Эмбрионы, гены и эволюция

Рэфф Рудольф А

Кофмен Томас К

Глава 4

Эволюция и структурная организация яиц и зародышей

 

 

Пространственная организация и начало морфогенеза

Сложные изменения размеров и формы, которые составляют морфологическую эволюцию, могут происходить довольно быстро и достигаются главным образом в результате изменений не структурных генов, а регуляторных элементов, определяющих процесс развития. В дальнейших главах мы еще вернемся к природе этих регуляторных элементов и их эволюции. Здесь же нам необходимо рассмотреть те процессы, с помощью которых информация, закодированная в геноме, экспрессируется во все возрастающей морфологической сложности развивающегося зародыша.

Яйцо - это не просто изотропный реакционный сосуд, содержащий ДНК и другие компоненты, необходимые для транскрипции и трансляции. Яйцо обладает внутренней структурой, которая так же непосредственно, как и ДНК, участвует в определении процессов эмбрионального морфогенеза. Сама инициация процесса развития и изменений во внутренней организации яйца в то время, когда оно начинает дробиться в ответ на активацию спермой, послужило источником для некоторых из самых глубоких разногласий в истории становления эмбриологии как науки.

Ранние эмбриологи столкнулись с кажущимся парадоксом эпигенеза - возникновением животного организма с его сложной структурой из яйца, кажущегося бесструктурным. Или же, как в 1764 г. сформулировал эту проблему ведущий теоретик эмбриологии XVIII в. Шарль Бонне: «Если организованные тела не преформированы, то в таком случае их формирование должно происходить ежедневно, подчиняясь законам какой-то особой механики. Так вот, скажите мне, пожалуйста, какая механика может управлять формированием головного мозга, сердца, легкого и многих других органов?» Существовало лишь одно логическое решение этой дилеммы. Бонне высказал мнение, что в яйце преформирован, заложен в готовом виде, миниатюрный, но вполне сформированный организм, который во время развития лишь увеличивается в размерах, но не становится сложнее. Нам такая идея кажется странной, да она и в самом деле повлекла за собой немало нелепостей, таких как теория вложения, согласно которой у зародыша, изначально содержащегося в яйце, уже есть яичник с яйцами, содержащими еще более мелкие зародыши, и т.д. Делались даже попытки вычислить, сколько зародышей было заключено в яичниках Евы.

Теория преформации не утверждала, что содержащийся в яйце крошечный зародыш-предшественник - это гомункулюс, идентичный по своей структуре той взрослой особи, в которую ему суждено превратиться; она лишь настаивала на том, что преформированные структуры присутствуют в яйце в виде некой организованной сущности, способной к развертыванию с выявлением взрослой формы. Однако идеи Бонне не смогли противостоять становлению эмбриологии как науки, о чем свидетельствует работа К. Бэра (von Baer), показавшего, что морфологическая сложность зародышей возрастает по мере их развития. К. Бэр продемонстрировал, что все дифференцированные ткани позвоночных возникают из трех морфологически простых зародышевых листков: центральная нервная система и покровные ткани - из эктодермы, мышцы и скелет - из мезодермы, а органы пищеварения - из энтодермы. Позднее, в XIX в., Ковалевский показал, что и сами зародышевые листки возникают эпигенетически.

На смену строгому преформизму пришла столь же строгая теория эпигенеза, согласно которой сложные структуры возникают de novo из бесструктурного яйца. Такое представление в свою очередь вскоре было опровергнуто. В конце XIX в. по мере увеличения числа и детальности исследований раннего развития зародышей различных морских животных становилось все яснее, что яйцо содержит определенную морфогенетическую информацию и что разные участки яйца неравноценны по своим потенциям к развитию. Это не был преформизм в понимании Бонне. Сторонники этого нового течения не утверждали, что в яйце заключен организм в миниатюре, но и не считали яйцо бесструктурным. Уже в 1877 г. Ланкестер (Е. Lankester) выдвинул гипотезу, сформулированную в молекулярных терминах:

«Любая дифференцировка клеток, развитие клеток одного типа из клеток другого типа, зависит от внутреннего перемещения физиологических молекул, составляющих протоплазму таких клеток... Эти молекулы... находятся в клетке еще до того, как они становятся доступными наблюдению в результате их выделения и накопления на противоположных сторонах дифференцирующихся клеток. Хотя при рассмотрении клетки под самым сильным микроскопом ее содержимое может казаться однородным, если не считать суспендированных в нем тонкозернистых гранул, вполне возможно и даже несомненно, что в клетке находятся в уже сформированном и индивидуализированном виде разнообразные физиологические молекулы. Процесс разделения, который мы видим, - это лишь следствие дифференцировки, уже существующей, но невидимой.»

Спустя сто лет после провидческой гипотезы Ланкестера мы начинаем постигать сущность «физиологических молекул», участвующих в морфогенезе. В только что оплодотворенных яйцах имеются три информационные системы, взаимодействующие во время развития: ДНК ядерного генома, распределенные по отдельным участкам цитоплазмы информационные макромолекулы и цитоскелетный матрикс, регулирующий местоположение локальных молекулярных событий в цитоплазме. Взаимодействиям между этими информационными элементами в развитии, их изменениям и роли в эволюции главных типов многоклеточных животных и посвящена настоящая глава.

Как указывал К. Бэр, в пределах любой группы животных развитие обычно консервативно. Механическая основа этого наблюдения очевидна. Родственные организмы представляют собой разнообразные выражения одного общего плана строения, основанного на наследовании общего типа развития. Для морфогенеза необходим необычайно сложный комплекс каскадно включающихся взаимодействий, происходящих в зародыше. Ранние стадии развития особенно устойчивы к эволюционным изменениям, потому что внесение любого изменения на ранних стадиях развития оказывает очень глубокое влияние на весь последующий процесс развития. Новый план строения требует значительной модификации всего типа развития; поэтому изменений ранних стадий развития следует ожидать в тех случаях, когда дивергенция организмов достигает такой степени, какую можно видеть между высшими таксономическими категориями - классами или типами. И действительно, в некоторых случаях эволюция новых групп сопровождалась радикальными преобразованиями организаций яйца и зародыша. Примечательно, однако, что ранние стадии развития в некоторых группах оказались столь консервативными, что, в то время как морфология поздних стадий развития и взрослых особей претерпевала глубокие изменения, организация яиц и их дробление упорно оставались сходными. Этот консерватизм послужил одной из главных основ для построения филогенетического древа Metazoa, представленного на рис. 4-1.

Рис. 4-1. Филогенетическое древо Metazoa.

Главный ствол филогенетического древа Metazoa делится на две большие ветви, к каждой из которых принадлежит по нескольку типов. На первый взгляд кажется нелогичным объединение таких несходных типов, как хордовые и иглокожие, в группу вторичноротых или же плоских червей, кольчецов, моллюсков и членистоногих - в группу первичноротых. Но если подробно и внимательно изучить эмбриологию этих форм, то связи между ними начинают выявляться.

Вторичноротые называются так потому, что ротовое отверстие личинки возникает несколько кпереди от бластопора, или того места, где при гаструляции происходит инвагинация клеток, из которых затем образуется первичная кишка зародыша. Яйца вторичноротых после оплодотворения начинают дробиться; при этом митотические веретена в бластомерах попеременно располагаются то параллельно, то перпендикулярно анимально-вегетативной оси яйца. Образующиеся в результате такого радиального дробления бластомеры (или клетки зародыша) располагаются точно друг над другом, как это показано на рис. 4-2 на примере яйца иглокожих. У примитивных позвоночных, таких как амфибии, дробление происходит в основном аналогичным образом.

Подобно вторичноротым, первичноротые получили свое название по месту возникновения у их личинок ротового отверстия, которое образуется у них из бластопора или вблизи него. У большинства главных типов первичноротых дробление спиральное (рис. 4-2). Все эти типы, в том числе немертины, плоские черви, моллюски и кольчецы, объединенные на рис. 4-1 в группу Spiralia, обладают на ранних стадиях эмбрионального развития очень сходным спиральным дроблением, которое, несмотря на в корне различную морфологию взрослых особей этих типов, выдает их близкое эволюционное родство.

Рис. 4-2. Радиальное и спиральное дробление. Показаны зародыши на стадиях двух, четырех и восьми бластомеров. Радиальное дробление типично для иглокожих и других вторичноротых, а спиральное дробление - для многих первичноротых.

На родственные отношения указывает также другой эволюционно консервативный и фундаментальный аспект организации яйца - регионализация, т.е. распределение информационных макромолекул по определенным участкам цитоплазмы. Как у вторичноротых, так и у первичноротых зародыши содержат такие локализованные информационные системы, играющие важную роль в определении судьбы отдельных участков зародыша в процессе развития. Характер локализации этих участков тесно коррелирует с планом дробления, который в свою очередь определяется временем последовательных митотических делений и расположением веретен, что отражает организацию цитоскелетного матрикса яйца. Важнейший аспект функции и эволюции типов организации яиц заключается в том, каким образом эти типы организации обеспечивают дифференциальную экспрессию генов в клетках развивающихся зародышей, и притом в строго определенных их частях.

 

Дифференциальная экспрессия генов в процессе развития

Один из главных и общепризнанных догматов современной эмбриологии состоит в том, что, за исключением нескольких особых случаев, все клетки данного организма, независимо от того какими они становятся в дифференцированном состоянии, содержат в геноме одну и ту же ДНК. Тем не менее экспрессия генов в клетках одного типа явно отличается от их экспрессии в клетках другого типа. Дифференцированные клетки каждого типа обладают свойственной им одним морфологией и поддерживают свой собственный набор синтезируемых белков. Содержащиеся в клетках разного типа матричные РНК (мРНК) также неидентичны. На основе всех этих данных ученые пришли к единодушному мнению, высказанному, например, в 1976 г. Дэвидсоном (Davidson), что дифференцировка обусловливается изменениями дифференциальной экспрессии генов в различных клеточных линиях развивающегося зародыша.

У бактерий экспрессия генов контролируется исключительно регуляторными механизмами, действующими на уровне транскрипции генов, т.е. синтеза мРНК. У эукариот регуляция действия генов более сложная. Регуляция происходит на уровнях транскрипции, процессинга, в результате которого в ядре из большого и сложного первичного РНК-транскрипта образуется соответствующая мРНК, а также на уровне транспорта мРНК из ядра в цитоплазму. Трансляция мРНК после того, как она попадет в цитоплазму, также регулируется разнообразными механизмами. Мы пользуемся достаточно неопределенным термином «генная экспрессия», имея в виду множественность регулирующих механизмов, которые могут здесь действовать.

Начальная детерминированность бластомеров к дифференцировке в определенных направлениях обеспечивается взаимодействием ядерного генома с информацией, находящейся в цитоплазме. Эту гипотезу впервые четко сформулировал Т. Морган (Т. Morgan) в 1934 г. в своей книге «Эмбриология и генетика»:

«Известно, что протоплазма в разных участках яйца несколько различна и что эти различия выявляются более четко в процессе дробления - благодаря происходящему при этом перемещению материалов. Протоплазма поставляет материалы, необходимые для увеличения количества хроматина и для синтеза веществ, вырабатываемых генами. Можно предполагать, что первоначальные различия между участками протоплазмы оказывают влияние на активность генов. Затем гены в свою очередь воздействуют на протоплазму, что приводит к возникновению новой последовательности реципрокных реакций. Такой нам представляется картина постепенного усложнения и дифференцировки различных участков зародыша».

Информационные элементы гипотетического зародыша схематически представлены на рис. 4-3, на котором изображен срез оплодотворенного яйца, содержащего ядро и локализованные цитоплазматические макромолекулы двух типов, показанные мелкими и крупными точками. Цитоскелетный матрикс яйца изображен в виде решетки. Следует указать, что решетка - это просто статичное изображение цитоскелетной системы, которая сама, по-видимому, изменяется с течением развития. После того как началось дробление, каждая клетка зародыша получает ядро, равноценное по содержанию ДНК каждому из других ядер, однако эти ядра оказываются в разном цитоплазматическом окружении. Стрелками на рис. 4-3 показаны потоки информации. Таким образом каждое из ядер, находящихся в различных бластомерах, получает особый сигнал от определенных локализованных макромолекул. Ответ ядра на полученный сигнал зависит от вида макромолекул, локализованных в данном бластомере. Это взаимодействие приводит к инициации ядрами специфичных типов генной экспрессии (изображенной стрелками, выходящими из ядер). Избирательная транскрипция, процессинг и трансляция специфичных частей ядерного генома ведет к биохимической и морфологической дифференцировке клеток зародыша. Еще одно важное взаимодействие изображено стрелками, идущими от одной клетки к другой; это пример индукционного взаимодействия, возникающего между группами клеток зародыша, при котором какое-то вещество, вырабатываемое одной группой клеток, индуцирует в определенное время специфическую дифференцировку другой группы клеток. У хордовых, например, хорда индуцирует дифференцировку вышележащей эктодермы в нервную ткань.

Рис. 4-3. Регионализованные информационные системы яиц и зародышей. Цитоскелет изображен в виде решетки, ядра черные, а регионализованные детерминанты морфогенеза показаны мелкими и крупными точками. Стрелками изображен поток информации. Эта модель чересчур статична, потому что в большинстве случаев детерминанты морфогенеза не бывают локализованы заранее, но перемещаются к своим конечным местоположениям в ходе нескольких первых дроблений (Raff, 1977; с изменениями).

