Виток спирали

Рич Валентин Исаакович

Часть вторая

СОМНЕНИЕ

#i_009.png

 

 

Глава первая

в которой место философского камня занимает невидимка флогистон

ХИМИК-СКЕПТИК

Роберт Бойль; седьмой сын графа Корка, был не чета случайно открывшему фосфор гамбургскому купцу-алхимику Бранду. Один из директоров самой гигантской из когда-либо существовавших в мире купеческих компаний — Ост-Индской. Роберт Бойль был одновременно знаменитым физиком и химиком — первым президентом Лондонского королевского общества.

Надо думать, что если бы Роберт Бойль не был в достаточной мере деловым человеком, то ему бы не доверили Ост-Индской компании — он бы немедленно разорился сам и разорил всех совладельцев. И в делах науки Бойль тоже был человеком практическим. Вот как он сам про себя написал: "Я привык рассматривать мнения, как монеты. Когда мне в руки попадает монета, я обращаю гораздо меньше внимания на имеющуюся на ней надпись, чем на то, из какого металла она сделана…"

Между прочим, в те времена бумажных денег не было, монеты делались из золота и серебра, и только самые мелкие разменные монетки — из меди. Ценность каждой монеты на самом деле зависела только от того, сколько в ней драгоценного металла.

"…Мне совершенно безразлично, — писал далее Роберт Бойль, — вычеканена она много лет или столетий назад или только вчера оставила монетный двор. Столь же мало я обращаю внимание на то, иного или мало рук она прошла до меня, если только я на своем пробирном камне установил, настоящая она или фальшивая, достойна она быть в обращении или нет. Если после тщательного исследования я нахожу, что она хороша, то тот факт, что она долгое время и многими не принималась за настоящую, не заставит меня отвергнуть ее. Если же я нахожу, что она фальшивая, то ни изображение и подпись монарха, ни возраст ее, ни число рук, через которые она прошла, не заставит меня принять ее: и отрицательный результат от одной пробы, которой я сам подверг ее, будет иметь для меня гораздо больше значения, чем все те обманчивые вещи, которые я только что назвал, если бы все они доказывали, что она не фальшивая".

О каких обманчивых вещах идет речь, станет понятно, когда мы назовем книгу 35-летнего Роберта Бойля, из которой взяты эти слова. Книга эта — "Скептик-химик, или Рассуждение об экспериментах, которые приводятся обыкновенно в доказательство четырех элементов и трех химических начал в смешанных телах". Монетами, которые ученый подверг испытанию и признал фальшивыми, оказались "прошедшие много рук" и в течение двух тысяч лет признававшиеся истинными учения Аристотеля, Джабира ибн-Хайяма, Абу Али ибн-Сины.

А испытывал он их так.

Брал горшок земли и взвешивал эту землю. И записывал: "земля — четыре фунта, семь золотников, два с половиной грана".

Затем брал тыквенное семечко и сажал в горшок.

Затем приказывал своему ассистенту аккуратно поливать водой землю в этом горшке. (Ассистентом у него был знаменитый впоследствии Роберт Гук — первым увидевший в микроскоп, что все живые ткани состоят из клеток.)

Время шло, семечко прорастало, превращалось в растение, которое зацветало и давало плод. Когда тыква вырастала, Бойль срезал ее, а землю снова взвешивал. Гирьки оказывались теми же четыре фунта, семь золотников а два с половиной грана.

Где же ртуть, где сера, где соль? — торжествующе спрашивал испытатель. Земля не израсходована, расходовалась только вода. Значит, тыква состоит из одной воды, а теория трех химических начал фальшива!

Каждое тело можно разложить на его составные, далее неразложимые части, — говорил Бойль. Они-то и есть элементы, Элементарны не свойства, а вещества. Не потому золото — золото, что оно золотого цвета, тяжелое и нерастворимое. А потому нерастворимо, потому тяжелое, потому золотого цвета, что оно — золото. И все попытки получить золото, смешивая вещества такого же цвета с веществами такой же тяжести, — бессмысленны.

Только эксперимент может удостоверить, какое вещество сложно, а какое элементарно. Вот, например, вода. Разложить ее на какие-либо более простые вещества не удается. Значит, вода — элемент.

Может показаться, что Роберт Бойль возвратился к Фалесу Милетскому. Но на самом деле он ушел далеко вперед. Ведь для Фалеса такого понятия, как проверка на опыте, вообще не существовало.

Почему же так правильно мысливший Роберт Бойль, восстановив в своих правах вещество и опровергнув первоначальную, элементарную сущность свойств, сам не смог назвать те элементарные вещества, которые к его времени уже были выделены людьми — золото, серебро, медь, железо, ртуть, олово, свинец, сурьму, цинк, мышьяк, углерод, серу, фосфор, висмут? Почему вместо них он возвел в сан элемента сложное вещество — воду?

Потому, что у Роберта Бойля не было средства узнать, какое вещество на самом деле простое, а какое состоит из других простых веществ.

"ЖИРНАЯ ЗЕМЛЯ" ИОГАННА БЕХЕРА

В 1673 году, через четыре года после того, как гамбургский купец Геннинг Бранд вместо философского камня нежданно-негаданно изготовил таинственный холодный огонь, магистрат голландского города Гааги получил заманчивое предложение: изготовлять золото из песка. Не из золотоносного, привезенного из Индии или Африки, а из самого обыкновенного, на котором стоит чуть не вся Голландия.

Несмотря на то, что предложение поступило от Иоганна Иоахима Бехера — человека весьма и весьма известного, успевшего к тому времени побывать и профессором медицины в Майнце, и главным финансовым советником в Вене, — гаагские бюргеры проявили осторожность и не торопились с ответом.

Бехер обиделся и поехал в Амстердам, где в это время находился король, чтобы предложить ему свое изобретение. Но и король тоже проявил осторожность.

Что поделаешь — время безрассудной веры прошло, пришло время скептиков.

Не обнаружив у голландцев энтузиазма, Бехер собрался уже было покинуть Нидерландское королевство, когда его познакомили с гостившим в Амстердаме немецким принцем Германом Баденским. Сильно порастратившийся за рубежом, принц проявил к предложению Бехера самый пылкий интерес. И тут, как это часто бывает, зашевелились и голландцы. Чем черт не шутит, а вдруг их родной голландский песок и в самом деле превратится в баденское золото? Это было бы чрезвычайно обидно! И амстердамские толстосумы выдали Бехеру изрядное количество талеров на постройку фабрики.

Дело закипело. На одной из речек вблизи побережья, состоящего целиком из отличного золотистого песка, начали строить водяную мельницу с огромным водяным колесом.

Насчет таких дел Бехер был большой мастер: еще в Майнце он обещал построить тамошнему курфюрсту вечный двигатель я, говорят, почти построил, но, к сожалению, курфюрст за что-то разгневался на профессора, и Бехеру пришлось покинуть город, не закончив своих трудов…

Каждый понимал, что делать золото из обыкновенного песка не так-то просто. Поэтому Бехера не очень торопили. Все же на исходе пятого года пребывания его в гостеприимном королевстве терпение и талеры хозяев стали подходить к концу, и Бехеру пришлось показывать товар лицом.

И тогда Иоганн Иоахим Бехер в присутствии городских властей Амстердама выплавил из песка немного золота! Обрадованные голландцы тут же выдали изобретателю большую награду, а также новую порцию талеров на завершение строительства фабрики. Но через несколько недель Бехер тайно покинул Нидерландское королевство и бежал в Лондон…

История знает немало всяческих плутней, и если бы Иоганн Иоахим Бехер ограничился в своей жизни только такими проделками, как та, о которой здесь рассказано, то вряд ли он остался бы в человеческой памяти надолго.

Но Бехер этим не ограничился.

Он составил первый в мире международный язык и 10000 слов — предшественник теперешнего эсперанто.

Он научил немецких крестьян выращивать диковинное американское растение — картофель.

Он строил стекольные, бумажные, шелковые фабрики.

Он создал лучшую на континенте химическую лабораторию.

Но самое главное: он написал замечательную книгу "Физика субтерранеа" — "Подземная физика".

Если Аристотель считал, что все может превращаться во все с помощью квинтэссенции, если Джабир ибн-Хайян считал, что металлы могут превращаться друг в друга с помощью философского камня, то Иоганн Иоахим Бехер заявил, что превращение одних веществ в другие зависит от содержания в них "жирной земли".

Все вещества он разделил на две группы. Одну группу составляли такие, которые эту жирную землю содержали. Другую группу составляли вещества, которые эту жирную землю потеряли.

