После публикаций 1955 г. о синтезе алмазов в США и в Швеции стало ясно, что научная часть задачи решена. Спустя два года сообщение о ста тысячах каратов подтвердило, что создана и заводская технология.

Следовало заняться алмазным синтезом и в СССР. И притом как можно быстрее: советская индустрия нуждалась в алмазных инструментах, хотя история русских природных алмазов насчитывала к этому времени почти полтора столетия.

Она началась в 1829 г. на прииске, затерянном в лесной глуши Северного Урала. Вот как описывал происшедшее владелец прииска граф Полье.

«5 июля я приехал на россыпь вместе с господином Шмидтом, молодым фрейбергским минералогом, которому я намеревался доверить управление рудниками, и в тот же самый день между множеством кристаллов железного колчедана и галек кварца представленного мне золотоносного песка открыл я первый алмаз…»

Впрочем, после этого вступления с «я» граф делается скромнее и по-честному пишет: «Алмаз был найден накануне означенного дня 14-летним мальчиком из деревни, Павлом Поповым, который, имея в виду награждение за открытие любопытных камней, пожелал принести свою находку смотрителю». (Как и в Кимберли, дело не обошлось без детей.)

В том же 1829 г. путешествовал по России всемирно известный географ и естествоиспытатель Александр фон Гумбольдт. Его сопровождали уже известный нам минералог Густав Розе (тридцатью годами позже превративший алмаз в графит) и натуралист Христиан Эренберг.

Гумбольдта с почестями приняли в Петербурге, его удостоили царской аудиенции. А затем он и его спутники отправились на восток.

«Урал — истинное Дорадо, — часто цитируемое место из письма Гумбольдта с дороги министру финансов России графу Канкрину, — и я твердо уверен в том (основываясь на аналогии с Бразилией, я уже два года как составил себе это убеждение), что еще в Ваше министерство будут открыты алмазы в золотых и платиновых россыпях».

Но предвидение Гумбольдта на самом деле уже не было предвидением: первый уральский алмаз, найденный мальчиком в Бисертском заводе, лежал под замком в железной шкатулке управляющего Шмидта. Более того, рядом лежали еще два кристалла — алмазы начали усиленно искать, сразу же после того, как Шмидт определил, что за камешек принес ему смотритель.

С Урала экспедиция Гумбольдта отправилась в путь по маршруту, на который и сейчас — самолетами и скорыми поездами — решится не каждый. С Урала на Алтай. Оттуда в обратную дорогу на Южный Урал, в Оренбург. Потом на Волгу — в Самару, вниз к Каспийскому морю — в Астрахань. Оттуда в Воронеж и в Москву. Все это на лошадях, а Гумбольдту было в то время под шестьдесят.

В шкатулке Гумбольдта лежал завернутый в вату и бережно заключенный в бархатный футлярчик кристалл одного из трех первых уральских алмазов: Шмидт разыскал своего знаменитого соотечественника (к тому же окончившего некогда ту же, что и он, Фрейбергскую горную академию), чтобы тот мог выполнить обещание — доставить алмаз в Петербург, супруге царя.

По дороге в столицу, в Москве, у Гумбольдта была еще одна встреча, которая обязательно должна быть здесь снова упомянута: из своей деревни приехал специально, чтобы побеседовать со знаменитым натуралистом, харьковский помещик Каразин.

Гумбольдт получил от Каразина подарок… Поэтому на следующий день, когда он отправился на лошадях по тракту из Москвы в Петербург, в его шкатулке оказались рядом первый найденный в России природный алмаз и мумия лягушки, пропитанная веществом, из которого — в России тоже впервые — пытались изготовить алмаз искусственный.

Открытые в 1829 г. на Урале алмазные россыпи не стали алмазной кладовой страны ни тогда, ни через семьдесят лет, когда на весь мир гремели алмазные трубки Кимберли, ни в наше время. В уральских россыпях алмазов чрезвычайно мало. А кимберлитовых трубок там не нашли ни одной.

А сто двадцать лет спустя, осенью 1949 г., в газете небольшого заполярного города появилась заметка, в которой корреспондент сообщал читателям: «…Передовой рабочий Василий Ковтун, недавно вернувшийся в составе энской геологической партии с полевых работ, рассказывал, что сезон был успешным — лето поработали хорошо, добыли две тонны алмазов».