Убедительные примеры локализованности информации, приводящей к специфичной экспрессии генов в разных участках клетки, встречаются редко, однако мы опишем один такой превосходный пример. Примитивные родичи хордовых - асцидии - во взрослом состоянии не особенно примечательны: это мешковидные сидячие формы, по способу питания относящиеся к фильтраторам. Однако личинки большинства видов асцидии не только подвижны, но и обладают неожиданной и интересной морфологией. Строение этих головастикообразных личинок, как показано на рис. 4-4, соответствует основному плану строения тела, типичному для хордовых, т.е. у них имеется спинной нервный тяж и хорда, или примитивный позвоночник. В туловище заключены зачатки половозрелой асцидии, но единственные функциональные эмбриональные структуры туловища - это три сосочка прикрепления на переднем конце тела, сенсорный пузырек, содержащий одноклеточный отолит, и глазок, в котором имеются три клетки хрусталика, пигмент и десяток ретинальных клеток. Эти сенсорные структуры дают личинке возможность ориентироваться по отношению к направлению силы тяжести и к источнику света. Подвижный хвост содержит хорду, состоящую из 40-42 вакуолизированных клеток. Над хордой лежит нервная трубка, а по обе стороны от нее - тяжи, состоящие из поперечнополосатых мышечных клеток, по 18 в каждом тяже. Вся личинка одета оболочкой из эпидермальных клеток. Личинка не питается; она плавает в течение всего нескольких часов, после чего находит себе подходящий субстрат, прикрепляется и претерпевает метаморфоз, превращаясь во взрослую особь, которая ведет сидячий образ жизни и добывает себе пищу путем фильтрации воды.

Рис. 4-4. Головастикоподобная личинка асцидий и ее метаморфоз. А. Свободно плавающая личинка. Б. Личинка, прикрепившаяся к субстрату и начавшая метаморфоз. В. Завершение метаморфоза, сопровождающееся утратой подвижности и сенсорных структур (Korschelt, Heider, 1900).

В 1973 г. Уиттейкер (R. Whittaker) опубликовал исследование по регуляции появления у асцидии Ciona двух ферментов, место синтеза которых в зародыше было установлено. Это ацетилхолинэстераза, появляющаяся только в мышечных клетках на стадии хвостовой почки, и тирозиназа, появляющаяся на этой же стадии только в двух пигментных клетках нервного узла. Подавляя дробление в разные сроки, Уиттейкер получал зародыши, прекратившие развитие на стадии 2, 4, 8, 16 или 32 клеток (нормальный зародыш к моменту появления двух названных ферментов, т. е. спустя 9-12 ч после оплодотворения, состоит примерно из 1000 клеток). Зародыши, дробление которых было прекращено, оставались живыми и синтезировали тирозиназу и ацетилхолинэстеразу в то же самое время, что и нормальные зародыши. Самый важный результат этих экспериментов состоял в том, что синтез ферментов у зародышей с подавленным дроблением был пространственно локализован. Если дробление приостанавливали на стадии двух бластомеров, то оба они синтезировали ацетилхолинэстеразу, но при остановке развития на более поздних стадиях дробления синтез ее все более ограничивался клетками, из которых в норме образуется хвостовая мышца. Уиттейкер пришел к выводу, что способность к синтезу тирозиназы и ацетилхолинэстеразы локализуется в определенных участках цитоплазмы на ранних стадиях развития. Этот вывод подтвердили результаты более поздней работы того же автора, в которой он и его сотрудники хирургическим путем удаляли у 8-клеточных зародышей Ciona ту пару бластомеров, из которых развиваются мышцы. Затем эти клетки помещали в морскую воду, где они синтезировали ацетилхолинэстеразу, тогда как в остальных клетках зародыша этот фермент не синтезировался.

Пуромицин - один из ингибиторов белкового синтеза - препятствовал появлению тирозиназы и ацетилхолинэстеразы, и это доказывает, что молекулы фермента действительно синтезируются в то самое время, когда выявляется ферментная активность. Далее, обработка актиномицином D, подавляющим синтез РНК, также препятствовала появлению ферментов, если ее производили за 2 ч до появления ферментативной активности. Эти результаты позволяют считать, что мРНК, необходимые для синтеза этих ферментов, не запасаются заранее, а продуцируются незадолго до синтеза. Регионально-специфичный синтез мРНК - результат действия макромолекул, локализованных в определенных участках цитоплазмы, как это показано на рис. 4-3.

Описанные здесь эксперименты можно было бы, вероятно, подвергнуть критике на том основании, что актиномицин подавляет синтез фермента, отравляя клетки каким-то неспецифическим образом. Однако другая серия экспериментов, проведенных Уиттейкером на другом ферменте, который появляется только в энтодерме личинки, а именно на щелочной фосфатазе, показала, что это не так: появление этого фермента не подавляется актиномицином. Необходимая для синтеза щелочной фосфатазы мРНК, по-видимому, уже содержится в яйце и в ходе развития сама становится все более локализованной.

С такой локализацией информационных детерминантов, определяющих появление ацетилхолинэстеразы у личинок оболочников, связано одно интересное и поучительное явление. Уиттейкер изучал также некоторые виды оболочников, относящихся к роду Mogula, у которых личинки не развиваются до головастикоподобной стадии. У одного из них, М. arenata, несмотря на то что у него не образуется ни хвостовых мышечных клеток, ни даже самого хвоста, происходит локальный синтез ацетилхолинэстеразы в том участке зародыша, где должны были бы находиться мышечные клетки хвоста. Итак, несмотря на утрату способности к морфогенезу хвоста, локализованные детерминанты синтеза ацетилхолинэстеразы сохранились. У некоторых других (возможно, более древних) видов Mogula, у которых личинки также лишены хвостов, способность синтезировать этот фермент утрачена. Важное значение несопряженности клеточной дифференцировки, о которой можно судить по синтезу ферментов или других белков, с морфогенезом как механизмом эволюции рассматривается более подробно в гл. 5.

Работы Уиттейкера по оболочникам вскрывают два важных аспекта этой проблемы: 1) дифференциальная экспрессия генов, обусловленная действием локализованных в определенных участках детерминантов, играет решающую роль в дифференцировке; 2) существует, по-видимому, несколько механизмов, обеспечивающих хранение и экспрессию локализованной морфогенетической информации.

Зародыши активно синтезируют белки, используя мРНК-матрицы, происходящие из двух источников: мРНК одного класса синтезируются в процессе оогенеза и хранятся в яйце до тех пор, пока не используются в процессе развития; мРНК другого класса синтезируются в результате транскрипции, происходящей в ядрах самого зародыша. мРНК обоих классов содержат большое число последовательностей и транслируются на ранних стадиях развития. Для того чтобы представить себе количество мРНК, синтезируемой при оогенезе, и степень ее разнообразия (ее сложность), следует понаблюдать, до какого уровня может дойти развитие зародышей морского ежа, если блокировать транскрипцию в их клетках. Такие зародыши достигают стадии бластулы, что требует значительного уровня морфогенетической активности, в том числе клеточных делений, изменений формы клеток, сборки ресничек и синтеза фермента вылупления. Если блокировать транскрипцию в клетках зародыша, то гаструляции не происходит. Дифференцировка на более поздних стадиях, чем бластула, в значительной степени зависит от действия генов данного зародыша.

Галау (Galau) и его соавторы изучали вопрос о числе структурных генов, которые должны экспрессироваться в процессе развития зародышей морского ежа. По мнению этих исследователей, величина набора генов, которые должны экспрессироваться в клетках одного типа, чтобы отдифференцировать их от клеток другого типа в том же организме, еще не установлена. Неизвестно также, какое число генов необходимо для обеспечения основных жизненных функций («housekeeping»), общих для всех клеток. Используя метод гибридизации нуклеиновых кислот, Галау и др. определяли число структурных генов, представленных в виде активной мРНК на разных стадиях зародышевого развития и в различных тканях взрослого организма. Далее они определяли, какая доля конкретных генов, представленных в мРНК гаструлы, была представлена также в мРНК других изучавшихся ими стадий и тканей. Оказалось, что во время развития очень большое число генов экспрессируется в виде мРНК. Например, на стадии гаструлы в процессе трансляции в белки находятся мРНК, представляющие от 10 до 15 тысяч генов. Большое число структурных генов экспрессируется аналогичным образом на других стадиях развития и в тканях взрослого организма. Некоторые из них являются общими для всех изученных стадий и тканей, но большинство экспрессируется лишь на отдельных стадиях и в определенных тканях. Авторы данной работы пришли к выводу, что эти глубокие различия между разными стадиями развития или разными тканями в отношении экспрессии генов лежат в основе их функциональной дифференцировки. Таким образом, в дифференцировке, происходящей в процессе развития, участвует дифференциальная экспрессия тысяч генов в виде мРНК, и эта экспрессия сопровождается изменением состава мРНК, синтезируемых ядрами клеток, претерпевающих дифференцировку.

Если дифференциальное действие генов должно вызываться факторами, локализованными в цитоплазме, то должны существовать доказательства в пользу того, что компоненты цитоплазмы действительно способны направлять функцию ядра. Такие доказательства получены в экспериментах по трансплантации ядра из клетки одного типа в клетку какого-либо другого типа. Ярким примером такого подхода служат эксперименты по введению ядер клеток головного мозга взрослой лягушки в лягушачьи клетки-реципиенты трех типов, проведенные Грэхемом с сотрудниками (Gracham et al.) и Гёрдоном (J. Gurdon) в лаборатории последнего. Ядра из клеток головного мозга взрослой лягушки обычно не синтезируют ДНК и не претерпевают митоза. Эти ядра вводили:

1) в незрелые ооциты, синтезирующие РНК, но не ДНК; 2) в овулировавшие ооциты, завершающие мейоз и содержащие уплотненные хромосомы на веретенах мейоза; 3) в яйцеклетки сразу после активации, синтезирующие ДНК, но не РНК. Во всех случаях введенные ядра изменяли свою активность, так чтобы она соответствовала характеристикам клеток-реципиентов. Так, например, в ядрах, введенных в созревающие ооциты, хромосомы уплотнялись и ассоциировались с веретенами, а в ядрах, введенных в активированные яйца, начинался синтез ДНК. Поскольку ни та ни другая активность несвойственны ядрам клеток мозга, эти новые активности, очевидно, вызывались цитоплазмой клеток-реципиентов. Сходные эксперименты по пересадке ядер показали также, что транскрипция определенных генов в пересаженных ядрах (а именно, генов рибосомной РНК) регулируется цитоплазмой клетки-хозяина.

Влияние цитоплазмы на ядро достигает такой степени, что оно определяет специфические типы синтеза мРНК. Де Робертис и Гёрдон (De Robertis и Gurdon) вводили ядра клеток шпорцевой лягушки (Xenopus), выращивавшихся в культуре ткани, в ооциты тритона Pleuradeles. Используя высокое разрешение с помощью двумерного гель-электрофореза, они могли отличать синтез белков, характерных для Xenopus, от белков, характерных для культивируемых клеток Pleurodeles, а также синтеза белков, характерных для культивируемых клеток Xenopus, от белков, характерных для ее ооцитов. При пересадке ядер из культивируемых клеток Xenopus в ооциты Pleurodeles в них начинали синтезироваться белки, свойственные ооцитам Xenopus, но не культивируемым клеткам. Эти изменения состава синтезируемых белков можно было предотвратить при помощи α-аманитина - вещества, подавляющего синтез РНК. Таким образом, воздействие цитоплазматической среды ооцитов Pseudourodeles на ядра Xenopus заключалось в инактивации экспрессии одного набора генов и активации экспрессии другого набора, характерного для ооцитов.

Цитоплазма оказывает свое регулирующее действие на ядерную активность, скорее всего, на уровне транскрипции; известны случаи специфической транскрипции генов при дифференцировке. Один такой пример связан с кольцами Бальбиани в политенных хромосомах двукрылых. У мух и других двукрылых клетки некоторых тканей (слюнные железы, мальпигиевы сосуды, средняя кишка) содержат гигантские политенные хромосомы, в которых при окраске на ДНК выявляются четко выраженные поперечные полосы (диски). Показано, что многие отдельные полосы соответствуют местоположению отдельных генов и что можно установить корреляцию между генетической картой, с одной стороны, и характером и относительным физическим расположением полос, с другой. В некоторых дифференцированных клетках ограниченное число определенных полос образуют вздутия, выступающие за пределы хромосомы (пуфы). Особенно большие пуфы - кольца Бальбиани возникают в тех участках, в которых находятся гены, необычайно активные в отношении транскрипции. Кольца Бальбиани обладают четырьмя важными свойствами.

1. Клетки разного типа содержат разные кольца Бальбиани. Так, в слюнных железах двукрылого Acricotopus имеются клетки трех типов, которые все содержат одни и те же три гигантские хромосомы, но хромосомы из разных клеток различаются по характеру пуфов и их распределению.

2. Изменения, происходящие в клетках некоторых типов в процессе развития, коррелируют с изменениями в характере пуфов. У некоторых мух гигантские клетки подушечек на лапках в процессе развития претерпевают сложные изменения, сопровождающиеся упорядоченными последовательными изменениями пуфов политенных хромосом.

