вопрос «Что нового содержалось в такой-то информации?» на предыдущем занятии принимал форму подсказки, а на этом – парадокса.

Доступность столь непростого материала можно значительно повысить с помощью ролевой игры. Преимущество не столько в том, что детям нравится выходить к доске и играть роли мудрецов, сколько в абсолютной наглядности: утверждение «Когда на Ане был белый колпак, Сережа смог определить цвет своего колпака» понятнее, чем «Третий мудрец думает, что если бы на втором был белый колпак, то первый смог бы определить цвет своего колпака». Важно объявить, что мудрецы никогда не пытаются угадать ответ, а при недостатке информации честно отвечают «Не знаю». Можно предупредить, что за правильный ответ мудреца всего лишь похвалят, а за неправильный немедленно отрубят голову (обычно после пары «отрубленных» голов дети перестают отвечать наобум).

Заранее требуется подготовить колпаки двух цветов (в самом простом варианте для этого достаточно цветной бумаги формата А4, степлера и нескольких минут). В начале занятия не нужно раздавать детям отпечатанные условия задач. Вместо этого сначала разыгрывается как мини-спектакль условие задачи 10.1: руководитель приглашает «на сцену» нескольких участников кружка, завязывает им глаза и надевает колпаки в соответствии с условием и рекомендациями в обсуждении. Затем задает им указанные там же вопросы. Если «мудрец» верно отвечает на вопрос, он объясняет, как ему это удалось. Если «мудрец» не может назвать цвет своего колпака или не может обосновать случайно угаданный ответ, учитель обсуждает со зрителями, в чем дело; при этом можно на глазах у зрителей поменять цвет колпака и спросить: «А если бы было так?». Условие задачи 10.2 разыгрывается как продолжение последней ситуации задачи 10.1. Когда две первые задачи будут разобраны, следует сформулировать в виде вопроса комментарий ко второй задаче и коллективно найти ответ. Он необходим для понимания дальнейшего.

Если первые две задачи вызвали затруднения, третью лучше тоже разыграть аналогичным образом под руководством учителя с теми же или новыми «артистами». Если все прошло легко, можно выдать кружковцам условия и предложить каждому задачу 10.3 для самостоятельного обдумывания.

Задачу 10.4 можно считать основной задачей этого занятия для учащихся средней подготовки. Как ее разыгрывать, подробно написано в обсуждении. Желательно, чтобы все кружковцы в итоге хорошо в ней разобрались, не стоит жалеть на это времени. В зависимости от состава кружка можно разыграть все предложенные ситуации или только часть из них, сделать это по одному разу или повторять с разными «артистами».

Задача 10.5 может оказаться наиболее интересной для одних и непонятной даже после разбора для других. В зависимости от хода занятия учителю предлагается определить, ставить ли ее вообще и насколько подробно обсуждать.

Вероятно, и в задачах для самостоятельного решения ребятам потребуется помощь.

При решении задачи 10.6 можно разделить детей на группы по четыре человека (один будет надевать колпаки на трех других, потом перемена ролей) и предложить им самим выбрать количество колпаков и разобраться, сможет ли третий мудрец определить цвет своего колпака, а через некоторое время разыграть перед всеми участниками наиболее удачные сюжеты.

Задачу 10.7 легче понять, если вновь посадить тех же самых трех мудрецов «на сцене», а четвертого назначить из сидящих «в зале». Тогда он сможет рассуждать, опираясь на только что разобранную задачу о трех мудрецах. Затем попросить его перейти «на сцену» и назначить «в зале» пятого «мудреца».

Для разбора задачи 10.8 можно снова использовать ролевую игру. «На сцене» устанавливается стул, на него садится один ученик – «мудрец». Учитель – «проводник» сообщает ему, что в купе есть испачкавшиеся. Потом объявляет станцию. Ясно, что мудрец должен пойти умываться. Затем ставится второй стул для второго «мудреца», и ситуация разыгрывается заново и т. д.

Задачи 10.7 и 10.8 полезны и как подготовка к изучению в дальнейшем метода математической индукции. Стоит обратить внимание кружковцев на то, как полезно заменить утверждение для большого числа (или общее утверждение) цепочкой задач, следующих одна из другой, начиная с самой простой. А если кружок сильный, обратить также внимание на то, что слова «и так далее…» звучат недостаточно строго, а при изучении индукции вернуться к этим задачам.

Задачу 10.11 можно предложить в качестве домашнего задания, при этом приведенное в книге или подобное ему решение лучше разобрать заранее для полного понимания условия. А можно, наоборот, не решать сравнительно сложные задачи 10.6—10.10 и перейти к задаче 10.11 сразу после разбора задачи о трех мудрецах.

При желании можно разыгрывать в лицах и другие задачи о мудрецах, имеющиеся в следующей главе и в разделе дополнительных задач.

