Вместо предисловия к этому репортажу можно вспомнить историю, ставшую в кругу кибернетиков своего рода притчей. На заседании правления одной из зарубежных фирм обсуждался проект нового управляющего устройства. Машина должна была обладать многими уникальными свойствами, а потому авторы проекта не скупясь обещали большой вес, внушительные габариты и высокую стоимость создаваемого электронного «мозга». На сооружение машины предполагалось затратить около полутора лет.
Обсуждение заканчивалось, когда председатель правления без особой надежды задал присутствующим традиционный в таких случаях вопрос: нет ли более простых предложений? И вдруг после продолжительной паузы, поднялся один из молодых инженеров.
— Сколько будет весить ваша машина? — спросили его.
— Примерно восемьдесят килограммов.
— И когда вступит в строй?
— Через два-три месяца.
— Что же это за устройство?
— Человек, шеф…
Трудно утверждать, насколько достоверна эта история. Но даже сам факт ее существования уже говорит о многом. И вот почему…
МАШИНЫ НАСТУПАЮТ, НО…
С оговорками или без них, но подчас еще можно услышать мнение, что непрерывно совершенствующиеся машины со временем полностью заменят людей, вытеснят человека из сферы производства или даже подчинят его своей «железной» логике. Автоматика делала только первые шаги, когда известный чешский писатель Карел Чапек «поднял» восстание роботов против человечества на страницах знаменитой пьесы «R. U. R.». И уж совсем не случайно в наши дни — дни стремительного развития кибернетики — американский ученый и фантаст Айзек Азимов в цикле своих рассказов «Я, робот» призывает на защиту человека специальный свод законов поведения «мыслящих» машин, открывающийся категоричным «робот не может причинить вред человеку».
Восхищение грядущим совершенством машин и страх перед их могуществом нередко рука об руку шагают по страницам произведений, повествующих о завтрашнем дне человечества.
Как же будет на самом деле? Что думают по этому поводу ученые, уже сегодня создающие все более и более «умные» автоматы?
Сегодня совершенные кибернетические устройства неумолимо вторгаются в область, еще вчера считавшуюся монополией человека и его разума, — они начинают управлять. Не только отдельные механизмы или процессы производства — целые цехи и даже заводы сейчас уже подчиняются четким приказам автоматики. И это понятно — со многими задачами управления «думающие» машины с их быстродействием, обширной памятью и четкой логикой справляются несравненно лучше, чем человек. Значит ли это, что со временем следует переложить все командные функции на плечи машин, оставив за человеком лишь право определять законы их поведения при конструировании и контролировать результаты работы? Где и как он должен будет произносить свое «последнее слово»? Как разделить командные обязанности между человеком и машинами?
Все эти и подобные им вопросы и составляют сущность одной из актуальнейших проблем науки — проблемы «Человек и автомат». Целый комплекс работ, связанных с ее решением, был проведен в Институте автоматики и телемеханики, в лаборатории, которую возглавляет известный советский ученый, доктор технических наук, профессор Александр Яковлевич Лернер. О некоторых из этих работ и пойдет ниже речь. Но сначала слово самому ученому.
— С точки зрения кибернетики человек с его сознанием и психикой сам по себе является весьма совершенным «устройством», — рассказывает профессор Лернер. — Например, наше ухо способно выделить из громадного потока музыки ее тончайшие нюансы, мы легко узнаем в толпе людей знакомое нам лицо, а опытные красильщики различают до ста оттенков одного цвета. Для машины это пока совершенно недоступно.
Или взять, например, такую способность человека, как умение предвидеть, предугадать ход или направление событий. Этим своим качеством мы пользуемся сплошь и рядом. Человек, севший в автобус и не взявший билета, достаточно точно может представить, чем грозит ему встреча с контролером. Рабочий, вытачивающий деталь на токарном станке, отлично знает, к чему приведет его неверное движение. А опытный ученый в целом ряде случаев может предугадать не только ход и результаты поставленного эксперимента, но и, например, основные этапы развития той или иной отрасли науки. Машины же пока лишены способности предвидеть результат своих собственных действий. И если они безошибочно выполняют ту или иную работу, то только потому, что создавшие их люди заранее предугадали нежелательные ситуации — те «рифы», которые могут встретить машины на своем пути, — и в какой-либо форме указали на них машинам.