3. Кольца Бальбиани в политенных хромосомах служат местами активной транскрипции. Дэйнхолту (Daneholt) удалось изолировать единственную в своем роде высокомолекулярную РНК, транскрибированную в одном из колец Бальбиани мотыля Chironomus.

4. Существует прямая корреляция между наличием данного кольца Бальбиани и синтезом определенного белка. Гроссбах (Grossbach) изучал два близкородственных вида: Chironomus tentans и С. pallidivittatus, слюнные железы которых вырабатывают большие количества секреторных белков. В слюнных железах С. tentans синтезируется пять белков, а в железах С. pallidivittatus - те же пять белков и еще один. Синтез этого шестого белка коррелирует с наличием в 4-й хромосоме С. pallidivittatus определенного пуфа, отсутствующего у С. tentans. Скрещивая эти два вида и изучая полученные гибриды, Гроссбах показал, что синтез шестого белка у гибридов зависит от наличия у них 4-й хромосомы С. pallidivittatus с этим особым пуфом.

До недавнего времени такого рода данные рассматривали как доказательство того, что дифференциальная экспрессия генов в процессе развития обусловлена главным образом дифференциальной транскрипцией генов, как это ясно видно в случае колец Бальбиани. Однако некоторые недавние наблюдения заставили отнестись к этому заключению с некоторой осторожностью, поскольку может оказаться, что столь же важную роль играет регуляция экспрессии генов и на других уровнях.

Сложность или число различных уникальных последовательностей ДНК, представленных в виде РНК, обычно в 5-10 раз выше в ядерной РНК, чем в мРНК. Ядерные РНК, представляющие собой непосредственные продукты транскрипции, длиннее, чем мРНК, и содержат предшественники последних. Простая модель дифференциальной транскрипции требует, чтобы две стадии развития с сильно различающимися популяциями матричных РНК, подобные тем, которые изучал Галау, существенно различались и по своим ядерным РНК. Клин и Хамфри (Kleene, Humphreys) сравнивали ядерные РНК, имеющиеся у морского ежа на двух разных стадиях развития, и столкнулись с неожиданностью: число уникальных последовательностей ДНК, транскрибируемых в ядерные РНК, было очень велико (транскрибировалась примерно треть всех этих последовательностей), а последовательности ядерных РНК, присутствующие на этих двух стадиях, были идентичны. Такое сходство между ядерными РНК наблюдается на всех стадиях жизненного цикла. Уолд и др. (Wold et al.) отмечают, что лишь немногие из последовательностей мРНК, транслируемых в белки у зародышей морского ежа на стадии бластулы, присутствуют также в цитоплазме клеток взрослых особей, тогда как в ядрах эти же последовательности содержатся как у зародышей, так и у взрослых особей. Создается впечатление, что в ядрах на всех стадиях развития транскрибируется одно и то же очень большое число структурных генов, но что лишь определенные подмножества этих транскриптов подвергаются процессингу с образованием специфичных мРНК, транслируемых на каждой отдельной стадии.

Наличие транскрипционных, а также посттранскрипционных механизмов, регулирующих дифференциальную экспрессию генов, определяемую ядром, в конечном итоге затрудняет понимание факторов, регулирующих действие генов, однако существование этих механизмов не меняет вытекающий из всего нашего обсуждения основной эмбриологический вывод. Суть гипотезы, схематически изображенной на рис. 4-3, состоит в том, что определенные макромолекулы, локализованные в цитоплазме и распределенные по некоторым бластомерам зародыша, вызывают в этих бластомерах специфичную экспрессию генов, определяемую ядром.

 

Природа локализованных информационных молекул и их действие

Представляется вероятным, что локализованные цитоплазматические молекулы, модифицирующие экспрессию генов на ранних стадиях развития специфичным для каждого участка образом, отличаются разнообразием. Локализованные детерминанты встречаются у животных, относящихся ко многим типам, в том числе у гребневиков, немертин, кольчецов, моллюсков, членистоногих, иглокожих, оболочников и хордовых. В некоторых случаях действие локализованных детерминантов проявляется уже при первом делении яйца, как, например, в виде крупных полярных лопастей у ряда представителей Spiralia, в том числе у ничем другим непримечательной улитки Ilyanassa.

Последовательность событий, происходящих при первом митотическом делении оплодотворенного яйца Ilyanassa, показана на рис. 4-5. Вскоре после дробления на богатом желтком вегетативном полюсе яйца (расположенном против анимального полюса, на котором появляется борозда дробления) возникает выступающее наружу вздутие цитоплазмы, называемое полярной лопастью. Эта лопасть располагается перпендикулярно оси митотического веретена. Важно указать, что лопасть не содержит ядра и состоит только из цитоплазмы. Когда борозда дробления начинает углубляться, шейка, соединяющая лопасть с зародышем, быстро сжимается, превращаясь в тонкую нить цитоплазмы. По окончании делений дробления шейка полярной лопасти быстро увеличивается в диаметре и лопасть втягивается одним из бластомеров. Клетку, в которую включается лопасть, обозначают как бластомер CD, а другую клетку - как бластомер АВ.

Рис. 4-5. Появление и втягивание безъядерной лопасти при первом делении дробления у зародыша брюхоногого моллюска Ilyanassa (рисунок с натуры). В бластомерах АВ и CD имеются ядра, а богатая желтком полярная лопасть лишена ядра.

Полярную лопасть легко удалить, и зародыши, которые ее лишены, продолжают развиваться с такой же скоростью, как и нормальные зародыши. Однако из нормальных зародышей развивается сложная личинка, называемая велигером (парусником), у которой имеются разнообразные структуры, тогда как зародыши, лишенные полярной лопасти, образуют всего лишь комочек клеток, покрытый ресничками (рис. 4-6). Такой эффект возникает не просто в результате удаления некоторой части массы зародыша или сокращения поступления питательных веществ. Если поставить другой эксперимент - отделить на той же двуклеточной стадии бластомер АВ от бластомера CD, то из бластомера АВ, так же как из зародыша, лишенного полярной лопасти, не развивается полностью дифференцированный велигер. Однако из бластомера CD, обладающего примерно такой же массой, как лишенный лопасти зародыш, получается нормальный, хотя и маленький, велигер.

Рис. 4-6. Функция полярной лопасти в развитии. А. Нормальная личинка-велигер, имеющая глаза, ногу, раковину и внутренние органы. Б. Зародыш на той же стадии развития, у которого при первом дроблении была удалена полярная лопасть; никаких организованных структур у него нет. (Фотография любезно предоставлена Newrock.)

Возможно, что в полярной лопасти Ilyanassa заключены какие-то специфичные мРНК. Ньюрок и Рэфф (Newrock, Raff) установили, что у лишенных лопасти и у нормальных зародышей синтез белка даже на стадиях, предшествующих началу морфогенеза, протекает по-разному. Эти различия в синтезе белка наблюдались также между лишенными лопасти и нормальными зародышами при непрерывном выращивании их в присутствии таких количеств актиномицина, которые полностью подавляют синтез РНК. Эти результаты были интерпретированы как указание на то, что в полярной лопасти обособляются какие-то преформированные типы мРНК, потому что в зародышах, выращиваемых в присутствии актиномицина, происходит трансляция только тех мРНК, которые уже содержались в цитоплазме яйца ко времени формирования этой лопасти. Однако Брандхорст и Ньюрок (Brandhorst, Newrock), используя двумерный гель-электрофорез, позволяющий выявить несколько сот наиболее часто встречающихся видов белка, не обнаружили никаких качественных различий между белками нормальных зародышей и зародышей, лишенных полярной лопасти. Они, однако, обнаружили резко выраженные количественные различия, которые, возможно, и привели к результатам, полученным Ньюроком и Рэффом. Ни в той ни в другой работе не удалось выявить потенциально очень большое число редких видов мРНК, которые могли быть дифференциально обособлены в полярной лопасти.

Со сходной проблемой пришлось столкнуться при изучении зародышей морских ежей. При четвертом делении дробления у этих животных образуются клетки трех типов - мезомеры, макромеры и микромеры, значительно различающиеся по своим размерам. Клеткам этих трех типов уже в момент возникновения уготованы различные и вполне определенные судьбы. Роджерс и Гросс (Rodgers, Gross), а также Эрнст (Ernst) и ее сотрудники, используя метод гибридизации нуклеиновых кислот, обнаружили, что высокоповторяющаяся РНК распределена между этими тремя типами клеток неравномерно. Подобным же образом Мидзуно (Mizuno et al.) и Уайтли (Whiteley et al.) сообщают, что у разных бластомеров различны преобладающие транскрипты повторяющихся последовательностей ДНК. Картина осложняется наблюдением Туфаро и Брандхорста (Tufaro, Brandhorst) об отсутствии между бластомерами различий по характеру синтеза примерно 1000 видов белков, разделяемых методом двумерного гель-электрофореза. Локализованные последовательности, выявленные Роджерсом и Гроссом, а также Эрнст и ее сотрудниками, возможно, слишком редки, чтобы продуцировать достаточные количества белка, которые можно выявить методом двумерного гель-электрофореза, или это могут быть те последовательности, которые не входят в состав мРНК. Самые определенные доказательства того, что мРНК могут служить регуляторами морфогенеза, дает работа лаборатории Калтхофа (Kalthoff et al.) на яйцах двукрылого Smittia. У насекомых передний и задний концы яйца детерминируются во время оогенеза. В процессе нормального развития на переднем конце тела образуется голова и три грудных сегмента, а на заднем - ряд брюшных сегментов (и зачатковых клеток). В 1968 г. Калтхоф и Сандер сообщили, что облучение цитоплазмы на переднем конце яйца ультрафиолетом приводит к развитию зародыша, у которого вместо головы, груди и передних брюшных сегментов образуется как бы в зеркальном отображении второй задний конец тела. На рис. 4-7 изображены нормальный зародыш и урод с дуплицированным брюшком. Существуют две группы данных, указывающие на то, что развитие переднего конца тела детерминирует РНК. Одна группа данных получена в экспериментах с инактивацией РНК ультрафиолетом. В спектре действия ультрафиолета имеются пики при 265 и 285 нм, соответствующие максимальному эффекту; это позволяет считать, что ультрафиолет оказывает свое действие на комплекс нуклеиновая кислота-белок. Интересно отметить, что эффекты облучения ультрафиолетом обратимы; это достигается последующим воздействием на облученное яйцо света с длиной волны 320-480 нм. Ультрафиолет индуцирует в нуклеиновых кислотах образование пиримидиновых димеров и инактивирует эти молекулы. Обратимость этого эффекта под действием света происходит под влиянием фоточувствительного фермента, обусловливающего репарацию пиримидиновых димеров.

Рис. 4-7. Нормальные зародыши и зародыши с двойным брюшком двукрылого Smittia. У нормального зародыша (А) видна слева развивающаяся голова, а справа-брюшные сегменты. У зародыша Б, которого облучали ультрафиолетом, голова отсутствует и на обоих концах тела развиваются брюшные сегменты (Kalthoff, 1969).

Вторая группа данных, указывающих на детерминирующую роль РНК в развитии переднего конца тела зародыша, получена в результате непосредственного воздействия специфических ферментов на цитоплазму переднего конца зародыша. Кандлер-Зингер (Kandler-Singer) и Калтхоф погружали зародыши в среду, содержащую исследуемый фермент, и затем прокалывали их в определенных местах. Образование дуплицированного брюшка происходило лишь в тех случаях, когда в передний конец яйца проникала активная РНКаза. Если использовалась неактивная РНКаза или если она проникала не в передний конец яйца, а в другие его участки, то дуплицированное брюшко получалось лишь в очень немногих случаях.

Есть и другие более косвенные данные о том, что РНК играет роль детерминанта и у других организмов. Образование зародышевых клеток на заднем конце яиц насекомых (и многих других организмов) зависит от детерминантов, называемых полярными гранулами, которые легко наблюдать в микроскоп. В ряде интересных экспериментов Илмензе и Маховалд (Ilmensee, Mahowald) вводили цитоплазму из заднего конца яйца дрозофилы одной генетически меченной линии в передний конец яйца другой генетически меченной линии. При этом на переднем конце яйца формировались зародышевые клетки. Полярные гранулы, подобно детерминантам переднего конца тела, чувствительны к облучению ультрафиолетом и, судя по реакции на цитологические красигели, содержат большое количество РНК. Домен и Вердонк (Dohmen, Verdonk) обнаружили в полярных лопастях зародышей некоторых брюхоногих моллюсков структуры, аналогичные полярным гранулам. Эти структуры, которые, как было установлено при помощи специфичных красителей, богаты РНК, по-видимому, содержат детерминанты, специфичные для полярных лопастей. Было бы заманчиво попытаться установить связь между этими структурами и очевидным обособлением мРНК в полярных лопастях, которое наблюдали Ньюрок и Рэфф, но достаточных оснований для этого у нас нет.

