Just turn around now

(cause) you’re not welcome anymore.

Gloria Gaynor [138]

Несмотря на действующий на небесной бране полный запрет на азартные игры, Икар III все-таки не удержался. Он проигнорировал несколько предупреждений, поэтому его приговорили к заключению на Тюремной бране, далекой бране, отделенной от Небесной браны пятым измерением. Но даже находясь в заключении, он упорно пытался установить контакты со своими прежними дружками. Однако расстояние между двумя бранами делало общение затруднительным. Ему приходилось подолгу голосовать, чтобы привлечь внимание почтальонов, разносивших почту по балку, ибо многие почтальоны игнорировали его мольбы. Те немногие, кто останавливались, всегда доставляли его послания на небесную брану, хотя скорость доставки была удручающе малой.

Тем временем на Небесной бране начались беспорядки. Ангелы-хранители, которые так храбро спасли иерархию, не испытывали никакого уважения к семейным ценностям других обитателей и были на грани создания межпоколенческой нестабильности. падшие небесные ангелы считали приемлемыми любые пары и поощряли всех к помолвкам с партнерами из другого поколения.

Когда Икар осознал опасность, он был ошеломлен. Он решил непременно исправить ситуацию. Икар понял, что неторопливое общение с Небесной браной, к которому его вынуждали обстоятельства, может сыграть на руку, и позволит постепенно унять непомерную гордыню вышедших из-под контроля ангелов. Вмешательство Икара помогло, и ангелы перестали угрожать общественному порядку. И хотя Икар III по-прежнему должен был отбывать свой срок, избавленные от опасности обитатели небесной браны с тех пор всегда славили его в своих мифах.

Эта глава посвящена понятию уединения, одной из причин, по которым дополнительные измерения могут оказаться важными для физики частиц. Уединенные частицы физически разделены на разных бранах. Если разные частицы помещены в разную окружающую среду, уединение могло бы объяснить определенные свойства, отличающие одну частицу от другой. Уединение могло бы быть причиной, по которой анархический принцип, утверждающий, что все должно взаимодействовать, оказывается не всегда верным. Если частицы разделены в дополнительных измерениях, они не так охотно взаимодействуют друг с другом.

В принципе, частицы могут быть уединены и в трех пространственных измерениях. Но, насколько мы знаем, все направления и все точки в трехмерном пространстве равноправны. Известные законы физики утверждают, что каждая частица может находиться где угодно в наблюдаемых трех измерениях, так что уединение в трех измерениях — это не выход. Однако в многомерном пространстве фотоны и заряженные объекты не обязательно могут находиться где угодно. Дополнительные измерения предлагают способ разделения частиц. Определенные типы частиц могут удерживаться в отдельных областях пространства, занятых разными бранами. Так как не все точки в дополнительных измерениях выглядят одинаково, эти измерения дают способ разделения частиц путем удержания разных типов частиц на разделенных бранах.

Теории, которые уединяют частицы, обладают потенциалом для решения многих проблем. История про Икара относится к моему первому подходу к анализу дополнительных измерений — применению уединения к нарушению суперсимметрии. В то время как четырехмерные теории сталкиваются с серьезными проблемами из-за того, что нарушающие суперсимметрию модели в общем случае содержат нежелательные взаимодействия, уединенные модели с нарушенной суперсимметрией кажутся намного более обещающими. Уединение могло бы также объяснить, почему частицы имеют массы, отличающиеся друг от друга, и почему распад протона не происходит в моделях с дополнительными измерениями. В этой главе мы используем идею уединения и несколько ее приложений к физике частиц. Мы увидим, что даже такие идеи, как суперсимметрия, которая, как мы думали, применима в четырехмерном пространстве-времени, могут быть с большим успехом применены в моделях с дополнительными измерениями.

Мой путь к дополнительным измерениям

Физики — счастливые люди в том плане, что у них много возможностей встречаться на конференциях и делиться с коллегами стимулирующими идеями. Но ежегодно проводится такое ошеломляющее количество конференций и рабочих совещаний по физике частиц, что трудно сделать выбор, какие приглашения принять. Одни конференции — это большие собрания, позволяющие ознакомится с текущими работами других и поделиться вашими последними результатами.

