Эмбрионы, гены и эволюция

Рэфф Рудольф А

Кофмен Томас К

Глава 12

Иерархии регуляторов и эволюция. Попытка синтеза

 

 

Ограничения, присущие эволюционным синтезам

В 1932 г. знаменитый палеонтолог позвоночных Г. Осборн (Н. F. Osborn) опубликовал статью, озаглавленную «Девять принципов эволюции, открытых палеонтологией», которая преисполнена раздражения по отношению к генетике и генетикам и содержит удивительно догматичные (и ошибочные) формулировки «эволюционных принципов». Типичным их образцом служит следующее утверждение Осборна: «В настоящее время мы можем лишь сказать, что Природа не тратит попусту времени или усилий, рассчитывая на удачу или случай или ставя эксперименты, а стремится прямо и творчески к достижению своих прекрасных целей - созданию адаптивных биомеханизмов». Это поразительное изречение величественно отметает всякое участие в эволюции естественного отбора, использующего отклоняющиеся гены или генетические системы. Оно рисует, возможно, привлекательную для кого-то картину, олицетворяющую Природу, которая создает «перспективных монстров» и вызывает прерывистые эволюционные события по заранее составленному плану. Однако при этом Осборн считал, что эволюция, за исключением изменения меристических признаков, носящего прерывистый характер, протекает с величественной постепенностью при участии длительных непрерывных процессов. Направленность эволюции была ему очевидна в тех случаях, когда какая-либо тенденция, подобно коррелированному увеличению размеров рогов и общих размеров в одной группе вымерших млекопитающих - титанотериев, сохранялась на протяжении всей эволюционной истории данной линии.

Хотя Осборн не мог четко сформулировать свои представления о механизме(ах) эволюции, его восприятие этого процесса было все же достаточно определенным и довольно механистичным. Сохраняя, вслед за своим учителем Е. Копом (Е. Соре), верность традициям XIX в., он продолжал придерживаться некой разновидности ламаркизма. Осборн понимал, что подобный механизм невозможен без обратной связи, передающей информацию от сомы-тела - стабильному и обособленному зародышевому пути. В своей ранней книге под «скромным» названием «Возникновение и эволюция жизни» он обсуждает возможность прямого воздействия различных факторов среды на «наследственный хроматин». У Осборна можно найти проблески идей об участии в морфогенезе неких «химических посредников», таких как гормоны, и рассуждения о связи между генетически детерминированными признаками и признаками, которые вызываются нарушениями в гормональных системах.

Несостоятельность спекуляций Осборна о причинах морфологической эволюции, так же как и неудача геккелевских теорий, была результатом серьезных погрешностей в его взглядах на генетику и на роль генов и морфогенетических механизмов в этой эволюции. Направленности, которую видел Осборн в линиях ископаемых организмов, можно дать другие более разумные объяснения. Изменения могут быть непрерывными или прерывистыми, но они должны сдерживаться характером существующих морфогенетических взаимодействий. Эволюционные направления существуют, потому что отбор по определенным признакам может действовать только на уже имеющиеся морфогенетические процессы. Ламаркистские взгляды Осборна были глубоко ошибочными и анахроничными, однако в них была известная логика, если допустить, что эволюционные направления - продукт изменений наследственного материала, находящегося под прямым контролем среды.

Цель наших размышлений об эволюционных спекуляциях Осборна - предостережение. Любая попытка синтеза неизбежно выходит за пределы достаточно хорошо установленных фактов и с высокой степенью вероятности в не очень отдаленном будущем покажется, если не абсурдной, то по меньшей мере наивной. Усилия Рихарда Гольдшмидта - одного из героев этой книги - были ограничены его странной концепцией гена и не в меньшей степени тем фактом, что в его время генетика развития еще только зарождалась. Наши собственные возможности синтезировать все то, что было изложено в предыдущих главах этой книги, крайне ограничены недостаточностью современных знаний о способах, которыми гены управляют морфогенезом даже простых структур Metazoa, и о природе генетических регуляторных взаимодействий высшего уровня. Описаны регуляторы некоторых отдельных генетических локусов, и начинается изучение организации примыкающих к структурным генам регуляторных последовательностей ДНК с помощью методов, которые позволят получить подробные сведения. Однако наши представления об интегрированных регуляторных системах - это обычно экстраполяции, опирающиеся на то, что нам известно об отдельных структурных локусах. Мы все еще видим регуляторные гены, действующие как переключатели процессов развития, лишь издалека.

Наконец, теоретическое исследование динамичного поведения сетей, образованных многочисленными генами, взаимно влияющими друг на друга, еще только начинается; особо здесь следует указать на работы Кауфмана (Kauffman). Вполне возможно, что взаимодействия большого числа генов обеспечивают гомеостатическую стабильность и канализацию, характерные для развития, и детерминируют то ограниченное число стабильных дифференцированных состояний (т.е. клеточных типов), которое способны поддерживать отдельные генетические системы.

 

Игольное ушко

Эволюции организмов присущи величественность и прогрессивное совершенствование морфологии и адаптации, что заставляет предполагать, как это произошло с Геккелем и с Осборном, существование всеобщих управляющих принципов. Однако в то же время именно диапазон эволюционных явлений привел к описанию такого большого числа принципов, которое возможно только в воображении тех, кто их описывает. В этой книге мы пытались документально показать существование характерных особенностей органической эволюции, отражающих те критические изменения эмбриогенетических систем, которые лежат в основе морфологических изменений. Скорости морфологической эволюции сильно варьируют. Морфология брадителических двоякодышащих рыб, в жизни которых периоды оцепенения чередуются с периодами активности в соответствии с бесконечными годичными циклами засухи и ливневых дождей, по существу, не изменилась со времен карбона. Прямо противоположным примером служат тахителические Drosophilidae Гавайских островов, претерпевшие широкую радиацию на этом геологически юном архипелаге. Чрезвычайно низкие скорости мало что говорят нам; они лишь свидетельствуют о том, что определенные морфологические типы и создающие их процессы могут сохраняться, как в случае лягушек, изучавшихся Вилсоном (Wilson) и его сотрудниками, даже на фоне значительной молекулярной эволюции, неуклонно изменяющей гены, кодирующие белки, из которых создается данная консервативная морфология. Низкие скорости эволюции организмов отражают, возможно, действие мощного стабилизирующего отбора, поддерживающего удачные морфологические адаптации. Модификации в пределах данного основного типа онтогенеза, наблюдаемые у медленно эволюционирующих организмов, могут требовать лишь постепенной замены вариантных аллелей в соответствии с представлениями классической теории эволюции. Морфологический застой, достигающий крайнего выражения у живых ископаемых, таких как мечехвост, лингула (брахиоподы) или двоякодышащие рыбы, достаточно обычен. Многие (а возможно, и большинство) виды сохраняют стабильную морфологию на протяжении очень большой части своей истории. Стабильные морфологии и создающие их развивающиеся системы-это, воспользовавшись словами Томаса Харди,

Things mechanized

By coils and pivots set to foreframed codes...

(Механизированные системы с помощью пружин и стержней настроенные для работы по заранее заданному коду)

Объяснения требуют быстрые прерывистые события, и в этих случаях надо менять коды и упомянутые пружины и стержни. Перестраивается морфология, появляются новые структуры, и тем не менее сохраняется внутренняя интегрированность. Как в метафоре Фразетты, машину следует перестраивать, не прерывая ее работы.