Задача о двух мудрецах

Задача 10.1. Двум мудрецам принесли один белый и два черных колпака. Затем им завязали глаза и надели каждому на голову по колпаку, а третий спрятали. После этого мудрецам развязали глаза, и каждый смог увидеть, какой колпак на голове у другого. Затем у первого мудреца спросили, какой колпак на голове у него самого, и он ответил правильно. Какие колпаки надели на головы мудрецам?

Обсуждение. Предлагается выбрать среди детей двух мудрецов и разыграть по очереди три ситуации:

1) Первому мудрецу надели черный колпак, а второму – белый.

2) Первому мудрецу надели белый колпак, а второму – черный.

3) Обоим мудрецам надели черные колпаки.

В первом случае «мудрец» должен объяснить всем, как он смог определить цвет своего колпака. Два других случая неотличимы с точки зрения первого мудреца (если первый «мудрец» ошибся, ему надо «отрубить голову», а если случайно угадал ответ, учитель может на глазах у зрителей подменить его колпак и сказать: «Могло быть и так, и тогда тебе отрубили бы голову»). В итоге дети должны сделать вывод: определить цвет своего колпака первый мудрец сможет, если видит на втором белый колпак, и не сможет, если видит черный.

Ответ. На первом мудреце черный колпак, а на втором – белый.

Задача 10.2. Двум мудрецам принесли один белый и два черных колпака. Затем им завязали глаза и надели каждому на голову по черному колпаку, а белый спрятали. Когда им развязали глаза, у первого мудреца спросили, какой колпак на голове у него самого. Что он ответил? Когда после этого тот же вопрос задали второму мудрецу, он ответил правильно. Как он догадался?

Обсуждение. Имеет смысл разыграть эту задачу как продолжение третьей ситуации предыдущей задачи, с теми же «актерами». Тогда всем понятно, что первый мудрец ответит «Не знаю». Если второй «мудрец» сам не догадается, какой на нем колпак, стоит напомнить ему про первые две ситуации: «Помнишь, когда на тебе был белый колпак, он мог ответить? А когда черный?»

Комментарий. Казалось бы, информация у двух мудрецов одна и та же, но отвечают они по-разному. Значит, второй знает что-то такое, чего не знал первый. Подумаем, что именно. Он слышал ответ первого и из этого ответа заключил, что первый не может определить цвет своего колпака.

Задача 10.3. Изменится ли решение предыдущей задачи, если вначале принесли: а) один белый и три черных колпака; б) два белых и два черных колпака?

Решение, а) Нет, не изменится. Количество белых колпаков то же, а черных неважно сколько именно, а важно только, что на всех хватает, б) На этот раз ни один из мудрецов не сможет определить цвет своего колпака. Первый – очевидно, а про второго можно понять, разыграв такие ситуации:

1) Обоим надели черные колпаки. Убеждаемся, что первый скажет «Не знаю».

2) Первому надели черный колпак, а второму белый. Убеждаемся, что первый скажет «Не знаю».

Итак, первый в любом случае говорит «Не знаю», и второй по этим словам не может делать никакого вывода.

Задача о трех мудрецах

Задача 10.4. Трем мудрецам принесли два белых и три черных колпака. Затем им завязали глаза и надели каждому на голову по черному колпаку, а белые спрятали. Когда им развязали глаза, у первого мудреца спросили, знает ли он, какой колпак на голове у него самого.

а) Что он ответил?

б) Тот же вопрос задали второму мудрецу. Что ответил второй?

в) Наконец, спросили третьего мудреца, и он правильно назвал цвет своего колпака. Как он рассуждал?

Обсуждение. Для начала можно разыграть с новыми «артистами» четыре ситуации, задавая вопрос только первому мудрецу:

1) Мудрецам надели два белых колпака и один черный. Спрашивают у того, на котором черный.

2) Мудрецам надели два белых колпака и один черный. Спрашивают у того, на котором белый.

3) Мудрецам надели два черных колпака и один белый. Спрашивают у того, на котором белый.

4) Мудрецам надели два черных колпака и один белый. Спрашивают у того, на котором черный.

Убеждаемся, что первый мудрец может определить цвет своего колпака только в том случае, если видит перед собой два белых колпака. Теперь продолжим с теми же «артистами» последнюю ситуацию и зададим вопрос второму мудрецу с черным колпаком. Если он затрудняется ответить, напомним ему первую ситуацию: «Когда на тебе был белый колпак, он мог определить цвет своего колпака? Почему же сейчас не смог?»

И лишь теперь воспроизведем в ролях условие задачи полностью. Если первый мудрец попытается угадывать цвет своего колпака, ему можно напомнить третью ситуацию и «отрубить голову».

Второму трудно понять, есть ли у него шанс догадаться. Помочь можно вопросами: если на тебе белый колпак, то что первый видит? Может ли он тогда догадаться? (Нет, во второй и четвертой ситуациях первый мудрец видел колпаки разного цвета и догадаться не мог.) А если на тебе черный, то что первый видит? Может ли он тогда догадаться? (Нет, в третьей ситуации первый мудрец видел два черных колпака и догадаться не мог.) Задавая вопросы, желательно не подсказывать третьему «мудрецу» цвет его колпака.