Другие — сравнительно небольшие встречи, на два или три дня, где физики сообщают главные результаты в очень специальной области. Есть также расширенные рабочие совещания, где физики завязывают сотрудничество с коллегами или подводят итоги. Иногда конференции проводятся в таких замечательных местах, что было бы грешно их пропустить.

Хотя Оксфорд — очень приятное место, конференция по суперсимметрии, в которой я принимала участие в начале июля 1998 года, относилась ближе к первой категории. Суперсимметрия, которая в течение многих лет рассматривалась как единственный возможный способ решить проблему иерархии, с течением времени развилась в главную область исследований, так что каждый год физики собирались для того, чтобы обсудить последние достижения в этой области.

Однако на Оксфордской конференции были сюрпризы. Самым интересным разделом оказалась не суперсимметрия, а недавно родившаяся идея о дополнительных измерениях. Один из наиболее стимулирующих докладов был посвящен большим дополнительным измерениям (об этом пойдет речь в гл. 19). Другие доклады были посвящены судьбе дополнительных измерений в теории струн, а также возможным экспериментальным приложениями дополнительных измерений. Новизна и гипотетический характер, подобных идей подчеркивались даже самими названиями докладов. Теоретик из Чикаго Джефф Харви и несколько следующих докладчиков шутливо назвали свои доклады так, что они перекликались с Островом Фантазий. Джо Ликкен, теоретик из Фермилаб, даже приготовил слайд с маленьким человечком с табличкой «Da brane. Da brane». (Нет нужды говорить, что пародия на Татту и его знаменитое приветствии «da plane» на Острове Фантазий была понятна только тем, кто смотрел в семидесятых американское TV.)

Несмотря на шутливый стиль, после этой конференции я стала размышлять о дополнительных измерениях и о том, почему проблемы физики частиц могли быть решены в мире с дополнительными измерениями. Хотя я была скептически настроена в отношении больших дополнительных размерностей, которые были одной из горячих тем для обсуждения, и не планировала сама заниматься ими, я была убеждена, что браны и дополнительные измерения могут служить важными инструментами для построения моделей, способных в принципе объяснить некоторые непонятные явления физики частиц, которые не поддаются простым четырехмерным объяснениям.

В том году я планировала провести остаток лета в Бостоне, хотя это было для меня не характерно; большинство бостонских физиков-теоретиков, включая меня, проводило каждый год большую часть лета в разъездах, принимая участие в разного рода конференциях и рабочих совещаниях. Но я решила остаться дома, отдохнуть и подумать о новых идеях.

Раман Сундрум, который был тогда постдоком в Бостонском университете, также решил провести лето в Бостоне. Мы часто встречались на конференциях или пересекались в моем или его институте. Нам даже пришлось недолго в одно и то же время быть постдоками в Гарварде. Так как Раман уже занимался дополнительными измерениями, я решила, что будет полезно обсудить с ним мои идеи.

У Рамана очень интересный характер. Большинство физиков на ранних стадиях своей научной карьеры работают над сравнительно безопасными проблемами — вопросами общего-характера, в которых они, возможно, достигнут прогресса. Однако Раман определенно хотел сосредоточиться на самом, по его мнению, важном, даже если эта задача была очень сложная или ею мало кто занимался. Несмотря на очевидный талант, такой подход к делу не позволил ему получить работу на факультете и привел на третью постдоковскую позицию. Но в это время Раман думал о дополнительных измерениях и бранах; его интересы начали постепенно совпадать с интересами остальной части физического сообщества.

Наше сотрудничество началось в кафе «У Тосканини» (сейчас к сожалению закрытом) в студенческом центре МТИ, где продавали потрясающее мороженое и очень хороший кофе. Кафе было идеальным местом встречи для свободного обсуждения идей, без помех и ограничений, где одновременно можно было насладиться вкусными вещами.

Начавшись с разговоров за кофе, наше исследование развивалось и выкристаллизовывалось. В августе мы достигли этапа, когда нам стали требоваться доски все большего размера, чтобы иметь перед глазами детали наших обсуждений. Так как доска в моем профессорском офисе в МТИ была довольно маленькой, нам приходилось блуждать по «бесконечному коридору» (очень длинному проходу, идущему вдоль всей длины главного здания МТИ) в поисках пустых аудиторий.

