Много было в неспокойном мире конца 30-х и начала 40-х годов иных дел и забот. Уже маршировали по бетонным дорогам третьей империи полки фашистского вермахта, уже была «присоединена» Австрия, захвачена Чехословакия. И в наступающей грозной кутерьме была, наверное,, не на самом виду научная истина, отысканная Лейпунским. Многим, наверное, было не до того, что рецепт алмаза в общем-то выписан, что остается техника: давление, температура… Остается делать алмазы.

Но так, чтобы вообще забыли об алмазах «из печки», тоже не могло быть.

Вторая мировая война началась — и все, что не имело прямого отношения к военным нуждам, отошло на второй план. Прекратились работы с высоким давлением в Институте химической физики, и сам институт был эвакуирован из осажденного фашистами Ленинграда в тыловую Казань. Заглохли работы по алмазной проблеме и в Америке, в лаборатории Бриджмена.

И тем не менее нельзя сказать, чтобы мир совсем забыл об искусственных алмазах.

Над Германией 1943 г. все неотступнее вставал призрак неминуемого краха фашистского рейха. И сказать, что немецкая наука была в те времена военизирована — все равно, что ничего не сказать. Лаборантов гнали на фронт по тотальной мобилизации. Приват-доцентов тоже отправляли на фронт. Бывало, отправляли и профессоров. И уж прежде всего прикрывали подряд все исследования, не сулившие немедленного — не через пять лет, не через три года, а только немедленного, только завтра! — шанса продлить войну. Даже на урановый проект — и то не давали денег…

И вот в том самом 1943 г. в Берлине трое исследователей — Гунтер, Гезелле и Ребентиш — получили разрешение провести эксперименты, задача которых могла бы показаться, по меньшей мере, сомнительной: синтезировать алмаз. Много позже весьма компетентные физики назвали эту попытку серьезной. То, что она не удалась и алмазные богатства в кладовые рейха не лосыпались, — уже иное дело. Интересен сам факт: разрешение вести весьма дорогостоящую работу…

Тот же 1943 г. Другая воюющая сторона, другая страна и другая столица — Лондон. Еще не до конца ушедший страх перед возможным вторжением гитлеровцев. Продовольственные карточки, строжайшее затемнение, зенитки на крышах, ночные налеты фашистской авиации. Ученые занимаются в основном делами, имеющими более или менее прямое отношение к происходящему.

В Британском музее естественной истории в Лондоне хранятся 12 невзрачных кристалликов размером в десятые доли миллиметра (самый большой — 0,1X0,2X0,4 мм). Это — своеобразная реликвия. Это — памятник научной ошибке, не мистификации, но добросовестной ошибке, — алмазы Хэннея, упомянутого в третьей главе этой книги.

Еще в 1880 г. до Муассана ц Хрущева англичанин Хэнней, как немногие до него и многие после него, пьь тался изготовить искусственный алмаз; в заваренных наглухо стальных трубах он прокаливал костяное масло, или парафин, или, может бытщ еще что-то — словом, углеводороды. К ним добавлялась затравка — соли лития и натрия, а также, в некоторых опытах, мелкие алмазы (тоже для затравки). Стальные трубы были наглухо заварены с обеих сторон на кузнечной наковальне (других способов сварки в то время не было), и Хэнней калил их докрасна целый день.

Из 80 труб столь тяжкое испытание выдержали всего три. И в одной из них в черной спекшейся массе Хэнней обнаружил более десятка блестящих кристалликов — очень твердых, тяжелых и жаростойких. Их удельный вес был 3,5, они царапали корунд, имели слегка скругленные плоскости октаэдра, не растворялись в плавиковой кислоте и без остатка сгорали в пламени паяльной лампы.

Уже после Муассана, когда англичане вспомнили о Хэннее хотя бы потому, что им никак не улыбалось отдавать налиму первенства в таком деле французу, Чарлз Парсонс, тоже упоминавшийся уже на этих страницах, пытался повторить успех Хэннея. Стесняться в средствах ему не приходилось, и труб было изведено немало. Одну за другой заваривали, калили, взламывали остывающие трубы с начинкой. Все бесполезно: алмазы почему-то не получались.

