Приключения радиолуча

Родиков Валерий Евгеньевич

ПОПОВ И МАРКОНИ 

 

 

ВОДА И ЗЕМЛЯ… ВМЕСТО ПРОВОДОВ

И до открытия радиоволн думали об использовании электрических и магнитных явлений для беспроводной связи. «Быстрота, с которой распространяется свет, электричество и магнетизм представлялись всегда как средства, чтобы передавать известия, которые бы требовалось сообщить с возможной поспешностью», — писал в начале XIX столетия русский ученый и дипломат Павел Львович Шиллинг — изобретатель первого практически пригодного электромагнитного телеграфа. Уже в 1835 году телеграфные аппараты Шиллинга были установлены в кабинете Николая I в Зимнем дворце и на квартирах царских приближенных.

Шиллинг же первым в мире применил электрокодовые сигналы. Изобрести их ему помог опыт работы в области шифрования и тайнописи в период дипломатической службы. Даже с современных позиций его коды выглядят довольно эффективными. «Я нашел средство, — писал Шиллинг, — двумя знаками выразить все возможные речи». Нетрудно увидеть в этом предложении двоичную систему счисления, столь широко ныне используемую в ЭВМ, технике связи и обработке сигналов.

По-видимому, один из самых ранних опытов по установлению беспроволочной связи провел американец Самуэль Морзе, имя которого известно всем нам по азбуке Морзе. Кстати, он был талантливым живописцем. За свою первую картину «Умирающий Геркулес», выставленную в 1813 году в Англии, его наградили золотой медалью. Среди молодых американских художников он стал признанным лидером и одно время даже был профессором изобразительного искусства в Национальной академии художеств в Нью-Йоркском университете.

И вдруг совершенно неожиданный поворот: он бросает живопись ради изобретательских занятий. Ему не везло, приходилось голодать, и только к концу жизни к нему пришли слава и богатство (денежные отчисления за использование патента на телеграфный аппарат его конструкции).

Но вернемся к его опытам по беспроволочной связи, которые он провел в 1842 году на Морском канале близ Вашингтона.

С обоих берегов канала на достаточное расстояние в воду были спущены большие металлические пластины, соединенные на одном берегу с батареей и телеграфным ключом, а на другом — с чувствительным гальванометром. Когда на одном берегу замыкали ключ, стрелка гальванометра на другом берегу отклонялась. Дальность связи такой «водяной» линии достигла 1600 метров.

Опыты Морзе заинтересовали англичанина Ландсея. Он ввел некоторые усовершенствования, в частности, электрическую батарею на приемном конце. В 1854 году Ландсей взял, пожалуй, первый в мире патент па «беспроволочный телеграф». В патентной заявке было указано, что ряд его приборов, размещенных один относительно другого на расстоянии 20 миль, сможет связать беспроводной связью Американский и Европейский континенты.

Однако эту связь в опытах Морзе и Ландсея строго нельзя назвать «беспроводной». Проводник все-таки наличествовал. Им была соленая морская вода. И хотя идея «водяной» связи увлекала и других изобретателей, но практического применения она так и не нашла.

Вспомнили о ней в 1870 году во время осады Парижа пруссаками. Город оказался блокированным. И вот, чтобы установить связь между штабом защитников города и предместьем Сен-Дени, два французских физика, Бурбуз и д'Альмеида, решили использовать в качестве проводов не воду, а землю. Ведь почва, как и соленая вода, тоже обладает электропроводностью.

К концу января 1871 года приборы были изготовлены, и д'Альмеида вылетел на воздушном шаре, которым ученые сами изготовили, из осажденного города в Сен-Дени для установки станции. На обоих концах, и в Париже и в Сен-Дени, приборы были соединены с металлическими пластинами, зарытыми в землю. Однако станции работали плохо и практической пользы не принесли.

Пытался решить задачу беспроводной связи и знаменитый американский изобретатель Томас Эдисон. В 1885 году он испытал систему телеграфной связи между берегом и кораблем и между движущимся поездом и станционным зданием. 14 мая 1885 года он подал заявку на «прибор для передачи без проводов сигналов азбуки Морзе», а в декабре 1891 года получил патент. «Корабли на океане, — писал в заявке изобретатель, — могут сообщаться между собой и с сушей: на вершине мачт будут устанавливаться металлические щиты, которые путем индукции вызывают электрические вибрации или электрические волны (подобные световым), действующие на электрический прибор на отдаленном судне, имеющем подобный же приемный металлический щит».

