Вернемся к 1960 г., когда до карбонадо было еще очень далеко, но самое главное совершилось: Верещагин и его коллеги тоже могли подержать на ладони синтезированные ими алмазы. Очень маленькие, но алмазы!

А дальше происходило примерно то же, что и в шведской главе: ни оповещений об успехе, ни победных реляций, вообще ничего для внешнего мира. За этой обманчивой тишиной стояла напряженная работа людей, взявшихся за ту же задачу, которую за три года до них решали в «Дженерал электрик»: промышленный синтез. (Заметим, что в Соединенных Штатах Америки на ее решение ушло почти три года.)

Прежде всего, а в чем, собственно говоря, разница — лабораторный или промышленный? Сто или, может быть, тысяча аппаратов вместо двух или трех? Заводской цех вместо комнаты в институтском подвале? Непросто, даже если бы разница этим ограничивалась. Но она была гораздо глубже. Корень ее составляли экономические показатели производства.

Синтетические алмазы нужны были промышленности позарез, но промышленность не могла бы принять их, если бы они стоили очень дорого и их производство было нерентабельным. И поэтому от лабораторной методики, при которой можно пойти, если очень нужно, на любые затраты, предстояло перейти к промышленной технологии, при которой расходы, увы, строго ограничены.

Валентин Николаевич Бакуль окончил в 1930 г. Харьковский машиностроительный институт и работал на экспериментальном заводе треста «Союзтвердосплав». Там делали новый для тех лет материал, замечательное изобретение 30-х годов: металлокерамические твердые сплавы.

После Великой Отечественной войны предприятие перевели в Киев. Образовали Конструкторско-техническое бюро но твердым сплавам и инструментам, дали ему опытный завод. Работа пошла хорошо, создавались новые инструменты самого разного назначения, заметно росло производство твердых сплавов. Энергичные люди, свято верящие в свои твердые сплавы, как в одно из начал современной машинной индустрии, киевские твердосплавщики тем не менее хорошо понимали, что дело у них обстоит все же не лучшим образом и что многие их инструменты сильно уступают заграничным. Потому что у них не было тех самых алмазов, которыми только и можно обработать поверхность твердого сплава — ничто другое ее не берет. (Поиски в Якутии еще только разворачивались, а Запад не продавал Советскому Союзу алмазы: они числились по списку сугубо стратегических материалов.)

Никто из них, в том числе директор Бакуль, ни о каком синтезе, вероятнее всего, и не помышлял. Но тем не менее алмазы были им позарез нужны. И поэтому легко понять и представить себе, что инженер Бакуль не раз и не два интересовался алмазами в самых разных учреждениях и у самых разных людей. Среди них был его давнишний друг Александр Антонович Мамуровский, работавший в то время в Научно-исследовательском горно-разведочном институте в Москве. В 1960 г., в сентябре, Бакуль был в Москве но делу, и у них с Мамуровским — не в первый раз — зашла речь об алмазах: где же их все-таки взять?..

И тут Мамуровский поделился с Бакулем новыми сведениями: не только в Америке можно синтезировать алмаз. И не только в Швеции. В общем, он весьма настоятельно посоветовал Бакулю обратиться по этому вопросу в Институт физики высоких давлений, к члену-корреспонденту АН СССР Леониду Федоровичу Верещагину.

И еще Мамуровский, хорошо знавший производство, изложил свои соображения о переходе от лабораторного синтеза алмазов к их промышленному выпуску. Сложность обсуждаемого дела такова, трудности его столь велики, а необходимость решения так безусловна и экстренна, что развязать этот переплет можно только одним способом: дело надо поручить тем, кому синтетические алмазы нужнее всего. Ведь и в Соединенных Штатах именно твердосплавные фирмы еще до всщны начали финансировать Бриджмена, искавшего подходы к синтезу. И еще Мамуровский добавил, хотя Бакуль это и сам хорошо знал, что самое специфическое оборудование для синтеза — камеру высокого давления и пуансоны, передающие от пресса камере это давление, — дрлают из твердых сплавов. Кому же тут карты в руки, если не самим твердосплавщикам?

После этого разговора Бакуль позвонил Верещагину, и в тот же день они встретились у Верещагина в институте. Возможно, что до этого они друг о друге и не слыхали, однако, судя по тому, что на следующий день Верещагин уже ехал в Киев, первый их разговор был весьма деловым.