Но как узнать, есть в том или ином веществе жирная земля или ее нет? Очень просто! Бросьте вещество в огонь. Если горит — значит, еще есть. Если не горят — значит, уже нет.

И приводил главный пример: сера, которая считалась одним из трех химических начал, на самом деле сложное вещество — она состоит из жирной земли и купоросного масла. Купоросным маслом называли тогда серную кислоту.

Итак, сера оказалась не химическим началом, не элементом. А вместо философского камня появилась жирная земля…

Далеко не сразу разобрались читатели "Подземной физики", что означают для науки эти внесенные Бехером перемены. Но через несколько десятилетий его идеи были оценены в полной мере. Это произошло в 1667–1703 годах, когда Георг Эрнест Шталь, ученик и последователь Бехера, создал и обнародовал теорию невидимого вещества флогистона — от греческого слова "флогистес" — "горящий".

И тогда впервые появилась возможность на основании опыта наглядно показать, какое вещество — простое, какое — сложное.

СТРОЙНОСТЬ И КРАСОТА

Сам Аристотель, будь он жив, не мог бы нарадоваться на стройность и красоту шталевской природы вещей, обнимавшей и объяснявшей с чрезвычайной простотой чуть ли не все накопленные за всю человеческую историю факты превращения одних тел в другие.

Все на свете Шталь объяснял только тем, что существует флогистон — чрезвычайно тонкая материя, которая под действием огня может переходить, переливаться из одного вещества в другое.

Вы взяли кусочек серы и сожгли. Что произошло? Извольте, Флогистон покинул серу и растворился в воздухе. А оставшийся желтый дым это кислый воздух, который можно соединить с водой и получить сложное вещество — купоросное масло.

Почему нельзя сжечь полностью весь кусочек серы в запаянном сосуде? Извольте. Потому что флогистон растворяется в воздухе. Но воздух, находящийся в запаянном сосуде, способен растворить лишь ограниченное количество флогистона. Поэтому остальной флогистон не имеет возможности уйти из серы.

Вы взяли кусочек свинца, положили в реторту, носик ее заплавили и принялись реторту нагревать. Часть свинца превратилась в красную землю. Что произошло? Да в принципе то же самое, что и с серой. Часть флогистона, бывшая в свинце, растворилась в воздухе. Почему только часть — вы уже знаете.

Все это примеры разложения сложных веществ серы и свинца в простые вещества — флогистон, кислый воздух, свинцовую землю. Если угодно, можете назвать кислый воздух дефлогистированной серой, а свинцовую землю — дефлогистированным свинцом.

Так же просто можно было объяснить и другие превращения: простых веществ в вещества сложные.

Вы взяли уголь и свинцовую землю, смешали их и положили в реторту. Теперь нагревайте. Уголь стал тлеть, а серый порошок превратился в блестящий шарик свинца. Что произошло? Да только то, что флогистон из угля — необычайно богатого флогистоном тела — перешел в свинцовую землю, и из двух простых тел флогистона и свинцовой земли образовалось одно сложное — свинец.

Удивительно простой и изящной оказалась природа вещей!

К тому же теория флогистона, как и полагается хорошей теории, не только объясняла известные факты, но и давала возможность предсказывать новые.

Вот заурядный для эпохи флогистона случай с русским химиком Товием Егоровичем Ловицем. В 1785 году ему было поручено найти способ очистки виннокаменной кислоты. Для красильного дела нужны были совершенно бесцветные кристаллы, а из раствора выпадали кристаллы темные.

Ловиц рассуждал так: виннокаменная кислота способна гореть — значит, в ней есть флогистон. Уж не он ли делает ее темной? Надо попытаться очистить ее от флогистона.

Как? Нужно найти тело, которое было бы более жадным до флогистона, чем виннокаменная кислота.

Какое именно?

Ловиц остановился на древесном угле. Ведь если его нагревать, то он далеко не сразу отдает свой флогистон, значит, жаден до него.

Темные кристаллы виннокаменной кислоты растворили в воде и туда же бросили толченого угля.

Прошло немного времени — и раствор стал прозрачным.

Так с помощью теории флогистона было открыто замечательное свойство угля впитывать различные примеси. Свойство, которое было применено впоследствии во многих пищевых и прочих химических производствах, а во время первой мировой войны — в противогазах, спасших тысячи и тысячи человеческих жизней…

Почему такая странная и неверная с нашей точки зрения идея, как введение в научный обиход несуществующего вещества — флогистона, продержалась целое столетие и помогало при этом совершать новые открытия?

Да потому же, почему продержалось две тысячи лет учение Аристотеля о несуществующих четырех элементах.

В этих учениях в неверной форме были выражены некоторые совершенно правильные вещи.

Аристотель верно подметил, что разные вещества имеют некоторые одинаковые свойства и догадался, что они зависят от внутреннего строения, от состава этих разных веществ.

А Бехер и Шталь верно подметили, что превращение одних веществ в другие зависит от их взаимодействия друг с другом при нагревании. И еще — что существуют два типа превращений: одни идут с выделением тепла (флогистон уходит), а другие — с поглощением тепла (флогистон приходит). И еще — что превращение металлов в земли сродни горению угля или серы. И еще — что при превращении земель в металлы, к землям присоединяется нечто отнимаемое от угля.

Но, может быть, самое притягательное в теории Бехера и Шталя заключалось в следующем: флогистон прекрасно объяснял природу вещей, не оставляя в ней места ни для Аристотелевых четырех элементов, ни для алхимических трех начал, ни для квинтэссенции, ни для философского камня. Только реальные вещества, с которыми человек имел дело, и одна-единственная тонкая материя — вот и все, что составляло весь способный к взаимным превращениям мир!

Теперь, чтобы остались одни лишь реальные вещества, нужно было избавиться от одной-единственной подпорки, одного-единственного костыля — флогистона. Но, разумеется, должно было пройти немало времени, пока наиболее проницательные исследователи поставили перед собой такую задачу.

 

Глава вторая,

в которой Ломоносов оспаривает Бойля и Шталя

ФЛОГИСТОН И ТЕПЛОРОД

Первым ученым, отказавшимся от флогистона, был Михаил Васильевич Ломоносов.

Впрочем, сначала Ломоносов занялся не флогистоном, а другой тонкой материей.

Дело в том, что если у химиков, занимающихся превращением веществ, остался в середине XVIII века только флогистон, то у физиков, изучающих свойства и различные формы движения тел, разных тонких материй было более чем достаточно. Самая живучая из них — эфир — дожила до XX века, ее проходил в школе еще автор этой книги. Эфир считался такой невесомой "жидкостью", с помощью которой очень удобно объяснялись удивительные свойства света, с одной стороны, распространяющегося по прямой, а с другой, способного огибать непрозрачные предметы, когда они очень малы.

Столь же удивительным, как свет, казалось в XVIII веке и тепло. Для того чтобы объяснить, например, каким образом оно передается от нагретого тела к более холодному, тот же Роберт Бойль прибегал к тонкой материи, именуемой теплородом, или теплотвором, Это ведь очень удобно: в нагретом теле больше теплорода в холодном меньше — вот он и переходит в холодное, как вода перетекает из более высокого сосуда в тот, что расположен пониже.

В сущности, теплород был чем-то вроде движущей силы флегистона. Однако если флогистон без теплорода существовать не мог, то теплород без флогистона обходился легко и просто: переходя из печки в горшок с супом, он только нагревал суп, но не превращал его ни во что иное…

ОПРОВЕРЖЕНИЕ РАССУЖДЕНИЕМ

Первая работа Ломоносова, посвященная этому предмету, датируется 1745 годом. Она так и называлась — "Размышления о причине теплоты и холода".

"В наше время, — указывал Ломоносов, — причина теплоты приписывается особой материи, называемой большинством теплотворной… Это мнение в умах многих пустило такие могучие побеги и настолько укоренилось, что можно прочитать в физических сочинениях о внедрении в поры тела названной выше теплотворной материи, как бы притягиваемой каким-то любовным напитком; и наоборот — о бурном выходе ее из пор, как бы объятой ужасом. Поэтому мы считаем нашей обязанностью подвергнуть эту гипотезу расследованию…"

Откуда берется тепло?

Опыт подсказывал:

"…Теплота возбуждается движением: от взаимного трения руки согреваются, дерево загорается пламенем: при ударе кремня об огниво появляются искры; железо накаляется докрасна от проковывания частыми и сильными ударами…"

Все это Ломоносов видел не раз собственными глазами. Но как было увидеть, что именно происходило при этом?

