Someday girl I don’t know when

We’re gonna get to that place

Where we really want to go.

Bruce Springsteen [179]

Икар XLII решил жить с размахом. Он нацелился испытать сверхвысокие настройки Алисэксвира на многие мегапарсеки, с помощью которых он мог бы выйти за пределы Галактики и известной вселенной и ощутить простор далеких областей, которых никто ранее не видел.

Икар был восхищен, когда Алисэксвир унес его вдаль на расстояния в 9, 12 и даже 13 миллиардов световых лет. но его восторг поутих, когда он попытался пойти еще дальше, ибо тут мощность его сигнала резко упала, когда он замахнулся на 15 миллиардов световых лет, его полет прервалось полностью: он больше не получал никакой информации. Вместо этого он услышал: «Сообщение 5В73: клиент на Горизонте, с которым вы пытаетесь связаться, находится все зоны действия сети. Если вам нужна помощь, пожалуйста, обратитесь к вашему оператору дальней связи».

Он не верил своим ушам. Это был тридцать первый век, и тем не менее его служба Горизонта все еще обеспечивала только ограниченное покрытие, когда Икар попытался обратиться к оператору, автоответчик сказал: «пожалуйста, оставайтесь на бране. Вы получите ответ в порядке очередности поступления вызова». Икар подозревал, что оператор не ответит никогда, и был достаточно мудр, чтобы не ждать.

Предыдущая глава объяснила, почему искривление может снять ограничения на дополнительное измерение и позволить ему быть бесконечным и тем не менее ненаблюдаемым. Но бесконечное дополнительное измерение не есть конец физического рассказа: вещи становятся еще более странными. В этой главе будет объяснено, как четырехмерная гравитация (т. е. с тремя пространственными измерениями и одним временным) может быть по-настоящему локальным явлением, — гравитация может выглядеть совсем иначе вдалеке. Мы увидим, что не только пространство-время может казаться четырехмерным, когда в действительности имеется пять измерений, но и что мы можем жить в изолированном кармане с четырехмерной гравитацией внутри пятимерной вселенной.

Модель, которую мы сейчас рассмотрим, показывает, что разные области пространства могут обладать разным числом измерений. В процессе исследования некоторых необычных свойств локализованной гравитации физик Андреас Карч и я нашли модель пространства-времени, в которой это действительно происходит. Новый радикальный сценарий, к которому мы пришли, предполагает, что причина, по которой мы не видим дополнительные измерения, может быть более странной, чем кто-либо мог предполагать. Мы можем жить в четырехмерной дыре, в которой наличие трех пространственных измерения является просто следствием случайного расположения.

Осмысление

Когда я вновь просматриваю электронную почту того времени, когда Раман и я работали вместе, меня удивляет, что мы сумели закончить нашу работу среди такого большого количества отвлекающих обстоятельств. Когда мы начали наши исследования, я была в процессе переезда из МИТ в Принстон, где должна была занять должность профессора, и я также занималась планированием шестимесячного визита в Санта-Барбару в следующем году. Раман, проведя несколько лет на пост-докторских позициях, переживал, удастся ли ему получить работу на факультете, поэтому занимался подготовкой соответствующих докладов и документов. В это было трудно поверить. Он сделал прекрасную работу, и я и другие пытались убедить его, что в конце концов все получится, и ему не следует оставлять физику и пытаться сделать другую карьеру. Раман был явно предназначен для физики и определенно заслуживал отличной должности на факультете, и тем не менее у него были проблемы с работой. Мейлы того времени демонстрируют хаос: интересные физические темы чередуются с просьбами о рекомендательных письмах, с назначением времени докладов, с поисками жилья в Принстоне и с организацией конференции в Санта-Барбаре. Также было несколько обменов мейлами с другими физиками по поводу нашей работы. Но немного. Хотя работа RS2 была в конечном счете процитирована тысячи раз и получила признание, ее первоначальное восприятие было смешанным. Прошло некоторое время, прежде чем большинство физиков поняли нас и поверили нам. Один коллега говорил мне, что люди ожидали, что выход найдет кто-то другой, и поэтому не обращали на работу внимания. Конечно, вряд ли можно сказать, что доклад Рамана в Принстоне был встречен с энтузиазмом.