Верещагин приехал в Киев, на Вербовую улицу, чтобы познакомиться с учреждением, которое хочет заняться его детищем. И, побывав на заводике, в лабораториях и конструкторском бюро, посовещавшись с Бакулем и его коллегами, он хорошо понял главные качества здешнего коллектива. И на следующий день, когда они с Бакулем пошли в ЦК партии и в Совет Министров Украины, Верещагин сказал там, что он нашел ту организацию, которую искал.

Первые две установки для синтеза алмазов, «машины», как их тут стали называть, привезли из Москвы на грузовиках через две недели. В Киев приехал из Института физики высоких давлений Василий Андреевич Галактионов: его задача была — передать все тонкости сотрудникам Бакуля из рук в руки. Проще говоря, научить их делать алмазы.

И еще один человек приехал в Киев: Александр Антонович Мамуровский, которого Бакуль пригласил к себе в заместители. Немолодой в то время человек, не очень здоровый, Мамуровский оставил в Москве семью, хорошо налаженную жизнь, хорошую работу — и уехал, чтобы начать совершенно новое, чрезвычайной важности для советской промышленности дело.

В один из последних дней октября 1961 г., через 11 месяцев после того, как в цехе на Вербовой улице стали монтировать первую «машину», делающую алмазы, в Москве на Киевском вокзале сошел с утреннего скорого поезда пассажир средних лет с портфелем в руках. За пассажиром неотступно следовали два молодых человека.

Очень может быть, что в этот момент их вполне могли бы принять за сотрудников секретной службы; в действительности же это были инженер и младший научный сотрудник. Детективный оттенок эпизоду на вокзале придавало содержимое портфеля, который нес их шеф, — довольно невзрачного портфеля сомнительной черной кожи. Если и нельзя сказать, как в романах, что портфель был битком набит алмазами, то все же в нем были именно алмазы — первая партия 2000 карат, или 400 граммов технических алмазов, выпущенных в Киеве. Бакуль привез их на XXII съезд партии, который работал в те дни в Москве.

Повторим (а может быть, даже сравним с тем, что было у «Дженерал электрик»): с того дня, как начался монтаж первой машины, делающей алмазы, не прошло и года. Втрое меньше, чем в Америке.

И еще одно: инженера Мамуровского в эти дни уже не было в живых; он скончался вскоре после того, как получились первые киевские алмазы.

Вот уже несколько глав речь идет о наших современниках. Никто не может знать заранее, оставит ли придирчивая история в своих, как говорится, анналах именно эти имена, отыщет ли и поставит вместо них или рядом с ними другие.

Однако любая история, история науки в том числе, собирается, если так можно сказать, из частей, из деталей. Независимо от того, важной или незначительной представляется та или другая из них сегодня, они необходимы, ибо передают действительные свойства эпохи, которой принадлежат.

На харьковской окраине Ивановке в конце войны и первые послевоенные годы существовало замечательное «месторождение» всевозможных механических богатств — свалка вышедшей из строя военной техники (вплоть до подбитых танков и даже самолетов). Кое-кто из тамошних мальчишек залежь эту усиленно эксплуатировал, отыскивая в ней множество полезных вещей.

Один из них вскоре попал в Киев; его отца перевели туда с работой. Здесь мальчишка разыскал такую же свалку и находил там много полезного. На окраине, где они поселились неподалеку от твердосплавного завода, хорошо был известен в те времена собранный им с приятелями из старья мотоцикл не совсем обычной окраски — в желтую и черную полоску. Зеброидная машина привлекала внимание еще одной замечательной особенностью: вместо выхлопных труб у нее были граммофонные.

В 1956 г. Леонид Евгеньевич Мельник (это о его юношеских похождениях идет речь), отслужив в армии, поступил на твердосплавный опытный завод. Работал слесарем, поступил учиться в вуз. Его назначили мастером, однако Леонид Евгеньевич по-прежнему посещал иной раз свою свалку и добывал там разные полезные вещи. И с их помощью кое-что в цехе переделывал, за что нередко получал премии по статье «рационализация».

