Логические задачи для начинающих фактически являются задачами на здравый смысл, при их решении законы формальной логики и бытовая логика работают одинаково. На следующем уровне становится интересно решать задачи, само условие которых абсурдно, и рассуждения об истинности составных высказываний не могут опираться на истинность или ложность составляющих их простых высказываний. Богатая коллекция таких задач, развивающих умение работать с общими и частными высказываниями, содержится в книге Льюиса Кэрролла «Логическая игра». Как пишет Ю. Данилов в предисловии к этой книге, «не велика хитрость идти по видимым ориентирам – выводить правильное заключение из суждений, не противоречащих здравому смыслу. В этом случае правильный ответ можно получить, даже если рассуждать неверно: выручит интуиция, опыт…Если рассуждение противоречит здравому смыслу… мы уподобляемся мореходу, ведущему свое судно вдали от берега по счислению».
Организовать самостоятельное решение задач на этом занятии может оказаться непросто: дети будут моментально и одновременно придумывать вперемешку верные и неверные решения, и учитель не успеет их проконтролировать. Тут есть два совета. Во-первых, можно настаивать на записи выводов в задаче 6.10 и рассуждений в задаче 6.11 (это удобно не только для контроля, но и для самоконтроля). Во-вторых, послушав решения у нескольких первых ребят, можно назначить каждого из них «экспертами» по одной или нескольким задачам и доверить им прием задач у других участников кружка.
Занятие небольшое по объему. Это сделано сознательно: предлагать много подобных задач подряд автору кажется столь же ненужным, как и много сладостей на полдник. Лучше иногда возвращаться к ним, используя дополнительные задачи или непосредственно «Логическую игру» Кэрролла.
Задача 6.1. Верно ли сделаны выводы?
1) Все металлы проводят электричество. Ртуть – металл. Следовательно, ртуть проводит электричество.
2) Все арабы смуглы. Ахмед смугл. Следовательно, Ахмед – араб.
Решение. 1) Ртуть находится внутри круга металлов, который в свою очередь находится внутри большего круга проводников электричества (рис. 10). Значит, ртуть проводит электричество. Вывод верен.
Рис. 11
2) Ахмед заведомо находится внутри внешнего круга. А вот внутри или снаружи внутреннего – неизвестно. Поэтому вывод о том, что Ахмед – араб, неверен. Это не значит, что Ахмед не может быть арабом. По данным задачи никакого вывода о национальности Ахмеда сделать нельзя (рис. 11).
Рис. 11
В первой задаче мы считали исходные утверждения истинными, поэтому могли полагаться не только на формальные рассуждения и их графические иллюстрации, но и на здравый смысл. Попробуем теперь поиграть в игру с необычными правилами. Не будем бояться неверных утверждений. Более того, вообще не будем интересоваться истинностью высказываний. Несмотря на это, постараемся разобраться, насколько логичны переходы от одних высказываний к другим. Помогут нам в этом круги Эйлера, а в случае неверных выводов еще и контрпримеры.
Задача 6.2. Все вороны собирают картины. Некоторые вороны сидят в птичьей клетке. Следует ли из этого, что некоторые собиратели картин сидят в птичьей клетке?
Ответ. Да.
Решение. Сначала нарисуем, что все вороны собирают картины (рис. 12). Теперь нарисуем, что некоторые вороны сидят в птичьей клетке (рис. 13). Тут возможны две ситуации, но в любом случае существует ворона, собирающая картины и сидящая в птичьей клетке.
Рис. 12
Рис. 13
Задача 6.3. Все вороны собирают картины. Некоторые собиратели картин сидят в птичьей клетке. Следует ли из этого, что некоторые вороны сидят в птичьей клетке?
Ответ. Нет.
Решение 1. То, что все вороны собирают картины, выглядит так же, как и в предыдущей задаче. По условию круг собирателей картин пересекается с кругом сидящих в птичьей клетке. А вот пересекается ли он с кругом ворон – неизвестно (см. рис. 14).
Рис. 14
Решение 2. Приведем контрпример. Пусть есть всего одна ворона А. Она собирает картины, но не сидит в клетке. Еще есть попугай В, который собирает картины и сидит в птичьей клетке. Тогда оба условия выполнены, но никакая ворона не сидит в птичьей клетке.
Замечание. Конечно, с точки зрения здравого смысла приведенный пример абсурден – но не более, чем условие задачи. Логика лишь учит нас правильно делать выводы из исходных утверждений. Ничего удивительного нет в том, что из странных утверждений получаются странные выводы.
До сих пор мы обсуждали только утвердительные высказывания. Чтобы делать выводы из отрицательных высказываний, иногда проще всего заменить их на утвердительные высказывания того же смысла. Например, вместо высказывания «Ни одно доброе дело не остается безнаказанным» можно рассматривать такое: «За любое доброе дело наказывают». Но можно нарисовать и исходное высказывание (рис. 15).
Рис. 15
Задача 6.4. Ни одна кочерга не мягкая. Все подушки мягкие. Какой можно сделать вывод?
