СЛУЧАЙНОЕ ОТКРЫТИЕ ЭДИСОНА
Где-то в середине 40-х годов на страницах газет, журналов, книг появилось слово «радиоэлектроника». Новый термин, можно сказать, формально утвердил уже давно существовавший союз радио с электроникой. Всем знакомое слово «электроника» имеет двоякий смысл. Это и наука об электронных процессах в вакууме, газах, жидких и твердых телах, плазме, и область техники, занимающаяся разработкой, производством и применением электронных приборов.
Электроника и радио почти ровесники. Правда, поначалу радио обходилось без помощи своей сверстницы, но позднее электронные приборы стали материальной основой радио, или, как говорят, его элементной базой.
Пожалуй, начало электроники можно отнести к 1883 году, когда знаменитый Томас Альва Эдисон, пытаясь продлить срок службы осветительной лампы с угольной нитью накаливания, ввел в баллон лампы, из которой откачан воздух, металлический электрод.
Скольким открытиям суждено было состояться благодаря такому, казалось, обыденному свойству человеческого ума, как наблюдательность. Конечно, в науке удачу приносит не просто наблюдательность, а наблюдтельность, вооруженная знанием. Именно она привела Эдисона к его единственному фундаментальному научному открытию, которое легло в основу всех электронных ламп и всей электроники дотранзисторного периода. Открытое им явление впоследствии получило название термоэлектронной эмиссии.
Внешне опыт Эдисона выглядел довольно просто. К выводу электрода и одному из выводов раскаленной электрическим током нити он подсоединил батарею и гальванометр.
Стрелка гальванометра отклонялась всякий раз, когда к электроду подсоединялся плюс батареи, а к нити — минус. Если полярность менялась, то ток в цепи прекращался.
Эдисон обнародовал этот эффект и получил патент на открытие. Правда, работу свою он, как говорится, до ума не довел и физическую картину явления не объяснил. В то время электрон еще не был открыт, а понятие «термоэлектронная эмиссия», естественно, могло появиться лишь после открытия электрона.
Теперь-то каждый школьник знает, в чем ее суть. В раскаленной металлической нити скорость движения и энергия электронов повышаются настолько, что они отрываются от поверхности нити и свободным потоком устремляются в окружающее ее пространство. Вырывающиеся из нити электроны можно уподобить ракетам, преодолевшим силу земного притяжения. Если к электроду будет подсоединен плюс батареи, то электрическое поле внутри баллона между нитью накаливания и электродом устремит к нему электроны. То есть внутри лампы потечет электрический ток.
То ли Эдисон не догадался, как использовать явление, то ли занят был более волновавшими его в то время финансовыми и другими проблемами — историки так и не пришли к единому мнению, — но в течение более чем 20 последующих лет ни автору открытия, ни кому другому и в голову не пришло использовать электронный поток для нужд практики. Первый шаг был сделан Джоном Флемингом в 1904 году. Он изобрел вакуумный диод — первую двухэлектродную электронную лампу, получившую практическое применение. Лампа представляла собой стеклянный баллон с впаянной внутри его, как и в осветительных лампах, нитью накаливания. Только в отличие от них она была окружена Металлическим цилиндром, провод от которого выводился через стекло наружу. Металлический цилиндр, к которому подсоединялся положительный полюс батареи, назвали анодом, а нить накала — катодом. Как мы видим, катод был заимствован у обычной осветительной лампы, так что в какой-то мере ее можно считать далекой прабабушкой современных радиоламп.
Но диод не мог усиливать возбуждаемых радиоволнами в антенне приемника высокочастотных электрических токов. Он мог их лишь выпрямлять: пропускать ток только в одном направлении, когда на аноде напряжение станет «положительнее», чем на катоде. Если мы представим себе высокочастотные колебания электрического тока в виде синусоиды, то диод пропустит только верхнюю ее часть и отсечет нижнюю.
Такое преобразование сигнала называется нелинейным. Вообще любая нелинейность так или иначе изменяет форму сигнала. А это не проходит бесследно для его частотного спектра: он «обогащается», в нем появляются новые частотные составляющие. Не всегда такое обогащение благо. Иногда новые частоты рассматривают как помехи, которые вызывают так называемые нелинейные искажения. Кстати, их наличие, а это сличается в некачественных усилителях низкой, звуковой частоты, чутко улавливает наше ухо. А в других случаях новые частотные составляющие и есть полезный эффект. В частности, благодаря нелинейным свойствам диода в спектре принятого сигнала появляются звуковые частоты, которые в телефонных наушниках превращаются в телеграфные точки и тире, речь, музыку… Диод в данном случае выполняет роль знакомого нам со школьных лет детектора.