Даже те, кто действительно слушали, не обязательно проникались сразу нашей идеей. Обсуждение с теоретиком-струнником Энди Стромингером прояснило очень много, и теперь он смеется над тем, как сначала не воспринял ни одного нашего слова. К счастью, он не был слишком скептически настроен для того, чтобы слушать и разговаривать.

В физическом сообществе были некоторые, кто понял и поверил в то, что мы сделали, с самого начала. Нам повезло, что среди них был Стивен Хокинг, и что он сразу поделился своим энтузиазмом с физической аудиторией. Я вспоминаю, что Раман возбужденно говорил мне, как на престижных лекциях Лёба в Гарварде Хокинг сконцентрировался, в основном, на нашей работе.

Несколько других физиков также работали над близкими проблемами. Но следующей осенью, через несколько месяцев после того, как наша работа была опубликована (и через много месяцев после того, как мы начали говорить о ней), все физическое сообщество начало обращать на нее внимание. Счастливым случаем оказалось то, что Давид Кутасов, израильский физик из Чикагского университета, Миша Шифман, физик-частичник русского происхождения из университета Миннесоты, и я организовали осенью 1999 года шестимесячный семинар в Институте теоретической физики Кавли в Санта-Барбаре. Первоначальной целью этого семинара было свести вместе теоретиков-струнников и строителей моделей и извлечь пользу из возникшего слияния интересов в исследованиях таких тем, как суперсимметрия и калибровочные теории сильных взаимодействий. Мы начали планировать семинар заранее, до того, как понятие бран и дополнительных измерений вмзвало такой ажиотаж.

Хотя мы надеялись на некоторое сотрудничество между теоретиками-струн-никами и строителями моделей, мы не знали в начале организации семинара, что мы будем думать о дополнительных измерениях, когда конференция действительно будет происходить.

Но время проведения оказалось счастливым. Семинар предоставил замечательную возможность облечь в плоть наши идеи о дополнительных измерениях, а для строителей моделей, специалистов по струнам и общей теории относительности — поделиться опытом. Произошло много восхитительных дискуссий, и закрученная геометрия была одной из главных тем. Наконец и строители моделей, и специалисты по струнам восприняли закрученную пятимерную геометрию всерьез. В действительности различие между двумя областями сгладилось, когда люди стали работать вместе над подобными проблемами закрученной геометрии и другими идеями.

В дальнейшем многие физики работали над другими аспектами закрученной геометрии, устанавливая связи и исследуя тонкости, что сделало локализованную гравитацию еще более интересной. Хотя специалисты по струнам сначала отметали RS1 (закрученную геометрию с двумя бранами) как модель, как только они начали исследования, они нашли способы реализовать сценарий RS1 в теории струн. Вопросы теории черных дыр, временной эволюции и связи с идеями из теории струн и частиц также оказались плодородной почвой для исследований. Локализованная гравитация теперь изучалась в различных контекстах, и новые идеи продолжают появляться.

После того как наша теория была принята, некоторые физики фактически ударились в другую крайность, заявляя, что в нашей теории нет ничего нового. Один специалист по струнам пошел настолько далеко, что заключил, что вычисление в теории струн влияния мод Калуцы — Клейна было «дымящимся револьвером», который доказывал, что наша теория была не чем иным, как версией теории струн, которую физики-струнники уже изучали. Это соответствует шутливой присказке в науке о том, что новая теория проходит через три фазы, прежде чем быть признанной: сначала она неправильная, затем очевидная и, наконец, кто-нибудь утверждает, что кто-то другой уже сделал это первым. В нашем случае, однако, «дымящийся револьвер» превратился в дым, когда физики осознали, что вычисления в теории струн были намного сложнее, чем они думали, и что желаемый ответ из теории струн в действительности был ошибочным. Правдой же было то, что пересечение с работами из теории струн было волнующим для всех нас и привело и к новым важным прозрениям. Оказалось, что локализованная гравитация сильно пересекалась с самыми важными идеями в развитии теории струн того времени: и наша работа, и исследования теоретиков-струнников привлекали аналогичную закрученную геометрию. В действительности, возможно потому, что наши исследования не бросали прямого вызова моделям теории струн, сообщество теории струн фактически приняло и признало важность нашей работы скорее, чем сообщество строителей моделей. Хотя сначала это казалось случайным, возможно, это было указание на то, что все мы были на правильном пути. И к счастью, у Рамана в дальнейшем больше не было проблем с трудоустройством (он теперь профессор в Университете Джона Хопкинса).