Все эти примеры я привел лишь для того, чтобы показать, какой высокоорганизованной с точки зрения кибернетики «машиной» является сам человек и почему в системе управления многие функции лучше всего может выполнить только он. Но вот как правильно распределить командные обязанности между ним и машиной — на этот вопрос ответить значительно труднее.
Правда, есть две группы задач управления, если так можно сказать — противоположных по содержанию, где вопрос решается однозначно: либо в пользу человека, либо в пользу машины. Здесь достаточно вспомнить, как уверенно справляется человек с управлением автомобилем в условиях даже такого города, как Москва с ее многолюдными улицами и нескончаемыми вереницами транспорта. Создать же столь совершенного и компактного водителя кибернетикам пока не под силу.
Точно так же противоположная группа задач управления «отдает предпочтение» автоматам. Там, где требуется исключительная быстрота реакции, где высокие температуры, ядовитые испарения, неоднократные перегрузки или вибрации делают невозможным пребывание человека или, наконец, где требуется чрезвычайно большая точность, в этих случаях вопрос однозначно решается в пользу технических устройств.
Но между этими легко определяемыми группами задач лежит обширная область рабочих процессов, которые, казалось бы, могут быть с одинаковым успехом подчинены как человеку, так и «машинам». И вот здесь-то произвести «раздел территории», решить вопрос либо в пользу человека, либо в пользу машины — задача не из легких. Правда, на первый взгляд ключ к решению кажется простым: то, что лучше может делать человек, должен делать человек; то, что лучше может делать автомат, должен делать автомат. Но это простое правило сразу превращается в сложное, как только мы пытаемся оценить, что значит «лучше» и что такое «хуже».
В ПОИСКАХ ЗОЛОТОЙ СЕРЕДИНЫ…
Багровыми языками выбрасывается пламя из круглых амбразур смотровых окошек. Пузырится сталь под темно-вишневой коркой шлака. Гудят вентиляторы, поддерживая дыхание бушующего огня, стальная «рука» загрузочной машины несет в печь новую порцию скрапа, а разливочные ковши застыли в ожидании очередной плавки. И вся эта армия сложных технических устройств беспрекословно подчиняется приказам одного человека — мастера мартеновского цеха.
Громадную работу проделывает за смену этот человек. Мало того, что мастер бдительно следит за ходом самой плавки, ему приходится учитывать и работу смежных цехов, и загруженность заводского транспорта, и очередность подачи сырья, и тысячи других, казалось бы второстепенных, причин, от которых зависит успешная работа цеха. Все это сливается в огромный поток информации, которую мастер должен обработать и на ее основе принять то или иное решение.
И мастер принимает решение. Но вот вопрос: лучшее оно из всех возможных или нет? В большинстве случаев — нет, не лучшее. Человек просто не в силах за то короткое время, что отпущено ему рабочим ритмом цеха, обработать наилучшим образом такое большое количество информации и принять самое наивыгоднейшее, оптимальное решение. Ясно, что, будь на месте мастера электронная машина, она бы с этой задачей справилась намного успешнее. И не только благодаря своему быстродействию и обширной памяти — машина может работать непрерывно.
Проходит семь часов, и, закончив работу, мастер уступает свое место сменщику. Традиционный обход печей, последний взгляд на приборы, несколько коротких замечаний — и он покидает цех. А вместе с ним покидает цех и все огромное количество полученной им за смену полезной информации — практически только ее ничтожную часть он может передать заменившему его человеку. Естественно, что работающая без перебоев электронная машина свободна от этого недостатка. А поэтому и управлять цехом она будет значительно эффективней. Но… до определенного момента.
В цехе возникла критическая ситуация — по какой-то причине нарушился заданный ход плавки в одной из печей. Опытный мастер может узнать об этом даже без помощи приборов — по едва изменившемуся цвету пламени, по тому, как вспучилась корка шлака или изменился ритм вскипающих пузырьков газа. Конечно, то же самое подскажут ему приборы. Ну, а машина — ей о нарушениях в работе печи «донесут» чуткие датчики. Но вот в том, как поступят вслед за этим машина и человек, есть большая разница.