Конкретная исследовательская задача, на которой мы сосредоточились, состояла в применении уединения к нарушению суперсимметрии. Идея состояла в том, чтобы уединить частицы, ответственные за нарушение суперсимметрии, от частиц Стандартной модели, тем самым предотвратив нежелательные взаимодействия между ними (рис. 73). Мы выбрали слово «уединение», для того чтобы отличать модели, в которых частицы разделены на разных бранах, от так называемого «скрытого сектора» моделей нарушения суперсимметрии, которые были в то время модными. В моделях скрытого сектора нарушающие суперсимметрию частицы слабо взаимодействуют с частицами Стандартной модели, но на самом деле не скрыты (несмотря на название), и поэтому могут взаимодействовать способами, неприемлемыми в реальном мире.

Вначале я была очень воодушевлена нашими идеями, а Раман настроен скептически, но с течением времени наши роли менялись. Один энтузиаст и один скептик, мы проделали большую работу и быстро добрались до сути той физики, о которой мы размышляли. Иногда мы даже слишком быстро отвергали идеи, но обычно один из нас достаточно долго держался за идею, чтобы ее хорошо обсудить и продвинуться вперед.

Френсис Бэкон, который вместе с Галилеем считается одним из основателей современного научного метода, говорил, как сложно двигаться вперед, сохраняя скептицизм, необходимый для уверенности в правильности своих результатов. Как воспринимать идею достаточно серьезно для того, чтобы копаться в ее следствиях, и одновременно отдавать себе отчет, что она может оказаться неверной? Отдельный человек, при наличии достаточного времени, может переходить между этими позициями и прийти в конце концов к правильному ответу. Но если два человека занимают противоположные позиции, то часто требуются часы или даже минуты, чтобы отвергнуть ошибочную, хоть и захватывающую идею.

Тем не менее идея, с которой мы стартовали, а именно, уединение, чтобы избежать нежелательных взаимодействий в суперсимметричных теориях, казалась мне достаточно разумной. В четырех измерениях нет действенных механизмов, а дополнительные измерения, похоже, дают все необходимое для построения успешной модели. Однако лишь в конце лета мы осознали идею уединения и ее следствия для нарушения суперсимметрии достаточно хорошо, чтобы выработать общее понимание и сосредоточиться на достоинствах этой идеи.

Естественность и уединение

Причина, по которой идея уединения может оказаться важной, заключается в том, что она позволяет предотвратить проблемы, вызванные анархическим принципом, негласным правилом, утверждающим, что в четырехмерной квантовой теории поля все, что может случиться, случается. Из-за этого теории предсказывают взаимодействия и соотношения между массами, которые не наблюдаются в природе. Даже взаимодействия, не возникающие в классической теории (т. е. в теории, которая не принимает во внимание квантовую механику), появятся сразу, как только будут включены виртуальные частицы; взаимодействия виртуальных частиц приводят ко всем возможным взаимодействиям.

Приведем аналогию, поясняющую, почему это происходит. Предположим, вы сказали Афине, что завтра пойдет снег, а Афина передала это Икару. И хотя вы не общались напрямую с Икаром, тем не менее ваше сообщение повлияет на то, как Икар оденется завтра — из-за вашего виртуального совета он наденет теплую куртку.

Аналогично, если частица взаимодействует с виртуальной частицей, а эта виртуальная частица, в свою очередь, взаимодействует с третьей частицей, то общий эффект заключается в том, что взаимодействуют между собой первая и третья частицы. Анархический принцип говорит нам, что процессы, включающие виртуальные частицы, неизбежно происходят, даже если они не происходят классически. Часто такие процессы индуцируют нежелательные взаимодействия.

Многие проблемы в теориях физики частиц коренятся в анархическом принципе. Например, квантовые вклады в массу хиггсовской частицы, происходящие от виртуальных частиц, являются следствием проблемы иерархии. На любом пути, выбранном хиггсовской частицей, она может быть временно перехвачена тяжелыми частицами, и эти перехваты увеличивают массу хиггсовской частицы.