Однако некоторые скептики остаются. Точная модель, которую рассмотрели Раман и я, привела к интересным вопросам, на которые не было немедленного ответа. Зависела ли локализация от формы пространства-времени на больших расстояниях? Когда люди пытались найти примеры геометрии того типа, который предложили Раман и я, в теориях супергравитации, форма гравитации вдали от локализующей браны казалась непреодолимым препятствием. Но были ли эти условия важными? Другой вопрос, на который мы хотели ответить, был о том, везде ли пространство-время с необходимостью кажется четырехмерным? Локализованная гравитация заставила всю пятимерную вселенную вести себя так, как будто бы гравитация была четырехмерной. Всегда ли это так, или некоторые области могли казаться четырехмерными, а некоторые могли вести себя по-другому? И что происходит, когда брана неплоская? Работает ли локализация точно так же для браны с другой геометрией? Это некоторые из вопросов, на которые обращена теория локально локализованной гравитации, которую развили Андреас и я.

Локально локализованная гравитация

Так сколько же измерений у пространства? Действительно ли мы это знаем? Теперь, я надеюсь, вы согласитесь с тем, что было бы излишним заявлять, что мы наверняка знаем, что дополнительные измерения не существуют. Мы видим три пространственных измерения, но могут быть еще такие, которые мы пока не обнаружили.

Вы теперь знаете, что дополнительные измерения могут быть спрятанными или потому, что они свернуты и малы, или потому, что пространство-время искривлено и гравитация сконцентрирована в небольшой области, так что даже бесконечное измерение невидимо. В любом случае, компактны ли измерения или локализованы, пространство-время будет казаться четырехмерным везде, где бы вы ни были.

Это может быть немного менее очевидным в сценарии локализованной гравитации, в котором вероятностная функция гравитона становится все меньше и меньше по мере того, как вы идете в пятое измерение. Гравитация действует так же, как в четырех измерениях, если вы находитесь рядом с браной. Но как обстоят дела в других областях?

Ответ состоит в том, что в модели RS1 влияние четырехмерной гравитации неизбежно, где бы вы ни были в пятом измерении. Хотя вероятностная функция гравитона максимальна на бране, объекты повсюду могут взаимодействовать друг с другом посредством обмена гравитоном, и поэтому все объекты будут испытывать четырехмерную гравитацию независимо от места их локализации. Гравитация повсюду выглядит четырехмерной, потому что вероятностная функция гравитона никогда точно не равна нулю — она продолжается повсюду. В локализованном сценарии объекты вдали от браны имели бы крайне слабое гравитационное взаимодействие, но слабая гравитация, тем не менее, вела бы себя четырехмерным образом. Так, например, ньютоновский закон обратных квадратов все равно выполнялся бы, неважно, где вы находитесь в пятом измерении.

Маленькая, но ненулевая вероятностная функция гравитона вдали от браны была важна для решения проблемы иерархии, которое я изложила в гл. 20. Слабая брана, расположенная вдали от Гравибраны в балке, чувствует гравитацию, которая оказывается четырехмерной, даже если она чувствует ее крайне слабо. Как вода вдали от вашего участка в аналогии с разбрызгивателем — вода всегда есть, хотя ее и немного.

Но предположим, что мы размышляем далее и спрашиваем, что мы действительно точно знаем о размерностях пространства. Мы не знаем, что пространство повсюду кажется трехмерным, а только что пространство рядом с нами кажется трехмерным. Пространство представляется имеющим три измерения (а пространство-время — четыре) на расстояниях, которые мы можем видеть. Но пространство может простираться за эти пределы в недостижимую область.