Возможно, из-за того что в настоящее время все внимание молекулярной биологии сосредоточено на нуклеиновых кислотах, экспериментальным изучением белков как локализованных детерминантов ядерной активности занимаются мало. А между тем такие белковые молекулы почти несомненно существуют. Так, у аксолотля имеется мутация, при которой отсутствие одного определенного белка оказывает резко выраженное воздействие на развитие. Эта мутация, обозначаемая буквой о (oocyte deficient), приводит к тому, что яйца, отложенные самками, гомозиготными по мутантному аллелю о, прекращают дробление и гибнут примерно в то время, когда нормальные зародыши проходят гаструляцию. Мутация о - классическая мутация с материнским эффектом, т. е. развитие потомков зависит только от генотипа матери (см. гл. 7). Таким образом яйца, отложенные самкой, гомозиготной по аллелю о (о/о), не развиваются даже при оплодотворении нормальной спермой. В отличие от этого все яйца гетерозиготной самки (о/ + ), даже та их половина, которая несет аллель о, развиваются нормально. Поскольку генотип самца не играет роли, самок, имеющих генотип о/о, можно получить, оплодотворяя яйца гетерозиготных самок спермой самцов, несущих аллель о. Бриггс и Кассенс (Briggs, Cassens) обнаружили, что неспособность к развитию яиц, отложенных самками о/о, можно преодолеть, если вскоре после оплодотворения ввести в них цитоплазму нормальных яиц. Результаты, полученные Бриггсом и Джастусом (Justus), показывают, что корректирующий фактор, отсутствующий в неполноценных яйцах, представляет собой белок.

В ряде исследований, в которых в яйца вводили белки, было твердо установлено, что некоторые белки легко проникают в ядра. Такие белки могут оказывать влияние на поведение ядра, как это обнаружили Бенбау и Форд (Benbow, Ford), которым удалось индуцировать синтез ДНК в ядрах, обрабатывая изолированные ядра лягушек белком, выделенным из цитоплазмы яиц и зародышей.

 

Становление локализации и пространственной организации

Во время оогенеза происходит чрезвычайно активная транскрипция генов и накопление ооцитами мРНК. Накапливающиеся в ооцитах мРНК столь разнообразны по своим последовательностям, что, как только после начала развития зародыша мРНК приступают к синтезу белков, с этих матриц могут транслироваться буквально тысячи видов различных белков. В наиболее хорошо изученном случае - у морского ежа - белковый синтез протекает очень вяло в неоплодотворенном яйце, но резко возрастает через несколько минут после оплодотворения. Это начальное усиление белкового синтеза (в сущности, весь белковый синтез), во всяком случае до наступления стадии бластулы, обеспечивает мРНК, синтезируемая во время оогенеза. Как корректирующий белок, устраняющий воздействие аллеля о у аксолотля, так и полярная плазма дрозофилы, обсуждавшаяся выше, обнаружены уже в ооцитах. Бриггс (Briggs) установил, что корректирующий белок синтезируется во время оогенеза и что его можно обнаружить в активной форме в самом начале этого процесса. Илмензе и его сотрудники предприняли поиски активной полярной плазмы в ооцитах дрозофилы. При помощи электронного микроскопа они сумели идентифицировать полярные гранулы на заднем полюсе ооцита в середине процесса вителлогенеза, т. е. во время максимального накопления желтка, но функциональную полярную плазму удается выявить лишь на поздних стадиях созревания ооцитов. Поэтому Илмензе и его сотрудники высказали мнение, что, хотя полярные гранулы, появляющиеся во время вителлогенеза, морфологически сходны с полярными гранулами яиц, они представляют собой, возможно, матрикс, к которому затем прикрепляются функциональные компоненты. Наконец, Домен и Вердонк (Dohmen, Verdonk) выявили на такой ранней стадии оогенеза, как вителлогенез, богатые РНК структуры, сходные с теми, которые позднее появляются в полярных лопастях брюхоногих моллюсков.

Таким образом, почти несомненно, что в яйцах детерминанты накапливаются во время оогенеза. Однако вопрос о том, когда эти материалы локализуются там, где им предстоит функционировать, остается открытым. В модели локализации, изображенной на рис. 4-3, сделано упрощающее допущение, что характер локализации уже установлен в яйце еще до того, как начинается дробление. В некоторых случаях это действительно так, но в других изменения локализации продолжаются и, возможно, завершаются лишь после того, как дробление зашло уже достаточно далеко.

Классическим примером событий, связанных с цитоплазматической локализацией, которые инициируются оплодотворением, служит перемещение пигментных гранул у асцидий Cynthia (Styela) partita, описанное Конклином (Conklin) в 1905 г. Последовательные перемещения цитоплазмы, происходящие после оплодотворения, показаны на рис. 4-8, взятом из этой статьи. Неоплодотворенное яйцо имеет равномерную сероватую окраску, но почти сразу же после проникновения в него сперматозоида начинается быстрая реорганизация цитоплазмы. Наиболее впечатляющее изменение - это быстрое перетекание желтых гранул к вегетативному полюсу яйца. Затем этот желтый материал постепенно распространяется в стороны от вегетативного полюса, пока не покроет все вегетативное полушарие. При перемещении ядра сперматозоида к одной стороне вегетативного конца за ним увлекается значительная часть желтого материала, из которого образуется желтый серп. Локализация желтого серпа, определяемая перемещением ядра сперматозоида и связанной с ним звезды, обозначает местоположение заднего конца развивающегося зародыша. Другие материалы цитоплазмы также занимают определенное место, так что ко времени первого дробления яйцо содержит четко выраженный желтый серп (3), темно-серый желток (4) и участки прозрачной цитоплазмы (5), а также три менее четко различимых окрашенных участка. Локализация всех этих веществ указывает на то, что судьбы участков, в которых они содержатся, предопределены; так, из материала желтого серпа образуются только мышечные клетки головастикоподобной личинки, темно-серый материал дает энтодерму, а прозрачная цитоплазма - эктодерму. Это, конечно, не означает, что детерминантами являются сами окрашенные материалы: просто они служат хорошо различимыми индикаторами перемещений цитоплазмы, определяющих локализацию детерминантов.

Рис. 4-8. Становление цитоплазматической локализации у зародыша асцидии Styela partita (Conklin, 1905). А. Яйцо с еще интактным зародышевым пузырьком (1). Б. Разрушение зародышевого пузырька и перемещение цитоплазмы. В и Г. Зародыш на стадии двух бластомеров (в двух разных ракурсах) с хорошо выраженным желтым серпом. Д. Стадия 8 бластомеров. Е. Ранняя личинка, у которой материал желтого серпа сосредоточен вокруг мышечных клеток хвоста (6).

1-зародышевый пузырек; 2-желточные гранулы; 3-желтый серп; 4-желток; 5-прозрачная цитоплазма; 6-мышечные клетки; 7-нервная пластинка.

У ряда организмов становление локализации происходит лишь после того, как дробление достаточно продвинулось. Изучение зародыша гребневика Mnemiopsis, проведенное Фриманом (Freeman), дало один из наиболее хорошо документированных примеров этого явления. Гребневики составляют небольшую группу прозрачных животных, несколько сходных по виду с медузами. Они обладают двулучевой симметрией и обычно снабжены восемью рядами гребных пластинок; каждая пластинка состоит из длинных слившихся между собой ресничек, при помощи которых гребневики плавают. Если потревожить животное, то можно наблюдать волнообразные вспышки зеленоватого света, испускаемого особыми клетками-фотоцитами, находящимися в меридиональных каналах, которые расположены под рядами гребных пластинок. Как ресничные клетки гребных пластинок, так и фотоциты уже имеются на личиночной стадии, и дифференциация как тех, так и других обусловлена действием локализованных детерминантов зародыша.

Развитие Mnemiopsis происходит по мозаичному типу. Если отделить друг от друга бластомеры двуклеточного зародыша, то из каждого бластомера разовьется неполный зародыш, содержащий структуры одной из сагиттальных половинок нормального зародыша. При разделении бластомеров 4-клеточного зародыша образуются четвертушки нормального зародыша, содержащие покрытые ресничками гребные пластинки и фотоциты. Восьмиклеточные зародыши состоят из бластомеров двух типов: четырех клеток E и четырех клеток М. Если отделить их друг от друга и дать им возможность развиваться, то из клеток E образуются неполные зародыши, содержащие покрытые ресничками гребные пластинки, но лишенные фотоцитов, а из клеток M - неполные зародыши, содержащие фотоциты, но лишенные гребных пластинок. При следующем делении, в результате которого получается 16-клеточный зародыш, бластомеры E и бластомеры M делятся неравномерно. Из каждого бластомера E получается один макромер (клетка Е) и один микромер (клетка е); каждый бластомер M аналогичным образом дает макромер M и микромер m. Цитоплазматические детерминанты распределяются между этими клетками таким образом, что после дальнейшего развития наблюдается следующая картина дифференцировки:

Микромеры е — ресничные гребные пластинки

Макромеры Е — ресничных гребных пластинок нет

Микромеры m — фотоцитов нет

Макромеры M — фотоциты

Фримен проделал ряд микрургических экспериментов, чтобы выяснить, на какой стадии дробления устанавливается характер локализации детерминантов. С этой целью он нанес на карту те участки бластомеров 2- и 4-клеточного зародыша, из которых на 8-клеточной стадии должны образоваться клетки Е и М. Если локализация детерминантов наступает на ранних стадиях дробления, как это показано на рис. 4-3, то удаление цитоплазмы из участка Е или из участка М бластомера 2-клеточного зародыша должно приводить к таким же результатам, как и удаление всех бластомеров Е или всех бластомеров М на 8-клеточной стадии. Иными словами, удаление Е-участка цитоплазмы из бластомера 2-клеточного зародыша приведет к тому, что клетки, образующиеся в процессе дальнейшего развития этого бластомера, утратят способность к формированию ресничных гребных пластинок, тогда как удаление М-участка приведет соответственно к утрате способности к формированию фотоцитов. В действительности, как установил Фримен, это предсказание не подтверждается. Локализация этих двух потенций в бластомерах едва намечается на 2-клеточной стадии, но почти полностью выражена у 4-клеточного зародыша; из этого следует, что, хотя цитоплазматические материалы, детерминирующие дифференцировку гребных пластинок и фотоцитов, уже присутствуют в яйце в начале дробления, они окончательно локализуются лишь к третьему дроблению.

Сроки локализации детерминантов у дробящихся зародышей подвержены регуляции. Работы Фримена и Герье (Freeman, Guerrier), а также Дэна и Икеда (Dan, Ikeda) и других авторов показывают, что события, связанные с локализацией и ранней детерминацией морфогенеза, сопряжены с регуляцией сроков митотических делений дробления - с так называемыми часами дробления. Эти часы представляют собой мало изученный механизм, при помощи которого зародыш отсчитывает в реальном времени число проделанных циклов дробления и определяет параметры следующего дробления. Существование этих часов было продемонстрировано в экспериментах, в которых одно из ранних делений дробления подавляли, а затем дроблению давали возможность возобновиться. Так, например, у зародышей морского ежа четвертое деление дробления бывает неравномерным, приводя к образованию как микромеров, так и более крупных бластомеров. Если подавить один из ранних циклов деления, а затем допустить дальнейшее дробление, то последующие деления происходят в ладлежащие сроки, несмотря на то что они запаздывают на один цикл. Таким образом, в срок, соответствующий четвертому дроблению нормального зародыша, экспериментальный зародыш образует только 8 клеток вместо 16. Важно отметить, что, хотя экспериментальный зародыш образует только 8 клеток, дробление у него происходит неравномерно, как и у нормального зародыша в эти сроки, и образуются микромеры. Стало быть, сроки наступления неравномерного дробления, при котором возникают микромеры, регулируются внутренними часами, отсчитывающими абсолютное время, а не числом фактически предшествовавших ему циклов дробления. Начало хода часов, по-видимому, сцеплено с формированием звезды. У некоторых зародышей часы приводятся в действие при завершении мейоза, у других - при инициации первого деления дробления.

Сопряженность локализации детерминантов с часами дробления можно продемонстрировать в экспериментах с подавлением дробления. Возможность отделения этой локализации и типа дробления от числа циклов дробления создает значительный эволюционный потенциал, потому что если эти параметры ранних стадий развития контролируются разными генами, то в таком случае мутации могут вызвать существенные изменения в соотношениях между этими событиями. Изменения такого типа и в самом деле возникали при эволюционных модификациях в развитии как Spiralia, так и хордовых. Соответствующие примеры рассматриваются далее в этой главе.

На пространственную регуляцию локализованных детерминантов оказывает влияние ориентация звезд или веретен митоза, которые определяют расположение осей зародыша (Связь между ориентацией звезд и веретен в первых делениях и расположением осей зародыша не является общим правилом и не обнаруживается в развитии многих животных.- Прим. ред.). Эта ориентация контролируется генами, как можно прекрасно показать на примере регуляции направления закручивания спирального завитка раковины у брюхоногих. Обычно особи прудовика Limnaea peregra бывают правовращающими, т.е. раковина и сама улитка закручены в правую сторону. Однако время от времени в природных популяциях попадаются левовращающие особи; они представляют собой как бы зеркальное отображение правовращающей формы, т. е. раковина и тело закручены у них в левую сторону. Как показано на рис. 4-9, левосторонняя или правосторонняя симметрия выявляется у улиток в начале дробления и направление спирального дробления устанавливается при втором дроблении по ориентации митотических веретен. Ориентация веретена в делящейся клетке определяет местоположение борозды дробления, а тем самым и границу между бластомерами, образующимися при данном делении. Симметрия у Limnaea, по-видимому, контролируется парой аллелей одного гена, причем этот ген наследуется по типу материнского эффекта. Тип симметрии потомков зависит только от генотипа матери. Аллель правозакрученности (L) доминирует над аллелем левозакрученности (l). Но из яиц, отложенных особью, гомозиготной по аллелю левозакрученности (ll), развиваются левозакрученные улитки, даже если эти яйца были оплодотворены спермой особи, гомозиготной по аллелю правозакрученности (LL). Это происходит потому, что ген, контролирующий тип симметрии, оказывает свое действие во время оогенеза, т. е. тогда, когда в наличии имеется только аллель левозакрученности. Однако фенотипически левозакрученные потомки от этого скрещивания имеют генотип Ll, и из всех отложенных ими яиц разовьются правозакрученные улитки вследствие экспрессии в ооците доминантного аллеля (L).