Скорость, с которой может происходить морфологическая эволюция, имеет прямые и важные следствия для других характеристик эволюции организма в целом. Любое изменение морфологии требует соразмерного изменения течения развития; это аксиома. Это было очевидно со времени работ Мюллера и Геккеля, хотя значение развития не составляло преобладающей темы эволюционной теории, а создание адекватной концепции эмбриогенетических механизмов становится возможным только теперь. Открытие генов-переключателей, управляющих сегментацией насекомых или детерминирующих дифференцировку зародышевых листков у зародышей млекопитающих, служит несомненным доказательством существования генов, специфическая функция которых состоит в регуляции процессов развития. Возможность различать такие гены имеет решающее значение, поскольку гены могут быть выявлены лишь по фенотипам, экспрессируемым мутантными аллелями. Мутации в большинстве случаев прерывают развитие и обладают плейотропным действием, а поэтому их эффекты трудно проанализировать. Мутация может прервать развитие, потому что продукт мутировавшего гена специфичен для той или иной стадии развития и ген действительно участвует в регуляции соответствующего морфогенетического процесса; или же прекращение развития может быть результатом нарушения одного из общих метаболических путей. В последнем случае воздействие мутации на развитие в феноменологическом плане вполне очевидно, однако его специфичность остается неясной. Несомненными регуляторными элементами развития служат гены, мутантные аллели которых всегда вызывают не остановку развития, а переключение его с одного специфичного и вполне определенного пути на другой, как это столь ярко выражено в случае гомеозисных мутаций. Таким образом, вторая главная черта эволюции организмов состоит в том, что эволюционное изменение происходит путем модификации генетически детерминированной программы развития, имеющейся у каждого организма. Это заключение не следует воспринимать как модель полного генетического детерминизма. Нам известны такие работы, как исследования М. Катца (М. J. Katz) и его сотрудников, свидетельствующие о существовании негенетической пластичности развития. Онтогенетические буферные механизмы имеют большое значение, потому что они делают возможным восприятие генетических модификаций с минимальным нарушением развития.

В реализации программы развития участвует не весь геном. Фактически большая часть ДНК данного организма не несет явных генетических функций, в том смысле, что она не кодирует информацию, экспрессируемую путем транскрипции. Кроме того, сравнения между человеком и его ближайшим эволюционным родичем, шимпанзе, проведенные Кингом и Вилсоном (King, Wilson), показали, что эволюция структурных генов, быть может, мало связана с морфологической эволюцией. Существенную роль в эволюции морфологических признаков играют гены, регулирующие программу развития. Это - важное заключение, поскольку оно ниспровергает широко распространенную концепцию, согласно которой эволюция организмов представляет собой продолжение процессов, приводящих к точковым мутациям в структурных генах, что в свою очередь приводит к аминокислотным замещениям в белках. Это предубеждение наложило отпечаток на большую часть эволюционных построений: эволюционные часы, или постепенное замещение в популяции аллеля, кодирующего один вариант данного фермента, на аллель, кодирующий другой его вариант, ошибочно считали эволюцией.

В 1963 г. Льюис (Е. В. Lewis) высказал мнение об эволюционной роли одного набора регуляторных генов-переключателей у дрозофилы - комплекса bithorax. Переход от сходного с многоножками предка, имевшего большое число конечностей, к примитивному шестиногому насекомому был связан с приобретением первых членов этого комплекса - генов bxd (bithoraxoid) и iab (infra-abdominal). Эти гены подавляют развитие конечностей на брюшных сегментах. Для дальнейшей эволюции Diptera от крылатых насекомых понадобилась эволюция гена bx (bithorax), а также других генов современного комплекса ВХ-С (Bithorax Complex), участвующих в превращении второй пары крыльев, отходящих от заднегруди, в жужжальца. Интересно, что типичные для Diptera признаки возникли до превращения второй пары крыльев в жужжальца, поскольку Рик (Riek) описал четырехкрылого ископаемого представителя Diptera из перми. Такое замороженное состояние в эволюции регуляторного гена служит убедительным аргументом в пользу предположения Льюиса о последовательном возникновении комплекса ВХ-С.

Регуляторные гены, управляющие сегментацией головы и передних сегментов груди, также возникали последовательным образом. Подробное изложение гипотезы о роли комплексов ВХ-С (Bithorax) и ANT-C (Antennapedia) в эволюции головы членистоногих и сегментарной организации, приведшей к насекомым, было дано в гл. 8. Однако эта гипотеза основана на анализе мутаций, которые, хотя и позволяют понять функцию нормальных аллелей генов, входящих в названные комплексы, недостаточны для рекапитуляции предковых форм. Дело в том, что гомеозисные мутации сами по себе не приводят к эволюционным изменениям, - важный момент, который часто недопонимается. Голова, несущая ноги вместо антенн, - это не «перспективный монстр», а лишь констатация функции гена, сформулированная в эксцентричных и вызывающих выражениях. У нее нет эволюционного будущего.

Можно ли доподлинно показать, что мутации регуляторных генов, действуя как переключатели, создают основу для морфологической эволюции? Как уже было сказано, имеются очень веские данные о существовании генов, контролирующих характер закручивания раковины у моллюсков, или генов, контролирующих события, связанные с определением числа амбулакров у иглокожих или числа пальцев у морских свинок; однако об отношении этих генов к эволюционным процессам (что так часто бывает, когда речь идет об эволюции) можно лишь строить предположения. По счастью, Стернберг и Хорвитц (Sternberg, Horvitz) провели очень тонкое исследование, позволяющее недвусмысленно ответить на вопрос об эволюционной роли переключателей.

Стернберг и Хорвитц изучали эмбриогенетическую основу морфологических различий между двумя мелкими видами нематод. Нематода Caenorhabdites elegans за последние годы внезапно приобрела популярность в качестве экспериментального объекта, потому что, будучи довольно сложно организованным представителем Metazoa, она содержит всего около 2000 генов (примерно столько же, сколько Escherichia coli), ограниченное и постоянное число соматических клеток и очень удобна для изучения генетической регуляции развития. Эти ценные качества, С. elegans прекрасно описаны в кратком обзоре Эдгара (Edgar). Указанные выше три особенности этого организма обеспечили Стернбергу и Хорвитцу предпосылки, необходимые для подробного сопоставления в эволюционном аспекте линий клеток, образующих гонады у С. elegans и у представителя того же отряда, но другого семейства - Panagrellus redivivus. Тело взрослой нематоды состоит из небольшого числа клеток (у С. elegans - из 808); судьба каждой клетки строго детерминирована, и это дает возможность точно проследить за соответствующими друг другу клеточными линиями у двух сравниваемых видов.

Яичники Caenorhabdites elegans и Panagrellus redivivus изображены на рис. 12-1. У P. redivivus только один яичник, лежащий ближе к переднему концу тела по отношению к вульве, а у С. elegans - два яичника, открывающиеся в общую вульву. Исходная программа развития клеточной линии, дающей яичники, у этих двух видов в основном одинакова, если не считать некоторых модификаций, наложившихся на более поздних стадиях эволюции. Зачаток гонады состоит из четырех клеток, лежащих вдоль передне-задней оси (клетки Z1, Z2, Z3 и Z4, показанные на рис. 12-1). Две центральные клетки (Z2 и Z3) дают начало клеткам зародышевого пути, а две концевые клетки (Z1 и Z4) однозначно предопределены к образованию соматических структур гонады. На рис. 12-1 представлены схемы раннего развития линий клеток Z1 и Z4 у двух сравниваемых видов. Деление клеток протекает у них одинаково, и судьба образующихся в конечном итоге клеток идентична, за исключением одного важного различия. У С. elegans клетки Z1 и Z4 образуют в зачатке яичника по одной клетке, называемой дистальной концевой клеткой (ДКК), тогда как у P. redivivus образуется лишь одна такая клетка - в линии Z1, а соответствующая клетка в линии Z4 гибнет, причем эта гибель запрограммирована. Это единственное изменение в клеточной судьбе приводит к очень резким и поучительным морфологическим последствиям.

Рис. 12-1. Изменение в процессе эволюции клеточных линий, участвующих в развитии гонад у нематод Caenorhabdites elegans и Panagrellus redivims. А. Зачаток гонады, состоящий из четырех клеток - Zl, Z2, Z3 и Z4; этот зачаток одинаков у обоих видов. Б. Парные гонады С. elegans и схема (слева) клеточных линий Z1 и Z4, из которых образуются соматические структуры гонады. В. Единственная гонада P. redivims и схема (слева) клеточных линий Z1 и Z4. Обратите внимание на запрограммированную гибель (X) дистальных концевых клеток (ДКК), происходящих от линии Z4, в результате чего задняя ветвь гонады не развивается. (Рисунок сделан на основании фотографий и схем, любезно предоставленных Р. V. Sternberg и Н. R. Horwitz.)