Все это, по-видимому, не имело ни малейшего отношения к проблемам алмазного синтеза, о которых будущий инженер ничего не знал. Закономерное и случайное переплетаются, однако, довольно причудливым образом. Может быть, поэтому среди подробностей нашей истории были уже и электрические скаты Дэви, и лохань с водой для охлаждения кипящего чугуна у Муассана…

Чтобы делать алмазы, надо было конструировать и строить оборудование, и в первую очередь — аппараты для синтеза (аппараты, работающие на сверхвысоких давлениях при температуре расплавленной стали). Но когда Бакуль обратился в некое специальное конструкторское бюро более или менее подходящего профиля (подходящего вполне быть, естественно, не могло), то ему ответили: можно попробовать выполнить ваш заказ. На это потребуется два года на проектирование, потом год на опытный образец и еще один год на передачу опытного образца в серию. Доводка, устранение недостатков и все, что полагается…

И тогда руководители твердосплавного КБ приняли единственно возможное в тех условиях решение: начинать проектировать и строить «машины» самим. Только самое необходимое заказывать на стороне, добиваясь исполнения вне всякой очереди (а срочность дела не вызывала сомнений ни в правительстве, ни в других инстанциях, так что можно было смело рассчитывать на всяческую поддержку).

«Это был героический период», — вспоминают они сегодня о том времени. Нередко оставались на вторую смену, иногда вообще не уходили домой. Директор Бакуль до шести работал в лаборатории, а потом приходил в цех и спрашивал, что сегодня надо делать. Становился к доске и чертил деталировки или заворачивал ключом гайки, когда начали собирать «машины».

Когда они стали монтировать самую первую свою установку для синтеза алмазов, сразу обнаружились кое-какие просчеты, обычные во всякой механике. Какой-то фланец, что должен быть да виду, конструктор упрятал бог знает куда, так что до него не добраться. А вот опасный клапан, которому хорошо быть «поглубже», оказался снаружи. И еще гайка, которую отвинчивать каждый раз будет не с руки. И так далее, и тому подобное.

По правилам, конечно, надо было переделывать чертежи, увязывать одно с другим, утверждать и согласовывать. Они решили иначе. Тут же, прямо в цехе, взялись переделывать саму установку — «макетировать в натуре», как выразился позже один из участников этого партизанского «макетирования». Части сложнейшей аппаратуры прихватывали сваркой, примеряли и переставляли, снова прихватывали, на ходу отдавая в переделку фланцы, трубы, электропроводку и прочее.

И в это же время все более явственным становилось еще одно обстоятельство, грозившее застопорить дело: для тех режимов, при которых должен был идти синтез, не было ни гидравлической арматуры высокого давления, ни электрической части нужной надежности. И они, инженеры, хорошо понимали, что, к сожалению, ни энтузиазм, ни изобретательность не могут заменить особенных свойств тонкой аппаратуры, придаваемых специальными материалами и высоким классом изготовления, невозможным без специализации и традиций.

Валентин Николаевич Бакуль вспоминает об этой истории: «…По правде говоря, мы стали в туник. Невозможно сделать такие вещи за считанные дни, а какую искать им замену — никто не знает. Но тут один наш сотрудник — очень молодой человек, он еще учился, и его в это время исключали из института за несданные зачеты или экзамены — сказал, что мы зря мудрим и ломаем головы из-за этих заковыристых деталей, потому что де в любом самолете-бомбардировщике всего этого сколько угодно…

По правде говоря, я опешил. И другие, думаю, тоже. При чем тут самолеты и где это, интересно, мы возьмем бомбардировщик? »

И Леонид Евгеньевич Мельник (предложение, разумеется, было его) стал со знанием дела разъяснять: у такого-то самолета столько-то сот или тысяч таких-то гидроцилиндров, насосов, клапанов. На них отбирается мощность столько-то и столько киловатт. Реле, регуляторы, КИП и прочее электрическое хозяйство там такие-то. А любая механика, и гидравлика, и электрическая часть изготовляется в авиации классом выше, чем где бы то ни было…

После этого популярного вступления Мельник стал называть, какая часть и от какого именно механизма к чему подходит и где ее можно поискать. Продолжая недоумевать, полномочные представители алмазной фирмы отправились вместе с Мельником на облюбованную им много лет назад свалку. И там обнаружилось кое-что из вещей, в которые упиралась сборка первых киевских машин для изготовления алмазов.

Ну, а чего на свалке уже не было, о том они теперь, по крайней мере, знали, где спрашивать, к кому обращаться. И довольно быстро в цехе появились некоторые совершенно необходимые вещи, заимствованные у военных — со списанной военной техники.

Электропроводка первых установок синтеза была самолетной — из жгута надежнейших проводов, идущего вдоль фюзеляжа. А блок высокого давления поворачивался в машине поворотным механизмом башни обыкновенного танка.