Машина получила задание выпустить плавку определенного качества. И она будет всеми силами стараться это задание выполнить. Неудержимая в своем стремлении, она увеличит продолжительность плавки, нарушит порядок загрузки сырья, поломает график работы заводского транспорта. А все это в конечном счете может привести к тому, что нарушится ритм работы всего предприятия, снизится выпуск всей продукции.
Опытный мастер поступил бы в этом случае иначе — он постарался бы выпустить плавку в срок, хотя при этом получил сталь несколько иного качества. Сохранился бы неизменным четкий ритм работы цеха и завода, а металл требуемого качества можно было бы сварить завтра или послезавтра. Подобное решение, несомненно, выгоднее для предприятия — ведь оно, как правило, выпускает не одну марку стали. Значит, и та плавка не пропала бы.
Простой пример, но даже здесь трудно решить, кому отдать предпочтение. В одних ситуациях преимущество остается за машиной, в других — за человеком. Как быть? Создавать машину, которая могла бы, подобно мастеру, решать задачи управления в более широком масштабе? Да, в принципе такую машину создать можно. Но когда решаются практические задачи управления, понятие «принципиально возможно» неизбежно сталкивается с вопросом: целесообразно ли?
Ни для кого не секрет, что чрезмерное увлечение автоматикой на определенном этапе развития техники может оказаться столь же вредным, как и недооценка ее возможностей. Есть целый ряд таких процессов управления, которые просто невыгодно даже с точки зрения экономики отдавать «на откуп» машинам — эти машины оказались бы необычайно сложными, громоздкими и дорогими. А отсюда следует единственно правильный вывод: не разделять «территорию» процессов управления по принципу «либо человек, либо машины», а найти наивыгоднейшее сочетание возможностей как одного, так и других.
— И вот здесь мы неизбежно наталкиваемся на «белые пятна», которые связаны с психологией человека, — продолжает свой рассказ профессор Лернер. — Как, в какой момент и каким образом человек должен вмещаться в работу автоматики? Ответить на этот вопрос довольно трудно хотя бы потому, что мы еще недостаточно знаем все возможности человека. Машины мы можем разобрать, что называется, по винтику и в совершенстве изучить их законы поведения. Но вот как поведет себя человек в той или иной ситуации — это мы можем предсказать не всегда. Здесь важное слово должны сказать ученые-психологи, с которыми мы работаем в тесном союзе…
Вчера человек управлял станками, сегодня операторы командуют автоматизированными заводами и цехами, завтра они сядут за пульты управления мощных промышленных, энергетических или транспортных систем. Вырастет роль человека — командира машин, а с нею — и его ответственность за правильно принятое решение. И вот здесь задача ученых формулируется весьма точно: нужно вовремя предупредить человека об изменении обстановки, дать ему возможность принять правильное решение и немедленно поправить неверно выполняющие работу машины.
ЦЕНА «ГОЛУБОЙ КАЕМОЧКИ»…
Огромные пульты с сотнями приборов, вереницами сигнальных ламп и бесчисленным количеством световых табло глядят на нас с иллюстраций романов о будущем. И вся эта прыгающая, вспыхивающая и мигающая армия огней и стрелок нужна лишь для одной цели — предупредить оператора, сообщить информацию о работе подчиненных ему машин. Впрочем, нужна ли?
Действительно, для того чтобы оператор имел все данные о работе, например, каскада электростанций, на пульт управления нужно свести десятки и даже сотни приборов. Как говорят кибернетики, получаемая человеком информация должна быть необходимой и достаточной. «В переводе» же это означает, что все необходимое для эффективного управления должно быть на пульте. Здесь ученые непреклонны — ни один прибор, ни одну сигнальную лампу исключить нельзя. Что же касается лишних приборов, только затрудняющих работу оператора, то их необходимо убрать.
— Это правило, — говорит профессор Лернер, — не исключает возможности такого решения, когда информацию о работе каких-либо промышленных агрегатов получает не оператор, а помогающая ему электронная машина. В идеале можно представить себе даже такую систему, где все командные обязанности выполняет подобная машина, а оператору она лишь сообщает либо «все в порядке» — и на пульте горит, например, зеленый глазок, либо «что-то случилось» — и на пульте вспыхивает красная лампа.