Рис. 4-9. Правосторонняя или левосторонняя закрученность раковины у прудовика Limnaea peregra как следствие направления спирального дробления на ранних стадиях развития (Morgan, 1927).

Детерминация симметрии закручивания у Limnaea служит примером того, как довольно резкий сдвиг морфогенеза - решение о формировании право- или левозакрученной раковины - определяется действием одного гена во время образования яйца. Кроме того, очевидно, что этот ген оказывает действие на компоненты матрикса цитоскелета. Цитоскелет - это динамичное трехмерное переплетение нитевидных элементов, ответственных за перемещения материалов внутри клетки и за изменения формы клетки, т.е. за процессы, играющие решающую роль в характере локализации-разметке раннего зародыша. Среди элементов цитоскелета преобладают структуры двух типов. Первые, микротрубочки, - это длинные полые трубочки диаметром около 25 нм, состоящие из родственных белков-тубулинов. Наиболее хорошо известны микротрубочки, образующие нити веретена, которые обеспечивают перемещения хромосом при митозе. Но микротрубочки образуют также и другие совокупности компонентов в цитоплазме. Второй основной класс нитевидных элементов составляют микрофиламенты; это прочные нити диаметром около 5 нм, состоящие из актина - одного из главных компонентов мышечных клеток. Сложные переплетения микротрубочек и микрофиламентов в цитоплазме клеток, выращенных в культуре, изображены на рис. 4-10. Эти клетки были выращены на предметных стеклах, зафиксированы формальдегидом, а затем обработаны антителами, специфичными к актину или тубулину. Связавшиеся антитела делают флуоресцентными и исследуют в УФ-микроскопе в темном поле. Совокупности микротрубочек и микрофиламентов хорошо различаются по внешнему виду, локализации и ориентации.

Рис. 4-10. Расположение микротрубочек в клетках мышей из культуры ткани, выявляемое методом непрямой иммунофлуоресценции с антителами, специфичными к тубулину. A. Сеть микротрубочек в цитоплазме интерфазной клетки. Б. Клетка после обработки колхицином, разрушающим микротрубочки. Обратите внимание, что на микрофотографиях А и Б видно, что структуры, организующие микротрубочки, примыкают к ядру. B. Делящаяся клетка, в которой видны микротрубочки, образующие звезды и веретено (Osborn, Weber, 1976).

Распределение основного вещества цитоскелета регулируется как в пространстве, так и во времени. Сборка микротрубочек зависит от наличия центров нуклеации (организации), которые определяют местоположение пучков трубочек, и от других пока еще недостаточно хорошо установленных регуляторов, определяющих сроки этого процесса. У Limnaea выявлена генетическая регуляция местоположения центров нуклеации, хотя следует отметить, что даже и в этом случае имеются некоторые осложняющие обстоятельства. Фримену удалось вызвать реверсию действия аллеля, детерминирующего закручивание раковины влево, вводя в яйца, отложенные материнскими особями, гомозиготными по аллелю левозакрученности, цитоплазму из яиц, дающих правозакрученные раковины. Эксперименты противоположного типа не приводят к изменению типа симметрии. Можно предполагать, что у Limnaea местоположение центров нуклеации или функциональный выбор между ними регулируется каким-то растворимым компонентом яйца.

Осборн и Вебер (Osborn, Weber) непосредственно наблюдали за центрами организации трубочек в клетках из культуры ткани, применяя метод флуоресцирующих антител. Как видно на рис. 4-10, это цилиндрическая полярная структура, содержащая тубулин и расположенная по соседству с ядром. Каждая клетка, по-видимому, содержит одну или две таких структуры. Легче всего их увидеть, если уничтожить микротрубочки, обработав клетку перед фиксацией колхицином или подвергнув ее действию низких температур. Восстановление микротрубочек после созревания клеток или удаления колхицина начинается в организационном центре, причем микротрубочки растут с одного конца организационного центра и радиально распространяются к краям клетки. Харрис, Осборн и Вебер при помощи того же метода флуоресцирующих антител наблюдали в яйцах морского ежа микротрубочки, образующие веретено и звезды, а также любопытное временное спиральное расположение микротрубочек в кортексе зиготы.

Микрофиламенты, подобно микротрубочкам, несут определенные функции, связанные с процессами локализации детерминантов в зародышах. Микрофиламенты нередко принимают участие в изменении формы клетки: сократимость представляет собой основное свойство входящего в их состав белка актина. Так, например, микрофиламенты обеспечивают цитокинез при дроблении. К концу митоза под клеточной мембраной, в плоскости метафазной пластинки, микрофиламенты образуют кольцо, которое, сжимаясь, отделяет две дочерние клетки одну от другой. Рэфф (R. Raff), а также Конрад (Conrad) и его сотрудники показали, что подобным же образом микрофиламенты вызывают сужение шейки полярной лопасти у моллюсков, принимая тем самым непосредственное участие в определении локализации. Местоположение микрофиламентов частично зависит от расположения пучков микротрубочек. Центры, организующие микротрубочки, обнаружены в яйцах и зародышах, однако, как это ясно видно из недавнего обзора Э. Рэфф (Е. С. Raff), регуляция их местоположения продолжает оставаться главной и нерешенной проблемой.

Местоположение организационных центров в зародышах хотя бы частично контролируется генами, однако на него оказывают влияние и другие факторы. Например, у амфибий место проникновения сперматозоида в яйцо определяет плоскость первого дробления и устанавливает дорсо-вентральную ось зародыша. Как показали недавние исследования Киршнера (Kirschner) и его сотрудников, инициация локализационных перемещений событиями, происходящими при оплодотворении, по-видимому, процесс сложный. Это (вместе с обсуждавшимися выше зависимостями между локализацией детерминантов и дроблением) указывает на то, что окончательная их локализация зависит как от организации яйца во время оогенеза, так и от событий, приводимых в движение оплодотворением.

 

Эволюционные изменения в организации яиц со спиральным дроблением

Для многих зародышей со спиральным дроблением, в особенности для зародышей моллюсков и кольчецов, составлены очень точные карты, на которых указана дальнейшая судьба различных клеток. Разные типы дробления и различия в размерах между бластомерами дают возможность проследить за судьбой отдельных бластомеров зародышей со спиральным дроблением в процессе развития. Эта их особенность в сочетании с высокомозаичным характером их развития сделала таких зародышей излюбленным объектом изучения эмбриологов.

Схема спирального дробления представлена на рис. 4-2, где изображены первые несколько делений. В результате второго деления образуются четыре бластомера - А, В, С и D. При третьем неравномерном делении образуется первый квартет микромеров. Им даны обозначения 1a, 1b, 1с и 1d, а соответствующим макромерам - 1А, 1В, 1C и 1D. Митотические веретена ориентированы таким образом, что макромеры и микромеры, возникшие в результате этого и последующих делений, расположены друг относительно друга по спирали.

При следующем делении, приводящем к 16 клеткам, микромеры первого квартета делятся равномерно, образуя 8 микромеров первого ряда. Макромеры делятся неравномерно, образуя второй квартет микромеров, обозначаемых 2а, 2b, 2с и 2d, и соответствующие макромеры. По мере дальнейшего развития как микромеры, так и макромеры продолжают делиться. Разработана специальная номенклатура для обозначения сложной системы образующихся при этом клеток, но для наших целей достаточно рассмотреть лишь общее расположение рядов микромеров при спиральном дроблении, изображенное на рис. 4-11, I. На этой упрощенной схеме показано только по четыре клетки каждого ряда. У настоящего зародыша в некоторых рядах будет, конечно, больше чем по четыре клетки вследствие продолжающегося дробления микромеров. Как на этой, так и на других сходных схемах, приведенных в данном разделе, многие детали опущены и рассматриваемые зародыши изображены лишь в общих чертах.

На рис. 4-11 показана типичная судьба различных бластомеров у зародышей Spiralia. Первые три ряда микромеров (не заштрихованы) образуют эктодерму зародыша и некоторые эктодермальные структуры; клетка, покрытая точками (4d), дает начало мезодерме; из макромеров (заштрихованы) развивается энтодерма - презумптивная средняя кишка. Подобный набор клеточных линий удивительно постоянен для всех зародышей Spiralia: у многоветвистых плоских червей, у кольчецов, а также у брюхоногих и двустворчатых моллюсков спиральное дробление протекает в основном одинаково, и судьбу клеток в этих группах можно непосредственно сопоставлять.

Несмотря на такое постоянство характера дробления у зародышей Spiralia, между ними имеются некоторые существенные различия, вскрывающие эволюционные модификации в способности к самодифференцировке бластомеров у зародышей с мозаичным дроблением, принадлежащих к разным группам. Это: 1) изменения характера локализации, в результате которых судьба определенного участка или бластомера изменяется по сравнению с их судьбой у предковых форм; 2) изменения относительных скоростей клеточного деления, приводящие к модификациям относительных размеров клеток и их числа; 3) изменения цитоскелетного матрикса, приводящие к изменению местоположения митотического аппарата во время дробления, что в свою очередь приводит к сдвигу пропорций или распределения бластомеров у данного зародыша.

Можно показать, что в рамках основной модели развития, характерной для Spiralia, встречаются модификации всех этих трех типов. Изменения в судьбе клеток могут быть очень незначительными, как в случае возникновения эктомезодермы, из которой развиваются такие мезодермальные структуры, как личиночная мышца. Например, на рис. 4-11, II и III показано происхождение эктомезодермы у двух моллюсков - брюхоногого Crepidula и двустворчатого Unio. У Crepidula эктомезодерма образуется из трех микромеров второго квартета, а у Unio - только из одного микромера.

Рис. 4-11. Схематическое изображение характера дробления и судьбы различных клеток у зародышей Spiralia. I. Обобщенная схема дробления зародышей Spiralia; показаны первые три квартета микромеров (не заштрихованы), дающие начало зародышевой эктодерме, клетки 4d (пунктир), дающие начало мезодерме, и макромеры (заштрихованы), дающие начало энтодерме. II и III. Схемы спирального дробления у зародышей Crepidula (II) и Unio (III). У этих зародышей дробление протекает сходным образом, но различается по месту возникновения эмбриональной эктомезодермы из второго квартета микромеров (Wilson, 1898).

У кольчецов эволюция олигохет из полихет сопровождалась рядом резко выраженных изменений в судьбе различных клеток. В развитии полихет имеется высокодифференцированная личиночная стадия - трохофора (рис. 4-12, III). Для того чтобы могли образоваться весьма сложные личиночные органы, многие бластомеры зародыша должны дать начало временным органам личинок, тогда как остальные бластомеры образуют недифференцированные зачатки дефинитивных органов. На рис. 4-12, I изображен 40-клеточный зародыш многощетинкового червя Podarke. Заштрихованные участки зародыша соответствуют заштрихованным участкам на карте презумптивных зачатков для бластулы Podarke (рис. 4-12, II). Большая часть показанных на схемах участков соответствует определенным структурам, специфичным для трохофоры, таким как теменной султан и прототрох. При метаморфозе некоторые личиночные ткани, например личиночная мышца и прототрох, подвергаются гистолизу и исчезают, тогда как другие личиночные ткани, такие как первичный рот и средняя кишка, превращаются в эквивалентные структуры взрослых особей. Зачатки этих структур начинают дифференцироваться. Так мезодермальные тяжи дают начало туловищным сомитам.

Рис. 4-12. Сравнение развития у двух кольчатых червей - полихеты Podarke и олигохеты Tiibifex. I. Зародыш Podarke на стадии 40 клеток. II. Карта зачатков Podarke на стадии бластулы. III. Трохофора Podarke. IV. Дробящийся зародыш Tubifex. V. Карта зачатков Tubifex. VI. Гаструляция у Tubifex, непосредственно ведущая к развитию сегментированной взрослой особи. (Рис. I - Treadwell, 1901; рис. II-VI - Anderson, 1973.)

В отличие от этого в тех случаях, когда образование личиночных структур в процессе эволюции подавляется, большая часть бластомеров зародыша непосредственно развивается в структуры взрослого организма. Так обстояло дело в процессе эволюции олигохет, в развитии которых нет высокодифференцированной личиночной стадии и у которых развитие сегментированного тела взрослой особи начинается во время гаструляции. На рис. 4-12, VI показана гаструляция у олигохеты - трубочника Tubifex. У ее зародыша не происходит образования обширного участка эктодермы на переднем конце тела (теменной пластинки) с отходящим от него прототрохом. Когда средняя кишка инвагинирует, у зародыша начинают формироваться сомиты, превращающиеся в дальнейшем в сегменты тела взрослого червя. Это резко отличается от процесса развития у полихет, у личинок которых при вполне сформированных первичном рте и средней кишке презумптивные сомиты представлены в виде недифференцированных зачатков. Возникающие в результате этого изменения дальнейшей судьбы клеток зародыша показаны на рис. 4-12, IV-VI, на которых стадии развития Tubifex сопоставлены с соответствующими стадиями развития полихет. Как можно видеть на рис. 4-12, IV, хотя у Tubifex дробление все еще происходит по спиральному типу, оно, однако, значительно отличается от дробления у полихет. Микромеры, соответствующие тем, которые у полихет дают начало передней эктодерме (теменной пластинке), составляют относительно гораздо меньшую часть общей массы зародыша, тогда как относительные размеры клеток, дающих презумптивные среднюю кишку и мезодерму, значительно возросли.