Однако ни машины, перепроектированные прямо на сборке в цехе, ни самолетная гидравлика, ни другие, во множестве решенные в те месяцы задачи организации и техники дела, — все это еще не решало главной задачи, не укладывалось и не могло уложиться в экономику, с которой началась эта глава.

Берясь научиться делать алмазы для себя и сотен других заводов, Бакуль и его коллеги понимали, что пытаться сделать это без серьезных изменений в уже сделанном Верещагиным и его коллегами — бессмысленно. Первые киевские алмазы получились по 135 рублей за карат, почти в 30 раз дороже их тогдашней цены, и, значит, были не нужны промышленности.

Первая и, вероятно, главная причина этого не составляла для киевских твердосплавщиков никакого секрета: камера высокого давления ломалась после первого же синтеза, редко — после второго. На 1 карат синтезированных алмазов ценой 5 руб. уходило 4 кг твердого сплава по 15 руб. за 1 кг, камера обходилась почти в сотню рублей и разрушалась, выдав меньше карата алмазов…

Надо было найти путь к изменению этой неутешительной пропорции.

Вакуль рассказывает:

«Чтобы устранить явление, надо было понять его причину; для нас это значило уяснить всю механику разрушения камеры. Этим мы и занимались без конца с Алексеем Иосифовичем Прихной. Наломали столько твердого сплава, что в лаборатории в углу выросла куча, наверное, в несколько тонн. Мы видели, что ломаются наши камеры чуть не каждый раз по-разному, и не могли понять, почему это происходит».

Потом у них появилась классификация поломок — картинки. Бакуль вспомнил какую-то старую книжку о поломках рельсов на железной дороге: путейцы снабжают обходчиков таблицей-картинкой, чтобы обходчик мог по своему разумению отнести поломку к тому или другому типу сразу, на месте происшествия. У них было, кажется, 12 картинок.

Лаборанты, ломающие модели камер, делали теперь примерно то же, и это заметно ускорило работу. Опыт за опытом продолжались поиски очевидного в принципе решения — сделать так, чтобы все напряжения в дольках, из которых сложена камера, были только сжимающими, потому что твердые сплавы не выдерживают растягивающих усилий. Затруднение, считающееся практически непреодолимым, ибо в любом предмете, подвергаемом сжатию, есть места, где именно от сжатия происходит растяжение.

Раньше, конечно, камера сжатия получалась довольно массивной, чтобы проще было передать ей давление. Прихна и Бакуль пришли к тому, что правильнее — наоборот. Пытались делать камеры как можно меньшие…

Вернемся к рассказу Бакуля:

«…Не стал бы я сейчас представлять это так, будто удачную конструкцию мы в конце концов рассчитали. Правильнее будет сказать, что мы ее подобрали. Интуицией, чутьем, после тысяч, наверное, опытов. Можно сказать, что мы ее вылепили…».

(Может быть, тут следует вспомнить Лундблада, которому тоже казалось, что ни озарения, ни открытия, ни решающего драматического момента — не было. «Столько лет возились с этими прессами — должно же было в конце концов что-то получиться!»).

Первая партия технических алмазов была выдана в октябре 1961 г. Бывшие твердосплавщики могли бы считать главную часть своей миссии на этом законченной, а обязательство выполненным и перевыполненным. Тем более, что в Госплане полагали (тоже, наверное, справедливо, как и в случае с конструкторским бюро, просившим четыре года на создание «машин»), что массовое производство алмазного порошка удастся пустить лет через пять.

Для этого нужен был, прежде всего, завод. Его надо было спроектировать, построить и оборудовать. Нужно было готовить персонал для работы на таком заводе. Такие вещи не делаются по волшебству.

Однако бывшее бюро, преобразованное в 1961 г. в Украинский научно-исследовательский и конструкторско-технологический институт синтетических сверхтвердых материалов и инструмента, предложило иное решение, беспрецедентное для научного учреждения: создать массовое производство синтетических алмазов прямо у себя. Сделать это на ходу — расширяя и реконструируя существующий опытный заводик.