В гл. 11 мы видели другой пример, включающий анархический принцип. В большинстве теорий с нарушенной суперсимметрией виртуальные частицы индуцируют нежелательные взаимодействия, которые, как мы знаем из экспериментов, на самом деле отсутствуют. Такие взаимодействия вызывали бы превращения среди известных кварков и лептонов. Подобные меняющие аромат взаимодействия либо вообще не происходят в природе, либо происходят очень редко. Если мы хотим, чтобы теория работала, необходимо как-то устранить эти взаимодействия, которые, как утверждает анархический принцип, будут обязательно возникать.

Виртуальные частицы не обязательно приводят к таким нежелательным предсказаниям. В теории не будет нежелательных взаимодействий в том невероятном случае, если произойдут огромные сокращения между классическим и квантовым вкладами в физическую величину. Даже несмотря на то что классические и квантовые вклады по отдельности очень велики, их сумма может, по-видимому, дать приемлемое предсказание. Такой способ позволяет обойти проблему, но почти наверняка это полумера, заменяющая правильное решение. Никто из нас на самом деле не верит, что такие точные случайные сокращения позволяют фундаментальным образом объяснить отсутствие определенных взаимодействий. Но мы используем это как временную подпору, чтобы продвинуться дальше и изучить другие аспекты наших теорий.

Физики полагают, что в теории отсутствуют взаимодействия только в том случае, когда они устранены способом, который можно считать естественным. В повседневной жизни слово «естественный» относится к вещам, происходящим спонтанно, без вмешательства человека. Но для специалистов по физике частиц «естественно» означает больше, чем нечто происходящее; оно означает, что если что-то произойдет, это не будет загадкой. Для физиков «естественно» только ожидать ожидаемое.

Анархический принцип и многие нежелательные взаимодействия, индуцируемые квантовой механикой, говорят нам, что в любую физическую модель, лежащую в основе Стандартной модели, должны войти новые понятия, для того чтобы такая модель имела шансы быть правильной. Одна из причин, по которой симметрии столь важны, заключается в том, что они представляют единственный естественный способ, гарантирующий, что в четырехмерном мире не возникнут нежелательные взаимодействия. Симметрии по существу дают дополнительное правило, согласно которому, по-видимому, возникают взаимодействия. Вы легко поймете это явление с помощью аналогии.

Предположим, что вы накрываете стол на шесть персон, но должны сделать это так, чтобы все шесть столовых приборов были одинаковы. Это означает, что ваша раскладка приборов допускает преобразование симметрии, меняющее местами каждую пару приборов. Без этой симметрии вы могли бы, в принципе, дать одной персоне две вилки, другой три, а кто-то еще получил бы пару китайских палочек для еды. Но с учетом ограничений, накладываемых симметрией, вы можете расставлять приборы только так, что у всех шести персон будет одинаковое количество вилок, ножей, столовых ложек и китайских палочек — вы никогда не сможете дать одной персоне два ножа, а другой три.

Аналогично, симметрии говорят вам, что не все взаимодействия могут возникнуть. Даже если взаимодействуют много частиц, в общем случае квантовые вклады не порождают взаимодействий, нарушающих симметрию, если классические взаимодействия эту симметрию сохраняют. Если вы не начали с нарушающих симметрию взаимодействий, вы никогда не породите такого взаимодействия (не считая известных редких аномалий, упомянутых в гл. 14), даже если вы включите все возможные взаимодействия с участием виртуальных частиц. Требуя симметрии накрытого стола, вы всегда придете к тождественным приборам, независимо от того, сколько раз вы изменили набор, добавляя, например, ложки для грейпфрута или ножи для стейка. Аналогично, взаимодействия, которые несовместимы с симметрией, не будут индуцироваться, даже если принимать во внимание квантово-механические эффекты. Если симметрия не была нарушена в классической теории, то не будет существовать ни одного пути, где бы при движении частицы возникали нарушающие симметрию взаимодействия.

До недавнего времени физики полагали, что симметрии — это единственный способ избежать анархического принципа. Но, как однажды поняли мы с Раманом, наевшись вдоволь мороженого, другим таким способом являются разделенные браны. Главная причина, почему дополнительные измерения показались мне с самого начала столь многообещающими, состояла в том, что они предлагали объяснение, отличное от соображений симметрии, почему ограниченные или необычные типы взаимодействий могли быть естественными. Уединение нежелательных частиц может предотвратить появление нежелательных взаимодействий, так как они в общем случае не возникают между частицами, находящимися на разных бранах.