И в более поздние времена опыты Хэннея никто из серьезных ученых всерьез не принимал, хотя сначала считалось, что алмазы у него получились. Потому кристаллики и попали в музей: 12 крупинок, извлеченных Хэннеем из одной такой трубы после суточного каления в кузнечном жару.

Но алмазами их считали с натяжкой, ибо ученым было хорошо известно (тем более теперь, после расчетов Лейпунского), что никаких алмазов у Хэннея получиться не могло. Что это либо корунды, либо шпинели, либо какие-нибудь карбиды.

Уверенность в этом была столь велика, что никому даже не приходило в голову заново исследовать кристаллики, хотя со времен Брэггов можно было со стопроцентной гарантией отличить кристалл алмаза от любого другого кристалла — каждое вещество дает рентгенограмму не менее индивидуальную, чем дактилоскопический отпечаток.

И вот в 1943 г., в разгар войны, в Британском музее естественной истории появляются два физика — Баннистер и Лондсдейл. Появляются, получают под расписку, по строгому счету, все 12 крупинок и отбывают в свою лабораторию, чтобы снять рентгенограммы, которых еще никто не снимал, найти однозначный и надежный ответ на вопрос, из чего сделаны алмазы Хэннея.

К немалому удивлению исследователей, рентгенограммы со всей определенностью показали, что 11 из 12 крупинок Хэннея — это, действительно, алмазы. В письме одному из своих коллег Мэри Лондсдейл сообщила свое мнение на сей счет: Хэнней был просто-напросто обманщиком и подложил в свои трубы кристаллики природных алмазов.

Запутанная история. Непонятно, прежде всего, при таком объяснении, почему Хэнней ни от кого и не скрывал, что в некоторые трубы он для затравки подкладывал натуральные алмазы. Однако искусственные алмазы получились у него, пояснял в свое время Хэнней, в других трубах, где затравки не было. Если прямой обман, фальсификация опыта, то зачем лишние сложности?

И еще одно! Можно ли на основании наших сегодняшних знаний, а тем более тех, какие были в начале 40-х годов, утверждать, что об алмазах нам все доподлинно известно?

И здесь нам придется снова обратиться к исследованию совершенно иного толка — сугубо теоретическому.

Дело было так. В один из зимних дней конца 1942 г. сотрудник эвакуированного в Казань ленинградского Института химической физики Давид Альбертович Франк-Каменецкий, распиливая дрова на циркулярной пиле, поранил правую руку и был отправлен домой. Неожиданно образовавшиеся две недели свободного времени он решил употребить на давно интересовавшую его работу, для которой можно было обойтись и без правой руки. (В здоровом же состоянии Франк-Каменецкий не считал в то время эту работу возможной, поскольку практической отдачи она не сулила.)

Интересовало Франк-Каменецкого вот какое обстоятельство: «В тех случаях, когда твердое кристаллическое тело может существовать в нескольких модификациях, далеко не всегда образуется первично та из них, которая в данных условиях является термодинамически устойчивой», — это первая фраза его казанской рукописи «Теория выращивания неустойчивых фаз и проблема алмаза». Действительно, алхимик Бранд сначала выделил неустойчивый желтый фосфор, а вовсе не устойчивый красный. Это правило (сначала выделяется неустойчивая, а затем устойчивая фаза) Вильгельм Оствальд назвал некогда правилом ступеней.

Далее у Франк-Каменецкого шли, как и у Лейпунского, расчеты, расчеты… Они показывали, что для роста алмаза нужно, чтобы число соударяющихся с его поверхностью и между собой атомов углерода было не слишком велико. Иначе углеродные атомы не надстраивают алмазные грани, а валятся грудой, путая четкую схему, образуя «ошибочные» графитные ячейки…

Из чисто теоретического расчета, из математики, можно сказать, у Франк-Каменецкого получалось, что для синтеза алмаза нужно управлять не только температурой и давлением, но и регулировать — весьма тонко! — количество самого углерода. «Все эти три фактора, — заключал Франк-Каменецкий, — должны находиться в строгом соответствии между собой, так что вполне естественно, что попытки выращивания алмаза в случайно подобранных, без предварительного расчета, условиях никогда не приводили к успеху…»

И еще получалось, что если атомов углерода не должно быть много, то и рост не может быть быстрым. Например, алмаз весом в 1 г будет расти не менее года.