Максимальная дальность связи, которой удалось достичь Эдисону, составляла 200 метров. Но это была отнюдь не радиосвязь. Во вторичной цепи индукционной катушки эдисоновского передатчика не было искрового разряда, возбуждавшего, как у Герца, высокочастотные колебания в излучающем элементе — вибраторе, а следовательно, и не было еще не открытых в то время «лучей Герца» — радиоволн. Связь получилась за счет наводки, вызванной индукцией. А поле индукции убывает быстро — квадратично, а не линейно, как при электромагнитной волне, поэтому Эдисону и не удалось добиться связи на большее расстояние. Правда, для железнодорожников данное обстоятельство не имело особого значения, поскольку индукционная связь осуществлялась между металлической крышей вагона и телеграфными проводами, натянутыми вдоль путей.

И хотя изобретение Эдисона фактически оказалось устройством индукционного типа и не использовало радиоволн, тем не менее оно мешало итальянцу Гульельмо Маркони — создателю первых линий дальней радиосвязи, в его намерениях монополизировать все, что к ней относится. И в 1903 году ему пришлось купить патент Эдисона.

Примерно в одно время с Эдисоном занимался беспроводной связью и главный инженер Британского почтового ведомства Уильям Прис. Он обратил внимание на то, что расположенные по соседству телефонные и телеграфные линии влияют друг на друга. Так, телефонный разговор по одной линии хорошо прослушивался в других линиях на расстоянии до 400 метров, а в отдельных случаях до двух километров. Эти наводки, вызываемые электромагнитной индукцией, он попытался использовать во благо, и не совсем безуспешно. Его опыты легли в основу одного из способов морской навигации. По дну бухты или залива прокладывался изолированный кабель, и по нему передавались опорные сигналы, которые улавливались проходящим над кабелем кораблем и служили ему как бы путеводной нитью.

Занимался вплотную беспроводной связью знаменитый ученый-электрик Никола Тесла и многие другие Время настойчиво требовало связи без проводов, связи на большие расстояния, не зависимой от погоды. Особенно в ней нуждались мореплаватели: ведь в море за кораблем провода не протянешь. А впечатления, сколь трудно и дорого прокладывать кабель через океан и как непросто его эксплуатировать, были еще живы в памяти современников.

 

ОТ ИДЕИ К ИЗОБРЕТЕНИЮ

Часто считают, что главное в изобретении — идея, а осуществление ее — дело сравнительно второстепенное. Но это не всегда так, особенно когда речь идет об изобретении такого масштаба, как радио. Если посмотреть на опыты Герца с дистанции сегодняшних дней, то в них можно увидеть зародыши идеи радиосвязи и радиолокации. Теперь-то мы знаем, сколь длинен был путь от идеи до изобретения. В особенности это касается радиолокации.

В подтверждение сказанного приведу один любопытнейший отрывок из статьи Уильямса Крукса. Она и сейчас читается, словно популярный учебник по радиотехнике. Даже не верится, что статья опубликована почти сто лет назад, в 1892 году. Судите сами…

«До самого последнего времени мы серьезно не исследовали, не совершаются ли постоянно вокруг нас колебания эфира более длинные, чем те, которые воздействуют на нас как свет. Но исследования Лоджа в Англии и Герца в Германии говорят о почти бесконечном диапазоне эфирных колебаний или электрических лучей, от длин волн в тысячи миль до нескольких футов. Здесь перед нами развертывается новый и удивительный мир, который трудно представить себе не обладающим возможностями передачи и приема мыслей… (Как видим, Крукс высказывает гипотезу об электромагнитном характере того, что сейчас называют телепатией. — В. Р.).

…Любые два друга, живущие в пределах радиуса чувствительности их приемных аппаратов, выбрав предварительную длину волны и настроив свои аппараты для взаимного приема, могли бы таким образом сообщаться между собой столь долго и часто, как они того захотели бы, регулируя импульсы для образования длинных и коротких интервалов по обычному коду Морзе. На первый взгляд возражением против такого плана могло бы быть отсутствие секретности.

Если предполагается, что корреспонденты находятся на расстоянии одной мили друг от друга, то передатчик будет посылать волны во всех направлениях, заполняя ими сферу радиусом в одну милю, и поэтому любой человек, живущий в пределах одной мили от передатчика, сможет принять эти сообщения. Это можно было бы устранить двумя путями. Если точное месторасположение обоих, передающего и принимающего, аппаратов хорошо известно, лучи могли бы быть сконцентрированы с большей или меньшей точностью на приемник. Если, однако, передатчик и приемник находятся в движении и, следовательно, нельзя применить линзовые устройства, то тогда корреспонденты должны настроить свои аппараты на определенную длину волны, скажем, например, в 50 ярдов. Я полагаю, что прогресс открытий даст аппараты, способные перестроиться путем поворачивания винта или изменения длины проволоки так, что станет возможным принимать волны любой заранее предусмотренной длины. Таким образом, настроенный на пятьдесят ярдов передатчик мог бы излучать, а приемник принимать лучи с длиной волны от сорока пяти до пятидесяти ярдов и не принимать никаких других лучей. Считая, что полный диапазон Длин волн, из которого можно будет производить выбор, простирается от нескольких футов до нескольких тысяч миль, можно будет иметь достаточную секретность. Ради любопытства даже самый настойчивый человек, наверное, отказался бы от просмотра миллионов длин волн с очень малым шансом найти длину волны, используемую его друзьями, корреспонденцию коих он хотел бы перехватить. Посредством «кодирования» сообщений даже этот отдаленный шанс тайного перехвата можно было бы предотвратить.