За несколько лет, прошедших со дня открытия радио, оно многого достигло. Но его возможности, особенно в части приемных устройств, были практически исчерпаны. Специалистам стало ясно: без электронных усилителей электрических сигналов не обойтись. Почему именно электронных? Да потому, что ток в проводнике есть движение электронов, а в большинстве случаев лучше иметь дело с самим первоисточником.
Если первый шаг на пути к электронному усилителю, можно сказать, сделал Эдисон, второй — Флеминг, то решающий, третий шаг был за американским инженером Ли де Форестом. 25 октября 1906 года он подал заявку на выдачу патента. Предметом изобретения была трехэлектродная лампа, названная Форестом аудионом от латинского слова «аудире» (что значит в переводе на русский «слушать»). Такое звучное имя она получила потому, что стала главной деталью усилителя электрических сигналов звуковой частоты. Единой терминологии в то время не было. Наряду с аудионом, электронные лампы называли «вакуумными трубками», а в России — «катодными реле». Но потом для трехэлектродной лампы прижилось короткое слово «триод», которым мы и поныне пользуемся. Правда, вакуумные триоды теперь уже в подавляющем большинстве уступили свои места полупроводниковым.
Новую лампу называли в печати «чудесным маленьким гигантом» и даже «величайшим изобретением со времен огня, рычага и колеса».
Что же такое особенное сделал Ли де Форест, что привело к революции в области радио? Изобретатель всего лишь поместил в ламповый диод еще один электрод, названный им сеткой. (Недаром говорят: до гениального просто.) Изменяя напряжение на вновь введенном электроде, можно было изменять текущий через лампу ток, замыкать или прерывать его. Инженер заметил, что очень малые изменения напряжения на сетке приводят к заметным изменениям тока лампы, а это и есть эффект столь долгожданного электронного усилителя…
Правда, революция в радио совершилась не сразу. Первые аудионы Фореста имели настолько низкое усиление, что были не намного лучше диодов. Потребовались еще годы усилий многих ученых, чтобы из аудиона выпестовалась усилительная лампа, которую уже имело смысл широко применять на практике. С 1913—1916 годов и началась по-настоящему эпоха радио. Открытия следовали одно за другим. Ламповая радиотехника набирала силу.
Наиболее заметные перемены произошли в технике радиоприема. Что содержал приемник доламповой поры? Резонансный контур, кристаллический детектор да наушники. Даже вакуумный диод Флеминга мало что изменил. Лампа-детектор нуждалась в источнике питания для разогревания нити накала, а срок ее службы был существенно меньше долговечности кристаллических детекторов.
И триоды тоже прибавили забот: для их работы нужна была не только батарея для подогрева нити накала, но еще и анодная батарея. Помню, в 50-х годах на витринах магазинов лежали анодные батареи для батарейных радиоприемников напряжением вольт под сто. Обычная батарейка для карманного фонаря казалась на их фоне миниатюрной. Но все эти неудобства с лихвой компенсировались возможностью многократного усиления сигналов.
«ЭТО ОСКОРБЛЕНИЕ СМОЕТ ТОЛЬКО КРОВЬ!»
В опытах с ламповыми усилителями «выплыла» одна из важнейших для радиотехники проблем — проблема обратной связи. Она касается не только радиотехники, а имеет довольно общий характер. Суть ее в том, что результат какого-либо процесса из-за определенных связей влияет на его ход или, как говорят специалисты, выход влияет на вход. Если процесс усиливается, то обратная связь называется положительной, если ослабевает, стабилизируется, то отрицательной.
Врезалось мне в память забавное пояснение принципа обратной связи в одном из популярных журналов, которое довелось видеть лет двадцать назад. На рисунке был изображен мушкетер, которому наступают на ногу. Какова будет реакция мушкетера на такое внешнее воздействие? Положительную обратную связь художник изобразил следующим образом. Несмотря на извинение, мушкетер хватается за шпагу и кричит: «Это оскорбление смоет только кровь!» Реакция довольно бурная. Мушкетер «загенерировал». При отрицательной обратной связи мушкетер подавил в себе раздражение, он сама любезность: «Ну что вы, это такой пустяк».