И все же Франк-Каменецкий пришел к парадоксальному выводу, что легче синтезировать алмаз при относительно низких давлениях, в жидкой или газовой фазе и в присутствии алмазных зародышей. Иными словами, надо не синтезировать кристалл, а наращивать синтетический алмазный слой на кристаллик природного алмаза. Это чем-то походило на искусственное выращивание жемчуга, когда в раковину жемчужницы подкладывают крупицу перламутра.

Шел 1942 г. Франк-Каменецкий, едва зажила рука, занялся взрывчатками, с которыми в то время работал. И рукопись его о неустойчивых фазах осталась даже неопубликованной. И это — лишнее подтверждение тому, что ни история вообще, ни история большинства озарений человеческого ума не движется, как правило, прямыми путями, по кратчайшим, как утверждает геометрия, расстояниям между заданными точками.

А примерно в то же кремя, когда Франк-Каменецкий в Казани сидел с перевязанной рукой над своими расчетами, когда Мэри Лондсдейл в Лондоне пришла к выводу, что хэннеевы алмазы — подлог, когда Гунтер в Берлине обольщал кого-то из фюреров призраком алмазных сокровищ, — примерно в то же время, но в другом месте, на нейтральной территории, происходили немаловажные для нашей истории события. Кроме участников — трехчетырех человек, никто про них в то время не знал.

…О приват-доценте Балтазаре фон Платене его соотечественник швед сказал (это было уже в 1971 г.) так: довольно известный изобретатель. Подразумевалось — у себя дома, в Швеции.

Как свойственно и многим другим людям, которых общественность и в наше время зовет этим словом, приват-доцент фон Платен брался за самые разные дела и задачи, чего-то придумывал, усовершенствовал, отрывал от дела занятых людей.

В конце. 30-х годов фон Платен изобрел холодильник — обыкновенный аммиачный холодильник. Он получил за него кучу денег и мог жить припеваючи и спокойно заниматься, чем хочет. Но тут фон Платеном овладела новая идея  — сверхвысокие давления, прессы и пр. Несколько лет он орудовал с ними самостоятельно, но потом — вещи это громоздкие и не такие уж дешевые — все же решил поискать поддержки у промышленных фирм.

Кто-то ему отказал, кто-то ничего определенного не обещал; фон Платен пошел дальше и пришел в отдел исследований и развития компании ASEA.

ASEA означает Allmana Svenska Elektriska Aktiebolaget — Всеобщая шведская электрическая акционерная компания. Предложение фон Платена, обращенное к начальнику отдела исследований, звучало примерно так: я изобрел аппарат, в котором получатся такие давления и температуры, что можно будет синтезировать из углерода алмаз; эксперименты уже начаты, теперь нужны средства, чтобы изготовить все это основательно. И вот тогда…

Отдел исследований — примерно 700 человек в самых разных лабораториях занимался не только генераторами, моторами, трансформаторами, но и довольно далекими от электротехники вещами, если они казались многообещающими. И начальник отдела д-р Халвард Лиандер, выслушав приват-доцента фон Платена, нашел, что прессами стоило бы заняться. Главный инженер Лилльеблад его поддержал, правление компании согласилось. И несколько человек стали понемногу работать. Но довольно скоро поняли, что от 7000 атм, которые получились тогда у фон Платена, до синтеза алмаза далеко.

Несколько человек возились с машиной фон Платена всю войну — Швеция оставалась нейтральной и даже избежала оккупации. Затруднений было предостаточно. Прежде всего с блоком высокого давления, который надо стягивать, как бочку, чтобы его не разорвало изнутри. Предел прочности даже у кованой стали не так уж велик — теоретически килограммов 50 на квадратный миллиметр, а у реального обруча — 10, ну 15… Тысяч, а тем более десятков тысяч атмосфер никакой стальной обруч выдержать, увы, не может.