Легко себе представить переполох, едва не инициированный этим изящным выступлением прессы. Две тонны — около половины мировой добычи! (Напомним, что якутские алмазы еще не были найдены, и поиски их, продолжавшиеся без успеха уже не первый год, в то время отнюдь не афишировались.) Дело, конечно, не в корреспонденте, клюнувшем на лихую шутку полярника, названного здесь Ковтуном и работавшего долгие годы в геологических партиях на северных окраинах страны. Дело даже и не в сенсационном, хоть и не очень квалифицированном, сообщении. Дело в том, что корреспондент, редактор и, главное, читатели заполярной газеты были вполне подготовлены к тому, чтобы воспринять подобное сообщение (хорошо бы еще не с такими оглушающими цифрами) в конце 40-х — начале 50-х годов.

Кстати, в то самое время, когда в якутской тайге полным ходом шел направленный поиск алмазов, некоторые профессора еще сообщали на вводных лекциях студентам — горнякам и геологам, что, мол, единственное полезное ископаемое, которого нет в Советском Союзе, — это алмазы. Если не считать мелких месторождений Урала, которые не могут служить источником добычи ценнейшего минерала в необходимых количествах.

Территория Сибири и ее населенность таковы, что можно не сомневаться: еще не одна находка геологов удивит мир богатством этой земли. Но алмазы! Кому и с какой стати пришло в голову искать их в непроходимой болотистой якутской тайге?

Впрочем, отдельные крохотные кристаллы алмаза в Сибири находили. Впервые это произошло как будто еще в 1898 г. В 1937 г. — и это уже совершенно точно — в районе Енисейского кряжа алмазный кристалл нашел геолог Александр Петрович Буров.

Но главной причиной всего последующего были не эти отдельные находки. Главным были геологические карты. Подробные — Южной Африки и гораздо менее подробные — Восточной Сибири. Именно карты навели на мысль о том, что эти географически столь различные области земного шара в некотором смысле схожи.

Это очень трудно представить себе, потому что Африка ассоциируется у нас с джунглями, Южная Африка — с теплым океаном и саваннами, а Восточная Сибирь покрыта в основном непролазной тайгой, и морозы там, бывает, переваливают за 60°. И нелегко переключиться, проникнуться сознанием, что для истории земной коры не имеет значения, что здесь сейчас — саванна со львами и страусами или бурелом с медведями и белками.

И тем не менее люди, умеющие лучше других отвлечься от лежащего на поверхности в пользу скрытого, но поддающегося логическому обоснованию, сумели понять, что Якутия и Южная Африка образовались одинаково. Геологи Владимир Степанович Соболев (ныне академик) и Георгий Георгиевич Моор (скончавшийся несколько лет назад в экспедиции) в 1940 г. заявили в научной печати и на публичных совещаниях: «Наибольшее сходство с Южной Африкой имеет Сибирская платформа между Енисеем и Леной… Вопросам поисков кимберлитов и алмазов должна уделять серьезное внимание каждая экспедиция, работающая на севере Сибирской платформы…»

Геолог Буров, нашедший алмазный кристаллик в Сибири за несколько лет до этого, работал уже в Москве. И добился того, что поиски алмазов в Якутии, пусть вначале очень «узкие» (по средствам), были включены в официальные планы.

Делу помешало нападение на нашу Родину гитлеровцев.

Но сразу же после Великой Отечественной войны поиски развернулись вовсю. С юга в тайгу отправлялись отряды Амакинской экспедиции Иркутского геологического управления, с севера — отряды треста «Арктикразведка» и Научно-исследовательского института геологии Арктики.

Есть еще люди, которые уверены: геолог шагает со своим молотком через горы и долы и вдруг (обязательно вдруг!) отбивает (этим самым молотком) что-то такое, сногсшибательное. К сожалению, дело обстоит сложнее. Именно сложнее! Поиск нужного ископаемого планируют и потом это ископаемое по плану ищут — и находят. Так что и здесь не обходится без того, что уже не раз помянуто в этой книжке, — без теории, рожденной ищущей мыслью.