Судьба клеток у зародыша Tubifex также изменилась. Как можно видеть, сравнивая карту презумптивных зачатков, изображенную на рис. 4-12, V с аналогичной картой для полихет (рис. 4-12, II), хотя презумптивные участки на обеих картах в общем сходны, но у зародыша Tubifex обнаруживается много специфичных изменений. Презумптивные участки эктомезодермы, личиночной эктодермы, теменного султана и прототроха утрачены. Те бластомеры, из которых у полихет развиваются эти структуры, у олигохет образуют другую эктодермальную структуру - желточный мешок. Другие участки, такие как клетка 4d, дающая в обеих группах мезодерму взрослой особи, имеют такую же конечную судьбу, но изменились пути развития, по которым эти участки к ней приходят. Однако, как показал Пеннерс (Penners), у Tubifex сохранился строго мозаичный тип развития, характерный для кольчецов. По-видимому, локализованные детерминанты изменились и вызывают у Tubifex генную экспрессию иного типа, нежели у предковых полихет. Дальнейшую модификацию можно наблюдать в развитии пиявки Erpobdella, протекающем в питательном коконе. Здесь бластомеры 1 А, 1В и 1C не делятся; их обгоняют в росте другие клетки, и они начинают функционировать как альбуминотрофные клетки, а большую часть тела взрослой особи составляют клетки, происходящие из бластомера 1D.

Эволюционные изменения в судьбе клеток, описанные здесь для кольчецов, не ограничиваются модификациями локализованных индукторов дифференцировки; они требуют также изменения относительных сроков дробления разных бластомеров. Так, макромеры, которые у полихет делятся несколько раз, чтобы дать начало микромерам, участвующим в образовании таких зародышевых структур, как прототрох или эктомезодерма, у пиявок не делятся вовсе. Конечно, изменения относительных сроков клеточных делений, имевшие эволюционное значение, происходили не только у кольчецов; они ясно видны также у моллюсков.

У пресноводных Unionidae, относящихся к двустворчатым моллюскам, в остальном довольно ординарных, личинки в процессе эволюции выработали совершенно необычный образ жизни. Unionidae живут в проточных водах; взрослые особи прикреплены к субстрату, а свободноплавающих личинок течение безжалостно сносило бы вниз. Репродуцирующиеся особи производят многочисленных зародышей, развивающихся в родительском организме до достижения личиночной стадии - так называемого глохидия. Глохидий имеет вид миниатюрного медвежьего капкана (рис. 4-13, I). Для завершения развития эта личинка должна прикрепиться к жабрам или плавникам какой-нибудь рыбы. Здесь она в течение нескольких недель ведет паразитический образ жизни, после чего отпадает и продолжает свое существование на дне как обычный двустворчатый моллюск.

Рис. 4-13. Зародыши и личинки двустворчатого моллюска Unio. I. Глохидий с его сенсорными волосками и со створками, напоминающими медвежий капкан в миниатюре. II. Зародыш на стадии 8 бластомеров с типичным спиральным дроблением. III. Образование относительно крупного микромера 2d, дающего раковинную железу личинки. IV. Дальнейшее дробление с образованием крупного микромера 2а, дающего замыкательную мышцу личинки (Lillie, 1895).

У глохидия имеются чувствительные сенсорные волоски, и при малейшей опасности створки его раковинки, снабженные мощными крючками, захлопываются. У некоторых видов глохидии просто лежат на дне в надежде на то, что какая-нибудь рыба случайно проплывет мимо. У других видов у самки имеется мантия, край которой модифицирован, напоминая глаза и тело гольяна. Когда Unio готова выпустить наружу личинок, край мантии начинает волнообразно изгибаться, предположительно для того, чтобы привлечь внимание проплывающих мимо рыб к «гольяну» и заставить подходящего хозяина подойти достаточно близко к только что выпущенным в воду глохидиям.

В своей работе по ранним стадиям развития пресноводной Unio, опубликованной в 1898 г., Лилли (Lillie) убедительно показал, что дробление у этого моллюска, сохраняя основные черты, типичные для Spiralia, претерпело в отношении скорости и общего характера изменения, связанные с необходимостью формирования специализированных личиночных структур. У большинства моллюсков и кольчецов микромеры первого ряда образуют теменную пластинку и прототрох. У личинок Unio, у которых дробление первого ряда микромеров происходит медленнее, чем дробление второго их ряда, эти структуры отсутствуют. Такое замедление выявляется при сравнении распределения клеток, имеющихся на стадии 32 бластомеров у Unio и у «идеализированного» зародыша со спиральным дроблением (табл. 4-1). Второй ряд микромеров дает начало большей части личиночных структур (и массы) личинок Unio. Кроме того, некоторые зародышевые структуры у глохидия очень велики по сравнению с другими его частями. Одна из таких структур - раковинная железа, которая вырабатывает относительно массивную раковину зародыша. Эта железа образуется всего из одного микромера второго ряда - микромера 2d. Дробление несколько модифицируется, так что микромер 2d оказывается крупнее своего сестринского 2D-макромера и фактически является самой крупной клеткой зародыша. На рис. 4-13, II-IV изображены стадии дробления зародыша Unio. У 8-клеточного зародыша (рис. 4-13, II) макромеры и микромеры распределены типичным для Spiralia образом. По мере дальнейшего дробления зародыша, как это показано на рис. 4-13, III (вид сбоку), макромер D делится, образуя крупную клетку 2d. Эта клетка продолжает делиться, образуя ряд мелких клеток (рис. 4-13, IV). Огромные относительные размеры бластомера 2d у Unio можно оценить, сравнивая рис. 4-13, IV и 4-12, I. Вторая крупная клетка второго квартета микромеров - это бластомер 2а (также показанный на рис. 4-13, IV), дающий начало личиночной эктомезодерме, из которой развивается крупная замыкающая мышца, обеспечивающая захлопывание раковины глохидия. Клетки, получающиеся в результате деления клеток 2а и 2d, также делятся быстрее, чем другие микромеры второго квартета.

Таблица 4-1. Относительные скорости дробления у Unio по сравнению с «идеализированным» зародышем со спиральным развитием на стадии 32 бластомеров (Lillie, 1898; с изменениями)

Клетки Идеальный зародыш Зародыш Unio
Первый квартет микромеров 16 10
Второй квартет микромеров 8 13
Третий квартет микромеров 4 4
Клетка 4d (презумптивная мезодерма) 1
Макромеры 4 4
Общее число бластомеров 32 32

Лилли ясно представлял себе, что в этих модификациях спирального дробления у моллюсков участвует несколько факторов. Хотя судьба клеток не изменяется в общем смысле, т. е. в отношении того, из каких бластомеров образуется эктодерма, мезодерма и энтодерма, личиночная форма, как мы это видели среди кольчецов у олигохет, значительно модифицировалась по сравнению с предковой трохофорой. В число необходимых адаптации, затрагивающих дробление, входят изменения относительных скоростей клеточного деления и относительных размеров бластомеров. Последнее достигается в результате модификаций цитоскелетного матрикса, контролирующего местоположение митотических веретен.

Локализация веретена определяет не только правое и левое направление дробления, как это видно у Limnaea, но также относительные размеры дочерних клеток. Если веретено располагается в центре клетки, то борозда дробления, образующаяся в плоскости метафазной пластинки, проходит по экватору, и в результате дробления получаются две одинаковые дочерние клетки. Если же, однако, веретено находится на значительном расстоянии от центра, то борозда дробления также смещена и одна из дочерних клеток оказывается гораздо крупнее другой. Это хорошо видно на рис. 4-13, III, где в результате деления клетки D образуются две дочерние клетки, сильно различающиеся по величине.

Регуляция скорости дробления также связана с цитоплазмой зародышей. В 1904 г. Вилсон (Е. Wilson) установил, что в 16-клеточном зародыше Patella четыре клетки, составляющие первый квартет микромеров, уже детерминированы как первичные трохобласты и дифференцируются в 16 ресничных клеток прототроха. По мере продолжения дробления каждый из этих первичных трохобластов делится еще дважды, а затем за 10 ч у него вырастают реснички, расположенные поперечными рядами. Вилсон сумел изолировать отдельные первичные трохобласты из 16-клеточного зародыша. Изолированные трохобласты, как и в норме, делились еще два раза, а затем прекращали деление, и примерно на 10-м часу у них развивались реснички, расположенные обычным образом. Итак, у этих зародышей мозаичный характер развития проявился не только в дифференциальной способности изолированных трохобластов к образованию специфически расположенных ресничных клеток, но также и в регуляции скорости и числа клеточных делений.

Данные в пользу того, что такая регуляция сроков обусловлена действием генов во время оогенеза, получены при изучении гибридов от скрещиваний между видами, различающимися по скорости развития. Такие гибриды обычно развиваются со скоростью, характерной для материнского вида: отцовские же признаки проявляются у них на сравнительно поздних стадиях развития. Например, лягушки Rana pipiens и R. palustris заметно различаются по скорости дробления, но гибриды между ними развиваются и достигают стадии взрослых животных. Как показал Мур (Moore), клеточное деление при дроблении происходит у них с такой скоростью, как у материнского вида. Подобным же образом у гибридов между морскими ежами Paracentrotus lividus и Arbacia lixula, как установили Уитли и Болцер (Whiteley, Baltzer), скорость дробления соответствует таковой у материнского вида. Еще одно, особенно наглядное, доказательство регуляции сроков развития цитоплазмой яйца было получено в экспериментах Минганти (Minganti). Он проводил опыты по оплодотворению энуклеированных яиц асцидии Ascidia malaca спермой другой асцидии Phallusia mamillata. Значительная доля получавшихся при этом зародышей достигала личиночных стадий, и, хотя эти зародыши содержали только один геном из отцовского вида (Phallusia), скорость развития (которая у этих двух видов различна) соответствовала скорости развития материнского вида (Ascidia). Таким образом, факторы, регулирующие скорость дробления, могут обособляться в определенных бластомерах таким же образом, как и факторы, определяющие специфичные типы дифференцировки.

 

Изменения в организации яйца при возникновении эволюционно продвинутых групп первичноротых

Среди Spiralia наблюдается несколько довольно любопытных крупных эволюционных направлений, затрагивающих ранние стадии развития. Одно из них - это сочетание невероятно консервативного спирального дробления с чрезвычайно разнообразными планами строения тела взрослых особей, обнаруженное у представителей нескольких типов. Так, если обратиться к рассмотренным нами группам, у кольчецов (с их высокометамерным строением тела) мало общего с несегментированными моллюсками. Однако и те и другие обладают не только одинаковым типом дробления, но и сходной судьбой отдельных клеток. Так, из первого квартета микромеров образуется личиночная эктодерма; некоторые микромеры второго квартета образуют эктомезодерму; макромеры - энтодерму, а клетка 4d в конечном счете дает дефинитивную мезодерму взрослой особи. Во многих случаях консервативный способ дробления может быть связан с тем, что у большинства Spiralia личинки ведут планктонный образ жизни: одним из основных признаков всех типов, относящихся к Spiralia, является трохофора или сходная с ней личинка. Эволюционные модификации дробления очень легко коррелировать с утратой или изменением какой-либо структуры на личиночных стадиях, как это было описано выше на примере кольчеца Tubifex или моллюска Unio.

Другим крупным эволюционным направлением среди Spiralia было наблюдаемое в некоторых группах радикальное отклонение ранних стадий дробления от традиционного спирального типа. Это произошло у моллюсков при возникновении головоногих, которые, несмотря на высокое развитие нервной системы, органов чувств и локомоторной системы, сохраняют план строения тела, типичный для моллюсков. Головоногие продуцируют очень крупные яйца, богатые желтком, из которых путем прямого развития без выраженной личиночной стадии, образуются взрослые особи. Дробление ограничено тонким слоем цитоплазмы на поверхности яйца и, как подчеркивает Арнольд (Arnold), совершенно не похоже на дробление у Spiralia. Изменения в типе дробления и морфогенезе, наблюдаемые у головоногих, сходны с изменениями, произошедшими у костистых рыб и птиц, у которых ранние процессы развития также адаптированы к наличию в яйце очень большого количества желтка.

Аналогией возможному ходу изменений в эволюции яйца у головоногих служат высшие кольчецы с их крупными, богатыми желтком яйцами и прямым развитием. Дробление у этих форм модифицировано и большую часть массы яйца составляют альбуминотрофные клетки, несущие исключительно питательную функцию.