Увидеть было нельзя, но понять — можно. А первый намек на истину содержался в замечательных словах Демокрита: "Обыкновенно мы говорим о сладком и горьком, о теплом и холодном, о цвете и запахе, в действительности же существуют атомы и пустое пространство".

Нельзя сказать, что учение Демокрита об атомах было забыто. Нет, об атомах помнили. Только не знали, к какому делу их приставить. Потому что было совершенно непонятно, как совместить наличие атомов, которых, как учил Демокрит, неисчислимое множество сортов, с наличием четырех элементов Аристотеля. Если весь мир состоит из нескольких элементов, то как он может состоять из множества сортов атомов — тогда и сортов атомов должно быть всего несколько?

Так порознь и существовали в умах ученых людей атомы и элементы.

Роберт Бойль, например, весьма скептически относясь к элементам алхимиков, скептически относился и к идее о небольшом количестве изначальных элементов вообще.

А в атомы он верил. Атомы жидких тел представлялись ему находящимися в беспрестанном движении, атомы твердых тел — неподвижными. Промежутки же между атомами, по мнению Бойля, были заполнены тонкой материей.

Но что, если никакой тонкой материи нет? — размышлял Ломоносов. — А есть лишь атомы и пустота? И атомы эти — не только жидких, но и твердых тел — могут двигаться?

Тогда и трение, и частые, сильные удары молота — все это подстегивает атомы, они движутся внутри тел все быстрее и быстрее, а мы ощущаем это ускорение движения атомов как нагревание вещества, из них составленного, а замедление — как охлаждение.

А когда мы наблюдаем, как нагретое тело передает тепло холодному, то на самом деле в это время частицы одного вещества передают частицам другого вещества свое движение.

При чем же тут, теплород?

ОПРОВЕРЖЕНИЕ ОПЫТОМ

В XVI или даже в XVII веке, опровергая теплород, можно было ограничиться одними рассуждениями. Но в XVIII веке рассуждения полагалось подкреплять опытами. Тем более, что гипотеза о теплороде имела свои опытные подтверждения, в том числе широкоизвестным экспериментом знаменитого Роберта Бойля.

В 1673 году Бойль поставил такой опыт: в запаянной реторте стал нагревать кусок свинца. Через два часа часть свинца превратилась в красную землю. Бойль отломил запаянный кончик реторты и услышал, как в нее с шумом ворвался воздух. Взвесив вещество, находящееся в реторте, он обнаружил, что превратившийся в землю свинец потяжелел на 8 гранов. Эту прибыль в весе он приписал теплороду, мельчайшие частицы которого сумели проникнуть через стекло в запаянную реторту.

В отличие от Бойля, Ломоносов взвешивал реторты со свинцом до и после прокаливания заплавленными и никакого прибавления в весе ни на единый гран ни в одном случае не обнаружил, хотя часть свинца в реторте и превращалась в красный порошок.

Вес порошка вместе с оставшимся в прежнем виде свинцом действительно увеличивался по сравнению с первоначальным, до обжига. Но недаром ведь писал Бойль о шуме, с которым врывался в реторту воздух, как только обламывали ее запаянный конец. Это значило, что количество воздуха в реторте во время прокаливания уменьшилось. Куда же ушел воздух? Весы неумолимо и бесстрастно свидетельствовали — в красный порошок.

И в 1756 году в отчете адъюнкта Санкт-Петербургской императорской академии наук Михайлы Ломоносова появилась запись:

"Между разными химическими опытами, коих журнал на 13 листах, деланы опыты в заплавленных накрепко сосудах, чтобы исследовать, прибывает ли вес металлов от чистого жару. Оными опытами нашлось, что славного Роберта Бойля мнение ложно, ибо без пропущения внешнего воздуха вес сожженного металла остается в одной мере".

Теплорода, а вместе с ним и флогистона — тонких материй огня — не стало. Остались только частицы свинца и частицы воздуха.

Но не следует думать, что сразу же после опытов Ломоносова от флогистона отказались все химики мира. Этого не случилось.

И не только потому, что отчеты Российской академии наук читали далеко не во всем мире.

Главное было в другом. Уже Шталь понимал, что опыт Бойля противоречит теории флогистона — ведь у Бойля вес земли был больше веса свинца, значит, что-то пришло, а не ушло! Но и Шталь, и другие ученые отмахивались от этого опыта, как и от некоторых других, противоречащих флогистонной теории. Отмахивались потому, что эта теория прекрасно объясняла сотни и тысячи прочих опытов и процессов.

А один из ярых сторонников теории Шталя сумел объяснить даже прибавку в весе, полученную Бойлем. Он объявил, что флогистон имеет… отрицательный вес! Таким образом, замечательный опыт Бойля, который мог бы послужить доказательством наших сегодняшних представлений о химических взаимодействиях веществ, дважды послужил доказательством существования несуществующего: первый раз — теплорода, второй раз — флогистона…

Так или иначе, но еще по крайней мере пол века флогистон безраздельно царил в химии.

 

Глава третья,

в которой Блэк, погнавшись за флогистоном, ловит углекислый газ, Кавендиш, погнавшись за водородом, ловит флогистон, а Пристли, изгнав флогистон из воздуха, ловит кислород

ОШИБКА ДЖОЗЕФА БЛЭКА

В то же примерно время, когда адъюнкт Михайло Ломоносов в Петербурге делал в накрепко заплавленных сосудах свои опыты, доказавшие, что в природе не существует никакого флогистона, профессор Джозеф Блэк в шотландском городе Глазго делал другие опыты, которые должны были доказать существование флогистона, и не только доказать, а и поймать его в чистом виде.

Вообще говоря, можно было предпринять попытку выделить флогистон из угля, или из серы, или даже из железа. Но у Блэка были серьезные причины попытаться выделить его из магнезии — белого порошка, похожего на соду.

Дело в том, что как раз в это время некая миссис Стефенс согласилась за 5000 фунтов стерлингов раскрыть секрет найденного ею лекарства от камней в почках. В напечатанном в "Лондонской газете" описании этого лекарства было сказано, что оно состоит из порошка, отвара и пилюль. И что порошок, в свою очередь, состоит из яичной скорлупы и улиток, прокаленных в течение восьми часов; а чтобы получить отвар, нужно варить зеленую ромашку, укроп, петрушку и репейник с мылом и медом; а пилюли надлежит делать из прокаленных улиток, обугленных семян сурепки, репейника, шиповника, овса и также из мыла и меда…

Знакомые Блэку врачи не очень поверили в такую пропись. Но вместе с тем лекарство миссис Стефенс было гораздо менее едким, чем рекомендуемые тогдашними медиками, и этим привлекало больных. Применявшиеся тогда в медицине средства против камней в почках получали из мягких щелочей — соды и поташа, которые варили с гашеной известью. А известь получали из едкой извести, которую изготовляли обжигом известняка.

Согласно флогистонной теории, известняк, как и земля, был простым веществом. При обжиге известняка флогистон переходил в него из огня, поэтому жженая известь и становилась едкой. А во время варки едкой извести с содой или поташем флогистон из извести переходил в мягкие щелочи и делал их тоже едкими.

Во время одного из таких переходов Блэк и рассчитывал выделить флогистон. Но поскольку щелочи, изготовленные из поташа и соды, были слишком едкими, а врачи просили Блэка найти что-нибудь помягче, он решил заняться щелочью, изготовленной из магнезии.

Обыкновенные мягкие щелочи — сода и поташ — отличались тем, что при добавлении к ним купоросного масла пли соляного спирта (серной или соляной кислоты) начиналось бурное вскипание. Блэк бросил щепотку мягкой магнезии в стакан с кислотой и увидел, что порошок быстро растворяется с бурным выделением воздуха. Значит, в порошке флогистона не было — именно так, с бурным выделением воздуха, растворялись в кислотах все мягкие, дефлогистированные щелочи.

Теперь надо было ввести в мягкую магнезию флогистон. Блэк отвесил порцию порошка, ссыпал в тигель, поставил его на сильный огонь.

Когда обжиг закончился и жженая магнезия остыла, Блэк аккуратно, стараясь не потерять ни пылинки, взвесил ее. Порция уменьшилась на восемь гран. Куда они делись?

Он раздумывал несколько дней. А потом ссыпал жженую магнезию в кислоту (никакого вскипания при этом, естественно, не произошло) и принялся добавлять туда соды до тех пор, пока белые хлопья мягкой магнезии не перестали выпадать. Затем отфильтровал их и высушил. Теперь весы должны были показать — правильна ли догадка?