Парный яичник Caenorhabdites elegans, по-видимому, соответствует примитивному типу строения, тогда как непарный яичник независимо возникал в процессе эволюции нематод несколько раз. Кимбль и Уайт (Kimble, White), разрушая ДКК у С. elegans с помощью лазерного микролуча, показали, что эта клетка необходима для развития одной из половых трубок. Разрушение ДКК вызывает прекращение митозов в клетках зародышевого пути. Поскольку рост яичника зависит от митозов в клетках зародышевого пути, ветвь, лишенная ДКК, прекращает рост. У С. elegans, лишенной задней ДКК, происходящей из клетки Z4, развивается только передняя половая трубка, и его яичник становится таким как у Panagrellus redivivus. Для эволюции непарного яичника могло бы потребоваться лишь одно мутационное изменение в судьбе одной клетки - запрограммированная гибель клетки, прежде запрограммированной на превращение в ДКК. Мутации в одном гене, вызывающие переключения развития клетки с одного пути на другой, у С. elegans хорошо документированы. Известны мутанты, у которых наблюдаются специфические переключения на запрограммированную гибель в норме жизнеспособных клеток, и один такой мутантный ген, действующий как внутренний разрушитель ДКК, вызывает развитие у С. elegans непарного яичника. Стернберг и Хорвитц полагают, что если переключения происходят в регуляторной клетке (которую они определяют как клетку, осуществляющую контроль над другими клетками), то тем самым создается возможность для прерывистых эволюционных переходов. Так, среди генетических изменений, происходивших в процессе филогенеза P. redivivus, изменения в судьбе клеточной линии Z4 почти наверное возникли в результате изменения одного гена и тем не менее привели к радикальным морфологическим последствиям.

Стернберг и Хорвитц при своем детальном сравнении Caenorhabdites elegans и Panagrellus redivivus обнаружили три класса превращений в клеточных линиях, для которых у С. elegans имеются мутационные эквиваленты. К первому классу относятся переключения, изменяющие судьбу клеток, примером которых служит линия Z4. К двум другим относятся изменения числа клеточных делений, характерного для данной клеточной линии, и изменение сегрегации, приводящее к тому, что потенции развития, обычно характерные для одной клетки, переносятся на ее сестринскую клетку. Благодаря существованию у С. elegans мутаций, которые экспрессируются в виде превращений, эквивалентных наблюдаемым при эволюции, эта нематода служит системой, позволяющей получить много сведений о генетике генов-переключателей, управляющих этими явлениями. В этом смысле нематоды создают возможность для генетического подхода к проблеме клеточной детерминации, так хорошо изученной на классических объектах - моллюсках со спиральным дроблением и оболочниках, которые оказались непригодными для генетических исследований. Остается выяснить, не эквивалентны ли гены-переключатели нематод гомеозисным генам-переключателям дрозофилы.

Среди всех способов изменения онтогенеза в процессе эволюции наибольшее внимание уделяется изменениям сроков. Зародышевое развитие связано с широким разнообразием перемещений и структурных усложнений во времени.

Этот процесс носит характер неизбежности, напоминая исполнение хорошо отрепетированной программы, в которой все события сменяют друг друга в точно установленные сроки. Такое сравнение в большинстве случаев допустимо, однако известны многочисленные случаи диссоциации во времени одного онтогенетического процесса от другого, и, как показывает обширный ряд эволюционных примеров, гетерохрония действительно представляет собой обычный фактор эволюции. Этому есть веская причина - необходимость сохранения интегрированной программы развития. Гетерохрония обычно приводит к неразрушительным модификациям данного пути развития. Существующие интегрированные процессы лишь сдвигаются друг относительно друга, но общая функциональная интегрированность сохраняется. В результате зрелый в репродуктивном отношении организм с личиночной морфологией сохраняет комплекс адаптации к среде и способное функционировать строение тела. Другие более тонкие гетерохронии компенсируются имеющимися системами морфогенетического гомеостаза. Если такой процесс, как рост, инициируется несколько раньше или позже, чем в норме, он может в конечном итоге привести к изменению относительных пропорций каких-либо двух структур, однако если это изменение не нарушает некого необходимого взаимодействия с какой-нибудь третьей тканью, то уже установившиеся морфогенетические процессы будут иметь место. К модификации пропорций, происходящей на относительно поздних стадиях развития, организм может легко приспособиться, если она окажется селективно выгодной в тех условиях среды, в которых обитает данное животное.

Несмотря на то что было идентифицировано лишь несколько мутаций, воздействующих на сроки наступления различных событий, исследований, пытающихся выяснить генетическую основу временных регуляторов развития, проводится удивительно мало. Отсутствие знаний по этой проблеме - лишь часть более крупного пробела в биологии, охватывающего широкий диапазон явлений, связанных со сроками, - от регуляции во времени синтеза ДНК в клетках до регуляции суточных ритмов у животных. Небольшое число выявленных до сих пор мутаций, которые изменяют сроки различных событий, происходящих в процессе развития, позволяют считать, что существуют отдельные гены, специфически регулирующие эти сроки. Некоторые из них, такие как гены, от которых зависит, пойдет ли развитие личинки аксолотля по пути метаморфоза или неотении, по-видимому, аналогичны обсуждавшимся ранее дизруптивным мутациям. У аксолотля неотения представляет собой результат недостаточного образования тироксина и вытекающих из этого последствий для всех тканей. Другие гены привлекают к себе внимание тем, что они обладают свойствами специфичных переключателей. К этому классу принадлежит, возможно, мутация anemic аксолотля, задерживающая начало синтеза глобина взрослого типа. Идентифицированы генетические элементы, контролирующие сроки экспрессии ферментов в онтогенезе нескольких организмов. Эти элементы, которые К. Пейджен (К. Paigen) назвал «временнЫми генами», тесно сцеплены со структурными генами, которые они контролируют, и активны в цис-положении.

В настоящее время наиболее доступны для изучения гены гетерохронии, действующие на переключатели, которые определяют направление развития клеточных линий у нематоды С. elegans. Шалфи (Chalfie) и его сотрудники проанализировали первый из них - мутантный аллель lin-4, вызывающий в клеточных линиях повторение, в результате чего эти линии не могут обеспечить образование дефинитивных клеток, характерных для взрослого организма. Вместо этого вновь и вновь образуются клетки, характерные для личинок первого возраста. Таким образом, в отличие от нематоды дикого типа, проходящей в своем развитии через ряд стадий

зародыш → L1 → L2 → L3 → L4 → взрослый червь,

у мутантов lin-4 наблюдается крайне аномальная последовательность личиночных клеточных линий

зародыш → L1 → L1 → L1 → L1 → L1 .

To есть вместо обычной смены личиночных стадий у них повторяется стадия L1. Аллель lin-4 действует только на эктодермальные линии, не затрагивая многие другие соматические линии и развитие гонад, так что после последней линьки у личинки имеется половозрелая гонада. На каждой личиночной стадии кутикула обладает характерной, специфичной для данной стадии морфологией и белковым составом. Согласно Коксу, Стапрансу и Эдгару (Сох, Staprans, Edgar), существует, по-видимому, до 30 различных коллагеноподобных белков, экспрессирующихся на разных стадиях на протяжении личиночного развития. Кутикула реитеративного мутанта lin-4 сходна по своей морфологии с кутикулой нормальной личинки стадии L2 и имеет соответствующий белковый состав. Этого и следовало ожидать, потому что одна из функций нормальной личинки стадии L1 состоит в том, чтобы при первой линьке образовать кутикулу для личинки L2.