И фон Платен нашел несравненно более прочную вещь, чем обруч из кованой стали, — обыкновенные рояльные струны. И в первых конструкциях его аппаратов блок высокого давления был обмотан струнами. Наматывали по 300 км (!) струн, а потом, после сжатия камеры, разматывали их опять, чтобы вскрыть камеру. Но никаких алмазов в этих камерах пока не получалось.

В 1949 г., когда появляется еще одно действующее лицо нашей истории, струны уже не наматывали: была сконструирована система сжатия, обручей и струн не требующая (позже ее принципом стали пользоваться для сверхвысоких давлений и в других странах).

Новое действующее лицо — Эрик Гуннар Лундблад, 1925 г. рождения, из семьи научного работника (ботаника), — в 1949 г. заканчивал Стокгольмский университет по специальности физическая химия и ни о каких алмазах, естественно, не помышлял. Просто на последнем курсе ему пора было подыскать себе место, и тут он узнал, что солидная компания ищет молодого человека с университетским дипломом. И что заниматься там надо будет высокими давлениями.

Так Эрик Лундблад устроился на работу — в ту самую группу отдела исследований и развития компании ASEA, которая занималась прессами фон Платена. Их было всего несколько человек, и Лундблада по причине высшего образования назначили старшим. И они продолжали свои опыты, опыт за опытом, шаг за шагом — медленно, но верно, как сказали бы у нас. Изобретали, придумывали, улучшали, возились.

Задача сводилась в конечном счете к технике: изобрести способ удержать расплав, или, проще говоря, расплавленную сталь, под давлением около 100 000 атм, скажем, 1 — 2 мин.

Было бы уместно именно здесь сообщить, что именно придумал, улучшил, изобрел Эрик Лундблад. К сожалению, это неосуществимо. Может быть, со временем и эта глава алмазной истории обрастет подробностями, но пока их нет. Может быть, из-за скромности самого Лундблада, который в ответ на настойчивые попытки добиться от него подробностей высказался в том смысле, что никакого открытия вообще не было: «Ни озарения, ни Открытия, ни решающего драматического момента — ничего этого не было; мне, во всяком случае, так кажется. Наверное, дело решила наша обстоятельность, такая, знаете ли, дотошность. Столько лет возились с этими прессами, должно же было в конце концов что-то получиться!».

И, действительно, получилось.

15 февраля 1953 г. они, как всегда, работали в лаборатории втроем: ассистент Эриксон, механик Валлин, который своими руками, можно сказать, «слепил все хозяйство», и Лундблад. Начали в 8 утра, сняли давление в 10. Извлекли спекшийся материал из камеры уже после обеда, часа в три. Тогда, в 50-х годах, это длилось долго — надо было все расковыривать, медь, тальк, спекшееся железо.

Они считали, что в камере держалось около 80 000 атм и примерно 2500° минуты две; так было не в первый раз.

Все шло, как обычно, до той самой минуты, когда овей, вскрыв пробу, сразу заметили: нет, что-то не так. В серой затвердевшей массе, какую они видели десятки, а то и сотни раз, были зерна, множество мелких кристалликов — зеленоватых, желтоватых, черных.,..

Часа через два у них была готова рентгенограмма, сделанная тут же в лаборатории. Она не оставляла сомнений — это были кристаллики алмаза!

Лундблад и его помощники бросились делать все возможные анализы. И к 8 часам вечера, когда анализы были окончены, они с той же несомненностью подтвердили, что получился искусственный алмаз.

Еще с час Лундблад не решался что-либо предпринять, а потом, наконец, позвонил в Вестерос, где находится управление компании ASEA (это километрах в ста от Стокгольма). Оттуда на автомобиле примчались доктор Лиандер и инженер Лилльеблад. Была уже ночь, когда они впятером выпили шампанского за первый алмаз…

На следующий день рентгенограммы сделали в Стокгольмском университете. Все подтвердилось. А затем… Затем обо всем происшедшем никто больше не узнал. И так продолжалось до тех пор, пока в марте 1955 г. в Лондоне не вышел 4471-й выпуск всемирно известного журнала «Nature», в котором была напечатана статья, не имеющая ни малейшего отношения к шведскому синтезу…

О ней — в следующей главе.