Частицы на разных бранах не взаимодействуют сильно, так как взаимодействия всегда локальны — непосредственно взаимодействуют только частицы, находящиеся в одном месте. Уединенные частицы могут контактировать с частицами на других бранах, но только если имеются взаимодействующие частицы, которые могут перемещаться от одной браны к другой. Как Икар на Тюремной бране, частицы на разных бранах обладают ограниченными средствами связи друг с другом, так как у них нет никаких иных способов, кроме приглашения посредника. Даже если такие косвенные взаимодействия возникают, они часто оказываются очень малыми, так как промежуточные частицы в балке, в частности, имеющие массу, очень редко перемещаются на большие расстояния.

Это подавление взаимодействий между частицами, уединенными в разных местах, можно сравнить с глушением международной информации в стране, которую я назову Ксенофобией, где правительство внимательно контролирует границы и средства массовой информации. В Ксенофобии не обеспечиваемая локально информация может быть получена только от иностранных гостей, которые ухитряются в нее въехать, или из газет или книг, ввозимых контрабандой.

Аналогично, разделенные браны представляют платформу, опираясь на которую можно обойти анархический принцип, удваивая таким образом набор инструментов в распоряжении у природы для того, чтобы гарантировать отсутствие нежелательных взаимодействий. Еще одним достоинством уединения является то, что оно может даже защитить частицы от эффектов нарушения симметрии. До тех пор пока нарушение симметрии происходит достаточно далеко от этих частиц, оно будет оказывать на них весьма незначительное воздействие. Когда нарушение симметрии уединяется, это напоминает карантин при заразной болезни, когда больному не разрешают свободно перемещаться. Или, возвращаясь к другой аналогии, любые драматические события, происходящие вне Ксенофобии, не окажут никакого влияния на саму страну, если не будет вмешательства извне. Без проницаемых границ Ксенофобия могла бы существовать независимо от остального мира.

Уединение и суперсимметрия

Конкретная проблема, которую мы с Раманом исследовали летом 1998 года, состояла в том, чтобы понять, как уединение могло бы работать в природе, приводя ко вселенной с нарушенной суперсимметрией и со всеми теми свойствами, что мы наблюдаем. Мы видели, что суперсимметрия может изящно защитить иерархию и гарантировать, что все большие квантово-механические вклады в массу хиггсовской частицы дадут при сложении в сумме нуль. Но, как мы видели в гл. 13, даже если суперсимметрия существует в природе, она должна быть нарушена, для того чтобы объяснить, почему мы наблюдаем частицы, но не их суперпартнеров.

К сожалению, большинство моделей с нарушенной симметрией предсказывает взаимодействия, отсутствующие в природе, и такие модели вряд ли могут быть правильными. Раман и я хотели найти физический принцип, который могла бы использовать природа для защиты себя от этих нежелательных взаимодействий, так чтобы с помощью этого принципа мы могли бы улучшить теорию.

Мы сосредоточились на нарушении суперсимметрии в модели мира на бране. Миры на бранах могут сохранять суперсимметрию. Но так же, как в четырех измерениях, суперсимметрия может быть спонтанно нарушена, когда какая-то часть теории содержит частицы, не сохраняющие суперсимметрию. Раман и я поняли, что если все частицы, ответственные за нарушение суперсимметрии, были бы отделены от частиц Стандартной модели, модель с нарушенной суперсимметрией стала бы менее проблематична.

Поэтому мы предположили, что частицы Стандартной модели удерживаются на одной бране, а частицы, ответственные за нарушение суперсимметрии, уединены на другой. Мы заметили, что в такой системе не обязательно возникают опасные взаимодействия, которые может индуцировать квантовая механика. Кроме эффектов нарушения суперсимметрии, которые могут передаваться через промежуточные частицы в балке, взаимодействия частиц Стандартной модели будут такими же, как и в теории с ненарушенной суперсимметрией. Таким образом, так же как в теории с точной суперсимметрией, нежелательные изменяющие аромат взаимодействия, несовместимые с экспериментами, не будут возникать. Частицы в балке, взаимодействующие с частицами как на нарушающей суперсимметрию бране, так и на бране Стандартной модели, будут точно определять, какие взаимодействия возможны, и среди них не будет с необходимостью запрещенных взаимодействий.