Второй сходный, но иной ген в настоящее время изучают Амброс и Хорвитц (Ambros, Horvitz). Некоторые мутантные аллели в этом локусе обусловливают выпадение делений, характерных для клеточных линий в течение стадии L1, что приводит к ускорению морфологического развития. Переходы из одной личиночной стадии в другую у С. elegans, возможно, соответствуют метаморфозам, главным переходным стадиям, на которых происходят существенные переключения. Хорвитц, Стенберг и Амброс, а также Эдгар считают, что эти стадии можно рассматривать как «временные компартменты», аналогичные пространственным компартментам дрозофилы, обнаруживаемым частично благодаря функциям генов-переключателей Antennapedia и bithorax. Таким образом временные переключатели, возможно, имеются у С. elegans.

Последняя и крайне существенная характеристика органической эволюции состоит в том, что морфогенез, по-видимому, управляется относительно небольшим числом регуляторных генов. У Drosophila melanogaster - наиболее хорошо изученной генетической системы среди Metazoa - общее число генов достигает примерно 5000. Значительная доля этих генов необходима для развития, но только для небольшой их части установлено, что они необходимы для принятия решений при выборе направления морфогенеза. Эта тема неоднократно возникала в нашей книге при рассмотрении отдельных примеров. Всего лишь 10 генов должны были измениться, чтобы возникли значительные различия в морфологии головы, наблюдаемые между гавайскими дрозофилидами D. heteroneura и D. silvestris (см. рис. 3-8). Неясно, в чем заключается действие именно этих морфогенетических генов; вероятнее всего, они влияют на весьма разнообразные процессы, в том числе на спецификацию позиционной информации, сроки развития и индукционные события. Для того чтобы выявить природу модификаций, происходящих в программе развития, необходимо провести подробный анализ развития. Возможно, что эти 10 генов составляют лишь небольшую долю генов, участвующих в морфогенезе головы, - ту их долю, которая участвует в каком-то частном эволюционном изменении. Тем не менее это небольшое число соответствует результатам других исследований, на основании которых выводилось число регуляторных генов.

Наилучшими примерами генов, контролирующих морфогенез, служат гены, регулирующие положение, число и индивидуальность головных, грудных и туловищных сегментов у дрозофилы. Гены, определяющие сегментарное строение, можно разделить на два больших класса: гены, которые активны во время оогенеза и создают в яйце позиционную информацию, и гены, которые активны во время эмбриогенеза и участвуют в интерпретации позиционной информации. Лишь два гена, участвующие в установлении позиционной информации, хорошо изучены. Существование этих генов было выявлено благодаря двум мутациям с материнским эффектом, - bicaudal и dorsal, изученным Нюсслейн-Фольгардом (Nusslein-Volhard). Были открыты также другие гены с материнским эффектом и аналогичными функциями. Согласно Вишаузу (Wieschaus), частота обнаружения таких мутаций указывает, что общее число этих генов, вероятно, не намного выше 20.

Существуют два подкласса генов, активных во время эмбриогенеза, которые можно выявить по их мутациям, нарушающим сегментацию. Считается, что члены первого подкласса кодируют продукты, функция которых состоит в интерпретации получаемой от материнского организма позиционной информации, необходимой для детерминирования местоположения сегментов и их числа. В то же время члены второго подкласса интерпретируют позиционную информацию, необходимую для детерминирования индивидуальности (т.е. специфических особенностей) каждого сегмента. В результате проведенных Нюсслейн-Фольгардом и Вишаузом систематических поисков было обнаружено 15 разбросанных по геному мутантных локусов, которые обусловливают отклонения в числе сегментов и их полярности. Позднее было выявлено еще семь таких генов. Мутантные аллели распадаются на три обособленные категории: гены, оказывающие влияние на большой участок зародыша; гены, влияющие на пары сегментов; гены, влияющие на отдельные сегменты. Возможно, что существование этих категорий указывает на постепенность в установлении сегментации, а, судя по числу выявленных мутантов, 22 обнаруженных гена составляют преобладающее большинство генов этого типа.

Интерпретация позиционной информации, необходимая для детерминирования индивидуальности сегментов, связана с функционированием генов Рс (Polycomb) и esc (extra sex comb), которые, как указывают Льюис и Штруль (Lewis, Struhl), служат регуляторами комплексов Antennapedia и Bithorax. Примерно 15 генов, входящих в эти два комплекса, экспрессируются в течение зародышевого развития и детерминируют индивидуальные особенности отдельных сегментов и последующую морфологическую дифференцировку каждого из них. Таким образом, примерно 50-60 генов, активных во время оогенеза и зародышевого развития, достаточно для создания основной морфогенетической программы сегментации. Нет сомнений, что на последующих стадиях морфогенеза функционирует ряд других генов. Однако представляется вероятным, что, хотя для всей совокупности подпрограмм, определяющих морфогенез структур в пределах одного сегмента, может понадобиться большое число генов, для каждой отдельной структуры, возможно, требуется лишь несколько основных команд. Это заключение еще нуждается в подтверждении; однако в пользу того, что для каждой отдельной подпрограммы достаточно наличия ограниченного числа переключателей, свидетельствуют данные об участии в детерминировании числа пальцев на лапах морской свинки всего лишь четырех генов.

Все это имеет глубокие последствия для эволюции. В онтогенезе принимают участие многочисленные гены, экспрессирующиеся в целом комплексе очень стабильных процессов. У дрозофилы примерно треть общего числа генов, поддающихся выявлению, экспрессируется специфичным для развития образом и необходима для успешного завершения определенных стадий развития. Тем не менее число переключателей невелико и изменения в переключаемых функциях могут оказывать глубокое влияние на морфогенез. Важно отметить, однако, что эволюция - процесс многоступенчатый. Главное значение изменений генов, несущих регуляторные функции, состоит, возможно, в создании изменений онтогенеза, которые затем служат сырьем для дальнейших изменений в каком-либо новом направлении. Дальнейшее изменение и консолидация этого нового направления происходят путем возникновения мутаций в генах, модифицирующих главный регуляторный ген. В процессе всех этих эволюционных переходных стадий морфогенеза могут сохраняться канализация и интеграция.

 

Интеграция

В своем анализе переворотов в науке Томас Кун (Thomas Kuhn) высказал мнение, что главная отличительная черта этих переворотов - изменение взгляда на мир, или то, что Кун называл парадигмой. Наблюдения, которые прежде было трудно истолковать, укладываются теперь в рамки связной теории, способной делать предсказания и давать объяснения. Биология пережила свою долю переворотов, в том числе тот из них, который вызвала дарвиновская теория эволюции, оказавшая в разных формах самое глубокое влияние не только на биологию, но и на общество в широком смысле. Один из крупных недавних переворотов произошел в 1961 г., когда Франсуа Жакоб и Жак Моно (Francois Jacob, Jaques Monod) опубликовали свою модель оперона, контролирующего экспрессию генов у бактерий. Эта модель позволила связать экспрессию структурных генов с контролирующей активностью некоего белка, кодируемого регуляторным геном, локализованным в каком-то другом участке генома; она позволила также объяснить, каким образом проникающие в клетку малые молекулы могут взаимодействовать с регуляторным белком, координируя экспрессию структурных генов, участвующих в отдельных метаболических процессах. Модель оперона положила начало периоду увлекательных и плодотворных исследований генной регуляции у бактерий. Не удивительно, что успешность предсказаний, сделанных с помощью этой модели, и ее огромная эвристическая ценность неизбежно привели к ее приложению к организации геномов Metazoa. После того как геномы Metazoa были лучше изучены, первоначальные оптимистические попытки непосредственного приложения к ним модели оперона пришлось признать наивными. Тем не менее от этих попыток осталось некое наследство в виде концепции о регуляции экспрессии структурного гена продуктами удаленных от него регуляторных элементов, которые взаимодействуют с регуляторным сайтом, примыкающим к этому структурному гену. Как и у прокариот, генная регуляция у Metazoa в значительной мере состоит, по-видимому, в регуляции структурных генов, необходимых для дифференцировки, поддержания существования и метаболизма клеток. В отличие от прокариот Metazoa образуют клетки многих разных типов, организованные в различные дискретные и стабильные ткани. Для регуляции экспрессии структурных генов в этих разных клетках или тканях необходима координированная экспрессия набора генов, специфичных для клеток каждого типа, а также экспрессия более обширного набора генов, активных в клетках многих или даже всех типов. Широко известная модель для такого рода цитоспецифичной координации регуляции генных комплексов была предложена Бриттеном и Дэвидсоном (Britten, Davidson) в 1969 г.; она схематически изображена на рис. 12-2. Интеграция обеспечивается в результате активации сенсорных последовательностей, реагирующих на воздействия извне, которым подвергается клетка (например, гормоны или индукционные сигналы от соседних клеток). Эти последовательности в свою очередь активируют особые гены-интеграторы, каждый из которых продуцирует молекулы специфичного активатора. Активаторы в свою очередь вступают во взаимодействие с соответствующими регуляторными последовательностями, примыкающими к структурным генам, и включают их, допуская их транскрипцию. Бриттен и Дэвидсон полагают, что активаторы - это транскрипторы умеренно повторяющихся последовательностей ДНК и что они непосредственно взаимодействуют, благодаря своей комплементарности с соответствующими повторяющимися последовательностями, действующими как примыкающие к генам контролирующие элементы. Очевидно, в этой формальной модели активаторами могут служить и белки.