Пинцетом, одну за другой, положил он на чашечку маленькие разновески. Так он и думал: мягкой магнезии ровно на восемь гран больше. Вот она, пропажа!

Откуда пришли эти восемь гран? Ясно откуда — из соды. Восемь гран из соды — это воздух, который ушел из мягкой магнезии, когда она кипела в кислоте, воздух, о котором говорил еще знаменитый алхимик Ян Баптист ван Гельмонт. Он получал его при обжиге мела и при брожении вина. Он назвал его газом — то ли по названию прозрачной шелковой ткани из арабского города Газы, то ли от греческого слова "хаос". Второе вероятнее, так как ван Гельмонт писал, что газы — это вещества, "которые не могут быть ни сохранены в сосудах, ни превращены в видимое тело".

Блэк дал газу свое название — "фиксируемый воздух", то есть воздух, который могут удерживать щелочи.

После опытов Блэка с белой магнезией стало ясно: мягкие щелочи отнюдь не элементарны. Они сложнее, чем едкие щелочи, поскольку состоят из едких щелочей плюс фиксированный воздух. А флогистон тут ни при чем. При обжиге известняка или магнезии в них ничто не входит из огня, наоборот — огонь изгоняет фиксируемый воздух, смягчающий известь и магнезию.

Таким образом, в то же примерно время, когда Ломоносов доказал, что обжиг металлов есть соединение металлов с частицами воздуха, Блэк доказал, что обжиг мягких щелочей — ото их разложение на едкие щелочи и фиксированный воздух. И Ломоносов, и Блэк с помощью весов прекрасно объяснили эти реакции, не прибегая к тонким материям.

Из их опытов следовало: под маской флогистона скрывались газы.

Нет ничего неестественного в том, что из четырех первичных элементов Эмпедокла сперва более подробно были изучены земля и вода, или, иными словами, — твердые тела и жидкости. И еда, и одежда, и жилье, и орудия труда, и оружие — все это камень, дерево, металл, все это твердь, с этим сталкиваешься на каждом шагу. Достаточно знакомы человеку жидкости — он пьет, умывается, стирает, плавает, — и он стал пристально изучать свойства воды, кислот, щелочей, спиртов и других льющихся веществ.

Немудрено, что тела газообразные, которые в жизни человека были менее заметны, обратили на себя внимание гораздо позже, чем твердые и жидкие. Но теперь настало их время.

Вместо тонкой материи — флогистона в опытах Ломоносова и Блэка главными действующими лицами оказались атмосферный воздух и фиксируемый воздух, позже названный углекислым газом.

И вся вторая половина XVIII века прошла в химии под знаком воздуха, или, вернее, воздухов — этих вездесущих, невидимых, но зато весомых, а следовательно, вполне реальных веществ.

ОШИБКА ГЕНРИ КАВЕНДИША

Джозеф Блэк, погнавшись за флогистоном, поймал углекислый газ. Другой англичанин, Генри Кавендиш, погнавшись за водородом, поймал флогистон. Вот как это произошло.

Собственно, ни о каком водороде — газе, который, соединяясь с кислородом, образует воду, — никто еще не подозревал, как не подозревали и о кислороде. Вода считалась простым, неразложимым телом, пожалуй, единственным, насчет которого все соглашались, что это настоящий элемент.

Но давным-давно, с тех примерно времен, когда научились получать из железного колчедана и из селитры купоросное масло (оно же — селитряный спирт, оно же — серная кислота), обнаружилось следующее. Если бросить и сосуд с этой едкой жидкостью железный гвоздь, то гвоздь растворится, а жидкость начнет как бы кипеть — в ней появятся пузырьки воздуха. Так же давным-давно обнаружилось, что воздух из купоросного масла особенный: при соприкосновении о огнем он горит, а иногда даже взрывается.

Факт этот был известен еще алхимикам, но они не сочли его интересным. Вот и на болотах из торфяной жижи всплывают пузырьки, которые можно поджигать. А на Востоке, сообщают путешественники, в некоторых местах горючие испарения струятся прямо из-под земли. Алхимикам было не до них, алхимиков одолевали другие заботы.

Роберт Бойль первым придумал, как собрать этот странный воздух. Он взял бутыль с водой. И, говоря словами самого Бойля, "увидел поднимающиеся воздушные пузырьки, которые, соединяясь, понижали уровень воды, занимая ее место. Скоро вся вода была вытеснена из верхнего сосуда и заменена телом, которое имело вид воздуха".

В дальнейших занятиях с этим телом, "имевшим вид воздуха", Роберт Бойль, однако, большого смысла не увидел.

Его увидел через сто лет другой англичанин — Генри Кавендиш.

Генри Кавендиш был лордом, но государственные дела его не интересовали — он жил затворником. Не было у него ни жены, ни детей. Полностью отсутствовало и ученое тщеславие — о замечательных своих открытиях он иногда вообще никому не говорил, о них узнали только из записей в лабораторном дневнике уже после смерти Кавендиша.

Кавендиш занялся горючим воздухом, пузырьки которого выделяются, если соединить железо с купоросным маслом, вскоре после того, как Джозеф Блэк опубликовал статью "Эксперименты над белой магнезией, едкой известью и некоторыми другими щелочами". Из этой статьи ученому миру стало известно о том, что щелочи становятся едкими вовсе не от того, что в них проникают частицы флогистона, а от того, что их покидают частицы фиксируемого воздуха.

Кавендиш начал с того, что вместо железа брал другие металлы: цинк или олово. Газ исправно выделялся. Тогда он заменил селитряный спирт соляным — то есть, по-нашему, соляной кислотой. Газ и тут выделялся.

С равным основанием можно было предположить, что воздух выделяется из металлов и что воздух выделяется из кислот. Кавендиш остановился на первом предположении: ведь жидкость на вид оставалась неизменной, а кусочек металла исчезал. Очевидно, решил Кавендиш, кислота разлагает металл на растворимую часть — землю — и на этот воздух. Но ведь известно, что металл состоит из земли и флогистона! Так может, этот воздух и есть дотоле неуловимый флогистон?

Прежде всего Кавендиш решил убедиться в том, что горючий воздух не имеет ничего общего с обычным атмосферным воздухом. Мало ли, что он горит, а воздух не горит. Надо еще доказать, что он не имеет тех свойств, которые воздух имеет, то есть не может растворять в себе флогистон. Помните? Считалось, что воздух поддерживает горение потому, что он способен растворять вытекающий из горящего вещества флогистон.

Кавендиш ввел в бутыль с горючим воздухом зажженную свечу — свеча погасла.

Кавендиш посадил в банку с горючим воздухом мышь — мышь задохнулась.

Нет, горючий воздух и атмосферный воздух — разные вещи!

Теперь хорошо было бы найти удельный вес горючего воздуха. Это было очень непросто — проделать столь тонкое измерение столь тонкой материи. Но Кавендиш нашел решение.

Он бросил в кислоту унцию цинка и определил объем выделившегося горючего воздуха. Затем взвесил колбу с кислотой, бросил туда унцию цинка, подождал, пока цинк растворится, а газ улетучится, и снова взвесил колбу с растворившимся цинком.

Теперь она весила чуть-чуть меньше.

Кавендиш два, три, четыре раза повторял опыт. Убыль в весе оставалась прежней.

Тогда он разделил эту убыль на объем, который занимал горючий воздух при растворении унции цинка. Получалась ничтожно малая величина — в переводе на наши меры литр горючего воздуха весил примерно пять сотых грамма. И это в то время, когда литр обыкновенного атмосферного воздуха весит почти грамм! А фиксируемого воздуха Блэка — два грамма!

Такого легчайшего, почти невесомого вещества до той поры никто не знал. И Кавендиш окончательно уверился: это тончайшее вещество и есть флогистон!

Все же, будучи человеком исключительно точным, он дал горючему воздуху такое название: "воспламеняемый воздух из металлов".

ОШИБКА ДЖОЗЕФА ПРИСТЛИ

Знаете ли вы, кто первым сделал газированную воду?

Джозеф Пристли. Был он священником. А по совместительству — учителем. До тридцати четырех лет не занимался никакими опытами. И вообще о химии имел довольно смутное представление — будучи уже взрослым человеком, прослушал две-три популярные лекции.

Итак, он читал проповеди, учил детей английскому, французскому и итальянскому языкам и не подозревал о предстоящей ему мировой славе и бронзовом памятнике, который соорудят ему сограждане в его родном городе Лидсе.