Подобно головоногим, членистоногие происходят от предков, принадлежавших к Spiralia, но характер их развития сильно модифицировался. Членистоногих обычно объединяют в один тип, близкородственный кольчецам. Как для кольчецов, так и для членистоногих характерны строгая метамерия в строении тела, ряды повторяющихся придатков, брюшная нервная цепочка и расположенное дорсально сердце. Однако у трех главных групп ныне живущих членистоногих - Crustacea (креветки, морские желуди и т.п.), Chelicerata (мечехвосты, пауки и т.п.) и Uniramia (онихофоры, многоножки и насекомые) - имеется ряд признаков, на основании которых современные исследователи филогении членистоногих (Manton, D. Anderson и Cisne) рассматривают их как искусственную группу. В соответствии с их представлениями Crustacea, Chelicerata и Uniramia возведены в ранг отдельных типов, возникших независимо один от другого.

Ракообразные-единственные членистоногие, у которых сохранилось спиральное дробление. На рис. 4-14 показано дробление у усоногого рачка Tetraclita. Бластомеры перенумерованы в соответствии с системой обозначений, которую предложил Андерсон (Anderson) для бластомеров у Spiralia, и с его представлениями о возможных гомологиях между этими клетками и клетками зародышей Spiralia. Ценность подобного сопоставления типов дробления, по-видимому, ограничена, потому что дробление у ракообразных так глубоко отличается от классического спирального дробления, что любая попытка провести какую-либо аналогию будет безуспешной.

Однако карты с указанием судьбы отдельных участков поверхности бластулы ракообразных можно сравнить с аналогичными картами для кольчецов, как это сделал Андерсон. Как показывает рис. 4-15, на котором представлены две такие карты, у кольчецов презумптивная мезодерма лежит позади презумптивной средней кишки, тогда как у зародышей ракообразных она лежит между средней кишкой и презумптивным первичным ртом. Это изменение касается не только типа дробления, но и основных взаимоотношений между различными участками яйца.

Рис. 4-14. Дробление у усоногого рачка Tetraclita как пример сохранения у ракообразных спирального дробления в сильно модифицированном виде (Anderson, 1969).

Рис. 4-15. Карта зачатков у зародышей полихет и ракообразных на стадии бластулы (Anderson, 1973).

Большинство других членистоногих, не относящихся к ракообразным, производят яйца, очень богатые желтком; в этих яйцах желточная масса не делится, оставаясь в виде неразделившегося синцития, содержащего образующиеся при дроблении ядра. По окончании делений дробления эти ядра мигрируют к поверхности яйца, где в результате целлюляризации они образуют бластодерму. Прямое сравнение подобного способа деления со спиральным дроблением, разумеется, невозможно. Тем не менее Андерсон сравнивал карты зачатков таких членистоногих с картами зачатков кольчецов. Онихофоры - самая примитивная группа среди Uniramia; в сущности, они так примитивны, что их часто выделяют в отдельный тип, промежуточный между кольчецами и членистоногими. Эти животные обладают некоторыми признаками кольчецов, в частности мягкими покровами и в основном однородными недифференцированными сегментами, а мышечные слои расположены у них так же, как у кольчецов. При этом, однако, у онихофор имеются некоторые признаки членистоногих, например челюсти, ходильные ноги, снабженные коготками, и кровеносная система, сходная с аналогичной системой членистоногих. Наличие трахеи указывает на их близость к насекомым и многоножкам. Сравнение карты зачатков онихофор и кольчецов привело к интересному результату: оказалось, что в отличие от ракообразных карта зачатков зародыша онихофор сходна с картой зародыша кольчецов. Поэтому представляется вероятным, что ракообразные и Uniramia возникли независимо друг от друга. Происхождение этих двух групп было связано с модификацией яйца предкового Spiralia в двух совершенно различных направлениях. У ракообразных сохранилось спиральное дробление, но оно полностью модифицировалось и судьба различных участков зародыша изменилась. Uniramia совершенно отказались от спирального дробления и перешли к синцитиальному типу дробления, предшествующему образованию бластодермы, как адаптации к очень крупным, богатым желтком яйцам. Но судьба отдельных участков яйца сохранила сходство с их судьбой у кольчецов.

Считается, что насекомые, наиболее продвинувшиеся в эволюционном отношении среди всех первичноротых, произошли от какого-то предка, сходного с кольчецами, пройдя через стадию сходства с онихофорами, а затем с многоножками. В процессе такой эволюции постепенно возникали характерное для Uniramia строение ноги и головы, а также специализация сегментов и уменьшение их числа. Морфогенетические и генетические события, лежащие в основе этих изменений, рассматриваются в гл. 7 - 9.

 

Эволюционные изменения в организации яиц хордовых

Для Spiralia характерно развитие, при котором отдельные бластомеры на ранних стадиях дробления уже запрограммированы к дифференцировке в определенном направлении, не изменяющемся даже в том случае, если изолировать их от остального зародыша. Широкое распространение получили представления о том, что такое мозаичное развитие типично для первичноротых, тогда как в основе развития вторичноротых лежат индукционные взаимодействия между клетками, детерминирующие их судьбу. Эти представления неверны по двум причинам. Во-первых, у некоторых вторичноротых, в особенности у асцидий, развитие столь же высокомозаичное, как и у любого представителя Spiralia. Во-вторых, детерминированность определенных клеток к развитию по определенному пути содержит в себе временной фактор. У тех зародышей, которых принято считать типично мозаичными, эта детерминированность наступает очень рано; однако у всех зародышей рано или поздно клетки становятся детерминированными. Так, у зародыша морского ежа (вторичноротое) на стадии четырех бластомеров все клетки равноценны по своим потенциям к развитию. Однако у 8-клеточного и уж тем более у 16-клеточного зародыша судьба бластомеров явно предопределена.

Следует отметить, что даже у Spiralia развитие яиц нельзя считать полностью мозаичным. Некоторые детерминирующие события наступают на очень ранних стадиях, но по мере дальнейшего развития все возрастающую роль в нем начинают играть различные индукционные взаимодействия. Одна из интересных особенностей мозаичного развития состоит в том, что при этом возможно быстрое образование специализированных личинок из ограниченного числа зародышевых клеток. Такой механизм особенно выгоден для организмов, развивающиеся яйца которых взвешены в морской воде, составляя часть планктона. Индукционные взаимодействия, наблюдаемые в развитии даже типичных мозаичных зародышей, позволяют считать, что в процессе эволюции той или иной линии соотношение вкладов самодифференцировки и индукции может изменяться, особенно в тех случаях, когда у данной линии наблюдается тенденция к утрате специализированных личинок. Заключение о том, что такой процесс действительно имел место, можно сделать, рассматривая развитие асцидий, амфибий и млекопитающих - членов обширного филогенетического ряда хордовых.

Развитие асцидий носит в значительной мере мозаичный характер, как это было показано в экспериментах двух типов : 1) при сращивании двух зародышей на ранних стадиях дробления; 2) при изоляции пары бластомеров из зародыша и выращивании их в культуре. Эксперименты первого типа провел Убиш (Ubisch) в 1938 г. Сращивая зародышей попарно на стадии двух бластомеров, он обнаружил, что результаты такой операции зависят от ориентации зародышей друг относительно друга. Вообще, из сращенных зародышей развиваются двойные уроды с добавочными внутренними органами, например зародыш с одним хвостом, содержащим две хорды, каждая со своей нервной трубкой. Такой результат согласуется со способностью бластомеров дифференцироваться независимо друг от друга. Эксперименты с удалением некоторых бластомеров, которые впервые провел в широких масштабах Конклин (Е. Conklin) в 1905 г. на асцидиях, дали более определенную информацию относительно потенций отдельных бластомеров и их судьбы. На рис. 4-16 представлена карта презумптивных зачатков для 8-клеточного зародыша асцидий. Два передних бластомера анимальной половины дают эпидермис головы, присоски и головной мозг; два задних анимальных бластомера дают только эпидермис; передние бластомеры вегетативной половины дают спинной мозг, хорду и часть кишечника ; два задних вегетативных бластомера - кишечник, мезенхиму и мышцы.

Конклин хотел также выяснить, насколько строго предопределена судьба бластомеров. Выпуская 2- или 4-клеточных зародышей из пипетки, Конклин убивал один или несколько бластомеров, получая живые половинки или четвертушки зародышей; эти зародыши нормально дробились, оставаясь связанными с неделящимися убитыми бластомерами. У таких частичных зародышей развивались только те ткани, которые образовались бы из имеющихся у них живых бластомеров, если бы они находились в нормальном зародыше. Можно, конечно, возразить, что нормальному развитию частичных зародышей мешало присутствие мертвых бластомеров, но эксперименты, проведенные Ревербери (Reverberi) с изолированными бластомерами, привели к таким же результатам.

Ревербери и Минганти (Reverberi, Minganti) выращивали в культуре пары бластомеров, изолированные из 8-клеточных зародышей асцидий. Оказалось, что все эти пары обладают ограниченной способностью к дифференцировке, соответствующей их положению на составленной Конклином карте зачатков. Неожиданный результат этих экспериментов состоял в том, что, хотя кишечник, хорда, мышцы и мезенхима развивались путем самодифференцировки бластомеров, нервная ткань развиваться таким образом не могла. Изолированные передние бластомеры анимальной половины, которые должны были образовать нервную ткань, давали только эпидермис. Если же 8-клеточных зародышей расчленяли так, что передние бластомеры анимальной половины оставались в контакте с передними бластомерами вегетативной половины, предназначенными для образования хорды, то из передних анимальных бластомеров развивалась нервная ткань. Следовательно, для дифференцировки нервной ткани необходимо индукционное воздействие со стороны хорды и энтодермальных клеток. Это как бы предвосхищает гораздо более важную роль индукции, наблюдаемую у позвоночных, однако Ревербери указывает на одно существенное различие. Если во фракционированном зародыше сохраняется контакт между задними бластомерами анимальной половины, дающими эпидермис, и передними бластомерами вегетативной половины, дающими хорду, то нервная ткань не развивается. Эктодерма, образующаяся из задних анимальных бластомеров, не реагирует на нейральное индукционное влияние со стороны хорды. У амфибий, у которых индукционные взаимодействия изучены довольно подробно, наблюдается совершенно иная картина. Яйца амфибий легко получить, они крупные, хорошо выдерживают радикальные экспериментальные процедуры и поэтому широко используются в экспериментах по пересадкам ядер и целых участков зародышей. В 1925 г. Фогт (Vogt) разработал метод для определения дальнейшей судьбы разных участков зародыша у амфибий. Он установил, что, помещая на поверхность зародыша маленькие кусочки агара, пропитанные каким-нибудь прижизненным красителем, можно стабильно окрашивать небольшие группы клеток, не повреждая их при этом. Это позволяет проследить за дальнейшей судьбой окрашенных клеток и их местоположением в гаструле. На рис. 4-16 изображена карта презумптивных зачатков амфибий, на которой показаны участки ранней гаструлы, дающие затем начало нервной ткани, хорде, мезодерме и энтодерме. Относительное расположение этих участков такое же, как у зародышей асцидий, с той разницей что клетки, дающие начало мезодерме и хорде, находятся не на поверхности, как у оболочников, а лежат под слоем презумптивных энтодермальных клеток. Шпеман (Spemann) произвел реципрокные пересадки, при которых кусочек презумптивной ткани головного мозга, взятой из ранней гаструлы-донора, пересаживали в раннюю гаструлу-реципиент, в участок, дающий начало эпидермису; и наоборот, кусочек презумптивного эпидермиса пересаживали в участок зародыша-реципиента, дающий начало ткани головного мозга. Трансплантаты быстро приживлялись, и за их судьбой было нетрудно проследить, потому что донор и реципиент принадлежали к двум близкородственным видам, клетки которых четко различались по пигментации. Клетки дифференцировались в соответствии с тем участком реципиента, в который они были пересажены, т. е. их судьба не была предетерминирована.

Рис. 4-16. Карта зачатков у зародышей оболочника и лягушки. Распределение зачатков у зародыша амфибий сходно с их распределением у зародыша оболочников с той разницей, что у амфибий они располагаются в два слоя: эпидермис, энтодерма и нервная пластинка в верхнем слое, а хорда, сомиты и мезодерма под этим поверхностным слоем клеток (Ortolani, 1954 и Keller, 1975, 1976; с изменениями).

Позднее Шпеман и Мангольд (Mangold) обнаружили, что у зародыша амфибий есть один участок, способный к самодифференцировке, - спинная губа бластопора ранней гаструлы. На рис. 4-16 спинная губа изображена в виде выемки. Этот участок имеет важное значение, потому что именно здесь начинается инвагинация клеток во время гаструляции и определяется расположение дорсовентральной оси зародыша. Местоположение самой губы бластопора устанавливается вскоре после оплодотворения и определяется по появлению серого серпа. Серый серп обычно располагается против места проникновения в яйцо сперматозоида и появляется в результате акта цитоплазматической локализации (ооплазматической сегрегации), вызываемого оплодотворением, от которого зависит также и его пространственное положение. Значительная часть хорды образуется из области спинной губы. Пересаживая часть этого материала от одного зародыша другому, Шпеман и Мангольд вызывали у реципиента образование добавочного зародыша с хордой и нервной трубкой. Хорда состояла из клеток, происходивших от трансплантата, сомиты - из клеток трансплантата и реципиента, а нервная трубка - почти целиком из клеток реципиента. Таким образом основная масса клеток добавочного зародыша была образована за счет хозяина (реципиента), однако дифференцировку этих клеток в разнообразные структуры добавочного зародыша индуцировала пересаженная спинная губа.