Это не просто грезы мечтательного ученого. Все необходимое для реализации этого в повседневной жизни находится в пределах возможностей открытия, и все это так разумно и так ясно в ходе тех исследований, которые деятельно ведутся сейчас в каждой европейской столице, что в любой день мы можем услышать о том, как из области рассуждений это перешло в область неоспоримых фактов…»

Прочтя отрывок, специалисты скажут, что Крукс предугадал частотное разделение каналов связи и возможность их засекречивания.

В статье передана обстановка ожидания открытия. Основания были веские. Незадолго до ее публикации был придуман более чувствительный и удобный, чем у Герца, индикатор радиоволн. Сделал его французский физик Эдуард Бранли. В 1890 году он заметил, что мелкие металлические опилки обладают свойством резко менять свое электрическое сопротивление, когда неподалеку от них случался электрический разряд, который, как мы знаем, всегда сопровождается излучением радиоволн.

Бранли собрал лабораторный прибор для обнаружения электромагнитных волн, который назвал радиокондуктором. Так впервые слово «радио» породнилось с электромагнитными волнами.

Прибор содержал стеклянную трубку с двумя металлическими электродами, между которыми были насыпаны металлические опилки, батарею и гальванометр. Когда радиоволна достигала прибора, опилки сцеплялись, их сопротивление резко уменьшалось, и стрелка гальванометра отклонялась. Но опилки сохраняли низкое сопротивление и после воздействия электромагнитной волны. Чтобы привести их в первоначальное состояние, стеклянную трубку приходилось встряхивать.

Справедливости ради следует сказать, что Бранли был далеко не первым, кто заметил необычное свойство железных опилок — изменять свое сопротивление под влиянием электрического разряда, но он сумел придать своему открытию форму законченной конструкции в виде радиокондуктора.

Еще дальше пошел английский физик Оливер Лодж. В 1894 году он опубликовал описание усовершенствованного радиокондуктора Бранли. У него трубочку с опилками встряхивал молоточек электрического звонка, приводимый в движение часовым механизмом. Кстати, Лодж впервые назвал стеклянную трубочку с опилками когерером, от латинского слова «сцепление».

Итак, канун открытия радио. Есть источник радиоволн, есть более или менее их чувствительный индикатор. Идея радиосвязи, как мы видим из статьи Крукса, витает в воздухе. Нужен был человек, который обратил бы все содеянное его предшественниками в новое качество.

И тут в мой разум грянул блеск с высот, Неся свершенье всех его усилий.

Наверное, так совершается научное озарение. Правда, из строчек Данте конкретные правила, как совершить научное открытие, вряд ли извлечешь. Творческий процесс по-прежнему загадка, до конца не разгаданная. Поэтому не ослабевает интерес к так называемым творческим лабораториям известных ученых, писателей, композиторов, художников…

Американский математик и педагог Д. Пойя составил что-то вроде общих правил, как делать открытия. Одно из них звучит так: «Не бросайте изучаемого вопроса, пока не иссякла надежда на появление какой-нибудь плодотворной мысли». Видимо, именно этому правилу интуитивно следовал скромный преподаватель физики Минного офицерского класса в сердце русского Балтийского флота, в Кронштадте, Александр Степанович Попов.

Как сотрудник военно-морского технического учебного заведения, Попов прекрасно сам прочувствовал, сколь велика потребность флота в беспроволочной связи. С другой стороны, Александр Степанович воспроизводил опыты Герца в читаемом им курсе и не понаслышке, а «лично» ознакомился со свойствами радиоволн. По свидетельствам современников, «мысль о возможности использовать лучи Герца для передачи сигналов на расстояние» Попов высказывал еще до 1891 года. К этой идее он постоянно возвращался. Да и сама обстановка в Минном классе способствовала поиску. В его стенах не только шла учеба, но и велись серьезные научные исследования и разрабатывались новые образцы техники.