В более позднем описании своей модели Дэвидсон и Бриттен указывают, что в таких случаях, как у зародышей морских ежей, у которых во всех клетках или на всех стадиях, по-видимому, содержатся одни и те же ядерные транскрипты, но различные наборы мРНК, интеграция может осуществляться при помощи транскриптов повторяющихся последовательностей, воздействующих на процессинг транскриптов, содержащих комплементарные копии данной повторяющейся последовательности. Однако, как показали Дермен и др. (Derman et al.), в исследованных ими тканях млекопитающих разнообразие мРНК зависит от дифференциальной транскрипции. Несмотря на потенциальную важность процессинга РНК для регуляции генной репрессии, первоначальная модель регуляции транскрипции, предложенная Бриттеном и Дэвидсоном, может служить разумным приближением к тому, как может происходить тканеспецифичная интеграция действия генов.

Рис. 12-2. Функции тканевой интегрирующей системы, регулирующей характер экспрессии батарей генов в клетках двух разных типов. Толстыми стрелками показаны индукционные или гормональные сигналы, поступающие в клетку извне. Эти сигналы вступают во взаимодействие с соответствующим сенсором, активируя определенный ген-интегратор. Продукт этого гена взаимодействует со специфическими регуляторными генами (R), примыкающими к структурным генам (Р). (Схема основана на модели Бриттена и Дэвидсона.)

Следует обратить внимание на некоторые особенности этой модели. Во-первых, гены могут использоваться в различных сочетаниях, образуя характерные тканеспецифичные батареи активных генов. Во-вторых, в такие батареи может входить большое число генов и, как указывает Кауфман (Kauffman) крупномасштабные взаимодействующие сети стабильны. Стабильность их может быть усилена наличием петель обратной связи, в которых продукт активированного структурного гена, являющегося членом такой батареи, может в свою очередь поддерживать активность соответствующих генов-интеграторов. В результате образуется усилительный контур, поддерживающий тканевую дифференцировку даже в отсутствие первоначального индукционного сигнала. В-третьих, для активации сложной батареи генов, определяющих биохимическую дифференцировку какой-либо ткани, необходим всего лишь простой набор сигналов, поступающих извне. Это согласуется с простотой химического строения гормонов и индукторов.

Установлено существование регуляторных элементов, обладающих некоторыми свойствами, постулированными для регуляторов тканевой интеграции. Абрахам и Доан (Abraham, Doane) на очень выразительном примере показали, что локализованная экспрессия структурного гена, кодирующего α-амилазу в заднем участке средней кишки дрозофилы, контролируется регуляторным геном, активным в транс-положении. Как обнаружил Диккинсон (Dickinson), ген альдегидоксидазы у дрозофилы контролируется как удаленным от него регуляторным элементом, активным в транс-положении, так и, по-видимому, примыкающим элементом, активным в цис-положении. Контролирующее действие тканеспецифично. Оказалось, например, что один интересный вариант регулятора вызывает повышение уровня альдегидоксидазы в придаточных половых железах самца, но не оказывает действия на уровень этого фермента в других тканях. Этот аллель расположен вблизи структурного гена и действует, находясь в цис-положении. Диккинсон и Карсон (Dickinson, Carson) обнаружили также регуляторные элементы, активные в цис-положении, которые регулируют экспрессию гена алкогольдегидрогеназы в процессе развития у гавайских Drosophilidae. Интересно отметить, что, согласно Рабинау и Диккинсону (Rabinow, Dickinson), активный в цис-положении регуляторный элемент гена алкогольдегидрогеназы контролирует экспрессию этого гена на уровне синтеза мРНК.

В соответствии с нашими прежними обобщениями относительно регуляции развития, модель Бриттена и Дэвидсона выявляет функции переключения. Однако содержащихся в ней интегрирующих регуляторов недостаточно для управления морфогенезом. Например, передние и задние конечности позвоночных образованы из одних и тех же тканей: поперечнополосатых мышц, кожи, нервной и соединительной тканей и т. п. Если провести тонкий анализ тканей руки и ноги, то окажется, что они идентичны по характеру генной экспрессии, обладают одинаковыми тканеспецифичными батареями генов и тканевыми интегрирующими системами. Интеграция на уровне ткани действительно существует и играет важную роль в развитии, но для морфогенеза необходима интеграция иного рода, с участием иерархических систем, способных производить двоичный выбор в ответ на пространственно детерминированные типы информации. Такую интеграцию на уровне организма мы называем организменной интеграцией.

Природа организменной интеграции и ее генная регуляция наиболее четко выступают в регуляции индивидуальности сегментов у дрозофилы. Средне- и заднегрудь дрозофилы состоят в основном из одних и тех же тканей, но расположение тканей в этих двух сегментах сильно различается. Для подпрограмм, определяющих становление морфологии отдельных структур сегментов, необходима генетическая информация, детерминирующая клеточные морфогенетические процессы, перемещения клеток, изменения их формы, типы деления клеток и сродство между ними. Эти подпрограммы, обеспечивающие перевод генетической информации в морфологические структуры, пока еще мало изучены, хотя Гарсиа-Беллидо и Риполл (Garcia-Bellido, Ripoll) обсуждают некоторые мутации, оказывающие влияние на эти процессы. Это позволяет надеяться, что в будущем удастся провести более глубокий генетический анализ. Мы все еще не в состоянии установить подлинные механизмы морфогенеза, однако уже стало возможным обрисовать систему генных переключателей, при помощи которых первоначально устанавливается индивидуальность отдельных сегментов.

Существенный элемент модели, предложенной Гарсиа-Беллидо, состоит в том, что зародыш на стадии бластодермы содержит систему позиционной информации, определяющей положение по переднезадней и дорсовентральной оси. Степень экспрессии генов-активаторов, которые, возможно, соответствуют регуляторным генам extra sex comb и Poly comb, детерминируется локальным уровнем позиционной информации в небольшом участке поверхности бластодермы. Ширина полоски бластодермы, дающей начало одному сегменту, примерно соответствует диаметру трех или четырех клеток (Lohs-Schardin et al.). Уровень экспрессии гена-активатора в каждой узкой полоске клеток бластодермы детерминирует, какой из генов-селекторов (членов комплексов Bithorax или Antennapedia) должен быть в данный момент включен или выключен. Комбинация генов-селекторов, активных в каждом просегменте, регулирует экспрессию наборов генов, ответственных за реализацию подпрограмм, которые определяют морфологию отдельных сегментов. Продукты генов-активаторов действуют как репрессоры. Когда гены-селекторы комплексов ВХ-С (Bithorax) почти полностью репрессированы, активируется следующий набор генов, специфицирующих характер морфогенетических событий, ведущих к образованию структур среднегруди. По мере включения дополнительных членов комплекса ВХ-С активируются все более дивергентные наборы генов, действующих на уровне фенотипической реализации. Все это приводит к прерывистому морфологическому развитию от «исходного состояния», которым для сегментов, управляемых комплексом ВХ-С, является морфология среднегруди. Так, передне-грудь по многим признакам сходна со среднегрудью, тогда как брюшные сегменты отличаются от нее очень сильно. Наиболее резкие отклонения от исходного состояния наблюдаются в восьмом брюшном сегменте, в котором гены-активаторы бездействуют, а все члены комплекса ВХ-С активны.