Самая первая гипотеза происхождения алмазов, выдвинутая Льюисом еще в 1896 г., гласила: они образовались от взаимодействия прорывающей земную кору магмы с углем. Основанием этой гипотезы послужил тот факт, что первая найденная в Кимберли трубка прорывает угленосную формацию, именуемую геологами Карру.

Но потом нашлось множество трубок с алмазами, и эти трубки не прорывали никаких угленосных свит. И наоборот: нашлось множество трубок, прорывающих угленосные свиты, и в этих трубках не оказалось никаких алмазов. Теория не годилась, ибо ей противоречили очевидные факты.

Может быть, алмазы уже были в магме, вырвавшейся по трубкам из недр? Или они образовались в самих трубках? (Кстати, зная ответ на этот вопрос, представляя себе хоть приблизительно разницу между тем, что происходит глубоко под земной корой и при застывании магмы, уже прорвавшейся к поверхности, можно было думать над тем, как повторить эти условия, «заданные» самой природой.)

В более поздние времена ученые, в том числе В. С. Соболев, пришли к убеждению, что алмазы образуются на большой глубине — там, где давление и температура достаточны для их рождения. Считается общепризнанным, что происходят они только из кимберлитов. Но почему в одних кимберлитовых трубках алмазы есть, а в других — ни одного? (Причем кимберлит там и там совершенно одинаков.) В Южной Африке кимберлитовые трубки отстоят иногда на какой-нибудь километр одна от другой. В одной — множество крупных алмазов, в другой — алмазы редки, в третьей или пятой — ни кристаллика. Как это могло получиться, если алмазы были в той магме, которая застыла, образовав кимберлит? И еще одно, алмазов никогда не находили в кимберлитовых жилах, образовавшихся, в отличие от трубок, постепенно, без прорывов.

Вот одна (только одна из многих!) теория.

Глубинная магма, поднимаясь вверх, образовала вторичные очаги, камеры. На окраинах древних монолитных платформ такая камера, заполненная пришедшей снизу магмой, могла оказаться под опускающимся участком земной коры, который начинал с колоссальной силой давить на нее сверху. Когда давление становилось большим, чем могли выдержать окружающие породы, происходил взрыв, магма прорывалась на поверхность.

Если «вторичный очаг» взорвется, образуя трубку, при умеренном давлении, трубка будет «пустой». При 25 — 30 тыс. атм. в ней появятся пиропы. При еще большем давлении — алмазы. Кстати, такая теория позволяет объяснить, почему в разных, даже соседних, трубках бывают алмазы разных сортов, разной расцветки…

Пожалуй, нет смысла вдаваться дальше в детали, пока специалисты сомневаются и спорят (тем более, что это отвлечет нас от главного направления рассказа). Бесспорно одно: теория, которой пользовались Соболев и Моор, утверждая, что Сибирская платформа сродни Южно-Африканскому щиту, — эта теория была заведомо верной (она подтверждена существованием треста «Якут алмаз»).

Вначале теории не хватало только точности: где именно надо искать. Точное предсказание сделал геолог Юрий Михайлович Шейнман.

В 1951 г. он предсказал с точностью до 200 км, где именно следует искать кимберлитовые трубки в Якутии. Не посередине платформы. И не у самого края, где она уже разбита на блоки, между которыми магма спокойно поднималась по трещинам. Искать надо поодаль — гам, где платформа уже покрепче.

Наступление на Сибирской платформе ширилось.

Летом 1953 г. на Вилюе, на косе Соколиной группа геолога Григория Файнштейна обнаружила первую алмазоносную россыпь.

Летом того же года ленинградские геологи Наталья Сарсадских и Лариса Попугаева нашли пиропы — яркокрасные спутники алмаза.

21 августа 1954 г. Лариса Попугаева и ее помощник, рабочий Федор Беликов, пробираясь по пиропам к их «истоку», открыли первую в Якутии кимберлитовую трубку. Попугаева назвала ее «Зарницей» — то ли потому, что над тайгой стала собираться гроза, то ли как предвестницу…

13 июня 1955 г. геолог Юрий Хабардин по голубоватому цвету кучи земли, выброшенной лисой из норы, нашел алмазную трубку «Мир».