Неискушенному человеку такая система и впрямь может показаться идеальной, — продолжает Александр Яковлевич. — Но в действительности хорошо работать оператор в таких условиях не сможет. Немыслимо в течение всей смены смотреть на одну зеленую лампу и наслаждаться одним зеленым светом. Такова уж каша особенность — мы не можем жить без впечатлений. Жизнь идет, где-то работают машины. И оператор, управляющий ими, должен чувствовать дыхание, ритм этой жизни. Тогда, сознавая все время значимость своей роли, он будет чувствовать себя активным участником этой жизни, будет все время находиться, что называется, в боевом состоянии. Как этого достичь? Пока трудно дать окончательный ответ — слишком много еще предстоит сделать, прежде чем нам удастся получить наиболее совершенное решение. Но об одном из возможных вариантов такого решения я хочу рассказать…
Пульс жизни… По переходам шагают пешеходы, спешат вереницы автомобилей, вспыхивают и гаснут яркие огни светофоров — во всей ее динамике видит жизнь улицы водитель авто. Здесь совсем не то, что, допустим, на загородном шоссе ночью, где унылая, бесконечная лента асфальта невольно навевает сон. Тут на секунду отвлечься подчас невозможно: неиссякаем ритм жизни улиц большого города. Вот в таком же динамичном виде и нужно подавать информацию оператору — тогда она будет выглядеть так, словно появилась на заветном «блюдечке с голубой каемочкой». Но как это осуществить «в металле»?
Прежде всего можно отказаться от всем хорошо известных световых табло, цифровых шкал и сигнальных лампочек. Самая динамичная картина «в переводе» на их язык очень быстро превращается в утомительную и однообразную. Да и разместить, например, лампочки на пульте не так-то просто — из плотной массы огней оператору трудно будет выделить нужный сигнал, а стоит разбросать лампочки по всему пульту — и он не сможет охватить их взглядом. И исследователи пришли к выводу, что лампочки можно с успехом заменить экраном с непрерывно меняющимся «живым» изображением. К этому изображению предъявляют жесткие требования — оно должно быть динамичным, четким, понятным и без лишних деталей, затрудняющих работу оператора. Казалось бы, неосуществимая задача? Нет, оказывается, и здесь есть выход. И притом довольно простой.
Азбука, цифры, дорожные знаки — все это условные изображения, к которым давно привыкли. Таким же условным можно сделать и изображение на экране, расположенном перед оператором. Например, нормальной работе подчиненных ему агрегатов на экране может соответствовать светящийся круг. Произойдет какое-либо нарушение режима — и круг стянется в восьмерку или треугольник. Автоматика справится с этим нарушением — и изображение вновь обретет законченные очертания окружности. Но если автоматы не справятся, то восьмерка или треугольник начнут вытягиваться в звезду. Оператор знает: еще мгновенье — и звезда превратится в крест. А крест — это почти авария. И он спешит вмешаться в работу машин.
Простое, казалось бы, решение, но у него много достоинств. Глядя на подобное условное изображение на экране, оператор будет не только видеть, есть нарушения в работе или нет, но и знать, что эти нарушения из себя представляют. Перегрузке агрегатов может соответствовать, например, восьмерка, недогрузке — треугольник, перебоям в подаче топлива — полумесяц и так далее. Больше того, по тому, как будут меняться эти фигуры, можно будет судить о том, как серьезны нарушения в работе агрегатов, как далеко они отошли от нормального режима. Появятся, например, по бокам окружности две выемки — намек на восьмерку, — и это будет означать лишь незначительную перегрузку. Превратится изображение в толстую восьмерку — значит перегрузка увеличилась. И по мере того как эта перегрузка будет расти, восьмерка на экране будет сплющиваться. Просто, не правда ли? Трудно найти возражения против такого способа подачи информации оператору. Разве только сомнение — не надоест ли человеку смотреть на все эти простые фигуры?