Все изменила одна встреча. В 1767 году, приехав на несколько дней в Лондон, Джозеф Пристли случайно познакомился с одним из самых выдающихся ученых того времени — американцем Бенджаменом Франклином. Тем самым Франклином, который изобрел громоотвод.

С этого момента священник не мог думать ни о чем ином, кроме исследований. И так как в то время все английские естествоиспытатели изучали разные "воздухи", занялся тем же и Пристли.

Начал он с фиксируемого воздуха Блэка. И первым его успехом было получение газированной воды: во время одного из опытов он пропустил углекислый газ сквозь воду и решил попробовать, не изменился ли ее вкус. Газированная вода понравилась ему чрезвычайно, и Пристли стал угощать ею всех своих знакомых. Слух о новом напитке достиг Лондона. Королевское общество собрало самых известных врачей. Пристли на глазах у них приготовил газированную воду, врачи попробовали ее и пришли в такой восторг, что вскоре Пристли был награжден золотой медалью Королевского общества, а газированную воду рекомендовали Британскому адмиралтейству для употребления на кораблях в качестве лекарства от морской болезни.

Первая удача весьма воодушевила тридцатипятилетнего новобранца науки, и он занялся новыми опытами, причем во всех случаях старался получить какой-нибудь новый воздух.

Вскоре Пристли пришел к мысли, что способ, продуманный Бойлем для собирания газов, всем хорош, кроме одного: в воде, налитой в бутыль, воздух может раствориться. Надо было придумать что-нибудь получше. И Пристли придумал: он стал наполнять бутыль не водой, а ртутью, и над ртутью собирать газы.

Ему на редкость везло. Уже первый опыт с ртутью принес новый успех. Пристли стал нагревать поваренную соль с серной кислотой, и в бутыли над ртутью собрался воздух с острым едким запахом. Раньше никогда не могли его выделить, потому что он очень жадно соединялся с водой (мы называем этот газ хлористым водородом).

Затем Пристли решил собрать над ртутью воздух из нашатырного спирта. И собрал! (Мы называем этот газ аммиаком.)

После этого он попробовал впустить в один сосуд воздух из нашатырного спирта и воздух из поваренной соли. И вместо бесцветных воздухов получил белое облако, вскоре осевшее порошком (мы называем его хлористым аммонием).

Все это было так интересно, что ушедшего с головой в лабораторные опыты священника не смог соблазнить даже знаменитый капитан Джемс Кук, пригласивший Пристли принять участие в кругосветном плавании.

Вместо того чтобы плыть с Куком в южные моря, Пристли купил зажигательное стекло чуть ли не в полметра диаметром и стал накалять с его помощью самые разные твердые вещества. Он клал их под стеклянный колокол с отводной трубкой, которая шла в бутыль, где над ртутью могли собираться выходящие из накаляемых тел газы.

Кому до опытов Блэка с белой магнезией такое могло прийти в голову?

А теперь это проделал даже не слишком искушенный в химии любитель.

Удача не покидала Джозефа Пристли, Первого августа 1774 года он решил выделить воздух из красного порошка, описанного еще в трактатах Джабир ибн-Хайяна. Алхимики называли его "Меркуриум пер се" — жженой ртутью. Порошок этот получали, прокалив на воздухе ртуть, он был ртутной землей, ртутной известью.

Пристли насыпал щепоть ртутной извести в тигелек, накрыл колоколом и, подождав, когда солнце выглянет из-за тучи, навел на тигель свое зажигательное стекло. Внимательно, боясь упустить малейшую подробность, он наблюдал за тиглем. И вдруг там что-то заблестело.

Пристли немного отодвинул линзу, чтобы разглядеть получше, что это, и увидел посреди уменьшившейся кучки порошка большую светлую каплю ртути.

Он снова направил туда линзу и перевел взгляд на бутыль — ртуть заполняла ее ужо не целиком, как перед опытом, а немного отступив от торчащего вверх дна: в бутыли был воздух из ртутной извести)

Через полчаса в тигельке блестела ртутная лужица, а две бутыли были полны каким-то воздухом. Что это за воздух? Тот, что окружает нас всегда? Или горючий воздух Кавепдиша? Или воздух, который он сам получил из поваренной соли и серной кислоты? Или тот, другой, из нашатырного спирта? Как это узнать?

Ну, прежде всего, если это обыкновенный атмосферный воздух, то он должен растворять флогистон, то есть поддерживать горение…

Пристли зажег свечу и осторожно сунул ее в бутыль. Огонь не только не погас — напротив, пламя свечи стало намного ярче, чем обычно.

Пристли подбежал к камину, выхватил щипцами маленький, слабо тлеющий уголек и сунул его в другую бутыль — уголек запылал, разбрасывая огненные искры, — словно это был не уголь, а пропитанная селитрой бумага.

Что бы еще попробовать?

Взгляд Пристли упал на тонкую железную проволоку, из обрезков которой он собирался получить горючий воздух. Он схватил щипцами эту проволоку, накалил в камине докрасна и сунул ее раскаленный кончик в ту самую бутыль, где горел уголь.

И не поверил своим глазам — железо горело! Новый воздух растворял флогистон намного энергичнее, чем атмосферный!

Должно быть, потому, подумал Пристли, что сам он начисто лишен флогистона, как бы дефлогистирован. Это дефлогистированный воздух!

Название, данное Джозефом Пристли новому воздуху, не вызвало никаких возражении у его ученых друзей из Королевского общества. Они были вполне солидарны с ним — да, конечно, это именно дефлогистированный воздух. Тем более, если принять во внимание недавние опыты ученика Блэка — Даниэла Резерфорда, который открыл флогистированный воздух.

Резерфорд брал обычный атмосферный воздух, пропускал его через известковую воду, чтобы очистить от фиксируемого воздуха, а затем через раскаленные угли, чтобы насытить флогистоном. Такой флогистированный воздух не мог уже поддерживать горения и дыхания (за что впоследствии и получил название "азот" — по-гречески "безжизненный").

А воздух Пристли, который поддерживал горение в несколько раз лучше обычного воздуха, естественно, следовало обозначить как дефлогистированный. Ведь в нем и в самом деле вовсе не должно было содержаться флогистона или если он там и был, то в гораздо меньшем количестве, чем в атмосферном воздухе.

Нелепая, на наш взгляд, логика! Но что поделать — флогистонная гипотеза казалась исключительно логичной…

Пристли был уверен, что раз его дефлогистированный воздух очень хорош для горения, то он не может быть нехорош для дыхания. Опыты подтвердили это. Мышь, помещенная в закрытый сосуд с дефлогистированным воздухом, не теряла сознания вдвое дольше, чем мышь, сидевшая в таком же сосуде с обычным воздухом.

Пристли и сам пробовал вдыхать дефлогистированный воздух и нашел, что он вполне приятен.

Откуда в ртутной извести дефлогистированный воздух? На этот счет больших сомнений у Пристли не возникало: ведь жженую ртуть получали из обычной ртути, прокалив ее на воздухе, то есть изгнав флогистон. Очевидно, ртуть, кроме флогистона, содержала еще и этот воздух, который при прокаливании ртути тоже терял свой флогистон.

Оставалось посмотреть, как поведут себя земли других металлов. Пристли повторил знаменитым опыт Роберта Бойля, уже повторенный однажды Ломоносовым. Он взял свинец и сильно нагрел его. Свинец начал краснеть и постепенно превратился в красный порошок. Тогда Пристли сделал то, чего не сделал ни Бойль, ни Ломоносов: он положил красный порошок под колокол, нагрел своей линзой и снова превратил в свинец, изгнав из порошка находившийся в нем воздух.

Воздух из свинцовой земли оказался точно таким же, как воздух из жженой ртути.

Из любой металлической извести можно было получить дефлогистированный воздух — это было потрясающее открытие!

Пристли не знал, что еще за два года до него тот же самый дефлогистированный воздух в той же самой жженой ртути обнаружил шведский аптекарь Карл Вильгельм Шееле — вероятно, один из самых лучших экспериментаторов XVIII века. Это стало известно позже, когда оказалось, что дефлогистированный воздух — то самое вещество, без которого паука не могла двигаться дальше, и честь его открытия стали оспаривать разные исследователи. Впрочем, никто из них, открыв дефлогистированный воздух (Шееле называл его огненным воздухом), так и не понял, с чем они имеют дело.

В 1785 году Джозеф Пристли, будучи во Франции, познакомился с самыми выдающимися французскими химиками. В лаборатории одного из них в честь гостя был дан обед. У гостя не было никаких причин скрывать свои успехи, и он с гордостью рассказал о них.