Эта модель генетической регуляции обрисовывает иерархическую контролирующую систему, действующую при помощи каскада генов-переключателей. Гены-активаторы участвуют в ней в качестве контролеров, уровни активности которых детерминируются характеристиками позиционной информации в данном сегменте. Гены-селекторы дифференцированно активируются в зависимости от положения клетки в бластодерме и сами действуют как комбинаторные переключатели в завершающем наборе морфологических подпрограмм. Эта система не занимается интеграцией на тканевом уровне. Экспрессия структурных генов, входящих в те батареи, которые детерминируют ткани, несомненно, координирована с экспрессией генов, контролирующих морфогенез; однако, ввиду того что в тканях различных компартментов экспрессируются одни и те же или очень сходные генные батареи, они, вероятно, регулируются тканевыми интегрирующими системами, обособленными от организменной интегрирующей системы. Кутикулы средне- и заднегруди идентичны по составу, но различаются по морфологии. В самом общем смысле тканевые интегрирующие системы, очевидно, обеспечивают образование основных типов клеток, тогда как организменная интегрирующая система определяет становление формы. Существование этих координированных, но раздельных систем интеграции подтверждается многочисленными примерами, свидетельствующими о диссоциации между цитодифференцировкой и морфогенезом.

 

Краткая анекдотичная и недокументированная история

Если, как мы полагаем, существуют обособленные тканевые и организменные интегрирующие системы, то в таком случае их эволюция в процессе возникновения разнообразия Metazoa шла совершенно разными путями. Животные возникли в позднем докембрии, и никаких сведений о ранней эволюции первых Metazoa не сохранилось. Подобно Геккелю, мы должны строить наши предположения об их истории на основании того, что нам известно о ныне живущих организмах, и того, что по нашему ощущению (опасное занятие) можно считать общими принципами. Самые первые многоклеточные животные столкнулись с двумя важными проблемами: созданием и поддержанием стабильных тканей и изобретением онтогенеза. Как и при всех других эволюционных переходах, для решения этих проблем не было придумано чего-либо совсем нового. Необходимые для зачаточных процессов развития генетическая и клеточная системы уже существовали у их одноклеточных предков. Некоторые простейшие, такие как ресничные (инфузории), обладают чрезвычайно сложной морфологией; другие, такие как вольвокс, приближаются к многоклеточным организмам, поскольку их клетки дифференцированы на соматические и половые, и в процессе развития у них наблюдаются морфогенетические движения, напоминающие гаструляцию.

Простейшие развиваются и преуспевают в самых разнообразных направлениях, но все они имеют относительно небольшие размеры, что обусловлено физическими причинами и ограниченностью массы цитоплазмы, существование которой может поддерживаться одним ядром. Эти предельные размеры несколько превышаются у крупных ресничных, достигающих длины порядка 1 мм, т.е. достаточно крупных, чтобы нападать на самых мелких Metazoa. Ресничные увеличили свои размеры и сложность, оставаясь при этом одноклеточными организмами, благодаря тому что они приобрели себе полиплоидные макронуклеусы, контролирующие соматические функции. Эти ядра могут поддерживать скорости транскрипции, необходимые крупным клеткам, но процессы внутриклеточного транспорта протекают у них достаточно вяло, что ограничивает диапазон регуляторных возможностей даже макронуклеуса. Несмотря на успешное завоевание простейшими самых разнообразных сред - от приливных заводей до рубца коровы, - крупные размеры, которых им недостает, все же дают явные преимущества, особенно в тех случаях, когда решается вопрос о том, кто кого съест.

Клеточные преадаптации простейших были, возможно, наследством, которое получили первые многоклеточные формы. Этих преадаптации могло оказаться достаточно для обеспечения дифференцировки, необходимой самым простым Metazoa, каких себе только можно представить, т.е. не слишком далеко ушедшим по сложности от некоторых ныне живущих простейших. Такое животное, вероятно, было невелико, по меркам Metazoa и в некоторых отношениях походило на опалину-крупное жгутиковое одноклеточное, в цитоплазме которого содержится несколько сот ядер. Для превращения какого-либо опалиноподобного одноклеточного в многоклеточный организм достаточно было, чтобы эти ядра отделились друг от друга мембранными перегородками. Дифференцировка клеток на внутренние пищеварительные и наружные ресничные эпителиальные клетки требует введения всего лишь одного переключателя, который контролировал бы в двух пространственно разобщенных клеточных популяциях дифференциальную экспрессию программ тех функций, которые прежде выполнялись клетками одного типа. Возникшие таким образом зачатки тканевых и организменных интегрирующих регуляторов сделали возможным появление организма, внешне сходного с планулой (личинка кишечнополостных) или с бескишечными (Acoela) плоскими червями. Таковы последовательные ступени морфологической организации, которые по понятным причинам дороги тем, кто строит филогенетические гипотезы относительно происхождения Metazoa.

Наше гипотетическое животное обладает еще одним дополнительным признаком - обособленными первичными половыми клетками. Разделение клеток на соматические и половые лежит в основе организации Metazoa. Для Metazoa характерно половое размножение, а для образования гамет необходимы клетки, способные к мейозу и последующему слиянию с другой гаплоидной клеткой, с тем чтобы могло начаться развитие. Для того чтобы была возможна хоть какая-то дифференцировка клеток, не все клетки организма должны быть способны давать начало гаметам. В отличие от большинства простейших, у которых весь организм превращается в гаметы, у Metazoa для этого должна образоваться отдельная клеточная популяция. Предшественников подобного основного функционального разделения можно видеть у таких примитивных организмов, как клеточные слизевики Dictyostelium; у них в определенные периоды жизни образуются смертные соматические клетки, образующие стебель, на котором находится плодовое тело, несущее бессмертные половые клетки - споры. Согласно одной из книг Ветхого завета, Книги Бытия, смерть была расплатой за познание. На самом деле, как это не прозаично, она была расплатой за многоклеточность.

Эволюция необходимых индукционных систем в сочетании с эволюцией новых систем тканевого взаимодействия сделала возможным возникновение батарей новых генов для создания новых типов тканей. Поскольку даже у самых примитивных групп Metazoa имеются клетки нескольких разных типов, на этом уровне эволюции могли возникнуть многие из основных типов тканей. Такие ткани, как мышечная, нервная, эпителий кишечника, и покровный эпителий, по-видимому, возникли очень давно и оставались удивительно стабильными на протяжении длительных периодов эволюции, в то время как организменные интегрирующие системы подвергались модификациям. Поэтому изменения морфологии, столь ярко выраженные у млекопитающих и насекомых, возникли как бы в результате отливки прежних тканей в новые формы. Это краткое обсуждение происхождения Metazoa настолько упрощено, что может возникнуть мысль, будто объяснение процессов филогенеза и онтогенеза этих животных - задача тривиальная. На самом деле это не так, однако об истинном ходе событий сведений столь мало, что мы можем лишь строить гипотезы. Суть наших рассуждений сводится к тому, чтобы показать, что многие тканевые интегрирующие системы чрезвычайно древние. Основные организменные интегрирующие системы у животных тех типов, которые уже вполне сформировались к кембрию и ордовику, также возникли очень давно. Однако изменения именно организменных интегрирующих систем служат основной движущей силой морфологической эволюции.

 

Новшества

В 1860 г. Луи Агассиц (Louis Agassiz), который возглавлял научную оппозицию дарвиновской теории эволюции в Америке, выразил свое возмущение опубликованием «Происхождения видов» в гневной рецензии. В числе возражений, выдвинутых Агассицем против приводимых Дарвином доказательств эволюции, было следующее:

«Если бы только сторонники выдвигаемых за последнее время фантастических теорий вышли хоть немного за пределы изучения домашних животных, если бы они занялись исследованием чередующихся поколений у Acalephae, необыкновенных способов развития у гельминтов, размножения у сальп и т.д. и т.п., то они вскоре поняли бы, что в мире существуют гораздо более удивительные явления, вполне укладывающиеся в естественные пределы, очерченные неизменяемостью видов, чем незначительные различия между одомашненными животными, вызванные вмешательством человека, и, быть может, перестали бы так твердо верить, как они, по-видимому, верят сейчас, что эти различия служат надежными указаниями на изменчивость видов».