В конце концов, скорость света конечна, и наша Вселенная существует только конечное время. Это значит, что мы можем знать только об окружающей нас области пространства в пределах того расстояния, которое свет прошел с момента рождения Вселенной. Это не бесконечно далеко. Это определяет область, известную как горизонт, разделительная линия между информацией, которая доступна и недоступна для нас. За горизонтом мы не знаем ничего. Революция, произведенная Коперником, постоянно обновляется и пересматривается по мере того, как мы вглядываемся все дальше во Вселенную и осознаем, что не везде все с необходимостью такое же, как то, что мы видим. Даже если законы физики везде одинаковы, это не значит, что сцена, на которой они действуют, везде такая же. Возможно, близкие браны индуцируют другой закон изменения гравитационной силы вокруг нас, чем тот, который наблюдается в других местах.

Как можем мы заявлять, что знаем размерность вселенной вне границ нашего видения? Не было бы никакого противоречия, если бы вселенная за их пределами являла собой больше измерений — может пять, может десять, а может и больше. Думая скорее о голых сущностях, чем предполагая, что повсюду, даже в недостижимых областях, пространство-время выглядит как наше, мы можем вывести, что действительно фундаментально, а что крайне постижимо и законно.

Все, что мы знаем, это то, что воспринимаемое нами пространство-время оказывается четырехмерным. Возможно, предполагая, что все остальные области вселенной также должны быть четырехмерными, мы переходим границу разумного. Почему мир, предельно далекий от нашего и, возможно, совсем не взаимодействующий с нами или же взаимодействующий посредством крайне слабых гравитационных сигналов, должен видеть гравитацию и пространство такими же, какими их видим мы? Почему в нем не может быть гравитация другого типа?

Замечательная вещь состоит в том, что это возможно. Наш мир на бране может воспринимать три плюс одно измерения, в то время как область вне его другая. К нашему крайнему удивлению, в 2000 году у нас с Андреасом Карчем родилась теория, в которой пространство-время выглядит четырехмерным на или вблизи браны, но большая часть пространства-времени вдали от браны оказывается многомерной. Эта идея схематически представлена на рис. 90.

Мы назвали наш сценарий локально локализованная гравитация, потому что локализация порождает гравитон, который передает четырехмерное гравитационное взаимодействие только в локальной области — остальное пространство-

время не выглядит четырехмерным. Четырехмерный мир может существовать только на гравитационном «острове». Размерность пространства, которую вы наблюдаете, зависит от вашего положения в пятимерном балке.

Чтобы понять локальную локализацию, давайте вернемся к нашим уткам в пруду. Вы могли бы не согласиться, когда я сказала, что размер пруда не имеет значения. Если бы пруд был действительно огромный, утки на противоположной стороне не смогли бы присоединиться к уткам на вашей стороне. Действительно, было бы очень странным, если бы вы смогли влиять на уток, которые были очень далеко. Далекие утки не заметили бы ваш хлеб и плавали бы в удаленной части пруда.

Основная идея, заложенная в локально локализованную гравитацию, очень похожа на эту. Локализация гравитации на бране не должна с необходимостью зависеть от того, что происходит в удаленных областях пространства. Хотя в модели, которую я изучала с Раманом, был гравитон, вероятностная функция которого спадала экспоненциально, но нигде не обращалась в нуль — и эта четырехмерная гравитация должна была ощущаться везде — поведение гравитации на больших расстояниях не должно было быть существенным для определения того, существует ли четырехмерная гравитация в окрестности браны.

В этом суть локально локализованной гравитации. Гравитон может быть локализован и порождать четырехмерную гравитационную силу в окрестности браны, не влияя на гравитационную силу вдалеке. Четырехмерная гравитация может быть совершенно локальным феноменом, относящимся только к некоторой части пространства.

По иронии судьбы Андреас, замечательный физик и приятный парень, начал думать о модели, которая допускала такую возможность, когда занимался исследовательским проектом с одним из моих прежних коллег по МИТ, который намеревался оспорить мою работу с Раманом (к счастью для нас, в результате их сотрудничества появилась замечательная работа, показывающая, что наша работа правильна). По ходу работы над проектом, Андреас нашел модель, которая была очень близка к развитой Раманом и мной, но обладала некоторыми очень необычными свойствами. Когда Андреас был в Принстоне, он зашел ко мне поговорить об этом. Позже мы выяснили, что у этой модели были удивительные следствия. Сначала мы с Андреасом обсуждали результаты по электронной почте и во время посещений институтов друг друга, а впоследствии, когда я вернулась в Бостон, более просто. И то, что мы нашли, было воистину замечательно.