Только один из присутствующих понял, что означает открытие Пристли. Это был хозяин лаборатории — Антуан Лоран Лавуазье.

 

Глава четвертая,

в которой Лавуазье доказывает сложность земли, воды и воздуха и составляет первый список химических элементов

ПОЧЕМУ ПОХУДЕЛ ПЕЛИКАН

В отличие от Джозефа Пристли, который был небогат, прослушал лишь несколько лекций по химии, а первые самостоятельные эксперименты провел, когда ему минуло тридцать четыре года, Антуан Лоран Лавуазье был одним из самых богатых людей Франции, учился у самых лучших профессоров и уже в двадцать три года был избран в Академию наук. Может быть, именно это позволило ему увидеть в опытах английского естествоиспытателя то, чего тот не увидел.

А может быть, это произошло потому, что Лавуазье жил и работал во Франции, которая тогда находилась накануне революции. И на его взглядах сказался тот колоссальный подъем духа, то стремление покончить со всем отжившим и ветхим, та смелость, какой одушевлен был французский народ.

Впрочем, если эпоха и оказывала влияние на образ мыслей молодого исследователя, то сам он об этом вряд ли догадывался. Он деятельно приумножал доставшееся ему по наследству богатство, а все остальное время занимался наукой. Более всего — физикой и химией.

Сначала он заинтересовался водой. И не мудрено: это было единственное вещество, которое никто не мог разложить на составные части и которое, вместе с тем, могло превращаться в землю. Во всяком случае, таково было мнение великих авторитетов, и в их числе Роберта Бойля, проделавшего опыты с тыквой.

Впрочем, еще за сто лет до Бойля примерно такой же эксперимент провел голландский алхимик Гельмонт. Тот самый, что первый выделил из мела связанный с ним воздух и придумал для него название — газ. Только Гельмонт взял не тыкву, а иву. Он посадил ивовый прут в двести фунтов высушенной земли и ровно пять лет поливал его дистиллированной водой. А потом взвесил деревце и высушенную землю: ива весила 164 фунта, а земля те же двести. Откуда появились эти 164 фунта? Ясное дело — из воды.

Правда, некоторые ученые считали, что Гельмонт и Бойль ошибались. Голландец Герман Бургаве, например, заявил, что в воду попадает пыль из воздуха. Но француз Этьен Жоффруа и немец Андреас Маргграф провели исследования в закрытых сосудах и доказали, что и там из воды выпадает осадок.

Лавуазье сразу же усмотрел в опытах Гельмонта и Бойля очевидный пробел: они оба не принимали во внимание воздух. Тот самый воздух, который прекраснейшим образом мог связываться с различными веществами, как об этом свидетельствовали многочисленные опыты разных исследователей, а наиболее убедительные — Джозефа Блэка.

О том, что фиксируемый воздух Блэка это совсем не то, что атмосферный воздух, Лавуазье, как и другие ученые люди того времени, ясного представления не имел. Ведь некоторые опыты свидетельствовали, что это одно и то же. Например, тот же Блэк показал, что если подуть через трубку в известковую воду — вода замутится и станет известковым молоком. Но именно такой эффект дает и фиксируемый воздух!

Теперь-то нам известно, что человек вдыхает одно, а выдыхает другое, но кто ж тогда знал то, что знаем мы?..

В отличие от Пристли, который формулировал свои вопросы к природе примерно так: "А что будет, если я попробую выделить воздух из нашатырного спирта?" или: "А что будет, если я суну свечу в воздух из ртутной извести?", Лавуазье всегда ставил природу в такое положение, когда она должна была ответить одно из двух: либо "да", либо "нет". Это великое искусство — уметь задавать природе такие четкие вопросы!

Готовясь к спору с Бойлем и Гольмонтом, Лавуазье решил задать природе такой вопрос: "Увеличится ли общий вес пеликана и налитой в него воды после длительной перегонки?"

Пеликаном называли реторту с длинным носиком, который был погружен в носик другой реторты, как клюв пеликана-детеныша в клюв пеликана-мамы.

Когда в одну реторту наливали воду и начинали ее кипятить, пар поднимался во вторую реторту, охлаждаемую снаружи холодной водой; там он снова превращался в жидкость и стекал в первую реторту, в которой жидкость подогревалась и снова превращалась в пар. После неоднократных перегонок на дне реторт накапливался землистый осадок.

Так вот, если бы на вопрос Лавуазье природа ответила "да", то это означало бы, что извне, из огня, внутрь пеликана проникла огненная или еще какая-то материя, которая этот осадок и образовала.

Если бы природа ответила "нет", то это означало бы, что осадок образовался либо из воды, либо из стекла.

И тут Лавуазье приготовил природе дополнительный вопрос; "Уменьшился ли вес самого пеликана?"

Уже по этим вопросам видно, что Лавуазье полностью признавал слова Лукреция о том, что "из ничего даже волей богов ничего не творится".

Понимая, что голос природы может быть едва слышным, Лавуазье позаботился о том, чтобы услышать его, как бы тих он ни оказался. Исследователь заказал специальные, особо чувствительные весы, и не кому-нибудь, а пробиреру королевского монетного двора господину Шевену — великому мастеру точных приборов. Точность этих весов была такая, что при нагрузке в пять-шесть фунтов ошибка измерения не превышала одного грана. В переводе на наши меры на этих весах можно было взвесить три килограмма и ошибиться не более чем на несколько десятых грамма.

…Молодой исследователь взвесил пеликан до и после наполнения водой, записал цифры в лабораторный журнал, закупорил реторту, обмазал пробку жирной замазкой, чтобы ни вода, ни воздух не могли пройти, поместил пеликан в железную банку с песком — песчаную баню — и принялся подогревать ее лампой с шестью фитилями.

Шесть фитилей работали вовсю — то и дело приходилось подливать в лампу оливковое масло. А через каждые двенадцать часов снимать с фитилей накопившийся нагар.

День и ночь булькала вода в пеликане. Булькала, превращалась в пар, оседала мелкими капельками, стекала в приемник, и снова булькала, и снова превращалась в пар, оставляя на дне реторт серый осадок.

На сто первые сутки Лавуазье накрыл фитили железными колпачками, остудил пеликан, тщательно удалил замазку и взвесил прибор. Вес оказался равным 5 фунтам 9 унциям 4 драхмам 49 и трем четвертям грана.

Он осторожно поставил пеликан на стол и раскрыл журнал с первоначальной записью. До нагрева, сто один день назад, наполненный водою пеликан весил 5 фунтов 9 унций 4 драхмы 50 гран.

Ошибку в четверть грана нельзя было принимать в расчет — она была в четыре раза меньше предела точности весов.

Итак, ничто извне в пеликан не проникло ни из огня, ни из окружающего воздуха.

Лавуазье опорожнил прибор и, тщательно просушив, взвесил его. Сто один день назад пеликан весил 1 фунт 10 унций 7 драхм полграна.

Теперь он похудел более чем на 17 гран.

Значит, никакая перегонка не смогла превратить воду в землю, просто вода понемногу растворила стенки реторт, и часть растворенного стекла выпала в виде осадка из раствора!

Так-то это так, по надо взвесить осадок: вдруг вес его окажется больше, чем потеря в весе стекла?

Лавуазье отфильтровал осадок из перелитой в бутыль воды и поместил его на весы. Всего пять гран! Куда же делись остальные двенадцать (семнадцать минус пять)?

Он не верил в чудеса, он верил в закон сохранения материи. Убывшая из стекла и не выпавшая в осадок материя может быть только в воде. Выпарить, быстрей выпарить!

Через час на дне пустой бутыли остался мелкий порошок. На весы его! Так. Пятнадцать гран вместо двенадцати? Не страшно — ведь еще до того, как попасть в пеликан, эта вода находилась в других сосудах и могла растворять их. Во всяком случае, пропажа нашлась. Как это сказано у Лукреция?..

Не пропадает бесследно ничто, но в своем разложеньи Все возвращаются вещи на лоно материи снова…

Он бережно накрыл стеклянным колпаком драгоценные весы.

Жоффруа и Маргграф ошиблись. Земля в их герметически закрытых сосудах появлялась не из воды, а из стекла. Ошибся и великий Бойль. Вода не превращается в землю. Даже если земля имеет вид тыквы!

Да, вода тут ни при чем. А почва оставалась в прежнем весе… Откуда же тыква? Откуда дерево Гельмонта?

Но если что-то в одном месте умножилось, то чего-то не могло не убыть в другом. И если ото другое не земля, и если это другое не вода, значит это… воздух!