Многие скачкообразные и лавинные процессы, такие, как, например, взрыв — следствие положительной обратной связи. В разного рода автоколебаниях — незатухающих колебаниях, — возникших от внешнего толчка, тоже работает положительная обратная связь. Известные шимми и флатеры в авиации — пример автоколебаний.
На принципе положительной обратной связи зиждется и явление вынужденного излучения, на котором основана работа лазеров и мазеров. Химические и ядерные цепные реакции, смычковые инструменты и орган, депрессии и кризисы в экономике — вот только некоторые примеры, где работает принцип положительной обратной связи. Перечисленные проявления — следствие так называемой внутренней обратной связи, свойственной самому процессу, взаимосвязям между его элементарными актами. Внешняя же обратная связь, как положительная, так и отрицательная, вводится специальной электрической цепью или каким-либо регулятором.
В системах автоматического регулирования обратная связь, как правило, отрицательная, ибо ее задача уменьшить отклонения от заданного режима работы. Автопилоты, системы наведения ракет на цель, радиолокаторы слежения за целью — лишь крошечная толика устройств, где используется отрицательная обратная связь.
Интересно, что и сам-то термин «обратная связь» возник при исследовании ламповых усилителей. Сейчас трудно точно сказать, кому первому пришла счастливая мысль электрически связать выход усилителя с его входом, или, иначе, как говорят радиоинженеры, охватить усилитель обратной связью. Да такой, чтобы сигнал на его выходе резко возрос, то есть положительной связью, что возможно в том случае, если сигнал, поступающий на вход усилителя с его выхода, по фазе совпадает с входным. Если сигнал будет в противофазе, то обратная связь будет отрицательной и усиление уменьшится.
Исследования велись одновременно и независимо в разных странах. В результате в 1912—1913 годах появились достаточно чувствительные радиоприемники регенеративного типа, которые широко применялись в первую мировую войну.
Положительная обратная связь достигалась в приемниках довольно просто. Надо было только подать часть сигнала с анода триода, который служил одновременно и детектором и усилителем, на его вход, то есть на сетку лампы. Усиление триода сразу же возрастало. Чем больше сигнал с выхода триода на его вход, тем чувствительнее становился приемник. Но было замечено: если переборщить с величиной сигнала обратной связи, Подать его чуть больше некоторого, вполне определенного для данной схемы значения, то регенератор перестает усиливать принимаемые сигналы и сам начинает генерировать свои собственные колебания. Так был открыт ламповый генератор незатухающих колебаний. В 1913 году А. Мейсснер в Германии подал на него заявку на изобретение. Правда, опубликован патент был лишь после окончания войны — в 1919 году. В Германии многие материалы по радиотехнике засекречивались. Тем не менее открытие уже вызрело само по себе, и никакими ограничениями на публикации его нельзя было отменить. Позже, в 1914 году, и в других странах появились сообщения о триодном генераторе, в частности, публикация все того же Фореста.
Интересно, что даже тогда выяснить, кто первым сказал А, оказалось непросто. Например, между двумя американскими компаниями судебная тяжба о приоритете на регенеративный приемник длилась весьма долго. С одной из компаний сотрудничал Ли де Форест, с другой — молодой способный инженер, оставивший след в радиотехнике, Эдвин Армстронг.
В 1913 году Армстронг опубликовал несколько схем регенеративных приемников, которые позднее широко использовали радиолюбители США. Одну из подобных схем запатентовал и де Форест. В результате 20-летнего судебного разбирательства право первенства было признано за де Форестом. Но решение суда убедило далеко не всех. И по сей день изобретение регенератора многие связывают с именем Армстронга.
В то время прямо-таки гнались за повышением чувствительности, усиления. Это давала положительная обратная связь. Отрицательную же обратную связь начали применять во второй половине 20-х годов, когда стали обращать внимание на качество воспроизведения речи, в особенности, когда получила распространение многоканальная связь. Радиолампа, усиливавшая одновременно несколько сигналов от разных каналов, при пиковых нагрузках (например, в те моменты, когда сразу говорят все абоненты) «залезала» в нелинейный режим. И тут же рождались новые частотные компоненты. Такое явление назвали кросс- (или иначе — перекрестно) модуляцией. Из-за нее разговор между абонентами в одном канале прослушивается в других.