«Героический период» продолжался. Совершенно невозможно хотя бы просто перечислить всех участников эпопеи. Названные здесь имена не означают, что эти люди сделали больше других — не названных. Вот еще три имени: М. М. Бабич, Е. И. Бобровский, В. Н. Галицкий. В течение следующего года были сконструированы, изготовлены и пущены в ход полуавтоматы для массового синтеза алмазов. Построены цехи. Обучены инженеры, мастера и рабочие. И, начиная с 1962 г., киевские синтетические алмазы начали бесперебойно поступать на предприятия всех отраслей промышленности — дешевые, в среднем во рублю за карат. В производстве тракторов и автомобилей, керамики и волокна, кремния и германия, резцов и штампов, мерительного инструмента и самоцветов, кинескопов, часов, ботинок и великого множества других вещей искусственные алмазы служат для резки, заточки, шлифования и прочих технологических операций, прежде всего окончательных, финишных, придающих изделиям самое высокое качество, недостижимое без алмазной обработки.

Институт и его опытный завод не только изготовляют алмазы и алмазные инструменты и не только их исследуют. Они пускают и налаживают у себя технологические процессы, для которых нужны алмазы. Они учат специалистов. Они помогли создать алмазное производство в Полтаве и в Ереване, а также в Польше и Венгрии.

Кто был первым, кто вторым, а кто пятым — такие счеты присущи не только спорту и случаются не только по чьей-то склонности к соперничеству. Чаще всего они обусловлены законами все той же вездесущей экономики и в них есть важное отличие от счетов спортивных: места второе, третье и так далее остаются вопросом чистого престижа. Второй и третий не получают ни серебряной, ни бронзовой медали. Все забирает первый — ему достается патент.

Когда алмазов стало много, Советский Союз начал продавать их за границу. Известная западногерманская фирма закупила у нашего «Станкоимнорта» немалое количество алмазной пасты — универсального средства для тонкой доводки металлических поверхностей, и эту алмазную пасту покупали со все большей охотой многочисленные машиностроительные и прочие предприятия.

И тут произошла неожиданность. Компания «Дженерал электрик» предъявила западногерманской фирме иск в нарушении патентного права: фирма-де торгует алмазами, синтезированными по способу, патент на который принадлежит ей, «Дженерал электрик».

Трудно сказать, собирались они выиграть тяжбу или это было одним из ходов в сложной коммерческой игре. Так или иначе, а после взаимных визитов и споров дело кончилось ничем. Одна сторона отозвала свой иск, другая сторона продолжает торговать алмазами. (Кстати, швед Лундблад тоже сообщил суду о своем недоумении по поводу такого иска: позвольте, но все основные параметра названные в вашем патенте, — те же, что в статье русского физика Лейпунского, опубликованной в 1939 г.! Там рассчитан весь ваш процесс, так что ваш патент не имеет законной силы, он выдан ошибочно…)

К тому времени во многих странах продавались искусственные алмазы вовсе не только американского производства. Например, ими начала торговать крупнейшая алмазная компания «Де Бирс», играющая первую скрипку в алмазном синдикате. Правда, в 1955 г., когда появились первые сообщения об успешном синтезе, «Де Бирс» заявила, что никакого коммерческого значения синтез иметь никогда не будет. Но потом довольно быстро сориентировалась (возможно, даже с помощью бывших сотрудников «Дженерал электрик»). И спустя некоторое время респектабельнейшая «Де Бирс» предпочла объединиться в этом деле со шведами, которые все-таки на самом деле были первыми. Теперь технические алмазы производит в Швеции фирма «Скандиамант», ею управляет инженер Эрик Лундблад. Фирма основана на паях шведской ASEA и англо-южноафриканской «Де Бирс» (50 на 50). В 1970 г., по свидетельству Лундблада, они делали 5 млн. каратов в год — тонну алмазов.

Еще несколько чисел: в 1970 г. в Соединенных Штатах промышленность употребила около 3,5 т искусственных алмазов. Возможно и косвенное сравнение: мировая добыча природных алмазов в 60-е годы равнялась примерно 5 т в год и вряд ли с тех пор заметно выросла.

В СССР технических алмазов выпускают столько, сколько нужно для народного хозяйства, и любое предприятие может приобрести их без разнарядки и фондов (в отличие, например, от железа, которое распределяется по плану). Горьковский автомобильный завод или, скажем, Сестрорецкий инструментальный расходуют за год по 200 — 400 тыс. каратов — до 80 кг алмазов!

И любой гражданин может купить стеклорез или пилочку для ногтей, усыпанную алмазами — синтетическими, конечно, которые продаются в Киеве, на Крещатике.