Решение. Нарисовав высказывания, видим, что никакой предмет не является кочергой и подушкой одновременно. Сформулировать это можно двумя способами: «Ни одна кочерга не является подушкой» или «Ни одна подушка не является кочергой» (рис. 16).
Рис. 16
Зачем математику уметь работать с абсурдными утверждениями? В естественно возникающих задачах вряд ли могут встретиться вороны, собирающие картины. Однако с посылками сомнительной истинности приходится сталкиваться постоянно. И бывает полезно заранее понять, имеет ли смысл их доказывать или опровергать. Скажем, в условии задачи дано А и требуется определить, верно ли В. Пусть нам ясно, что В следует из Б, но неизвестно, верно ли Б. Стоит ли пытаться вывести Б из А? Да, стоит: если А ⇒ Б, то В верно. Но если окажется, что Б не следует из А, то никакого вывода об истинности В сделать пока не удастся. Рассмотрим пример подобных рассуждений.
Задача 6.5. Является ли точным квадратом число:
а) 1234567; б) 10101… 01 (всего 2015 единиц и 2014 нулей); в) 20122013201420152016?
Ответ, а), б), в) Нет.
Решение, а) Ни одно натуральное число, оканчивающееся на 7, не является квадратом натурального числа. Число 1234567 оканчивается на 7. Следовательно, оно не является квадратом.
Комментарий. Логически решение безупречно, но верно оно, только если верны обе посылки. Истинность второй не вызывает сомнений. Чтобы убедиться в истинности первой, достаточно поочередно возвести в квадрат все однозначные числа. А то, что последняя цифра числа полностью определяет последнюю цифру его квадрата, ясно каждому, кто умеет умножать в столбик.
б) Попробуем действовать так же и подумаем, верно ли высказывание: «Ни одно натуральное число, оканчивающееся на 1, не является точным квадратом». К сожалению, неверно. Контрпримерами служат, в частности, 1 и 81. К еще большему сожалению, из этого нельзя сделать никакого вывода, кроме того, что надо решать задачу по-другому. Рассмотрение двух последних цифр столь же бесполезно, квадрат числа вполне может оканчиваться на 01, например, 1012 = 10201. Но что такое последняя цифра? Остаток от деления на 10 (а две последние цифры – от деления на 100). Рассматривая остатки от деления на 3, приходим к такому короткому решению:
Сумма цифр данного числа равна 2015, поэтому оно дает остаток 2 при делении на 3. Но квадраты всех натуральных чисел делятся на 3 либо без остатка, либо с остатком 1. Значит, данное число не является точным квадратом.
в) В этом числе сумма цифр сразу не видна, но ее можно вычислить. Прежде чем вычислять, подумаем, зачем это надо. Если она делится на 3 с остатком 2, то схема решения та же, что и в предыдущем пункте. Нетрудно убедиться, что так оно и есть; точно вычислять сумму необязательно.
Задачи для самостоятельного решения
Задача 6.6. Каждый англичанин любит играть в гольф. Майкл любит играть в гольф. Можно ли наверняка утверждать, что он англичанин?
Задача 6.7. Докажите с помощью контрпримера, что вывод сделан неверно.
1) Все мои друзья – болельщики «Спартака». А некоторые болельщики «Спартака» занимаются спортом. Следовательно, некоторые мои друзья занимаются спортом.
2) Некоторые кочаны капусты – паровозы. Некоторые паровозы играют на рояле. Значит, некоторые кочаны капусты играют на рояле.
Задача 6.8. Покажите с помощью рисунка, что рассуждение верное.
1) Все крокодилы умеют летать. Все великаны являются крокодилами. Значит, все великаны могут летать.
2) Некоторые сны ужасны. Ни один ягненок не способен вызвать ужас. Следовательно, некоторые сны не ягнята.
Задача 6.9. Определите, какие из приведенных рассуждений истинны, а какие ложны.
1) Все англичане любят пудинг. Ни один француз не любит пудинг. Следовательно, ни один француз не англичанин.
2) Ни один лентяй не достоин славы. Некоторые художники – не лентяи. Следовательно, некоторые художники достойны славы.
Задача 6.10. Сделайте вывод, если это возможно:
1) Сахар сладкий. Некоторые сладкие вещи очень нравятся детям.
2) Некоторые горные кручи непреодолимы. Все заборы вполне преодолимы.
3) Гусеницы не отличаются красноречием. Джон красноречив.
4) Все шутки придуманы для того, чтобы смешить людей. Ни один закон не шутка.
5) Музыка, которую слышно, вызывает колебания воздуха. Музыка, которую не слышно, не стоит того, чтобы за нее платили деньги.
Задача 6.11. Придумайте свои примеры верных и неверных рассуждений про всех и некоторых.
Задача 6.12. В следующем рассуждении истинность исходных высказываний не вызывает сомнения. Верен ли вывод? Почему?
Все сочинения Пушкина нельзя прочитать за одну ночь. «Сказка о рыбаке и рыбке» – сочинение Пушкина. Следовательно, «Сказку о рыбаке и рыбке» нельзя прочитать за одну ночь.