Отрицательная обратная связь позволила бороться с такой перегрузкой. Хоть усиление и уменьшилось, зато режим усилителя становился линейным, то есть сигналы усиливались без искажений. А уменьшение усиления компенсировалось увеличением числа усилительных каскадов.
МАВР СДЕЛАЛ СВОЕ ДЕЛО…
Электронная лампа в передатчиках прижилась не сразу. У нее, пока еще маломощной, была сильная конкуренция. Во-первых, со стороны дуговых генераторов, в которых высокочастотные колебания возбуждались электрической дугой. Они пришли на смену искровым передатчикам Попова и Маркони. Электрическая дуга в отличие от искры давала незатухающие высокочастотные колебания, поэтому и дальность связи сразу же возросла.
Хотя использовать электрическую дугу для получения высокочастотных колебаний предложил еще в 1900 году англичанин Дуддель, она, как и электронная лампа, не сразу была признана. Искровые передатчики были довольно просты, дешевы и надежны. От добра, как говорится, добра не ищут.
Оперативнее всех оказались немцы. В 1902 году датский инженер В. Паульсен предложил удачную конструкцию дугового генератора. Немецкое командование воспользовалось изобретением: установило новые генераторы на флоте. Но до особого распоряжения опечатало их. Пока же немецкие моряки пользовались искровыми передатчиками. Приказ пришел через… десять лет, когда началась первая мировая война.
В первые же дни войны русские, английские и французские радисты были озадачены. Они не могли перехватить ни одно из сообщений противника. Немецкие станции будто исчезли из эфира. Между тем они работали на полную мощность.
Разобрался в причине таинственного исчезновения инженер-электрик (впоследствии академик) Михаил Васильевич Шулейкин. Он предположил (и его догадка оказалась правильной), что немцы стали использовать для связи незатухающие колебания. А приемники, рассчитанные на затухающие колебания искровых радиопередатчиков, на них не реагировали. В наушниках — либо тишина, либо какие-то трески, похожие на атмосферные разряды. Михаил Васильевич сделал специальную приставку, и приемник вновь обрел слух. Такие устройства называли тиккерами. Они прерывали ток в телефонной цепи со звуковой частотой, и во время детектирования незатухающих колебаний вместо постоянного тока (не воспринимаемого телефоном) появлялась звуковая частота.
Дуговые передатчики использовались довольно широко. Среди них были и небольшие — мощностью в несколько киловатт, и гиганты на тысячу и более киловатт. Последние были весьма громоздкими сооружениями. Так, на радиостанции в Бордо мощностью 1000 киловатт генератор Паульсена весил 80 тонн, а на радиостанции в Пирл-Харборе мощностью 500 киловатт — 54 тонны.
Всем нам знакома ажурная конструкция Шуховской башни, на многие годы ставшая эмблемой советского радио. Сооружена она была в первые годы Советской власти. 30 июля 1919 года Совет Труда и Обороны принял специальное постановление, подписанное В. И. Лениным: «Для обеспечения надежной и постоянной связи центра Республики с западными государствами и окраинами Республики поручается Народному Комиссариату почт и телеграфов установить в чрезвычайно срочном порядке в г. Москве радиостанцию, оборудованную приборами и машинами, наиболее совершенными и обладающими мощностью, достаточной для выполнения указанной задачи».
Именно во исполнение постановления и была построена на Шаболовке, в то время окраинной улицы Москвы, 150-метровая металлическая башня конструкции инженера Владимира Григорьевича Шухова.
Ушло на нее всего 240 тонн металла, да и его удалось собрать в запасах военного ведомства лишь с огромным трудом. Для своего детища Шухов разработал не только проект, но и удивительно простую технологию сборки. Металлические секции, а всего их было шесть, собирались на земле, а потом готовую секцию поднимали с помощью пяти ручных лебедок сквозь верхнее кольцо предыдущей секции и скрепляли их болтами. Есть свидетельства, что за строительством башни наблюдал из окна своего кабинета в Кремле В. И. Ленин.
Башня послужила одной из опор антенны Московской дуговой радиостанции мощностью 100 киловатт. Функционировать станция начала 19 марта 1922 года. Генераторных ламп большой мощности в то время не было, и потому был взят дуговой передатчик. Основное назначение новой станции — радиотелеграфная связь, поскольку, кроме ламповых, все остальные передатчики мало подходят для передачи речи.