Лавуазье подсел к столу, подвинул поближе небольшую книгу в кожаном переплете. Это дневник, сюда он заносил свои мысли и планы.

"Фиксируемый воздух обнаруживает свойства, весьма отличные от обычного воздуха, — написал он. — Тот воздух убивает животных, которые его вдыхают, а этот совершенно необходим для жизни. Тот легко соединяется со всеми телами, а этот — с трудом или совсем не соединяется… Я дам историю всего того, что было сделано в отношении воздуха, который извлекается из тел и который с ними связывается. Важность предмета заставила меня начать сызнова всю эту работу, которой, на мой взгляд, предстоит вызвать революцию в физике и химии…"

Во Франции последней трети XVIII века слово "революция" было у всех на устах. И Лавуазье знал, о чем говорил. Если до тех пор загадки превращения веществ не были раскрыты с помощью мер и весов, то это означало одно из двух: либо что-то может быть создано из ничего, либо надо научиться мерить и взвешивать великое множество флюидов, скрывающихся под маской воздуха.

Но из ничего даже волей богов ничего не творится!

"Операции, — продолжал Лавуазье, — посредством которых можно добиться связывания воздуха: рост растений, дыхание животных, горение, при некоторых обстоятельствах обжиг, наконец некоторые химические реакции. Я должен начать с этих экспериментов".

ЕСЛИ ПОДЖЕЧЬ ХОЛОДНЫЙ ОГОНЬ

Прошло сто лет со дня получения Геннингом Брандом первой щепотки холодного огня, но фосфор все еще не потерял своей притягательной силы в глазах исследователей. 10 сентября 1772 года в дневнике Лавуазье появилась такая запись:

"Я купил у г. Митуара одну унцию прекрасного фосфора из Германии, который он мне отпустил за сорок пять луидоров. Я бросил маленький кусочек в бутылку, фосфор начал светиться и дымить, но без ощутительного тепла. Я приблизил, его к огню, и он тотчас же воспламенился с потрескиванием. Бутылка лопнула. Ободренный этим успехом, я решил проверить таким же способом, поглощает ли фосфор при горении воздух…"

Проверка происходила так.

Лавуазье отвесил девять гран фосфора, положил его в маленькую агатовую чашку и поставил чашку под стеклянный колокол, погруженный в таз с водой. Потом направил на фосфор линзу.

Фосфор загорелся, заклубился белый пар и скоро заполнил весь колокол.

А что с водой? Вода поднялась в колоколе на целый дюйм — значит, воздуха под колоколом стало меньше!

На сколько? Примерно на двадцать семь кубических дюймов! Значит, эти двадцать семь кубических дюймов воздуха связал сгоревший фосфор.

А может ли он связать весь находящийся под колоколом воздух?

Лавуазье отвесил втрое больше фосфора. Поместил под колокол. Зажег. Вода поднялась примерно на столько же, на сколько и раньше.

Весь воздух связываться не желал.

Почему? Непонятно. Надо думать. Впрочем, ведь еще не доказано, что и та, убывшая часть воздуха, действительно связана фосфором.

Лавуазье отвесил 8 гран фосфора, положил в агатовую чашку, чашку поставил в широкогорлую склянку, закупорил склянку и взвесил.

Затем откупорил склянку, поместил ее под колокол и сжег фосфор.

Склянка наполнилась белым дымом.

Лавуазье быстро вынул склянку из-под колокола, снова закупорил и поставил на весы.

Вместо 8 гран фосфора в склянке было теперь 14 гран какого-то вещества.

Пока Лавуазье доставал склянку из-под колокола, немного этого вещества вытекло из склянки, так что на самом деле его получилось несколько больше. Значит, каждый гран фосфора поглощает примерно столько же какого-то флюида из воздуха!

А что если попробовать подсчитать, сколько весит этот флюид? Столько же, сколько обычный воздух, или нет?

Значит, так. Когда сгорело 9 гран фосфора, вода вытеснила 27 кубических дюймов. 27 дюймов делим на 9 гран — получается 3, три кубических дюйма воздуха связал каждый гран фосфора.

Но весы показывают, что каждый гран фосфора связал примерно гран воздуха. Значит, кубический дюйм связанного фосфором воздуха весит примерно одну треть грана.

Очень интересно! Ведь кубический дюйм атмосферного воздуха на двадцать пять процентов легче!

Но если это не атмосферный воздух, то что же? Уж не вода ли, пары которой всегда есть в атмосфере?

Вместе с агатовой чашкой, наполненной фосфором, Лавуазье поставил под колокол еще одну чашку, наполненную водой. Зажег фосфор. Часть фосфора превратилась в белый нар, затем горение прекратилось.

Лавуазье направил линзу на чашку с водой, вода вскипела и обратилась в пар.

Лавуазье снова направил линзу на фосфор, на ту часть фосфора, которой не хватило неизвестного флюида.

Но фосфор отказался от воды, не желал гореть, и все!

Лавуазье продолжал накалять агатовую чашечку до тех пор, пока фосфор не начал плавиться, кипеть и, наконец, превратился в дым.

Нет, это не вода.

Но что же еще может содержаться в атмосфере? Уж не тот ли самый фиксируемый воздух, который Блэк обнаружил в мягких щелочах? Как бы это проверить?..

Но сначала нужно доказать, что связанный горящим фосфором флюид содержится именно в воздухе. Попробуем-ка поджечь фосфор под колоколом, из которого воздух выкачан.

Это очень важный опыт. Может быть, самый важный. Флогистону стенка колокола нипочем — это ведь очень тонкая материя, его частицы проникают сквозь любую стенку.

Заработал насос, откачивая воздух. Вода под колоколом поднялась чуть ли не наполовину.

Лавуазье навел линзу на агатовую чашку с фосфором. Никакого огня.

Терпение, терпение! Фосфор начал плавиться. Закипел. Превратился в дым. И осел на стенках колокола.

А вдруг он чего-нибудь не заметил?

Лавуазье впустил под колокол воздух и попробовал на вкус капли на внутренней поверхности колокола. Когда он делал это после горения фосфора, капли неизменно оказывались кисловатыми. Теперь он не почувствовал ни малейшей кислинки.

Нет, он ничего не упустил. Без воздуха фосфор не горел. Прибавление веса не зависело ни от какой тонкой материи. Только от воздуха!

Но это противоречило известному опыту Бойля с прокаливанием металлов. Может быть, надо вместо фосфора взять олово или свинец?

Прежде чем сделать это, Лавуазье заменил фосфор серой. И доказал, что сера тоже соединяется с воздухом.

Затем он взял олово. И доказал, что оловянная известь — результат соединения металла с тем же воздухом.

Опыт со свинцом показал то же самое.

Теперь у Лавуазье не оставалось иного выхода, как повторить полностью опыты Бойля.

И он сделал это.

Он отлил тоненькие стерженьки из чистейшего олова и чистейшего свинца весом ровно по восемь унций. И поместил их в новые, тщательно очищенные стеклянные реторты, предварительно взвешивая каждую на них. Запаял их, снова взвесил и держал над раскаленными углами двенадцать часов подряд, пока на расплавленном металле не перестала образовываться окалина. И после этого взвесил снова. И оказалось, что ни одна реторта не увеличилась в весе.

Что все это значило? Да только то, что во время обжига ничто, находящееся вне реторты, не соединялось с металлами. И что если вес металла увеличился, то причину этого следовало искать внутри реторты.

Лавуазье взял одну из остывших реторт, провел раскаленным углем черту по стенке, смочил эту черту водой и по образовавшейся трещине аккуратно разъял реторту на две части. Обе части и все содержимое он взвесил. Реторта не потяжелела, а вес металла увеличился на три грана.

Он повторял опыты с оловом и свинцом до тех нор, пока не смог доказать три вещи.

Первое. В определенном объеме воздуха можно обжечь лишь определенное количество металла.

Второе. Запаянные реторты не увеличиваются в весе и, значит, увеличение веса металла при обжиге не происходит ни от материи огня, ни от какой иной материи извне реторты.

Третье. Увеличение веса металла при обжиге равняется несу поглощенного воздуха.

Через семнадцать дет после Михаила Васильевича Ломоносова Антуан Лоран Лавуазье убедился в том же самом: "Без пропущения внешнего воздуха вес сожженного металла остается в одной мере".

Теперь надо было узнать, что же представляет собою та часть воздуха, которую при обжиге поглощают металлы. Мысль о воде пришлось отбросить. Мысль о фиксируемом воздухе Блэка следовало проверить.

Для Лавуазье заставить природу дать ответ на этот вопрос было не так уж трудно.