В результате аналогичного эксперимента Мангольд и Зейдель (Mangold, Seidel) установили, что сращивание двух зародышей амфибий на двуклеточной стадии обычно приводит к развитию двойных зародышей. Серый серп, определяющий местоположение первичного организатора, на этой стадии уже существует, а поэтому очевидно, что сращенные зародыши будут содержать два независимых организационных центра, и, следовательно, у них сформируются две системы осевых органов. Очевидно, что бластомеры амфибий на ранних стадиях развития лишены той крайне сильно выраженной способности к самодифференцировке, которой обладают асцидий; однако у амфибий сохраняется мозаичная природа первичного организатора. Индукционная функция организатора имеет решающее значение для последующей дифференцировки других участков, которая зависит от цепи индукционных воздействий, инициируемых осевыми структурами.

Плацентарные млекопитающие сильно отличаются по стратегии развития как от морских беспозвоночных с их мелкими пелагическими личинками, так и от тех позвоночных, которые продуцируют крупные яйца, богатые желтком. Большинство морских беспозвоночных образуют большое число яиц, содержащих количество желтка, достаточное для обеспечения быстрого развития до стадии, на которой организм становится способным к самостоятельному питанию. В то же время у таких позвоночных, как амфибии, яиц меньше, но они очень богаты желтком, что необходимо для более длительного развития организма, способного к самостоятельному питанию. Все эти яйца содержат также запасы рибосом и мРНК, обеспечивающие быстрое развитие в начальный период, до того как в результате дробления у зародыша образуется достаточное число ядер для поддержания высокого уровня синтеза белка при участии новообразованных мРНК.

В отличие от этого у плацентарных млекопитающих яйца мелкие и содержат мало желтка или других веществ, необходимых для длительного самостоятельного синтеза белка, потому что их зародыши развиваются как бы в контейнере с питательной средой, помещенном в тело матери. Яйца млекопитающих вначале развиваются очень медленно. У зародыша мыши первые 4-5 делений дробления занимают трое суток. На четвертые сутки образуется бластоциста, состоящая примерно из 100 клеток. Имплантация происходит спустя 4,5 сут. Поскольку наличные запасы мРНК невелики, ее транскрипция в ядрах зародыша начинается у мышей очень рано - еще до первого деления дробления и имеет жизненно важное значение для осуществления ранних стадий развития.

Развитие зародышей млекопитающих, предшествующее их имплантации, приводит к образованию бластоцисты (рис. 4-17) - полой структуры, напоминающей бластулу и состоящей из клеток двух типов: клеток трофобласта, покрывающих зародыш снаружи, и внутренней клеточной массы, располагающейся в полости, ограниченной трофобластом. Из трофобласта развивается плацента, а из внутренней клеточной массы - внезародышевые оболочки и сам зародыш. Развитие зародыша до стадии бластоцисты не зависит от морфогенетической информации, получаемой в результате взаимодействия с тканями материнского организма, потому что этой стадии достигают зародыши, выращиваемые на простой питательной среде, содержащей только пируват и соли. Для раннего периода постимплантационного развития необходимы другие более сложные среды, однако результаты соответствующих экспериментов позволяют сделать вывод, что раннее постимплантационное развитие регулируется изнутри, а матка обеспечивает питание и опору; хороший обзор на эту тему составил Грэхэм (Graham, 1973).

Рис. 4-17. Химерные мыши, полученные в результате сращивания зародышей двух разных генотипов на стадии дробления (Mintz, 1967).

Для того чтобы выяснить, до какой степени клетки млекопитающих способны к мозаичному развитию, были проведены эксперименты с удалением клеток и со сращиванием зародышей. Мур (N. Moore) и его сотрудники разрушали у 2-, 4- и 8-клеточных зародышей кролика все бластомеры, за исключением одного, и переносили этот последний в матку приемной матери. Из 30% таких бластомеров, взятых от 2-клеточных зародышей, 19%-от 4-клеточных, 11%-от 8-клеточных были получены нормальные крольчата. Тарковски и Вроблевска (Tarkowski, Wroblewska) разделяли бластомеры 4- и 8-клеточных зародышей мышей и выращивали их в культуре. Им удалось проследить за судьбой каждого бластомера лишь для небольшого числа диссоциированных зародышей, но некоторые полученные при этом данные оказались очень интересными. Из бластомеров одного 4-клеточного зародыша были получены три бластоцисты и один трофобластический пузырек (бластоциста, не содержащая внутренней клеточной массы). Из 8-клеточного зародыша, разделенного на пары бластомеров, были получены три бластоцисты и одна морула. Ни в одном случае не наблюдалось мозаичной дифференцировки, характерной для асцидий. Кроме того, эти результаты резко отличались от тех, которые получил Руд (Ruud) в аналогичных экспериментах с зародышами амфибий. Руд разделял бластомеры 4-клеточного зародыша и выращивал их в культуре по отдельности. Из двух бластомеров, содержавших кусочки зоны серого серпа, формировались маленькие, но полные зародыши, а два других бластомера делились, но дифференцировки не происходило.

Тарковски и Вроблевска высказали предположение, что в зародышах млекопитающих предетерминированные локализованные участки цитоплазмы не играют никакой роли. Направление дифференцировки бластомера определяется только его местоположением в ранней бластоцисте. Так, клетка, оказавшаяся снаружи, становится частью трофобласта, а клетка, попавшая внутрь, развивается во внутреннюю клеточную массу. Хильмен (Hillman) и ее сотрудники проверили это предположение, перенося меченые бластомеры во внутренние или наружные участки немеченых зародышей. Как и предсказывали Тарковски и Вроблевска, бластомеры дифференцировались в трофобласт или внутреннюю клеточную массу в соответствии со своим положением.

Зависимость судьбы клетки от ее положения и отсутствие организатора были продемонстрированы также и другим способом. Тарковски и Минц (Mintz) диссоциировали мышиные зародыши на стадии морулы и объединяли клетки двух зародышей, различающихся по генам окраски шерсти. Образовавшиеся в результате гибридные бластоцисты были имплантированы в приемную мать. Из них развились нормальные живые мышата; это были химеры, в окраске которых проявилось действие обоих генов. Схема такого эксперимента представлена на рис. 4-17.

Степень зависимости судьбы клеток млекопитающих от их местоположения в зародыше и взаимодействия с другими клетками особенно ярко продемонстрировали Минц и Илмензе (Ilmense). Эти авторы экспериментально вызывали образование тератокарцином у мышей, имплантируя в полость тела (не в матку) нормальный ранний зародыш. Развитие такого зародыша протекало беспорядочно, и он превращался в солидную опухоль, содержащую популяцию быстро делящихся стволовых клеток (эм6риокарциномных клеток), способных дифференцироваться с образованием самых разнообразных тканей. Эти солидные опухоли часто удается диссоциировать и выращивать в перитонеальной полости, получая асцитные опухоли. Асцитные опухоли состоят из эмбриональных телец, в центре которых находятся эмбриокарциномные клетки, окруженные слоем недифференцированных энтодермальных клеток. Минц и Илмензе вводили эмбриокарциномные клетки из линии асцитных опухолевых клеток, сохранявших эуплоидный набор хромосом, в бластоцисты генетически помеченной линии мышей и получали здоровых потомков, представлявших собой генетические химеры, которые были построены из нормальных тканей. происходящих как из клеток реципиента, так и из введенных ему эмбриокарциномных клеток. По-видимому, превращение тканей зародыша в тератокарциному связано с нарушением характера экспрессии генов, а не с мутационным процессом, потому что эмбриокарциномные клетки, помещенные в специализированную среду внутри бластоциста, могут дать начало нормальным тканям.

В эволюционной последовательности форм, наблюдаемой у хордовых, сохраняется один и тот же основной план строения тела, однако с течением времени роль мозаичных элементов в процессе развития постепенно становится все менее важной, пока у млекопитающих эти элементы не исчезают окончательно. И наоборот, значение индукционных взаимодействий между отдельными участками зародыша возрастает. У асцидий главное индукционное событие - образование нервной ткани под влиянием хорды. Эта фундаментальная зависимость сохраняется у эволюционно более продвинувшихся хордовых, у которых характерная для асцидий строгая самодифференцировка других частей организма сменяется системой актов детерминации, обусловленных индукционными взаимодействиями. Представляется вероятным, что в тех случаях, когда в результате возникают сходные ткани или структуры, это связано со сходными наборами экспрессирующихся генов, хотя вполне возможно, что переход от самодифференцировки к индукционным взаимодействиям сопровождается сменой триггеров, вызывающих действие генов.

В развитии хордовых помимо смягчения строго мозаичного типа развития произошло еще одно столь же важное изменение. Беррил (N. Berrill) в своей работе «Происхождение позвоночных» указал на значение изменений в соотношении между числом делений дробления, которые прошел зародыш, и началом дефинитивной дифференцировки клеток. У асцидий и оболочников вообще гаструляция начинается, как правило, между 64- и 128-клеточными стадиями. Согласно Конклину, на стадии 64 клеток у зародыша имеется 26 клеток презумптивной покровной эктодермы, 10 клеток презумптивной нервной пластинки, 4 клетки презумптивной хорды и 10 клеток мезенхимы, 4 мышечные клетки хвоста и 10 клеток презумптивной энтодермы. Некоторые из этих клеток претерпевают далее ограниченное и дискретное число клеточных делений, прежде чем приступить к окончательной дифференцировке. Так, у головастикоподобных личинок асцидий имеется 36 мышечных клеток хвоста и 40 клеток хорды. Соответственно сама эта личинка невелика.

Беррил высказал мнение, что хордовые произошли от оболочников, сохранив план строения тела их личинок в результате неотенического развития. Строгое ограничение числа клеток и общих размеров у личинок оболочников жестко ограничивало эволюционные возможности любых неотенических Prochordata. Ввиду того что размеры отдельных клеток практически ограничены, любое существенное увеличение общих размеров организма может достигаться только за счет увеличения числа клеток каждого типа. Можно соглашаться или не соглашаться с гипотезой Беррила (о неотеническом происхождении позвоночных от оболочников), поскольку палеонтологическая летопись хранит по этому поводу молчание и поскольку с равной вероятностью можно считать, что взрослые формы оболочников представляют собой специализированное терминальное добавление к жизненному циклу животных, которые первоначально во взрослом состоянии были подобны хордовым. Однако все же из табл. 4-2 видно, что среди классов хордовых имел место определенный сдвиг соотношений между числом циклов делений и сроками дифференцировки. Oikopleura - маленький неотенический оболочник, ведущий пелагический образ жизни и сохраняющий хвост во взрослом состоянии. Гаструляция у Oikopleura наступает на один цикл дробления раньше, чем у типичных оболочников-асцидий, например у Styela. Судьба клеток у обоих организмов одинакова, однако число клеток хорды и мышечных клеток хвоста показывает, что у Oikopleura детерминация происходит раньше, чем у Styela. У ланцетника Amphioxis - самого примитивного из всех настоящих хордовых - яйцо имеет такие же размеры, как и у Styela. Поскольку и гаструляция, и дифференцировка отстают у него на три цикла дробления, хорда и хвостовая мышца у личинки Amphioxis до начала питания и роста содержат в 8 раз больше клеток, чем у личинки Styela. У позвоночных Petromyzon (минога) и Triturus (тритон) эта тенденция к образованию крупных личинок зашла еще дальше. О том, что такое изменение в соотношении между числом циклов дробления и дифференцировкой имеет генетическую основу, свидетельствует существование у дрозофилы мутантного гена giant, который в гомозиготном состоянии обусловливает увеличение размеров особей (в остальном нормальных) вдвое. Такой эффект возникает в результате дополнительного цикла клеточных делений на поздних стадиях личиночной жизни.

Таблица 4-2. Зависимость между сроками клеточной детерминации у оболочников и хордовых и конечным числом клеток у их личинок (Berrill, 1955; с изменениями)

Животное Гаструляция Хорда Мышцы хвоста Диаметр яйца
число дроблений примерное число клеток примерное число клеток примерное число клеток мм
Oikopleura 5-6 38 20 20 0,09
Styela 6-7 76 40 36 0,13
Amphioxis 9-10 780 330 400 0,12
Petromyzon 11 2200 500 1,0
Triturus 14 16000 1200 - 2,6

Если в истории развития хвоста оболочников и есть нечто поучительное, так это то, что его, вероятно, можно использовать в качестве известного обобщения, иллюстрирующего сложность эволюционных событий на ранних стадиях развития. В 1933 г. Нидхэм (J. Needham) указал, что несмотря на то что процессы развития чрезвычайно тесно и тонко интегрированы, их на самом деле можно диссоциировать - отделять друг от друга; иными словами, можно экспериментально отделить дифференцировку от роста или от клеточных делений, биохимическую дифференцировку от морфогенеза и даже отделить один от другого разные элементы морфогенеза. Значение этого высказывания для понимания эволюции огромно. Возможность такой диссоциации открывает путь к описанию последствий изменения относительных сроков различных событий, происходящих в процессе развития, для морфологической эволюции, как это сделал Гулд (Gould) в своей книге «Онтогенез и филогенез», и налагает весьма реальные ограничения на наши подходы к генетической организации процессов развития.