Вторым, и более серьезным для лампы конкурентом были машины высокой частоты. По существу, это обычные электромоторы переменного тока, но специально предназначенные для высоких частот. Чтобы получить ток высокой частоты, многополюсный стальной ротор генератора приводился во вращение с очень большой скоростью. Если частота оказывалась недостаточной, то ее умножали, как в самой машине, так и с помощью специальных трансформаторов.
Много оригинальных конструкций электрических высокочастотных машин создал русский инженер В. П. Вологдин. В советское время в Нижегородской радиолаборатории он построил к 1922 году машинный радиогенератор мощностью 50 киловатт, а в 1925 году — уже на 150 киловатт. Обе машины работали на Октябрьской радиостанции в Москве в 1924—1926 годах.
Именно 150-киловаттная машина обеспечивала радиотелеграфную связь Москвы с Нью-Йорком на длинных волнах.
Век машинных передатчиков оказался более долгим, чем дуговых. Еще до недавнего времени машины высокой частоты с успехом использовались для радиочастотной плавки и закалки стальных изделий. В 1952 году Вологдин был удостоен Государственной премии за участие в разработке… кузнечного цеха. Новинкой в кузнечном деле были его высокочастотные машины, которые с помощью индукционных токов разогревали кузнечные заготовки. Не надо было огнедышащих отравляющих атмосферу горнов. Грохочущие молоты заменили прессами.
Кроме этих двух конкурентов — дуги и электромашины, — был еще и третий — искровые передатчики. Они пока не ушли из радиотехники, их мощность была достаточной по тем временам.
В истории науки и техники есть, видимо, своя неумолимая логика развития, и каковы бы ни были на первый взгляд причудливые ее зигзаги, все потом возвращается на круги своя. Не открыл бы триод Ли де Форест, это обязательно сделал бы в скором времени кто-нибудь другой. Или, например, кристаллический, или, иначе, полупроводниковый диод и его вакуумный собрат появились почти одновременно, но закономерно, что сначала прошла эра электронных вакуумных ламп, а потом пришла эра транзисторов. Причем подошла именно к тому времени, когда промышленность была подготовлена к получению полупроводниковых материалов высокой частоты.
В конечном счете дуга и электромашина вынуждены были уступить свое место электронной лампе. Возможности их были ограниченны, с ними радиотехника не вышла бы на новые рубежи. Как говорится, мавр сделал свое дело, мавр может уйти. Дуговые и машинные передатчики — своего рода динозавры в радиотехнике. Им неизбежно предстояло исчезнуть. Но дело свое эти передатчики действительно сделали. Радиоинженеры научились принимать незатухающие колебания, проникли в некоторые тайны распространения радиоволн… В этом и состоит историческая заслуга дуговых и машинных радиогенераторов.
СЕНСАЦИЯ НА ВЫСТАВКЕ В СТОКГОЛЬМЕ
А генераторные лампы, предназначенные специально для передатчиков, становились все мощнее. Внесли свою лепту в их развитие и отечественные ученые. Первую русскую генераторную лампу построил в 1914 году Николай Дмитриевич Папалекси. В 1915 году при помощи передатчика, собранного на «лампе Папалекси», была установлена радиотелефонная связь между Царским Селом и Петроградом.
В том же году Армстронг передал человеческую речь через океан из Арлингтона в Париж. Он использовал ламповый генератор и регенеративный приемник.
Многое сделал в области мощных генераторных ламп Михаил Александрович Бонч-Бруевич. В 1918 году он, бывший царский офицер-радист, стал одним из ведущих специалистов, а позднее и руководителем организованной при содействии В. И. Ленина Нижегородской радиолаборатории. Она, по существу, стала первым советским научно-исследовательским институтом в области радио.
2 декабря 1918 года вождь революции подписал «Положение о радиолаборатории с мастерской НКПиТ». В нем, в частности, говорилось: «Радиолаборатория с мастерской Народного комиссариата почт и телеграфов является первым этапом к организации в России Государственного социалистического радиотехнического института, конечной целью которого является объединение в себе и вокруг себя в качестве организующего центра:
— всех научно-технических сил России, работающих в области радиотелеграфа;
— всех радиотехнических учебных заведений России;
— всей радиотехнической промышленности России».