— Думаю, что нет, — отвечает профессор Лернер. — Пожалуй, смотреть на них будет даже интересно. Нечто подобное мне пришлось увидеть в зале ожидания одного из аэропортов. Там под потолком были подвешены легкие цветные пластины самой различной формы. Воздушный поток заставляет их все время покачиваться, картина непрерывно меняется, и пассажиры с удовольствием наблюдают эту игру форм и красок…
Кстати, о красках. Изображение на экране можно сделать цветным, подобрав краски таким образом, чтобы они усиливали восприятие человека, помогали быстрее усваивать информацию, поступающую к нему с экрана. Достаточно вспомнив, насколько цветное кино выразительнее черно-белого. И вот здесь, раз уж разговор зашел о восприятии человека, нельзя не рассказать об одной из работ, проделанных в лаборатории, которую возглавляет профессор Лернер. И хотя эта работа была неразрывно связана все с той же проблемой «Человек и автомат», результатом ее было появление… установки световой музыки.
СВЕРКАЮЩИЙ МАРШ ТРУДА…
Тонет зал в волнах плавной мелодии — скрипки поют о далекой стране. И, вторя им, мягкие потоки света льются с экрана. Голубые, зеленые, изумрудные лучи подхватывают нежные звуки музыки — мир, спокойствие, тишина… И вдруг в светлый напев мелодии врывается четкая дробь барабана. Тревога! Ударили литавры, фанфары взметнули призывный клич, яркое пламя вспыхивает на экране. Оранжевые, пурпурные, багровые языки огня врываются в зал, навстречу музыке, навстречу слушателям. И, сливаясь воедино, трепетный свет и волнующий звук уносят далеко-далеко, в мир доселе невиданных впечатлений…
Световая музыка… Давно уже человек мечтал усилить выразительность своих мелодий, сделать еще доступнее и понятнее, помочь слушателям постичь их самые тонкие нюансы. И в поисках решения его взгляд не раз обращался к яркой игре красок, которыми так богат окружающий нас мир. Что, если призвать ее на помощь музыке, заставить усилить, подчеркнуть содержание музыкальных произведений? Ведь всю эту богатую гамму впечатлений, которая сопутствует нашей жизни, мы постигаем не только с помощью органов слуха — немало волнующего и прекрасного открывает человеку его зрение. Что, если заставить эти замечательные «приемники информации» трудиться в тесном контакте?
Не все, может быть, знают, что у музыки света многовековая история. О возможной связи между звуками и красками задумывается еще Аристотель, этим вопросом интересуется Ломоносов, а Исаак Ньютон делает первую практическую попытку нащупать эту незримую связь. С помощью волшебницы-призмы он «расщепляет» яркий луч солнца в красочный световой спектр. Ученому он кажется очень похожим на музыкальную октаву. Но в октаве восемь нот, а в спектре всего семь цветов — красный, оранжевый, желтый, зеленый, голубой, синий и фиолетовый. И тогда Ньютон решает «перестроить» спектр, он выделяет в нем восьмой, условный цвет, которому дает название «индиго». Так и осталось это слово в языке человечества как свидетельство неудачной попытки найти связь между звуком и цветом там, где ее не существовало.
Шли годы, и вместе с ними все более упорными становились попытки человека проникнуть в суть этой связи. Десятки и сотни людей — музыкантов, ученых, изобретателей — отдавали дань этой идее. Ищет связь между звуками и цветом английский физик Майкельсон. Ее пытается найти физиолог Бехтерев. Большое внимание уделяет световой музыке композитор Скрябин. Одновременно с музыкой «Прометея» он пишет световую партитуру к этой бессмертной поэме, строит специальную приставку к роялю, унизанную вспыхивающими цветными лампочками. Но осуществить свой замысел до конца композитору так и не удалось. Только в наши дни «Прометей» зазвучал в сопровождении волнующей гаммы цветных лучей. И авторами одной из созданных у нас в стране установок световой музыки, с помощью которой осуществилась мечта Скрябина, был коллектив во главе с профессором Лернером и инженером Леонтьевым.
Правда, для ученых создание установки музыки света было своего рода побочным продуктом. Ни успешные демонстрации этого устройства на выставках в Лондоне и Париже, ни восторженный прием в Концертном зале имени Чайковского в Москве не отвлекли их от основной цели — они стремились найти связь между зрительным и слуховым восприятием человека. Найти для того, чтобы призвать ее на помощь все тому же оператору, сделать еще четче «голубую каемочку» на том «блюдечке»-экране, с которого поступает информация о работе подвластных машин.