Эта модель была очень похожа на ту, которую я изучала с Раманом; в ней была одна брана в закрученном пятимерном пространстве. Но отличие в этом случае было в том, что брана не была точно плоская. Это было потому, что она имела очень малую отрицательную вакуумную плотность энергии. В общей теории относительности, как мы видели, не только относительная энергия, но и полное количество энергии имеет смысл. Полная энергия говорит пространству, как оно должно искривляться. Например, постоянная отрицательная плотность энергии в пятимерном пространстве-времени приводит в точности к тому искривленному пространству, которое мы обсуждали в нескольких последних главах. Однако в том случае сами браны были плоскими. Здесь же отрицательная плотность энергии на бране делает ее немного искривленной.

Отрицательная плотность энергии на бране приводит к даже более интересной теории. Мы, однако, не интересовались отрицательной плотностью энергии самой по себе — если мы живем на бране, наша брана в действительности должна иметь очень малую положительную плотность энергии для того, чтобы было согласие с экспериментальными наблюдениями. Андреас и я решили изучить эту модель только потому, что она приводила к зачаровывающим следствиям для размерности. Для понимания того, что мы нашли, давайте ненадолго вернемся к постановке задачи с двумя бранами, имея в виду, что впоследствии мы удалим вторую брану. Когда вторая брана находится достаточно далеко, мы обнаружили, что существует два разных гравитона, каждый из которых локализован около одной из бран. Каждая из вероятностных функций гравитонов имела максимум около соответствующей браны и экспоненциально спадала вдали от нее.

Ни один из гравитонов не отвечал за четырехмерную гравитацию во всем пространстве. Они порождали четырехмерную гравитацию только в областях, прилегающих к бранам, на которых они локализованы. Гравитационные взаимодействия, ощущаемые на разных бранах, были различными. Они даже могли иметь существенно разные силы. И объекты на одной бране не взаимодействовали гравитационно с объектами на другой бране. Ситуацию с двумя широко разделенными бранами можно сравнить с ситуацией, когда кто-то на противоположном, очень далеком берегу тоже кормит уток. Те утки могли бы быть совершенно другого типа; возможно, вы зовете крякв, но на другом берегу кто-то зовет лесных уток. В этом случае у другого берега будет второе скопление уток, аналогичное вероятностной функции гравитона, который локализован у второй браны.

Появление двух различных частиц, выглядящих как четырехмерный гравитон, было для нас большим сюрпризом. Предполагалось, что общие физические принципы обеспечивают существование только одной теории гравитации. И конечно, пятимерная теория гравитации единственна. Однако оказывается, что пятимерное пространство содержит две разных частицы, каждая из которых передает гравитационную силу, представляющуюся четырехмерной, но каждая из которых действует в разных областях пятимерного пространства. Различные области пятимерного пространства выглядят так, как будто в них действует четырехмерная гравитация, но гравитоны, переносящие гравитационную силу в этих областях, оказываются разными.

Но был еще и второй сюрприз. В соответствии с общей теорией относительности гравитон безмассовый. Подобно фотону, он должен двигаться со скоростью света. Но Андреас и я обнаружили, что один из гравитонов имеет ненулевую массу и не движется с этой скоростью. Это было действительно удивительно — но также и тревожно. В физической литературе говорится, что массивный гравитон не может порождать гравитационную силу, которая согласуется со всеми наблюдениями. В действительности, точно так же, как и в случае тяжелого калибровочного бозона в гл. 10, массивный гравитон будет иметь больше поляризаций, чем безмассовый. А физики показали, сравнивая различные измеренные гравитационные эффекты, что никаких эффектов от дополнительных поляризаций гравитона никогда замечено не было. Это озадачило нас на некоторое время.