Советская Россия находилась в кольце блокады, и работники лаборатории не имели никакой информации о новинках зарубежной радиотехники. Работать приходилось в условиях гражданской войны и разрухи. Дело тем не менее двигалось. В 1919 году сотрудники Нижегородской радиолаборатории собрали макет радиотелефонного передатчика. Хотя его мощность, отдаваемая в антенну, была всего 20 ватт, однако ее хватало, чтобы установить связь с Москвой. Необходимо было форсировать работы. Бонч-Бруевич обратился к Ленину с просьбой о помощи. Ленин сделал необходимые распоряжения и в неимоверной круговерти горящей повседневности нашел время ответить. В письме, в частности, было сказано:
«Пользуюсь случаем, чтобы выразить Вам глубокую благодарность и сочувствие по поводу большой работы радиоизобретений, которую Вы делаете. Газета без бумаги и «без расстояний», которую Вы создаете, будет великим делом. Всяческое и всемерное содействие обещаю Вам оказывать этой и подобным работам.
С наилучшими пожеланиями, В. Ульянов (Ленин)».
Осенью 1920 года должен был состояться радиотелефонный диалог между Москвой и Берлином. В то время между столицами была только радиотелеграфная связь. И вот на Ходынском поле в эфир вышел изготовленный в Нижнем Новгороде тот самый макет радиопередатчика. Диалога не вышло, получился монолог. В Берлине голос Москвы слышали, но ответить не смогли. Директор фирмы «Телефункен», сославшись на неисправность, обещал ее устранить и ответить через две недели. Однако в 1920 году обещанная передача из Берлина так и не состоялась. Не хватило мощности у передатчика. Ответ пришел лишь в октябре 1923 года, а генератором волн служила не электронная лампа, а машина высокой частоты.
Владимир Ильич внимательно следил и за работами лаборатории, и за зарубежными новинками в области радио. Об этом свидетельствуют многие документы.
Вот, в частности, один из них, в котором ярко проявилась его заинтересованность и забота о новой области техники.
«Товарищу Сталину с просьбой вкруговую всем членам Политбюро.
Товарищ Сталин, прилагаю два доклада: первый — профессора Осадчего, специалиста по электричеству, радиотелеграфной и телефонной связи, второй — Бонч-Бруевича (не родственника известных братьев Бонч-Бруевич, из которых один был управдел СНК, а другой выдающимся царским генералом). Этот Бонч-Бруевич, доклад которого я прилагаю, — крупнейший работник и изобретатель в радиотехнике, один из главных деятелей Нижегородской радиолаборатории.
Из этих докладов видно, что в нашей технике вполне осуществима возможность передачи на возможно далекое расстояние по беспроволочному радиосообщению живой человеческой речи; вполне осуществим также пуск в ход многих сотен приемников, которые были бы в состоянии передавать речи, доклады и лекции, делаемые в Москве, во многие сотни мест по республике, отдаленные от Москвы на сотни, а при известных условиях и на тысячи верст.
Я думаю, что осуществление этого плана представляет для нас безусловную необходимость как с точки зрения пропаганды и агитации, особенно для тех масс населения, которые неграмотны, так и для передачи лекций. При полной негодности и даже вредности большинства допускаемых нами буржуазных профессоров по общественным наукам у нас нет иного выхода, как добиться того, чтобы наши немногие коммунистические профессора, способные читать лекции по общественным наукам, читали эти лекции для сотен мест во всех концах федерации.
Поэтому я думаю, что ни в коем случае не следует жалеть средств на доведение до конца дела организации радиотелефонной связи и на производство вполне пригодных к работе громкоговорящих аппаратов.
Предлагаю вынести постановление об ассигновании сверх сметы в порядке экстраординарном до 100 тысяч рублей золотом из золотого фонда на постановку работ Нижегородской радиолаборатории, с тем, чтобы максимально ускорить доведение до конца начатых ею работ по установке вполне пригодных громкоговорящих аппаратов и многих сотен приемников по всей республике, способных повторять для широких масс речи, доклады и лекции, произносимые в Москве или другом центре.
Поручить СТО установить особый надзор за расходованием этого фонда, и, может быть, если окажется целесообразным, ввести премии из указанного фонда за особо быстрый и успешный ход работы.
Добавлю, что сегодняшние «Известия» сообщают об английском изобретении в области радиотелеграфии, передающем радиотелеграммы тайно. Если бы удалось купить это изобретение, то радиотелефонная и радиотелеграфная связь получила бы еще более громадное значение для военного дела.
Ленин».
15 сентября 1922 года в газете «Известия» было опубликовано сообщение:
«Центральная радиотелефонная станция послала следующую телеграмму:
Всем, всем, всем!