Трудно сказать, насколько глубоко ученым удалось проникнуть в суть этой связи — слишком тонка нить, соединяющая наши слуховые и зрительные органы, слишком далеко упрятана она в «недрах» нервной системы человека. Но уже те результаты, которые удалось получить, позволяют предположить, что в будущем операторы смогут получать информацию не только с помощью меняющегося изображения на экране — ему будет сопутствовать строгое светомузыкальное сопровождение, во много раз усиливающее восприятие человека.
Сегодня это может показаться фантазией, но кто знает, может быть, всего через каких-нибудь пять-десять лет вместе с известием с нормальной работе энергосистемы, охватывающей всю страну, на экране перед оператором вспыхнет зеленая гамма света, а тишину поста управления нарушит плавная, спокойная мелодия. Произойдет нарушение в работе, синие волны побегут по экрану, а напевная мелодия уступит место бодрым ритмам марша. Ну, хотя бы всем известному «Эй, вратарь, готовься к бою!..». А если ситуация станет еще сложнее — экран возвестит о ней багровым пламенем, а в динамиках раздастся четкая дробь барабана, подобная той, что ведет солдат в атаку. Трудно, конечно, утверждать, что все будет происходить именно так. Но ученые постараются использовать все средства, способные облегчить работу оператора.
Впрочем, вряд ли сами операторы, о которых так заботятся ученые, подозревают, насколько капризен их нрав. Оказывается, результат работы оператора зависит не только от способов подачи информации, но и от темпа подачи сигналов. Современные автоматы могут за короткое время «выстрелить» в человека такое количество информации, что он просто-напросто перестанет что-либо понимать. И здесь его необходимо защитить от стремительных сигнальных лавин — либо уменьшить количество поступающих в единицу времени сведений, либо снизить темп подачи сигналов. Но опять же делать это надо осторожно. Если к человеку будет поступать слишком мало сигналов, внимание может ослабнуть, оператор утратит ощущение ритма в работе. А в результате неожиданно изменившейся ситуации оператор не сможет быстро реагировать на эти изменения. Словом, ритм изменения условных изображений на экране должен строго соответствовать физиологическим и психологическим возможностям человека.
ЧЕЛОВЕК ПРИНИМАЕТ РЕШЕНИЕ…
Пять приборов глядят с пульта — пять сеток делений с четкими цифрами, пять стрелок, застывших в прорезях шкал. Всего пять приборов, и ниже — две рукоятки. Похожие на верньеры у радиоприемников. Серпантин цветных проводов тянется от пульта к пирамиде блоков электронной машины, чутким самописцам, к магнитофону. Это испытательный стенд.
Человек садится за пульт. Простое задание — удержать стрелку центрального прибора у красной черты. Задание понятно? Понятно! Можно начинать. Внимание! Пуск!.. И сразу же электронная машина, в блоках которой упрятана «модель» какого-то сложного рабочего процесса, «выбрасывает» на пульт первую порцию сигналов. Стремительно рванулись по шкалам стрелки боковых приборов, а на центральном все шире становится просвет между острием указателя и красной чертой: пора вмешаться в работу автоматам. Поворот правой рукоятки не помогает. Поворот левой — слишком резко: стрелки левых приборов готовы выпрыгнуть за обрез делений. Ошибка. Придется вернуться назад. Поворот. Еще чуть-чуть. Так уже лучше. Теперь надо «подправить» правой рукояткой. Так, хорошо. Еще чуть… Отлично!
Дрожит центральная стрелка у красной черты — режим выдержан. Но надолго ли? Машина-модель уже шлет на пульт новую порцию сигналов, ставит перед человеком очередную задачу.
Теперь все значительно сложнее — ни левая, ни правая рукоятки порознь не дают желаемого эффекта. Приходится работать сразу двумя. Не получается… Опять не то… Осторожнее… Вот так уже лучше… Еще чуть-чуть… Есть режим!..
Человек учится работать, учится управлять. Сегодня он подчинил «взбунтовавшийся» строй автоматов за двадцать минут, завтра на это ему потребуется всего пятнадцать, потом десять, пять, три. Постепенно ему откроются незримые нити, связывающие приборы и рукоятки с теми или иными нарушениями в рабочем процессе. И придет день, когда он будет справляться с самыми сложными задачами в каких-нибудь несколько секунд. Человек научится управлять. Но разве в этом цель эксперимента? Он будет повторен десятки и сотни раз. Потому что цель, ради которой построен испытательный стенд, ради которой один за другим ставятся опыты, значительно сложнее. Не так уж трудно научить человека решать задачи управления — значительно сложнее раскрыть спрятанный в его сознании «механизм обучения», познать, как, каким путем наш мозг приходит к тому или иному решению.