Казалось бы, что еще надо? Вот они — алмазы! И никакой алмазной проблемы больше нет…

Но на самом деле она оставалась: чтобы начать промышленную добычу полезного ископаемого на новом месторождении даже в хорошо освоенном районе, с хорошей сетью дорог, нужен бывает не один десяток лет. Пример тому КМА — Курская магнитная аномалия, находящаяся в самом центре европейской части страны. А здесь была полярная пустыня — непроходимая тайга и болота.

Итак, в конце 50-х годов алмазная проблема в нашей стране продолжала существовать. Решить ее должны были — сомнений после недавних сенсаций уже не оставалось — специалисты по физике и химии высоких давлений.

Ни Лейпунский, ни Франк-Каменецкий после войны алмазами больше не занимались. Их интерес к алмазам был в известной мере эпизодическим, оба они были больше теоретиками, чем экспериментаторами, а проблема алмазного синтеза была все же в основном экспериментальной.

В Академии наук ее поручили специалистам, которые занимались синтезом монокристаллов разного химического состава: искусственного горного хрусталя, искусственных рубинов и других искусственных минералов. Они были нужны прежде всего для техники — например, для часов и других точных механизмов; в то же время развивались исследования физики твердого тела, и монокристаллы уже интересовали физиков прежде всего как возможные преобразователи энергии.

Проблема синтеза алмаза была включена в планы работы Института кристаллографии Академии наук, которым руководил академик Алексей Васильевич Шубников.

Однако дела с решением этой проблемы шли в институте гораздо хуже, чем, например, с синтезом кварца или рубина. Прежде всего потому, что, добившись успеха с кварцем и рубином, специалисты-кристаллохимики решили и к синтезу алмаза идти тем же путем, без применения высоких давлений. Только сотрудник этого института Владимир Петрович Бугузов отстаивал необходимость искать решение с помощью высоких давлений — пытался синтезировать алмаз в условиях его стабильности, а не метастабильности. Но он оказался в меньшинстве.

К тому времени, когда фирма «Дженерал электрик» сообщила об успехе группы Холла, исследования по синтезу алмаза в Институте кристаллографии продолжались уже 11 лет — и без существенных достижений. (Кстати, сообщение о синтезе алмазов и само по себе принесло фирме немалую прибыль: в тот же день, когда оно появилось, курс акций «Дженерал электрик» на бирже поднялся в цене.)

Все, кто занимался или хотел заняться синтезом алмазов, узнали, что первые алмазы были синтезированы в установке высокого давления; ее фото появилось в научных журналах, а потом и в газетах. И это подтверждало сомнительность пути, которым шли в Институте кристаллографии, и надежность другого пути, за который ратовал Бутузов.

И руководители Института кристаллографии обратились в Президиум Академии наук с предложением: надо изготовить оборудование, способное поддерживать углерод в зоне стабильности алмаза, тогда институт решит поставленную перед ним задачу. А оборудованием пусть займется Лаборатория физики высоких давлений.

Когда это предложение обсуждалось в Академии наук, прозвучала, вспоминают участники этого обсуждения, и такая реплика: «Кто достанет лошадь, может и сам ездить на ней…».

Леонид Федорович Верещагин, уже упоминавшийся в предыдущей главе, незадолго до войны был приглашен академиком Николаем Дмитриевичем Зелинским из Харькова в Москву, в Институт органической химии Академии наук. Во время войны Верещагин продолжал (хоть и не так, как до того) заниматься исследованием поведения веществ в условиях сверхвысоких давлений.

Академия наук создала в Москве группы ученых для оборонных исследований, не терпящих отлагательства.

Иногда это были эксперименты. Верещагину поручали исследовать немецкие взрывные устройства. Работа была достаточно рискованной; чем закончится следующий эксперимент с «расшифровкой» взрывателя, предсказать никто не мог. И, уходя на работу, исследователи оставляли дома записки на случай, если не вернутся.

А бывало, что приходилось заниматься теорией, расчетами. Например, такими. В осажденном Ленинграде продолжали делать снаряды, а выдерживать технологию в условиях блокады удавалось, конечно, не всегда. Однажды у большой партии зенитных снарядов оказались чуть утолщенные стенки. В одном из секторов обороны Ленинграда от этих снарядов у орудий раздуло стволы. Командование запросило, можно ли из этих пушек стрелять дальше или стволы разорвутся. Положение было крайне тяжелым: перебросить в осажденный город новые орудия было невозможно. Несколько человек в Москве, в их числе Верещагин, считали ночь напролет, и у них получилось, что стволы выдержат. Как представить себе меру ответственности, которую они взяли на себя, докладывая командованию свое заключение — стрелять можно?