Проводя физические опыты, Александр Степанович убедился, что для сигнализации на небольшие расстояния в качестве передающего устройства вполне подойдет источник радиоволн, которым пользовался Герц, — вибратор с катушкой Румкорфа. Нужно только с помощью какого-либо включателя, например телеграфного Ключа, подсоединять первичную обмотку индукционной катушки к электрической батарее в соответствии с кодом передаваемого сигнала. Дело оставалось за приемником…

Своего рода катализатором послужила статья Лоджа. Попов заинтересовался схемой его приемника, увидел слабые места. Во-первых, нужен надежный когерер, и его удалось создать. И, во-вторых, главное — Попов сумел сделать так, чтобы сама радиоволна автоматически приводила когерер в исходное состояние. Именно радиоволна заставляла стучать молоточек электрического звонка. Здесь Александр Степанович применил еще один принцип, который в дальнейшем станет широко использоваться во многих приборах автоматики. Для подключения электропитания к звонку, а в этой цепи проходил довольно сильный ток, Попов применил чувствительное реле, обмотка которого была включена последовательно с когерером. Таким образом, слаботочная цепь управляла сильноточной — своего рода релейный усилитель!

Как же работал первый радиоприемник? В тот момент, когда приходила радиоволна, сопротивление когерера резко уменьшалось, ток через него увеличивался и становился достаточным, чтобы сработало чувствительное реле и замкнуло более мощную цепь электрического звонка. Молоточек звонка встряхивал когерер и вызывал разрыв цепи. Замыкание и размыкание цепи повторялись, и звонок звенел все время, пока на приемник действовали волны. Как только телеграфный ключ на передающем конце размыкал цепь питания первичной обмотки индукционной катушки, звонок приемника прекращал работать. Включая и выключая передатчик телеграфным ключом, можно было получать на приемном конце звуковые сигналы соответствующей продолжительности и передавать нужные сигналы, например, при помощи азбуки Морзе.

Поскольку в цепи звонка течет довольно сильные ток, в нее можно дополнительно включить телеграфный аппарат и получить автоматически пишущий прием.

Много опытов весной 1895 года провел Александр Степанович Попов со своим ассистентом Петром Николаевичем Рыбкиным в саду Минного класса. К когереру подсоединили антенну: сначала двухметровый медный стержень, несколько позже детские шары подняли в небеса тонкую проволоку. Приемник сразу же стал чутче. Теперь он принимал не только сигналы передатчика, но и сигналы грозовых разрядов. Иногда они забивали приемник. Тогда звонок звонил непрерывно. Как-то Попов записал: «От 1 до 2 часов дня — сплошные звонки…» Так с первых шагов радиотехника столкнулась со своей основной проблемой — помехами. Если бы не было помех — ни естественных, ни искусственных, — не было бы проблем, но и не было бы таких научных дисциплин, как теория информации и оптимальный прием сигналов, статистическая теория радиолокации, без которой не создать современного радара, и целый ряд других научных направлений, смысл которых — обеспечить оптимальное действие в присутствии помех.

Видимо, эти встречи с помехами и привели Александра Степановича к мысли об искусственно создаваемых помехах. Именно он впервые в докладной записке русскому военному ведомству предложил способы ведения разведки и создания радиопомех средствам радиосвязи…

Но это было позже, в 1903 году, а тогда, весной 1895 года, закончив первый этап работ, Попов решает выступить с сообщением о своих опытах перед аудиторией ученых. 25 апреля (или 7 мая по новому стилю) на заседании физического отделения Русского физико-химического общества Александр Степанович продемонстрировал свой «прибор, отвечающий на электрическое колебание обыкновенным электрическим звонком и чувствительный к герцевским волнам на открытом воздухе на расстоянии до 30 сажен».

Всего около 60 метров была дальность первой линии радиосвязи. Так, внешне просто и обыденно, начало свой триумфальный путь великое изобретение. Доклад Попова — одно из примечательнейших звеньев в цепи событий, знаменовавших и итог развития русской культуры XIX века, и наступление нового столетия, новой эпохи. В тот памятный день ему было тридцать шесть лет…

Спустя пять дней, 12 мая, в морской газете «Кронштадтский вестник» было дано первое печатное сообщение об опытах и докладе Попова, а в январской книжке за 1896 год «Журнала физико-химического общества» Увидела свет и статья Александра Степановича о своих Работах. Попов был уверен в будущности радиосвязи. Статью он закончил словами: «В заключение могу выразить надежду, что мой прибор при дальнейшем усовершенствовании его может быть применен к передаче сигналов на расстояние при помощи быстрых электрических колебаний, как только будет найден источник таких колебаний, обладающий достаточной энергией». Статью немедленно перепечатали журналы «Электричество» и «Метеорологический вестник».