Но наша модель оказалась остроумнее, чем обычная мудрость! Когда мы открыли эту модель, Массимо Поррати, физик из университета Нью-Йорка, Ян Коган, Ставрос Мусопулос и Антониос Папазуглу в Оксфордском университете нашли, что в некоторых случаях гравитон может иметь массу и, тем не менее, давать правильные гравитационные предсказания. Они проанализировали технические детали в теории и нашли прокол в той логике, согласно которой массивный гравитон не может согласовываться с наблюдаемыми гравитационными процессами.

А у модели были даже еще более необычные следствия. Давайте теперь подумаем о том, что случится, когда мы устраним вторую брану. Физические законы тогда по-прежнему будут казаться четырехмерными на оставшейся бране, на Гравибране, несмотря на бесконечное дополнительное измерение. Гравитация вблизи Гравибраны будет практически идентична гравитации в модели RS2. Для тел на Гравибране единственный гравитон передает гравитационную силу, и гравитация оказывается четырехмерной.

Однако между этой моделью и RS2 есть существенное различие. В этой модели, которая отличается только наличием отрицательной плотности энергии на бране, гравитон, который локализован на бране, не доминирует в гравитационном взаимодействии во всем пятимерном пространстве. Этот гравитон не взаимодействует с объектами повсюду; он порождает четырехмерную гравитацию только на бране или рядом с ней. Вдали от браны гравитация больше не кажется четырехмерной! ^

Может показаться, что это противоречит тому, что я говорила раньше, что гравитация должна существовать везде в пространстве дополнительных измерений. Это не ошибочное заявление; пятимерная гравитация существует везде. Однако, в отличие от других теорий с дополнительными измерениями, которые мы рассматривали до сих пор и в которых физика всегда имеет четырехмерную интерпретацию, эта теория выглядит четырехмерной только для объектов на бране или рядом с ней. И закон Ньютона для гравитационной силы тоже относится только к бране и области рядом с ней. Повсюду вне их гравитационная сила пятимерна. В такой постановке четырехмерная гравитация представляется совершенно локальным феноменом, воспринимаемым только в окрестности браны. Размерность пространства, которую вы выведете из поведения гравитации, будет зависеть от того, где вы находитесь в пятом измерении. Если эта модель правильна, мы должны жить на бране, чтобы ощущать четырехмерную гравитацию. Если бы мы были где-либо еще, гравитация выглядела бы пятимерной. Брана представляет собой четырехмерную гравитационную дыру — четырехмерный гравитационный остров.

Конечно, мы пока не знаем, имеет ли локально локализованная гравитация отношение к реальному миру. Мы не знаем даже, существуют ли дополнительные измерения, или, если они существуют, что с ними стало. Но если теория струн права, дополнительные измерения есть. Они могут быть скрыты или компактификацией, или локализацией (или локальной локализацией), или какой-либо комбинацией этих двух возможностей. Многие специалисты по теории струн продолжают верить, что ответ дает компактификация, но поскольку в теории гравитации, которая получается из теории струн, так много загадок, уверенным быть нельзя. Я рассматриваю локализацию как новый выбор. Когда гравитация локализована, физические законы таковы, как если бы дополнительных измерений не было, в точности так же, как со свернутыми измерениями. Поэтому локализованная гравитация дополняет наш инструментарий для построения моделей и повышает шансы открыть реализацию теории струн, которая согласовывается с экспериментом. Мне нравится то, что локально локализованная гравитация концентрируется на том, что мы действительно можем проверить. Она говорит только, что вселенная должна выглядеть четырехмерной там, где мы можем это проверить — а не то, что она должна быть четырехмерной. Наши три пространственных измерения могут быть просто случайным следствием нашего расположения. Эта идея пока еще не была полностью изучена. Но вполне оправдан вопрос о том, что различные области пространства могли бы иметь разное число измерений. В конце концов, новая физика открывается всякий раз, когда мы зондируем более короткие расстояния за пределами того, что мы уже видели раньше. Возможно, то же самое справедливо и для больших расстояний: если мы живем на бране, то кто знает, что находится вне ее?

Что нового

• Локализованная гравитация представляет собой локальный феномен. Она не зависит от удаленных областей пространства-времени.

• Гравитация может вести себя так, как если бы мир имел разное число измерений в разных областях, поскольку локализованный гравитон не обязательно простирается во всем пространстве.

• Мы можем жить в изолированном кармане пространства, который кажется четырехмерным.