Настройтесь на волну 3000 метров и слушайте!
В воскресенье, 17 сентября, в 3 часа по декретному времени на Центральной радиотелефонной станции Наркомпочтеля состоится первый радиоконцерт.
В программе — русская музыка…»
Этим концертом, который прошел с большим успехом, начались передачи Московской радиотелефонной станции, получившей впоследствии наименование Радиостанции имени Коминтерна. И передатчик, и сами радиолампы были разработаны Бонч-Бруевичем и изготовлены в Нижегородской радиолаборатории. Станция была самой мощной в мире. Ее мощность в радиотелефонном режиме достигала 12 киловатт. Радиостанция в Нью-Йорке в это же время имела мощность всего 1,5 киловатта, а станции во Франции и Германии — по 5 киловатт. Московскую радиостанцию слышали на очень больших расстояниях. Она также использовалась Для передачи материалов РОСТА (Российского телеграфного агентства), которые принимались редакциями Местных газет.
8 декабря 1922 года по радио впервые передавались речи Ленина, записанные на граммофонные пластинки. Вскоре после смерти Владимира Ильича Нижегородской радиолаборатории присвоили имя В. И. Ленина.
В 1925 году Нижегородская лаборатория и трест заводов слабого тока приняли участие в выставке в Стокгольме. Все шведские газеты поместили статьи 0 советских экспонатах, отметили «высокое состояние русской радиотехники». В центре внимания оказалась большая 25-киловаттная лампа с водяным охлаждением. Никто из иностранцев и не подозревал, что Россия могла производить такие приборы.
В 1926—1927 годах на Шаболовке установили самый мощный в то время радиовещательный передатчик «Новый Коминтерн». Мощность, отдаваемая в антенну, составляла 40 киловатт. За его создание Нижегородскую радиолабораторию наградили в 1928 году вторым орденом Трудового Красного Знамени. Вот некоторые цифры тогдашней статистики, которые показывают динамику обновления радиопередающих центров. В 1927 году из 58 действовавших в стране передатчиков 38 были искровыми, 11 — ламповыми, 8 — дуговыми и 1 — машинным. В 1933 году дуговые практически перестали существовать, искровых осталось только 3 процента, а 97 — были ламповыми. К концу второй пятилетки уже все радиопередатчики стали ламповыми и более мощными. В том же, 1933 году в строй вступила 500-кило-ваттная станция. К 1941 году в стране работало свыше 100 мощных радиовещательных станций. В суровое военное время в 1943 году была построена крупнейшая в мире средневолновая радиовещательная станция мощностью 1200 киловатт.
Не только большими мощностями славилось отечественное радиостроение. Наши инженеры, как правило, находили собственные оригинальные решения. Уже в начале 1920 годов фирма «Телефункен» заказала у Бонч-Бруевича мощные генераторные лампы. Позднее при строительстве американской радиостанции мощностью 500 киловатт близ города Цинциннати использовалась советская система построения сверхмощных передатчиков. В Нью-Йоркском телевизионном центре, когда потребовалось высококачественное широкополосное усиление, была применена разработанная в СССР система модуляции. Многие агрегаты и узлы, которыми оснащались передающие центры в СССР, оказывались новинками для американской радиопромышленности.
В 30—40-х годах широкое распространение получили разборные генераторные лампы. Дело в том, что катоды ламп были недолговечны, а все остальные довольно металлоемкие и дорогие конструкции — анод, сетка, система водяного охлаждения — служили долго. Поэтому родилась мысль сконструировать лампу так, чтобы иметь возможность менять вышедшие из строя детали. В пятидесятых годах мощность таких ламп достигла 1000 киловатт. И если раньше большие радиостанции строились по блочному принципу (например, 500-кило-ваттное радиопередающее устройство, установленное на станции имени Коминтерна, собиралось из шести однотипных передатчиков по сто киловатт, и их мощности складывались), то теперь для тысячекиловаттной радиостанции достаточно было одного выходного каскада на такой лампе. Именно в мощных радиопередатчиках, будь то радиовещательные или радиолокационные, лампы пока не уступают своих позиций полупроводникам.
РОЖДЕНИЕ «СУПЕРА»
«Супер» — так жаргонно называли радиолюбители 40—50-х годов супергетеродинный приемник. Сейчас, за редким исключением, все радиоприемники, будь то бытовые, телевизионные, связные, радиолокационные и других назначений, строятся по супергетеродинной схеме. А в период зарождения радиовещания господствовали простые в изготовлении детекторные приемники.