Попов сразу же нашел практическое применение изобретению. Переоборудовав первый радиоприемник, снабдив его самописцем и барабаном с недельным оборотом, он передал аппарат на летнее испытание в лесной институт своему университетскому товарищу Геннадию Андреевичу Любославскому. Прибор отмечал грозу даже на расстоянии нескольких десятков километров. Эти данные нужны были, чтобы обезопасить электростанции от ударов молний. В то время в грозу станции выключали и распределительную сеть заземляли.

Связь без проводов была просто необходима флоту. И Попов продолжал работу, имея перед собой конкретную цель. Конец 1895-го и начало 1896 года были продуктивны. Он усовершенствовал передатчик, и дальность связи резко возросла.

В январе 1896 года Александр Степанович демонстрирует свои приборы на заседании Кронштадтского отделения Русского технического общества. Присутствовали в основном моряки и руководящие лица Морского ведомства.

В марте 1896 года он выступает на заседании физического отделения Русского физико-химического общества, в тех же стенах, где почти год назад, 7 мая, впервые продемонстрировал передачу радиосигналов. Донельзя скупы строки официального отчета о заседании: «§ 8. А. С. Попов показывает приборы для лекционного демонстрирования опытов Герца». Причина тому: запрет Морского ведомства на широкую публикацию изобретения. Оно понимало, какое значение имела бы беспроволочная связь в военно-морском деле. Ученому пришлось подчиниться.

В апреле того же года профессор В.В. Скобельцын демонстрирует радиосигнализацию с помощью аппаратуры Попова в электротехническом институте. Публикации об опытах Попова появились во многих русских печатных изданиях и стали известны специалистам.

Тем горше ему было узнать, что приоритет открытия радиотелеграфа бесцеремонно присваивает кто-то другой…

Осенью 1896 года в газетах многих стран прозвучало имя итальянца Маркони. В сообщениях без каких-либо указаний на принцип работы приборов рассказывалось об установлении беспроводной связи на несколько километров.

Ранее, в июне 1896 года, Маркони подал в Британское патентное ведомство заявку на «усовершенствование в передаче электрических импульсов и сигналов на расстояние и в аппаратуре для этого». Обратите внимание — речь идет об усовершенствовании и не больше.

Год спустя, в июле 1897 года, он получил патент. Только после этого стало известно содержание заявки. За исключением второстепенных деталей аппаратура Маркони полностью повторяла приборы Попова.

Два изобретателя, два человека редкого таланта, Александр Попов из североуральского поселка Турьинский рудник, сын священника поселковой церкви, блестяще окончивший Петербургский университет, экспериментатор с «золотыми руками», сам до всего дошедший, сам всего добившийся неимоверным трудом, но так и оставшийся бессребреником.

И Гульельмо Маркони, сын богатого землевладельца из солнечной Италии, получивший домашнее образование и прослушавший в Университете в Болонье курс об электромагнитных волнах у известного физика Аугусто Риги. Именно вибратор системы Риги использовал Попов в своем передатчике в 1896 году. Так же как и Попов, был Гульельмо Маркони блистательно одарен, от природы достались ему и изобретательская жилка, и дар экспериментатора. А еще чем обладал молодой Маркони, так это деньгами и деловой коммерческой хваткой.

Они идут почти параллельно: Попов в мае 1895 года демонстрирует первую передачу радиосигналов, Маркони — на родине своей матери в Великобритании не без протекции ее родственников летом 1896 года заинтересовывает идеей беспроволочного телеграфа Почтовое ведомство и Адмиралтейство, а после получения патента в 1897 году организовывает крупное акционерное общество «Маркони и К°» с основным капиталом 100 000 фунтов стерлингов (около одного миллиона золотых рублей). Размах, как видим, весьма солидный.

Попов не стал брать патент, не стал коммерсантом. С ним приключилось то же, что было до него со многими русскими первооткрывателями, например Яблочковым и Лодыгиным. Коммерческой эксплуатацией «Русского света», изобретенного Яблочковым, занимались английские, французские, американские фирмы. Лодыгин тоже оказался без достаточных средств, чтобы поставить «свое дело», и вынужден был продавать свой талант зарубежным фирмам, проведя за границей свои лучшие творческие годы. А вот у Эдисона средства были. Усовершенствовав лодыгинскую лампочку, он пустил ее по свету.

Так случилось и с радио. Российское изобретение и в русско-японскую войну, да и в первую мировую пришлось закупать за границей.

Эта печальная «традиция» жива до сих пор. Сколько еще случаев, когда отечественные изобретения, похороненные под бюрократическим спудом, возвращаются к нам в страну из-за рубежа за золото.