Роль третьего «мудреца» сложная, ему можно помочь, напомнив четвертую ситуацию с продолжением: «Помнишь, когда на тебе был белый колпак, а ни них черные? Тогда первый мудрец не смог, зато второй смог определить цвет своего колпака! Почему же сейчас не смог?»

Задача 10.5! Парадокс трех мудрецов. В задаче о трех мудрецах первый смог бы определить цвет своего колпака лишь в одном случае: если бы видел перед собой двух мудрецов в белых колпаках. Но и второй, и третий мудрецы знают, что это не так: они же видят черные колпаки друг на друге. Поэтому ответ «Не знаю», произнесенный первым мудрецом, для каждого из них очевиден и не содержит никакой информации.

С другой стороны, если первому мудрецу не задавать вопроса, то второй окажется в положении первого, а третий – в положении второго, и не сможет ответить на вопрос. Но третий ответил, значит, информация в ответе первого все же была! Какая же?

Обсуждение. Вопрос очень сложный. Чтобы разобраться в нем, попробуем еще раз разыграть полностью задачу о трех мудрецах, но во время ответа первого второй закроет уши. После этого второй, конечно, не сможет определить цвет своего колпака (он и с открытыми-то ушами не мог!). А третий должен подумать так: если на мне белый колпак, то второй видит два колпака разного цвета и, не услышав ответа первого, определить цвет своего не может. А если на мне черный, то тем более не может (он и с открытыми ушами не мог в прошлый раз). Так что от ответа второго никакого толку, и определить цвет своего колпака я не могу.

Ответ. Ответ первого нужен для того, чтобы третий знал, что второй знает, что первый не может определить цвет своего колпака. Другими словами, информация от первого второму не помогает, но тот факт, что она ему не помогает, важен для третьего.

Комментарий. С сильным кружком в затыкание ушей можно поиграть подольше. Что будет, если во время ответа первого мудреца заткнуть уши не второму, а третьему? Тогда третий будет знать, что второй слышал ответ первого и все равно не может определить цвет своего колпака. Какой именно ответ второй слышал, третий и так знает, для этого не нужны уши, достаточно глаз и мозгов. Так что в этом случае третий сможет определить цвет своего колпака. А что будет, если заткнуть уши третьему во время ответа второго? На этот раз он определить цвет своего колпака не сможет, так как окажется в роли второго мудреца из основного варианта задачи.

Задачи для самостоятельного решения

Задача 10.6. Как можно изменить количество колпаков в задаче о трех мудрецах, чтобы решение всех пунктов в точности сохранилось?

Задача 10.7*. Придумайте задачу, аналогичную задаче о трех мудрецах, для большего количества мудрецов. Решите задачу для четырех и для пяти мудрецов.

Задача 10.8*. В купе поезда собрались 7 мудрецов. Окно было открыто. Поезд въехал в тоннель, и лица всех мудрецов оказались испачканы сажей. Каждый видел, что и другие испачканы, но себя не видел и спокойно продолжал беседу. В купе вошел проводник и сказал: «Господа, среди вас есть люди с грязными лицами. В поезде воды нет. Зато на каждой станции поезд стоит достаточно долго, так что рекомендую испачкавшимся пойти и умыться». Несколько станций никто из мудрецов не реагировал на это замечание, но на некоторой станции все одновременно встали и пошли умываться.

1) На какой по счету станции мудрецы поняли, что следует умыться?

2) Парадокс проводника. Если бы проводник промолчал, каждый бы по-прежнему считал себя чистым и умываться не пошел бы. Но ведь каждый видел, что среди них есть испачкавшиеся, так что проводник, казалось бы, ничего нового не сказал. Так что же сказал проводник?

Задача 10.9. Установим соответствие между задачами о колпаках и о проводнике (при одинаковом количестве мудрецов). Будем считать, что на мудреце с грязным лицом надет черный колпак, а иначе – белый. Тогда ответу «Не знаю» в задаче о колпаках соответствует нежелание умываться в задаче о проводнике. Как перевести слова проводника на язык задачи о колпаках?

Задача 10.10. Три дамы сидят в купе с испачканными лицами и смеются. Вдруг А думает: «Почему Б не понимает, что В смеется над ней? О Боже! Они смеются надо мной!» Что в этой задаче играет роль проводника?

Задача 10.11. Фразы типа «Это верно», «А знает, что это верно», «Б знает, что А знает, что это верно», «В знает, что Б знает, что А знает, что это верно» можно продолжать до бесконечности, и все они имеют разный смысл, но разницу эту с каждым «витком» улавливать все труднее. Придумайте подобные цепочки, где эта разница заметна.