Конечно, некоторое нарушение суперсимметрии должно быть передано частицам Стандартной модели. В противном случае ничто не сможет увеличить массы суперпартнеров. Хотя мы не знаем точных значений масс суперпартнеров, экспериментальные ограничения совместно с ролью суперсимметрии в защите иерархии примерно указывают, каковы должны быть их массы.

Из экспериментальных ограничений можно получить качественные связи между массами суперпартнеров. Грубо говоря, все суперпартнеры имеют примерно одинаковые массы, и эти массы примерно равны масштабу массы слабых взаимодействий, равному 250 ГэВ. Нам нужно убедиться, что массы суперпартнеров попадают в этот интервал, но при этом нежелательные взаимодействия по-прежнему не возникают. Для того чтобы теория уединенного нарушения суперсимметрии имела шанс оказаться правильной, все должно складываться гармонично.

Ключом к успеху нашей модели было бы обнаружение промежуточной частицы, которая могла бы переносить данные о нарушении суперсимметрии к частицам Стандартной модели и придавать суперпартнерам нужные им массы.

Но мы хотели быть уверены, что наш переносчик не спровоцирует недопустимых взаимодействий.

Идеальным кандидатом выглядел гравитон. Эта частица живет в балке и взаимодействует с энергичными частицами, где бы они ни находились — на бране, нарушающей суперсимметрию, и на бране Стандартной модели. Кроме того, взаимодействия гравитона известны, они следуют из теории тяготения. Мы смогли показать, что взаимодействия гравитона, генерируя необходимые массы суперпартнеров, не приводят к взаимодействиям, перепутывающим кварки и лептоны, которые, как известно, отсутствуют в природе. Поэтому выбор гравитона выглядел многообещающе.

Когда мы рассчитывали массы суперпартнеров, которые получались в случае переносчика-гравитона, мы обнаружили, что несмотря на простоту составляющих, вычисления были на удивление тонкими. Классические вклады в нарушающие суперсимметрию массы оказались равными нулю, и нарушение суперсимметрии переносилось только квантово-механическими эффектами. Когда мы поняли это, мы назвали индуцированную гравитоном передачу нарушения суперсимметрии аномальной передачей. Мы выбрали такое название по аналогии с аномалиями, обсуждавшимися в гл. 14, так как специфические квантовомеханические эффекты нарушали симметрию, которая присутствовала бы в противном случае. Самое важное было в том, что поскольку массы суперпартнеров зависели от известных квантовых эффектов в Стандартной модели, а не от неизвестных взаимодействий в дополнительных измерениях, мы могли предсказать относительные величины масс суперпартнеров.

Потребовалось несколько дней на то, чтобы привести все это в порядок, поэтому в один и тот же день я могла переходить от разочарования к надежде. Я помню, как однажды за ужином удивила сидящих рядом, когда я совершенно обезумела от радости, так как заметила ошибку и решила задачу, не дававшую мне покоя весь день. В итоге Раман и я открыли, что если гравитация передает нарушение суперсимметрии, то уединенное нарушение суперсимметрии выполняется удивительно хорошо. Все суперпартнеры имеют правильные массы, а соотношение между массами калибрино и скварка лежит в желаемом интервале. Хотя не все работало так просто, как мы первоначально надеялись, важные соотношения между массами суперпартнеров вставали на место без введения невозможных взаимодействий, которые так досаждают другим нарушающим суперсимметрию теориям. При минимальных модификациях все работало.

И самое замечательное, что благодаря конкретным предсказаниям масс суперпартнеров нашу идею можно было проверять. Очень важным свойством уединенного нарушения суперсимметрии является то, что несмотря на чрезвычайно малые размеры дополнительных измерений, порядка 10-31 см, что всего лишь в сто раз превосходит крохотный планковский масштаб длины, существуют видимые следствия. Это противоречит стандартной идее, что только много большие измерения могут иметь видимые следствия, благодаря модифицированному закону тяготения или новым тяжелым частицам.