А в том, что приоритет в изобретении радио принадлежит Попову, сомнений нет. Это удостоверили и Бранли, и Лодж, которые были у порога открытия, но так и не сделали последнего, решающего шага. Сам же факт выдачи патента в Англии не означал признания за Маркони мирового приоритета. По английскому патентному законодательству экспертиза на новизну заявки производилась только внутри страны, и выдача патента Маркони свидетельствовала лишь о том, что до него в Англии подобной заявки никто не подавал. О признании лидерства Попова говорит и то, что в 1900 году на IV Всемирном электротехническом конгрессе в Париже, проводившемся в рамках Всемирной выставки, Попов за свои работы был удостоен золотой медали. И американцы вспомнили о его первенстве, когда Маркони во время первой мировой войны предъявил многомиллионные иски их промышленникам за использование его изобретения.

В 1897 году, в то время когда Маркони занимался организацией своей фирмы, Попов испытывал свои приборы на кораблях учебно-минного отряда Балтийского флота. Уже тогда его занимали и ныне актуальные заботы: как влияют многочисленные палубные надстройки и оснастка корабля на дальность связи. Эксперименты проводились на транспорте «Европа», где был передатчик, и крейсере «Африка», на котором находились 20-метровая антенна и приемник. Дальность связи между кораблями составила пять километров. Результат по тем временам совсем неплохой. Да вот только связь прекращалась, когда между кораблями проходил крейсер «Лейтенант Ильин», и восстанавливалась, когда корабли сходили с одной линии. Но нет худа без добра. Так был обнаружен радиолокационный эффект, но не привычный в нашем представлении, когда передатчик и приемник радара находятся в одном месте и имеют общую антенну, а относящийся к так называемым разнесенным радиолокаторам, когда передатчик и приемник находятся друг от друга на значительном расстоянии. Такие станции больше напоминают линии радиосвязи, Нежели обычный радар. Но и линии радиосвязи тоже, Называется, могут обнаруживать самолеты, о чем неоднократно сообщалось. Даже обыкновенный телевизор может обнаружить самолет при его пролете над телевизионной антенной. На экране телевизора появятся помехи в виде «лишних сигналов», вызванных переотражением от самолета радиоволн, передаваемых передатчиком телецентра. Если бы не было самолета, они бы не попали в приемник. Вот вам и простейший «разнесенный» радиолокатор.

Обычно приемная и передающая антенны «разнесенного» радара неподвижны. Такая радиолокационная система применяется, чтобы обнаружить цель, проходящую через охраняемую зону. Кстати, «разнесенным» радарам сложнее поставить умышленные помехи. В этом их достоинство.

Конечно, чувствительности приемника Попова было недостаточно, чтобы принять на «Африке» переотраженную от крейсера «Лейтенант Ильин» радиоволну. В данном случае проходящий корабль просто затенял антенну приемника. Тем не менее такой электромагнитный «обнаружитель» можно отнести к «разнесенным» радарам. Факт прерывания связи навел Александра Степановича на мысль о всепогодных радиомаяках. Он предполагал определять направление на такой маяк: «Пользуясь свойствами мачт, снастей и т. д. задерживать электромагнитную волну, так сказать, затенять ее». То есть уже тогда Попов думал о радионавигации, без которой сегодня немыслимы морские и воздушные странствия.

Американские инженеры Тейлор и Янг — пионеры радиолокации в США — столкнулись с данным явлением значительно позже, в 1922 году. Они проводили опыты по связи на декаметровых волнах (радиоволнах с длиной волны от 10 до 100 метров) через реку Потомак. Во время эксперимента по реке прошел корабль, и связь прекратилась. Тейлор и Янг отметили этот факт. Их еще раньше занимал вопрос — как защитить в темноте и тумане военные корабли от проникновения в их строй вражеских судов. Инженеры предложили установить на эсминцах радиопередатчики и приемники декаметрового диапазона. Если радиоконтакт между ними нарушится — значит, прошел какой-то корабль. Американцы считают, что Тейлор и Янг были первыми, кто задумался над применением радиоволн для обнаружения движущихся объектов. Но, как мы видим, они лишь переоткрыли уже известное явление.

Лето 1899 года принесло новое открытие. Сотрудники Попова Рыбкин и Троицкий с помощью телефонных трубок проверяли исправность монтажа аппаратуры радиосвязи между фортами «Милютин» и «Константин». Что-то не срабатывал молоточек, встряхивающий когерер, видимо, мощности приходящих сигналов недоставало. А когда они подсоединили телефонные трубки непосредственно к выводам когерера, то услышали в них четкие сигналы, передаваемые с форта «Константин». Рыбкин и Троицкий сразу же послали телеграмму Попову, который в то время был в Швейцарии: «Открыто новое свойство когерера».