Пушки выдержали.

В первое время после войны Лаборатория высоких давлений, которой ведал Верещагин, продолжала работать в Институте органической химии; основной ее задачей было создание аппаратуры для производства полимерных материалов. Но было и множество других исследований, уже не имеющих никакого отношения к органической химии. В конце концов, оставив химикам полный комплект оборудования, Верещагин со своей лабораторией отделился, и она стала самостоятельным научным учреждением.

И вот что примечательно: в монографии Бриджмена «Физика высоких давлений», вышедшей после войны, не было почти ни одного раздела, где не упоминались бы работы исследователей из верещагинской лаборатории.

И все же нужно было обладать немалой решительностью и выдающейся научной интуицией, чтобы отобрать работу по алмазному синтезу у тех, кто вел ее уже добрый десяток лет, и передать ее тем, кто ни алмазами, ни какими-либо иными монокристаллами не занимался никогда. Такой решительностью и такой интуицией в весьма высокой степени обладал тогдашний академию-секретарь Отделения технической физики Академии наук СССР Лев Андреевич Арцимович.

Верещагин был к тому времени, безусловно, самым опытным в СССР специалистом по физике высоких давлений, которой занимался уже более двадцати лет. К концу 50-х годов в его лаборатории уже был сконструирован 500-тонный пресс (то есть пресс с усилием на поршне 500 т), на котором можно было испытывать металлы под давлением 100 000 атм. В сентябрьском номере «Огонька» за 1955 г. был напечатан очерк известного писателя и пропагандиста науки Бориса Ляпунова об исследованиях высоких давлений и фотография этого пресса. Рядом с Верещагиным на том фото — доктор физикоматематических наук Юрий Николаевич Рябинин.

О каком бы достижении советских физиков ни зашла речь, стоит лишь поинтересоваться его генезисом, как обнаруживается, что «сначала был Иоффе» — основатель и глава блестящей школы теоретической и экспериментальной физики, воспитатель плеяды исследователей, составивших позже славу нашей науки. Академик Абрам Федорович Иоффе как бы предварил время, когда наука должна была стать непосредственной производительной силой. Школа Иоффе уже в начале 20-х годов занялась подготовкой не просто физиков, а физиков-инженеров.

В числе первых учеников и сотрудников Иоффе был, как известно, Лев Андреевич Арцимович. В Украинском физико-техническом институте сформировался как ученый Леонид Федорович Верещагин. Юрий Николаевич Рябинин тоже был учеником Абрама Федоровича Иоффе.

Рябинин исследовал низкие температуры и, главное, поведение вещества при низких температурах.

С его участием было освоено сжижение водорода (минус 252,8°), потом гелия (минус 268,9°). Со своим научным руководителем Львом Васильевичем Шубниковым в конце 1933 г. Рябинин обнаружил явление вытеснения магнитного поля из сверхпроводника.

После войны, уже в Москве, в Институте химической физики, Юрий Николаевич Рябинин продолжал работы по адиабатическому сжатию газов, начатые еще в 30-е годы в Ленинградском физтехе.

На созданной в институте установке удавалось подучать разы с плотностью единица, при этом газ превращался в твердое тело: давал сплошной, а не линейчатый спектр, электропроводность у него становилась того же типа, как у твердых тел.

И еще Рябинин занимался изученном взрывов.

Какая связь была между всеми этими опытами и исследованиями низкой температуры? И в том, и в другом случае речь шла о сжатии вещества, о сближении его атомов друг с другом — только достигалось это сжатие разными средствами.

В 1953 г. Рябинин перешел к Верещагину в Лабораторию физики высоких давлений. Сжимаемость твердых тел, полиморфизм, фазовые переходы, пластичность, прочность — всем этим занимались они с Верещагиным на установке, фотографию которой напечатал тогда «Огонек».