Хотя действительно верно, что мы не видели ни одного из экспериментальных следствий в условиях, когда дополнительные измерения малы, гравитон передает калибрино нарушение суперсимметрии весьма специфическим образом, что поддается точному подсчету, ибо известны гравитационные взаимодействия и другие взаимодействия, возникающие в теории с суперсимметрией. Модель уединенного нарушения суперсимметрии предсказывает определенные отношения масс для калибрино — партнеров калибровочных бозонов — и эти массы можно измерить.

Это очень обнадеживает. Если физики откроют суперпартнеров, они смогут затем определить, согласуются ли соотношения между их массами с тем, что мы предсказываем. Эксперимент по поиску этих калибровочных суперпартнеров находится в стадии подготовки на Тэватроне — протон-антипротонном коллайдере в лаборатории им. Э. Ферми, Иллинойс. Если нам повезет, мы узнаем результаты в течение ближайших нескольких лет.

В конце концов и Раман, и я были в разумной степени уверены, что нам удалось открыть что-то интересное. Но у каждого из нас оставалось беспокойство. Я немного боялась, что такую интересную идею, если она верна, не могли проглядеть, и что нам нужно еще убедиться, что мы не пропустили какой-то скрытой ошибки в нашей модели. Раман также думал, что идея слишком хороша, чтобы ее просметрели. Но он был уверен, что все правильно, и боялся только, что подобная идея в физической литературе уже была, а мы ее пропустили.

Он был недалек от истины. Аномальная передача нарушения суперсимметрии была независимо открыта примерно в то же время Джаном Джудиче из ЦЕРНа, Маркусом Люти из Мериленда, Хитоши Мураямой из Беркли и Рикардо Ратацци из Пизы, которые работали вместе тем же самым летом. Их статья вышла на следующий день после нашей. Их работа меня поразила. Я не могла понять, как две группы физиков одним и тем же летом проделали тот же самый извилистый путь сквозь идеи, но Раман правильно предположил, что у них могли быть похожие интересы. На самом деле мы оба были в определенном смысле правы. Хотя у другой группы были сходные идеи, их мотивация не была связана с дополнительными измерениями, а без них массы, порожденные аномальной передачей, были просто курьезом. Как Рикардо великодушно сказал физику Массимо Поррати, нашему общему другу, Раман и я сделали это лучше не потому, что наша версия аномальной передачи была более правильной, а потому, что у нас была причина, о которой любой бы заботился в первую очередь! Причиной были дополнительные измерения. Без них нарушение суперсимметрии не было бы уединено и массы, порожденные аномальной передачей, были бы затерты большими эффектами.

Другие физики также подключились потом к исследованию моделей уединенного нарушения суперсимметрии. Они нашли способы объединить этот подход с другими, более старыми идеями, чтобы построить еще более успешные модели, которые могли бы отражать реальный мир. Ученые даже нашли способы расширить идею уединения на четыре измерения.

Существует слишком много моделей, всех не перечислишь, поэтому позвольте отметить две идеи, которые я нахожу особенно интересными. Первая идея возникла из сотрудничества Рамана и Маркуса Люти. Они использовали идеи закрученной геометрии (описанной в гл. 20), чтобы заново переосмыслить следствия уединения в четырех измерениях. Руководствуясь этими идеями, они разработали новый класс четырехмерных моделей нарушения симметрии.

Другая интересная идея была названа калибровочной передачей. Идея состояла в том, чтобы передать нарушение суперсимметрии не через гравитон, а через калибрино, суперсимметричные партнеры калибровочных бозонов. Чтобы это работало, калибровочные бозоны и их партнеры не должны были быть зажаты на бране; они должны были иметь свободу передвижения по балку. Раман напомнил мне, что калибровочная передача была на самом деле одной из тех многих идей, которые мы ранее отбросили. Но блестящие моделестроители Дэвид Каплан, Грем Крибс и Мартин Шмальц, а также отдельно Захария Чако, Маркус Люти, Энн Нельсон и Эдуардо Понтон показали, что мы были слишком опрометчивы и что калибровочная передача может прекрасно работать при генерации нарушающих суперсимметрию масс, сохраняя при этом все преимущества уединенного нарушения суперсимметрии.