Теперь не надо будет встряхивать когерер. Оказалось, что он обладает чудесным свойством детектора — выпрямлять высокочастотную волну, то есть выделять переносимую ею звуковую составляющую. Значит, можно на слух принимать точки и тире. Возвратившись, Попов усовершенствовал когерер. Приемник стал проще и чувствительнее. На него Александр Степанович получил русскую привилегию — на принципиально новый тип «телефонного приемника депеш, посылаемых с помощью какого-либо источника электромагнитных волн по системе Морзе». Наученный горьким опытом, он подобные же патенты получил во Франции и Англии.

А вскоре новое средство связи прошло суровое испытание на деле. Надо было спасать броненосец «Генерал-адмирал Апраксин», который осенью 1899 года сел на мель у острова Гогланд в результате навигационной ошибки. Попов и его помощники соорудили радиотелеграфную линию между островами Гогланд и Кутсало. И первое же переданное по линии сообщение предназначалось командиру знаменитого ледокола «Ермак» — приказ оказать содействие в спасении 50 рыбаков, унесенных в море на льдине. Так радио открыло счет спасенным благодаря ему человеческим жизням. Неоценимую услугу оказало оно и спасателям броненосца. Известный флотоводец Степан Осипович Макаров прислал Попову телеграмму следующего содержания: «От имени всех кронштадтских моряков сердечно приветствую Вас с блестящим успехом Вашего изобретения. Открытие беспроволочного телеграфного сообщения от Кутсала до Гогланда на расстоянии 43 верст есть крупнейшая научная победа».

После гогландской эпопеи последовало официальное признание нового вида связи Морским министерством и введение его на русском военно-морском флоте.

 

РАДИО ОБРЕТАЕТ ИМЯ

Маркони всеми силами стремился к монопольному лидерству в области беспроволочной передачи. В свою фирму он сумел привлечь талантливых инженеров и ученых. Их деяния работали на имя Маркони, принося ему известность, славу, деньги. Своим трудом они многое сделали для развития радиотехники и радиосвязи. Среди них были и уже известный нам Оливер Лодж и Джон Флеминг, изобретший впоследствии вакуумный диод.

Гульельмо Маркони думал: что же совершить такое, чтобы привлечь всеобщее внимание к продукции своей фирмы, а следовательно, и к себе самому. Конечно же, установить беспроводную связь между Старым и Новым Светом. В декабре 1901 года он предпринял попытку послать сигнал через Атлантический океан. В Англии в Корнуолле была сооружена огромная по тем временам антенна, состоящая из 50 вертикальных медных проводов, укрепленных вверху на горизонтальном поддерживающем проводе, растянутом между двумя мачтами высотой по 48 метров, расстояние между которыми составило около 60 метров. Провода антенны, расходящиеся веером, сходились внизу и соединялись с передатчиком мощностью 15 киловатт. Длина радиоволны была 366 метров.

В Америке, в Ньюфаундленде, находилось приемное устройство с типом когерера, предложенным швейцарцем М. Томассином. Он поместил между двумя электродами из угля или латуни каплю ртути. При приходе электромагнитной волны на концах электродов в тонком слое окиси ртути сопротивление резко падало. При отсутствии сигнала пленка окиси восстанавливалась, и сопротивление возрастало. Приемной антенной служила проволока, прикрепленная к воздушному змею.

12 декабря после нескольких недель атмосферных помех удалось передать букву S. Она была выбрана потому, что в азбуке Морзе ей соответствует простейшая комбинация из трех точек.

Сенсация состоялась. Дальность передачи составила 3500 километров. Но пока это был только символ, подающий надежды на будущее. Пройдут еще многие годы, прежде чем трансатлантическая связь станет реальностью.

Первые удачные шаги радио внушали надежду. В разных странах, как грибы после дождя, стали возникать компании беспроволочного телеграфа. Их акционерам, не забывшим о двадцатилетней давности телефонном буме, мерещилось быстрое обогащение.

В 1903 году в Германии по приказу кайзера была создана объединенная фирма «Телефункен», ставшая главным конкурентом Маркони.

В России пионером отечественной радиотехнической промышленности послужила Кронштадтская мастерская, организованная в 1900 году А. С. Поповым по заданию Морского комитета. Хотя ее производственные возможности были скромными (поначалу в ней работали лишь пять человек), она многое сделала для оснащения российского флота радиостанциями. В 1910 году мастерская была переведена в Петербург, а год спустя стала именоваться «Телеграфным депо Морского ведомства». В 1915 году депо было преобразовано в Радиотелеграфный завод Морского ведомства. К 1917 году на нем работали более 300 человек. Это было уже настоящее радиотехническое предприятие, выпускавшее радиостанции мощностью 10 и 25 киловатт и прочую радиоаппаратуру. Многие видные деятели советской радиотехники и радиопромышленности прошли школу депо. После революции завод стал именоваться Радиотелеграфным заводом имени Коминтерна.