В 1954 г. Ю. Н. Рябинин попробовал изготовить искусственные алмазы. Никто ему этой работы не поручал, ни в каких планах и заданиях она не значилась. Делал он ее даже не в помещении Лаборатории физики высоких давлений, а в Институте химической физики, где его по старой памяти принимали.

На установке адиабатического сжатия вывести углерод в область стабильности алмаза было невозможно. Не хватало давления: оно не превышало 10 000 атм.

Вот если бы подвергнуть графит сжатию до сотни — другой тысяч атмосфер! Но как? Может быть, с помощью взрывчатки?

Рябинин решил попробовать. Он сконструировал довольно простое устройство, главной частью которого был толстостенный стальной цилиндр. Внутрь цилиндра закладывался цилиндрик графита, а между графитом и стальными стенками размещалась взрывчатка. Взрыв сжимал графит со всех сторон одновременно, и он не успевал разлететься.

Устройство работало безотказно. Температура внутри стального цилиндра доходила до 2500°, давление — до 300 000 атм. Предусмотренные диаграммой Лейпунского параметры для зоны стабильности алмаза были достигнуты безусловно.

Каждый образец материала после взрыва Рябинин посылал на рентген. И каждый раз рентгенограммы упрямо свидетельствовали: графит, графит, графит…

Почему же не алмаз?

Десятки, сотни безрезультатных опытов заставили Рябинина прекратить эту работу. Он решил, что во всем виновата кратковременность взрыва — очевидно, графитовые ячейки не успевают перестроиться в алмазные.

Наверное, Рябинин тогда заблуждался.

Судя по работам последующих лет, алмазные кристаллики должны были у него цолучаться. Но чтобы обнаружить их в массе графита, надо было растворять графит в царской водке, иначе он давал на рентгене такой фон, что немногочисленные и мельчайшие крупицы алмаза заметить было невозможно.

Впоследствии, через несколько лет после того, как алмазы были получены из графита, подвергнутого статическому давлению, их удалось синтезировать и с помощью динамического сжатия взрывом. Тогда растворение материала, полученного в камерах высокого давления, было уже обычным процессом, без которого никто и не мыслил себе получение искусственных алмазов. А главное, сама возможность синтеза алмаза в обозначенной Лейпунским зоне стабильности, достигнутой и Рябининым, стала уже несомненной. Результаты же его опытов по динамическому сжатию графита были общеизвестными — Рябинин опубликовал их в Докладах Академии наук в 1956 г.

Но когда Лаборатория физики высоких давлений взялась за синтез алмаза, Рябинин и его товарищи по лаборатории все еще были уверены, что динамический путь закрыт из-за недостаточного срока воздействия взрыва на графит. И что единственный имеющийся путь — статическое давление.

В 1958 г. научное учреждение Верещагина, преобразованное в Институт физики высоких давлений, уже вело исследования по синтезу алмазов в трех лабораториях. Одну возглавлял Леонид Федорович Верещагин, другую — Юрий Николаевич Рябинин, третью — Василий Андреевич Галактионов. С ними работали физики Архипов (теоретик), Слесарев, Лифшиц, инженеры Семирчан, Демяшкевич, Попов, Иванов.

Три лаборатории вели работу параллельно, а чтобы ни у кого не заводилось «маленьких секретов», с самого начала существовала договоренность: кто бы ни синтезировал первый алмаз, авторами открытия будут считаться все участники работы.

Забегая вперед, скажем, что на сей раз «решающая минута» или хотя бы «решающий час» не зафиксированы. И кто на самом деле синтезировал первый алмаз — остается неизвестным.

Итак, три лаборатории вели работу параллельно — то есть каждая создавала собственную установку и на ней пыталась синтезировать алмаз. Каждую неделю собирались все вместе и обменивались опытом.

У Галактионова усилие в камере с графитом передавалось, как и у Холла в США, тетраэдрическим, а потом кубическим устройством. Иными словами, камеру сжимали с трех и с четырех сторон.

Рябинин и Верещагин использовали более простое устройство, его макет и сейчас можно видеть на институтской выставке. Такой же, как на фотографии в «Огоньке», 500-тонный пресс, чуть меньше человеческого роста. Выдвигающийся снизу толстый цилиндрический поршень упирается в свинченные вместе два низких цилиндра большего диаметра, в зазор между которыми подведен электропровод. Эти два низких цилиндра и есть самое главное место установки, самая главная ее часть — камера высокого давления.