Уединение и сияющие массы

Уединенное нарушение симметрии — мощный инструмент для построения моделей. Реальный мир может содержать разделенные браны, и строя модели с учетом этого предположения, физики могут исследовать целый ряд возможностей.

В предыдущем разделе объяснялось, каким образом в теориях с суперсимметрией можно решить проблемы с меняющими аромат взаимодействиями. Но есть и другой вопрос, бросающий вызов строителю моделей в первую очередь — почему должны существовать разные ароматы кварков и лептонов с разными массами. Механизм Хиггса придает частицам их массы, но точные значения для каждого аромата различны. Это может быть правильным только в случае, когда каждый из ароматов взаимодействует по-разному с тем, что играет роль хиггсовской частицы. Поскольку три аромата каждого типа частиц, например кварки u, с и b, имеют в точности одинаковые калибровочные взаимодействия, возникает загадка, почему все они должны иметь разные массы. Чем-то они должны отличаться друг от друга, но физика частиц Стандартной модели не говорит нам, чем именно.

Мы можем пробовать строить модели, объясняющие разные массы. Но почти неизбежно любая модель будет также содержать нежелательные взаимодействия, которые будут менять ароматы. Нам требуется что-то, позволяющее безопасно различать ароматы, не порождая при этом проблемных взаимодействий.

Нима Аркани-Хамед и выходец из Германии физик Мартин Шмальц предположили, что различные частицы Стандартной модели живут на отдельных бранах, и это позволяет объяснить некоторые массы. Нима и Савас Димопулос обнаружили другую, еще более простую возможность. Они предположили, что существует брана, на которую были захвачены частицы Стандартной модели, и что взаимодействия между частицами на этой бране рассматривают все ароматы одинаково. Но при наличии только симметричных по ароматам взаимодействий, рассматривающих все ароматы одинаково, все частицы будут иметь точно одинаковые массы. Ясно, что мы можем объяснить разные массы только, если есть нечто, что воспринимает частицы по-разному.

Нима и Савас предположили, что другие частицы, ответственные за нарушение симметрии ароматов, были уединены на других бранах. Как и в случае уединенного нарушения суперсимметрии, нарушение симметрии ароматов может быть в этом случае связано с частицами Стандартной модели только через взаимодействия с частицами в балке. Если бы в балке существовало много частиц, взаимодействующих с частицами Стандартной модели, каждая из которых передавала бы нарушение симметрии ароматов от разных бран на разные расстояния, такая модель могла бы объяснить различие масс ароматов Стандартной модели. Нарушение симметрии, передаваемое от удаленных бран, индуцировало бы меньшие массы, чем нарушение симметрии, переданное от ближайших бран. Нима и Савас назвали свою идею сиянием, чтобы подчеркнуть этот факт. Так же, как свет кажется более тусклым, когда его источник находится дальше, эффект нарушения симметрии меньше, когда он порождается более далекой браной. В их сценарии различные ароматы кварков и лептонов будут различными, так как каждый из них будет взаимодействовать с разной браной на разном расстоянии.

Дополнительные измерения и уединение — новые захватывающие подходы к решению задачи в физике частиц. И не нужно на этом останавливаться. Недавно мы показали, что уединение может играть важную роль даже в космологии, науке об эволюции нашей Вселенной. Ясно, что нам еще предстоит открыть все достоинства вселенной (или мультивселенной), содержащей уединенные частицы, так что новые идеи еще придут.

Что нового

• Частицы могут быть уединены на разных бранах.

• Даже крохотные дополнительные измерения могут влиять на свойства наблюдаемых частиц.

• Уединенные частицы не обязательно подчиняются анархическому принципу. Не все взаимодействия обязательно происходят, так как удаленные частицы не могут взаимодействовать непосредственно.

• В модели, в которой частицы, участвующие в нарушении суперсимметрии, уединяются от частиц Стандартной модели, суперсимметрия может быть нарушена без введения взаимодействий, меняющих ароматы частиц.

• Уединенное нарушение суперсимметрии проверяемо на опыте. Если калибрино рождаются на коллайдерах большой энергии, мы можем сравнить массы калибрино и увидеть, согласуются ли их значения с предсказаниями.

• Уединенное нарушение симметрии ароматов может помочь объяснить различия в массах частиц.