В один из летних дней 1773 года он зажег под колоколом фосфор, и, когда фосфор погас из-за недостатка флюида, нужного ему для дальнейшего горения, Лавуазье впустил под колокол полученный обжигом мела фиксируемый воздух.

Но в этой смеси фосфор гореть не пожелал. А внесенная под колокол зажженная свеча сразу же погасла.

Ответ природы был таким: ни фосфор, ни свеча, ни металлы не поглощали фиксируемого воздуха. Он тут был ни при чем.

Как следовало поступить, чтобы выяснить природу другого вида связанного воздуха — поглощаемого не щелочами, а металлами, фосфором, серой? Выход был один: надо было суметь "развязать" этот воздух, выделить его в чистом виде и исследовать.

Да вот беда — большинство металлических известей снова превращались в металл лишь в присутствии других веществ, например, богатого флогистоном угля. И это путало всю картину, мешало выделить в чистом виде именно тот флюид, который был в этих известях связан.

Весь 1774 год прошел в попытках выделить этот флюид из железных известей, то есть окислов железа. Но, как написал сам исследователь, "из всех этих естественных и искусственных известей, которые мы подвергали действию в фокусе больших зажигательных стекол… нет ни одной извести, которую бы удалось полностью восстановить без добавления чего-либо…".

В таком положении находилось дело, когда в один из октябрьских дней этого, не очень удачного 1774 года Джозеф Пристли за обеденным столом поведал французским коллегам об удивительных свойствах открытого им дефлогистированного воздуха.

ДЕФЛОГИСТИРОВАННАЯ ХИМИЯ

"..Едва за гостем захлопнулась дверь, хозяин бросился в лабораторию.

Насыпать в реторту несколько щепоток жженой ртути было делом одной минуты.

Вот красный порошок заблестел в фокусе линзы, вот в нем появилась тяжелая капелька ртути, вот вода из бутыли стала уходить, уступая место пузырям освобождающегося из ртутной извести воздуха, вот он пойман, наконец, неуловимый виновник горения!

Этот священник говорил чистую правду: внесенный в бутыль тлеющий уголек раскалился добела и сыпал искры, как праздничный фейерверк.

Теперь предстояло методично и досконально разобраться в том, что же такое атмосферный воздух. И что такое фиксируемый воздух Блэка. И почему, когда Генри Кавендиш сжег горючий газ, который он счел флогистоном, у него получилась вода. И как все же быть с флогистоном? И вообще, какие вещества следует считать простыми, а какие сложными?

На это ушло десять лет.

Но самое трудное было позади. В руках у Лавуазье была нить не хуже, чем та, которая вывела легендарного Тезея из лабиринта. Называлась она новой теорией горения.

Он изложил ее в статье "О горении вообще".

Суть теории заключалась в том, что горение всех горючих веществ — серы, фосфора, "углеобразных тел", — а также обжиг металлов есть соединение этих веществ с дефлогистированным (Лавуазье писал — "чистым") воздухом. А никакого флогистона ни горючие тела, ни металлы не содержат.

Удалив из атмосферного воздуха "чистый воздух". Лавуазье доказал, что оставшийся газ вовсе не фиксируемый воздух, по так же, как и он, не поддерживает горения и дыхания.

Восстановив ртутную известь углем, Лавуазье получил под колоколом фиксируемый воздух и тем самым доказал, что тот — не что иное, как соединение угля с "чистым воздухом".

Предположив, что получающаяся при сжигании горючего воздуха вода есть соединение этого горючего воздуха с "чистым воздухом", он пропустил водяные пары через раскаленный ружейный ствол и получил на нем окалину, а в приемном сосуде — горючий воздух.

Лавуазье нашел "чистый воздух" во всех металлических известях, во многих кислотах и в щелочах.

И нигде не нашел флогистона.

Конечно, даже самые крупные химики, узнав об этом, не могли сразу отказаться от привычного образа мыслей.

И Генри Кавендиш, первым получивший из водорода и кислорода воду, продолжал писать: "Из всего вышеизложенного вытекает безусловное основание считать, что дефлогистированный воздух представляет собой воду, лишенную своего флогистона, и что горючий воздух является флогистированной водой".

А знаменитый изобретатель парового двигателя Джеймс Уатт говорил, что вода состоит из дефлогистированного воздуха и флогистона.

Но долго это продолжаться не могло. Попробуйте объяснить кому-нибудь, что воду надо получать так: сперва дефлогистировать воздух, то есть изгнать из него флогистон, затем к этому дефлогистированному воздуху добавить флогистон. Любой человек, конечно, сразу заметит, что в этом случае получится не вода, а тот же самый первоначальный воздух.

В дефлогистированной Антуаном Лораном Лавуазье химии таких казусов не было. И потому довольно быстро ее признали во всех странах. Написанный Лавуазье "Начальный курс химии", изданный во Франции в 1789 году, в том же году был переведен на голландский язык, в следующем году его выпустили англичане, еще через год — итальянцы и потом — немцы. Правда, на родине Бехера и Шталя дело не обошлось без эксцессов — обиженные за свой немецкий флогистон, "патриоты" публично сожгли портрет Лавуазье.

"Начальный курс химии" был первой книгой, в которой действительно простые, элементарные тела были названы простыми, элементарными, а действительно сложные — сложными. И помещена первая в истории науки таблица химических элементов, из которых состоят сложные вещества.

Вот она.

Первые строки таблицы Лавуазье не могут не вызвать недоумения. Опять теплород? И что ото за вещество — снег?

Ничего не попишешь — и самым большим ученым не все известно.

Лавуазье никак не мог понять, откуда берутся свет и тепло, которые возникают при горении. И он не придумал ничего лучшего, как, изгнав огненную материю из твердых и жидких тел, поместить ее в окружающую атмосферу. И объявить, что обычно огненная материя соединена с кислородом, а при горении это соединение будто бы распадается, кислород соединяется с горящим телом, а огненная материя выделяется в виде тепла и света.

Неправильно, но остроумно.

В общем, Лавуазье не уничтожил флогистон. Но докапал, что в состав химических веществ никакой флогистон не входит.

Но будем требовать от одного человека слишком многого, Лавуазье и так сделал для химии больше, чем кто-либо со времен Аристотеля. Продолжая идти по указанной Аристотелем дороге, он открыл общее для множества веществ свойство — соединяться с кислородом. И затем добрался до коренного свойства веществ — не разлагаться на другие вещества. Им обладали 26 известных Лавуазье тел. Насчет еще пяти — магнезии, барита, извести, глинозема и кремнезема — он написал: "Можно ожидать, что эти земли вскоре перестанут причисляться к классу простых веществ. Они — единственные из всего данного класса веществ, которые не имеют охоты соединяться с кислородом, и я весьма склонен думать, что эта индифферентность по отношению к кислороду, ежели мне дозволено воспользоваться таким выражением, происходит оттого, что они уже сами по себе насыщены кислородом".

Правота этих слов вскоре была доказана.

Двадцать шесть плюс еще пять — тридцать один элемент! Но главное, чем обязана Лавуазье паука, это не числом названных им элементов, а объяснением того, что такое элемент. И лучше всего это можно видеть на примере ртути и серы.

Для алхимиков ртуть была не просто тяжелым жидким металлом, а еще и составной частью всех прочих металлов, сама, в свою очередь, состоящая из влажности и холода. Так же как сера была не просто твердым, желтым, горючим телом, но еще и составной частью масла, угля и прочих горючих тел, сама, в свою очередь, состоящая из сухости и тепла…

Для Лавуазье же ртуть и сера были двумя неразложимыми простыми телами, которые могли соединяться с другими простыми телами, образуя при этом разные сложные вещества, но отнюдь не другие элементы.

Элементы оказались совсем не такими, какими представлялись они Аристотелю и вслед за ним алхимикам. Кончилась эпоха сомнений в возможности превращения элементов. Пришло точное знание того факта, что в ходе химических реакций ни один элемент не может превратиться в другой.

Однако это не означало простого отрицания алхимических идей. Это было огромное продвижение вперед в понимании природы вещей. Вместо фантастического представления о первичных частицах, слагающих все многообразие окружающего нас мира, появилось в основном правильное представление о химических элементах.

Правда, никто еще не знал причин, по которым один элемент отличается от другого. Никто еще не догадывался о механизмах, с помощью которых элементы образуют сложные вещества.

И, пожалуй, самое главное — никто не понимал, каким образом можно объединить учение о химических элементах с атомной гипотезой. Этим и предстояло теперь заняться в первую очередь.