У нее простая функция: она должна передать графиту от поршня нужное давление (100000 атм), от трансформатора — нужный ток (для нагрева до 2000°) и удержать расплавленное и сжатое огромной силой вещество.

Два, на первый взгляд, взаимоисключающих условия: передать давление и температуру — и удержать расплав.

Под действием чрезвычайно высоких температур и давлений вещества ведут себя очень и очень по-разному. Например, с увеличением нагрузки металлы изменяют свою кристаллическую структуру, а вместе с тем и электропроводность. Значит, изменение электропроводности может служить сигналом о величине давления в камере, и на этой основе была разработана «реперная» система измерения давлений в камерах.

А есть минералы, которые при увеличении нагрузки сначала начинают течь, как жидкость, но при дальнейшем росте давления течь перестают и наглухо запирают все отверстия. Один из таких минералов — пирофиллит — использовал для уплотнений еще Бриджмен. Но Верещагину и его коллегам нужны были сотни килограммов таких минералов. Кто-то сообразил: годится так называемый литографский камень, его пришлось позаимствовать в московских типографиях — на первый случай хватило. Потом, спасибо, подсказали геологи: месторождение нужного минерала, «алагезского камня», есть в Грузии.

Таких проблем, подпроблем — и так далее, и так далее — оказалось великое множество. И без решения каждой из них синтезировать алмаз было нельзя.

А главной проблемой была конструкция самой камеры сжатия и мультипликатора — устройства, передающего давление. Эту проблему сумел красиво и «просто» решить Леонид Федорович Верещагин. Он подметил некое изменение формы подвергаемого давлению металла, словно сама природа подсказывала наиболее выгодную форму камеры. Эта подсказка была им понята. И сконструированное Верещагиным устройство надежно передавало веществу высокое давление и высокую температуру и надежно удерживало содержимое от разлета.

Приступая к работе, Верещагин, Рябинин и их коллеги считали, что именно эту задачу они и должны решить: научиться выводить углеродистое вещество в зону стабильности алмаза и там держать его несколько секунд или минут. О том, что именно нужно калить и сдавливать, они сперва не слишком задумывались.

Между тем попытки превратить в алмаз один графит, без добавления других веществ, в которых графит растворяется, до поры до времени к успеху не приводили. (Вспомним: Лейпунский предусматривал необходимость применения металлов-растворителей для смягчения режима и ускорения процесса перехода графита в алмаз.) Впоследствии было обнаружено, что далеко не всякий металл, хорошо растворяющий углерод, годится для этой цели. Свинец, например, не годится. Следовательно, металл действует не только как растворитель, но и как катализатор. Однако это теоретическое уточнение было внесено уже после того, как алмазы были синтезированы с помощью того самого металла, которым пользовался еще Муассан, — железа.

Графит и железо (или кобальт) помещали в «алагезский камень», камень — в камеру, камеру — в пресс. Включали гидравлический насос пресса. Подавали ток на камеру. Проходили секунды или минуты. Пресс выключали. Камеру остужали. Затем вскрывали. Шлаковидное вещество иногда рассматривали в лупу, иногда сразу же отправляли в рентгеновскую лабораторию — делать дебаеграмму.

По внешнему виду дебаевской рентгенограммы нельзя утверждать, что получен алмаз; можно только сказать, что это не графит, а какая-то кубическая решетка. Но какая? Может быть, на рентгенограмме карбиды металла-растворителя или вольфрама (камера сделана из карбида вольфрама). Чтобы прояснить этот вопрос, нужны расчеты.

Когда аппаратура уже вышла примерно на те параметры, которые должны обеспечивать синтез алмаза, дежурные вдруг стали замечать, что установка «барахлит»: через некоторое время после ее пуска в электрической сети вдруг падало напряжение. Поиски неисправностей ни к чему не приводили. Прошло довольно много времени, пока догадались: напряжение в сети падало тогда, когда резко увеличивалось сопротивление в камере, а увеличивалось оно потому, что графит превращался в алмаз!