Человек принимает решение. Иногда медленно, с колебаниями, но чаще уверенно и быстро, он может решать самые сложные задачи. Даже в такой области, как математика, где быстродействующие электронные вычислительные машины, казалось бы, утвердили свое бесспорное преимущество, он подчас уверенно доказывает свое превосходство.
Авторитетное жюри необычных соревнований, состоявшихся в прошлом году во французском городе Лилле, было представлено не спортивными судьями — в него вошли крупнейшие специалисты в области физики, математики, кибернетики. Под стать жюри были и соперники, вступившие в единоборство: с одной стороны — французский математик Морис Дагбер, известный своей феноменальной способностью быстро решать в уме сложные задачи, с другой — новейшая электронно-счетная машина, производящая до миллиона операций в секунду. Перед началом соревнований М. Дагбер заявил, что он признает себя побежденным, если машина сумеет решить семь задач раньше, чем он десять. Фора существенная, но несмотря на нее человек оказался победителем — он решил все десять задач за три минуты сорок три секунды. Электронной же машине на семь задач понадобилось пять с лишним минут.
Случайный результат? Как сказать. Во всяком случае, многие крупные специалисты полагают, что нет. По их мнению, возможности человеческого мозга настолько колоссальны, что мы даже не можем себе представить. Но для того чтобы использовать эти возможности до конца, мало одной тренировки — необходимо познать все законы, по которым действует наш мозг, с помощью которых он быстро нащупывает решение самых сложных задач. Огромный интерес эта проблема представляет и для ученых, создающих автоматические системы, — ведь только познав этот «механизм» мышления, эти законы, они смогут найти правильное сочетание способностей человека и машин. Одним из шагов к решению проблемы и были эксперименты на испытательном стенде.
Опыты на испытательном стенде помогают ученым не только заглянуть в ход мыслительных процессов человека — наблюдая за его работой, они стараются установить наиболее рациональный темп подачи сигналов, получить наивыгоднейшее сочетание технических возможностей машины с физиологическими особенностями человеческого организма.
Наконец еще один, и притом не менее интересный, результат можно получить с помощью испытательного стенда. Дело в том, что чем больше человек работает за пультом, тем лучше он справляется с поставленной задачей. В конце концов он настолько хорошо усваивает все особенности подчиняющегося ему рабочего процесса, что начинает управлять им по закону, весьма близкому к наивыгоднейшему, оптимальному. А это очень важно.
Когда на практике заходит речь об автоматизации какого-либо сложного процесса, подчас оказывается, что вся трудность этого дела состоит не в сооружении самих машин, а в том, какой закон управления положить в их основу. Требования сегодняшнего дня таковы, что создатели автоматов, естественно, стремятся подчинить свои устройства наивыгоднейшим, оптимальным законам. Но вот найти эти законы — теоретически это сделать подчас просто невозможно. Десятки самых различных причин, каждая из которых, в свою очередь, зависит от многих факторов, влияют на ход процесса. И проследить их взаимозависимость не удается даже с помощью самых совершенных математических методов.
Вот тут-то на помощь создателям автоматов и приходит человек за пультом испытательного стенда. В блоках электронной машины «строится» модель сложного рабочего процесса, который предстоит автоматизировать, и человек начинает учиться управлять им. Шаг за шагом постигает он сложное искусство оператора и, наконец, достигает совершенства. А в большинстве случаев это означает, что человек уже овладел законом управления, близким к оптимальному. Самописцы фиксируют этот закон. И теперь его можно положить в основу управляющего рабочим процессом автомата.
…Могучие реки обрушивают на турбины многотонные водопады, языки пламени бушуют в топках теплоцентралей, бесшумно «рвется» материя в атомных котлах, рождая энергию в сотни тысяч киловатт. И всюду автоматика. Она открывает шлюзы плотин, швыряет в топки фонтаны нефти, следит за ходом цепной реакции. Она направляет потоки электричества в единое русло, имя которому энергосистема, и… подчиняется четким приказам человека-командира.