Проникли в Россию и филиалы иностранных фирм. Под вывеской предприятия «Сименс и Гальске» действовала компания «Телефункен», а под вывеской «Русского общества беспроволочных телеграфов и телефонов» (РОБТиТ) — «Маркони и К°». При Советской власти после национализации завод «Сименс и Гальске» стал Радиотелеграфным заводом имени Козицкого, а на основе РОБТиТа был открыт электровакуумный завод и некоторые отделы Центральной  радиолаборатории (ЦРЛ).

Уже с самого начала стало ясно, что в области беспроводной связи необходимо установить определенные Международные правила. К этому побуждали и агрессивные действия Маркони. Первая радиокомпания оказалась и первым нарушителем общепризнанных этических норм. «Маркони и К°», стремясь к мировому господству, не допускала обмена радиотелеграммами с радиостанциями, изготовленными другими фирмами. Таким образом Маркони пытался вынудить судовладельцев закупать станции только своей фирмы. Даже тогда, Когда запрашивались навигационные данные, запрет оставался в силе. Вот один из примеров, которыми пестрели газеты тех лет. Американское судно «Лебанон» встретив в море немецкое судно «Фатерланд», запросило его по радио, не встречало ли оно льдин, могущих угрожать безопасности плавания, и «Фатерланд», имевший оборудование фирмы «Маркони и К°», не ответил. В 1903 году в Берлине была созвана Международная конференция по беспроводному телеграфированию. Россию представляли три делегата. Среди них был и

A. С. Попов. Несмотря на противодействие сторонников Маркони, конференция все-таки пришла к следующему решению: «Береговые станции обязаны в отношении с судами, находящимися в море, принимать и передавать все телеграммы без различия системы беспроводного телеграфа. Для возможного облегчения судам сношения со станциями будут опубликованы все необходимые технические сведения. Преимущество в очереди передачи будет отдаваемо телеграммам о несчастиях на море и с требованием помощи с судов…»

На конференции был рекомендован термин «радиотелеграфия». С той поры стало употребляться и слово «радио» как обобщенное понятие, связанное с техникой беспроводной связи. Итак, радио обрело свое имя…

А его изобретатель прожил после этого события менее трех лет. Гении сгорают быстро. 13 января 1906 года (31 декабря 1905 года по старому стилю) в возрасте 46 лет Попов скончался. Диагноз врачей — кровоизлияние в мозг. В последние годы жизни он был профессором физики электротехнического института в Петербурге, а за несколько месяцев до смерти стал первым выборным его директором. Много сил отдал Александр Степанович подготовке инженеров, которым предстояло работать в области радиотехники.

Не бросал он и научной работы. В частности, думал о радиотелефоне. В 1903 году под его руководством была осуществлена радиотелефонная передача на расстояние двух километров. Живая человеческая речь впервые в мире была передана по радио.

За два дня до кончины Попов имел резкий разговор с министром внутренних дел П. Н. Дурново. Министр требовал допустить в институт агентов охранки. Она неспроста интересовалась этим учебным заведением. «В этом институте скрывался от царского самодержавия

B. И. Ульянов (Ленин) в 1905—1907 годах. Здесь же читал лекции по историческому материализму кружку студентов РСДРП» — такова надпись на небольшой мраморной доске, установленной у входа в электротехнический институт.

Попов категорически воспротивился требованию министра. Такого рода «встряски» у начальства были для него не редкостью в том мятежном 1905 году. Видимо, 0ни внесли свою лепту в скорую кончину ученого.

Маркони пережил Попова на 31 год. Приумножил свое богатство. Шумная известность, безудержная реклама, достижения фирмы, в названии которой красовалось его имя, сделали свое дело. В 1909 году, когда Попова уже не было в живых, он вместе с немецким физиком Карлом Фердинандом Брауном был удостоен Нобелевской премии за заслуги в развитии радиотехники. Правила Нобелевского фонда не позволяют присуждать премий посмертно.

Есть, видимо, какая-то историческая логика и в том, что владелец английской фирмы Маркони оказывал финансовую помощь партии итальянских фашистов и даже входил в ее руководящие органы.

Другой Нобелевский лауреат, Браун (1850—1918 гг.) — профессор Страсбургского университета, один из научных руководителей фирмы «Телефункен». В 1897 году он сконструировал катодную трубку с магнитным управлением — предшественницу современных кинескопов. Много экспериментировал с разными схемами приемников и передатчиков, придумал несколько типов антенны, а в 1906 году обнаружил одностороннюю проводимость некоторых кристаллов и создал в результате этого открытия кристаллический детектор. В общем, на заре радиотехники делал необходимую и полезную для нее работу.

То, что лауреатов было двое, говорит о том, что Маркони и его фирме не удалось стать единоличным лидером.