Ложных тревог и ложных надежд было немало, пока, наконец, дебаеграммы стали устойчиво показывать нечто алмазоподобное, а извлеченные из камер темные крупицы стали устойчиво царапать стекло.

Более осторожный Юрий Николаевич Рябинин все еще склонялся к тому, что это карбиды. Но Леонид Федорович Верещагин уверенно сказал: алмазы! Из царапающей стекло массы сделали гравировальные карандаши. Один такой карандаш преподнесли приехавшему в институт Льву Андреевичу Арцимовичу, другой — Петру Леонидовичу Капице.

А сами продолжали нащупывать более точно области давлений и температур, при которых образовывалось бы не что-то алмазоподобное, а настоящие — пусть маленькие — кристаллики.

В конце 1960 г. дебаеграммы стали все более определенно указывать на то, что рентгеновский луч рассеивается на алмазной кристаллической решетке. И вот, наконец, под увеличительными стеклами засверкали извлеченные из пресса алмазные россыпи… алмазные горы и хребты.

За синтез алмазов Леонид Федорович Верещагин, Юрий Николаевич Рябинин, Василий Андреевич Галактионов были удостоены высшей научной награды СССР — Ленинской премии.

О напряженной работе людей, взявших на себя задачу промышленного выпуска алмазов, будет рассказано в следующей главе. Здесь же стоит, несколько нарушив хронологию, вернуться к промежуточному эксперименту, результатом которого был некий невзрачный материал, царапающий стекло.

Пять лет спустя, когда уже полным ходом шло промышленное производство синтетического алмазного порошка, когда вместе с тем стало ясно, что синтезировать крупные монокристаллы алмаза не удается, — Верещагин вспомнил о том давнем странном опыте. Очень может быть, что причиной тому были обстоятельства совсем не теоретического толка, а, например, соображения о том, что крупные алмазы, не боящиеся ударов, добывают только в Бразилии, да и там их месторождения уже порядком обеднели…

Тем не менее пытаться всерьез искать какую-либо связь между этим огорчительным фактом и случаем — тем самым случаем, что летом 1960 г. подбросил в камеру высокого давления ту самую темно-серую шлакоподобную массу, из которой сделали сувениры для Арцимовича и Капицы, — было бы все же занятием довольно сомнительным. Если бы не мнение самого Леонида Федоровича Верещагина, вспомнившего по этому поводу слова Пастера: «Случай говорит только подготовленному уму…».

Зарождающийся монокристалл не может расти быстро — его поверхность, к которой может прилепиться каждый следующий атом, ничтожна. Иное дело — поликристалл, ибо он растет одновременно во всех своих центрах, а их множество.

Несколько вольное сравнение: снежинка и лед. Вырастить снежинку величиной с таз не удавалось еще никому, но ничего не стоит выставить таз с водой на мороз и получить основательный ледяной кругляш.

Самые твердые и крепкие бразильские алмазы называются карбонадо, от carbo (уголь), ибо они больше походят на куски каменного угля, чем на драгоценные камни. Непрозрачность, чернота и замечательная прочность карбонадо происходят из особенностей его строения. В отличие от других алмазов, карбонадо — это не единый кристалл, а как бы клубок кристаллов, проросших друг в друга. Это, если угодно, алмазная сталь: стальной слиток тоже состоит из множества проросших друг в друга кристаллов железа, углерода и соединений железа с углеродом — карбидов. И если при отборе ювелирных камней карбонадо идет в отбросы, то для бурения он совершенно незаменим.

Синтезировать карбонадо — значило бы решить одну из важных частей проблемы искусственных крупных алмазов.

Так вот, сотрудники Верещагина откопали в архиве старый лабораторный журнал, выписали оттуда все параметры того давнего эксперимента и повторили его. И у них снова получились темно-серые, непрозрачные, весьма твердые, но весьма хрупкие зерна. Их тщательно исследовали. Это были поликристаллы алмаза — с очень неравномерной структурой, сильно засоренные примесями графита и металла, но все же настоящие алмазные поликристаллы. Оставалось найти условия, при которых эти поликристаллы получились бы достаточно прочными.

В 1966 г. это удалось. Синтез длится всего несколько секунд, и сантиметровый карбонадо получается сразу такой формы, какая нужна, чтобы вставить его в токарный резец, фрезу или буровое долото.