Возражение Агассица можно поставить с ног на голову, потому что как раз возможность разных путей развития на базе одного генома и сложности морфогенетических программ, обсуждавшиеся в гл. 9, поставляют сырье для эволюционного изменения. Благодаря гетерохрониям у репродуктивно зрелых взрослых особей могут сохраняться ювенильные признаки. Модификации временных связей между подпрограммами или разобщение индукционных событий, происходящие при морфогенезе, служат эволюционными механизмами, изменяющими течение развития и создающими тем самым новые стратегии личиночной жизни, такие как прямое развитие на суше у некоторых тропических лягушек или новые дефинитивные ткани и морфологии. Известно немало примечательных примеров таких трансформаций развития, и мы хотим понять их генетические и морфогенетические механизмы. Однако в замечании Агассица есть один важный момент, не утративший своей силы. В попытке свести сложность эволюционных явлении к поддающимся управлению парадигмам таится некая опасность. В нашем собственном анализе есть известный риск, поскольку мы допускаем сверхупрощение, когда полагаем, что только регуляторные, но не структурные гены играют важную роль в морфологической эволюции, а среди регуляторных генов действительно существенны только гены, обеспечивающие интеграцию на уровне организма в целом, но не на тканевом уровне. Это гораздо более «одномерное» заключение, чем нам хотелось бы. В сущности, во многих эволюционных событиях участвуют генетические изменения разного рода, которые тонко переплетаются друг с другом и приводят к возникновению новых структур и типов поведения, открывающих новые адаптивные возможности. Одним из таких событий было возникновение млечных желез.

Значение млечной железы состоит в том, что это относительно новый орган, возникший при переходе от звероподобных рептилий к истинным млекопитающим. Обладание млечными железами повысило эффективность размножения млекопитающих и через связь между матерью и детенышем положило начало ряду изменений поведения, которые могли внести определенный вклад в прогрессивное развитие мозга млекопитающих. Наиболее вероятными предшественниками млечных желез были потовые или другие кожные железы. Охлаждение путем испарения, осуществляемое благодаря потовым железам, было, возможно, одной из ранних адаптации в группе животных, у которых начала развиваться гомойотермия и изощренные механизмы терморегуляции. Как полагал Чедвик (Chadwick), предки млекопитающих были мелкими животными, и вполне возможно, что их детенышам в первые несколько дней жизни грозило обезвоживание. Потовые железы могли достигнуть особенно сильного развития у насиживавших яйца звероподобных рептилий как способ снабжения детенышей водой и минеральными веществами.

Морфогенез млечной железы у трех современных подклассов млекопитающих, которому посвящен обзор Рейно (Raynaud), отражает последовательные стадии возрастания сложности этой железы в процессе эволюции. У однопроходных, или яйцекладущих, млекопитающих нет четко выраженного соска; примерно 100 трубчатых желез просто открываются на брюшной поверхности, по обе стороны от средней линии. У отверстия каждой железы имеется жесткий волос. Секрет железы стекает по этому волосу, а детеныш слизывает его. У сумчатых предшественники млечной железы дифференцируются, образуя почки трех типов. Эти почки в свою очередь дают начало связанным с млечными железами волоскам (mammary hairs) или же млечным или сальным железам. У сумчатых такие волоски - временные образования, а у плацентарных млекопитающих зачатки млечных желез уже не связаны ни с зачатками волос, ни с зачатками сальных желез.

Как уже было сказано в гл. 5, морфогенез основной моноподиальной млечной железы индуцируется в покровном эпителии мезенхимой млечной железы. Для самого главного изменения в характере организменной интеграции необходимо было установление связи между регуляцией морфогенеза млечных желез и гормонами, стимулирующими пролиферацию железистых элементов в период полового созревания и беременности. Пролиферация на этих стадиях онтогенеза требует репликации основных компонентов железы. Эволюционные изменения в структурах млечных желез повлекли за собой концентрирование железистых элементов в дискретные агрегаты, соединенные с соском. Как и при всех эволюционных изменениях морфологии, изменения происходили в генетических системах, контролирующих морфогенез кожных желез, от которых произошли млечные железы. Однако мы выбрали для обсуждения этот пример именно потому, что в эволюции млечных желез столь большую роль явно сыграли изменения в тканевой интеграции и в эволюции структурных генов.

Описания развития млечных желез, подобные сделанным Форсайтом и Хайденом (Forsyth, Hayden), показывают, что для начальных стадий индукции и развития этих желез гормоны не нужны; однако на стадии перехода от юного возраста к зрелости необходима группа гормонов: эстроген, гормон роста и стероидные гормоны надпочечников. Для интенсивной пролиферации протоков и альвеол во время беременности необходимы несколько гормонов, в частности эстроген, прогестерон и пролактин. На поверхностях клеток млечных желез имеются мембранные рецепторы для этих гормонов. Очевидно, дифференцировка и функционирование ткани этих желез происходят в ответ на сигналы, которые, согласно модели Бриттена и Дэвидсона, должны взаимодействовать с сенсорными элементами.

Несмотря на давность этих событий, связь между пролактином и эволюцией млечных желез можно вполне представить в свете данных Берна (Bern), Дента (Dent) и Найкола (Nycoll) о разнообразии ролей, исполняемых пролактином. Пролактин - это белковый гормон, родственный по аминокислотной последовательности гормону роста, от которого, как полагает Найалл (Niall), он, вероятно, дивергировал после генной дупликации, возникшей на ранних стадиях эволюционной истории позвоночных. В отличие от большинства других гормонов роль пролактина у первых позвоночных не была ограничена выполнением какого-то определенного набора специализированных функций. Напротив, он сохранил способность участвовать в разнообразных процессах. У представителей всех классов позвоночных пролактин принимает большое участие в осморегуляции и оказывает существенное влияние на дифференцировку эпителиальных структур, связанных с размножением. У рыбы дискус (Symphysodon discus) пролактин стимулирует секрецию кожей слизи, которой питаются мальки; развитие брачных мозолей у самцов лягушек, развитие наседного пятна у птиц во время насиживания яиц и лактацию у самок млекопитающих. Возможно, что пролактин участвует в регуляции накачивания ионов в млечные железы. У млекопитающих пролактин стимулирует активность сальных желез, однако на потовые железы он, по-видимому, не влияет.

Если млечные железы возникли из потовых желез, что представляется вероятным, то их регуляция пролактином и другими гормонами установилась в процессе эволюции новой тканевой интегрирующей системы. Такое предположение разумно, поскольку предковая млечная железа должна была быть гормонально связана с регуляцией репродуктивных функций, тогда как у ее эволюционных предшественников такой необходимости не было.

По механизму своего действия пролактин, по-видимому, функционирует как сигнал, вызывающий активность специализированной батареи генов в млечной железе. Согласно Розену (Rosen), сделавшему обзор новейших исследований, проводившихся в его собственной и других лабораториях, пролактин, взаимодействуя с клетками млечных желез, повышает количество мРНК, кодирующих белки молока. В период лактации казеиновая и α-лактальбуминовая мРНК составляют свыше 80% всей мРНК этих клеток. Используя специальные пробы клонированной ДНК, Розен и его сотрудники установили, что содержание казеиновой мРНК у лактирующих крыс увеличено в 300 раз по сравнению с очень низким ее уровнем в млечных железах девственных животных. Нихаси и Казба (Nakhasi, Qasba) обнаружили тот же эффект для α-лактальбуминовой мРНК. Пролактин вызывает как повышение скорости транскрипции, так и понижение скорости распада этой мРНК.

В эволюционной интеграции новой батареи генов, определяющих специализированную цитодифференцировку млечных желез, участвуют два процесса. Это, во-первых, установление связи с гормональной регуляцией, с тем чтобы секреторная активность предковой железы была согласована с размножением. Первоначальная батарея активируемых таким образом структурных генов состояла из генов, типичных для желез, которые служили эволюционными предшественниками млечных желез. Клеточные механизмы секреции в млечных железах, описанные Мефемом (Mepham), сходны с механизмами других секреторных клеток и, по всей вероятности, существовали в предковой железе. Таким образом, новая регуляторная система, действующая на подмножество эпидермальных желез, могла захватить уже существующую батарею генов и использовать ее. Эволюция подлинной млечной железы, возможно, потребовала в дальнейшем эволюционной интеграции специализированных структурных генов для достижения секреции оптимального питательного вещества. Новые члены батареи генов млечной железы могли возникнуть двумя путями: путем мобилизации предсуществующих генов и путем эволюции новых генов.

Интеграция предсуществующих структурных генов в батарею может быть достигнута при помощи новой активной в цис-положении регуляторной последовательности, помещенной рядом со структурным геном. Как это четко указал Диккинсон (Dickinson), модификация активных в цис-положении регуляторных элементов могла создать возможность для эволюционных изменений в программе экспрессии отдельных генов, не нарушая программы развития в целом. Появление нового активного в цис-положении регуляторного элемента могло быть результатом точковых мутаций в предсуществовавшем регуляторном элементе, активном в цис-положении; возможно, однако, что более быстрые изменения происходили с помощью совершенно иного механизма - транспозиции соответствующих предсуществующих регуляторных элементов из других мест генома. Эукариотические клетки содержат подвижные элементы, способные стабильно включаться в геном. Эчолс (Echols) высказал мнение, что система репрессии, поддерживающая эту стабильную интеграцию, при некоторых стрессах может быть преодолена. Один особенно интересный случай наблюдается у Drosophila melanogaster. При скрещивании некоторых выловленных в природе мух с линиями, долгое время содержавшимися в лаборатории, наблюдается высокая частота мутагенеза, кажущегося спонтанным. Этот гибридный дисгенез возникает в результате усиления подвижности прежде стабильно интегрированных подвижных элементов. Эчолс представил себе аналогичную индукцию новых генотипов в таких условиях среды, к которым популяция плохо приспособлена. Его предположения о быстрой эволюции регуляторных систем подтверждаются наблюдениями Диккинсона, что в тканях близкородственных видов гавайских Drosophilidae гомологичные структурные гены, кодирующие алкогольдегидрогеназу и альдегидоксидазу регулируются на резко различных уровнях. Использование клонированных проб на эти гены дало бы возможность провести непосредственную экспериментальную проверку предположения о том, что эти изменения возникли в результате перестановки регуляторных элементов, активных в цис-положении.

Последний компонент в эволюции млечных желез - возникновение новых структурных генов, определяющих функции, специфичные для этих желез. Молоко содержит несколько белков, встречающихся только в млечных железах. К числу этих белков, обзор которых дал Джиннесс (Jenness), относятся несколько казеинов, β-лактоглобулин и, что нам здесь особенно важно, α-лактальбумин. Именно этот белок, функция которого, как это ясно показал Джонс (Е. A. Jones), состоит в синтезе лактозы, служит наилучшим примером возникновения нового структурного гена как составной части эволюции нового органа. Критические статьи о функциях и эволюции α-лактальбумина принадлежат Бродбеку и Эбнеру (Brodbeck, Ebner) и Брю (Brew) и его сотрудникам. Ферментом, катализирующим синтез лактозы из уридин-5'-дифосфатгалактозы и уридин-5'-дифосфатглюкозы, является галактозилтрансфераза. Этот фермент обычно обладает низким сродством к глюкозе, за исключением тех случаев, когда он образует комплекс с α-лактальбумином. Этот комплекс обладает высоким сродством к глюкозе, что и обусловливает уникальную способность млечных желез синтезировать лактозу. Молекула α-лактальбумина обладает способностью модифицировать каталитические свойства галактозилтрансферазы из самых разнообразных организмов; оказалось, как это не удивительно, что α-лактальбумин способен заставить синтезировать лактозу даже галактозилтрансферазу, выделенную из лука (Powell, Brew).

Эволюционное происхождение α-лактальбумина ясно. Этот белок в значительной степени гомологичен лизоциму, который гидролизует мукополисахарид, образующий стенку бактериальной клетки, и содержится во многих жидкостях организма млекопитающих. Гены α-лактальбумина и лизоцима встречаются у одного и того же животного. Брю и др. (Brew et al.) высказали предположение, что эти гены, возможно, возникли путем дупликации предкового лизоцимного гена и последующей дивергенции.

Эволюция млечных желез сопровождалась рядом генетических изменений. Модификации тканевой интеграции сделали возможным установление связи между группой кожных, вероятно потовых, желез и гормональной системой, регулирующей размножение. Таким образом возникла новая тканевая интегрирующая система, а вслед за этим началась эволюция новых структурных генов, кодирующих белки. Хоппер и Мак-Кензи (Hopper, McKenzie) обнаружили, что в молоке ехидны (однопроходное) содержится не типичный α-лактальбумин, а лизоцимоподобный белок с α-лактальбуминовой активностью, и высказали предположение, что этот белок является «живым ископаемым». Эволюция этого и других новых белков молока сопровождалась интеграцией нового набора структурных генов в батарею, экспрессируемую в железе, которая подпадает под контроль новой интегрирующей системы. При этом должны были происходить также сопутствующие изменения в интегрирующих системах, участвующих в морфогенезе, с тем чтобы обеспечить как образование самих специализированных желез, так и их интеграцию в организованную структуру, соединенную с соском. Знаменательно, что для ранних независимых от гормонов ступеней в развитии млечной железы было необходимо индукционное воздействие мезенхимы на железистый эпителий. Эксперименты Сакакуры и др. (Sakakura et al.), рассмотренные в гл. 5, позволяют считать, что для этого потребовались также изменения генов, регулирующих индукцию в этой системе, но, поскольку предшественники уже существовали, сравнительно небольшого числа генетических изменений могло оказаться достаточно. В целом создается впечатление, что, хотя эволюция нынешней структуры могла быть результатом многочисленных генных изменений на нескольких регуляторных уровнях, а также возникновения новых структурных генов, для первоначальных шагов, возможно, оказалось достаточным сравнительно небольшое число модификаций уже существующих морфогенетических и гормональных процессов, а также процессов тканевой интеграции.

Если концепция о морфогенетических ограничениях, удерживающих эволюционные направления в известных рамках, имеет какое-то значение, то лишь в том смысле, что наиболее доступный путь для эволюционного изменения - это модификации уже существующих процессов развития. Такая модификация, после того как она утвердилась, в свою очередь делает изменения в одних направлениях более приемлемыми, чем в других. Но если определенные типы морфогенеза налагают ограничения, то они вместе с тем создают и возможности для быстрых эволюционных отклонений в случае изменения давлений, оказываемых отбором на морфологию, ввиду способности к диссоциации и, по-видимому, относительно простой генетической регуляции.

С того времени, когда влияние идей Геккеля о связи между онтогенезом и филогенезом достигло своей высшей точки, прошло сто лет. С тех пор эмбриология и эволюционная теория развивались в значительной мере своими путями. Эволюционная теория сильно интегрировалась с одним из разделов генетики, тогда как биология развития следовала программе, созданной Ру (Roux) для экспериментальной эмбриологии, и в общем и целом игнорировала генетику. Рихард Гольдшмидт понял, что общую основу для понимания эволюции следует искать в применении генетики к изучению развития. Его представления не получили своевременного признания и модифицировались, но они сохранились. Однако центральной и все еще неразрешенной проблемой остается вопрос о том, каким образом гены направляют процесс создания организма. Решение этой проблемы позволит нам ответить на все еще очень актуальный вопрос, поставленный Шарлем Боннэ более 200 лет назад: «Так скажите мне, пожалуйста, каковы механизмы, управляющие формированием мозга, сердца, легкого и столь многих других органов?»