Их основным элементом был кристаллический детектор, который выпрямлял электрические колебания радиочастоты, наведенные в антенне радиоволной и выделенные резонансным контуром. В выпрямленном напряжении содержались колебания звуковых частот, которые в телефонных наушниках превращались в звуковые сообщения.
Кристаллический детектор был первым в современном понимании полупроводниковым прибором. Он пришел на смену капризному и ненадежному когереру. Хотя точная дата рождения кристаллического детектора не установлена (примерно 1906 год), можно с полным основанием сказать, что появился он как нельзя вовремя. С его помощью значительно расширилась аудитория радиослушателей.
Помимо простоты детекторный приемник обладал еще одним немаловажным достоинством: для него не требовалось источника питания. Энергию приносила сама радиоволна.
С совершенствованием радиоламп, естественно, проявилось давнее намерение услышать речь и музыку как говорят, «во весь голос». Пристроили после детектора усилитель низкой частоты (или сокращенно УНЧ) и стали слушать уже не в наушниках, а из громкоговорителей (динамиков). Потекла живая человеческая речь по комнатам, залам, площадям…
Чтобы увеличить дальность приема, стали усиливать радиочастотные колебания и до детектора поставили усилители радиочастоты (УРЧ). Вот вам и знаменитый приемник «прямого усиления», где радиочастотный сигнал усиливается, затем детектируется и опять следует усиление, но только уже на низкой, звуковой частоте. Эти приемники были в ходу у радиолюбителей еще в 50-х годах. Названия их звучали несколько таинственно: 1— V — 2, 1— V— 1, 0 — V — 2. Первая цифра означала число ламп для усиления радиочастоты, последняя — число ламп для усиления низкой частоты, а буква V означала детектирование.
В таком приемнике избирательность, то есть способность отстраиваться от сигналов соседних радиостанций, достигалась настройкой входного колебательного контура прямо на частоту нужной станции, и основное усиление до детектирования тоже производилось па этой частоте. Оттого и назывался такой приемник приемником прямого усиления. Покуда радиостанций было мало и использовались в основном длинные волны, особых проблем не возникало. Но как только началось освоение коротких волн, сразу же проявился недостаток схемы — стало нелегко отстроиться от других радиостанций, поскольку чем выше частота, тем шире становится полоса пропускания резонансного контура. Таково уж его свойство. (С ним мы немного познакомились, когда речь шла об опытах Герца.)
Если уподобить радиоприемник стадиону, а колебательный контур — его воротам, то чем шире полоса пропускания контура, чем шире ворота стадиона, тем больше шансов у безбилетников, то бишь сигналов других, мешающих станций и прочих разных источников помех проникнуть в приемник.
Крутишь ручку настройки приемника: чем короче длина волны, тем труднее избавиться от мешающих «соседей». Мало того, и слышимость падает. Голос в приемнике слабее от того, что усиление каскадов УР^ уменьшается с повышением частоты Дело в том, что на более высоких частотах выводы электродов, сами электроды ламп начинали вести себя как конденсаторы и тем самым уменьшали усиление.
Пробовали увеличить число каскадов УРЧ, чтобы компенсировать потери. Но на высоких частотах любые два близко расположенных проводника образовывали емкость. Через нее сигнал с выхода каскада попадал на вход. Возникала цепь положительной обратной связи, о которой уже упоминалось. Довольно легко усилитель терял устойчивость и начинал «генерить», то есть сам становился генератором.
Надо было сделать так, чтобы, независимо от частоты принимаемого сигнала, и избирательность приемника, и его усиление оставались практически постоянными. Этого удалось достигнуть в супергетеродине. Его проявление, если следовать хронологии, стало вторым важнейшим событием в радиотехнике после изобретения электронной лампы.
Тем не менее главным образом благодаря своей простоте и детекторные приемники, а схем их было превеликое множество, и приемники прямого усиления, и разные регенераторы еще долгое время применялись даже на коротких волнах. Да и сегодня в некоторых специальных устройствах нет-нет да и можно наткнуться на приемную схему из далеких 20-х годов.
У супергетеродина, этого счастливого ребенка (а родился он в 1917 году), было сразу четыре отца: французский инженер Л. Леви, немцы Г. Арко и В. Шоттки и уже известный нам Э. Армстронг. Но закон остался на стороне Леви, и ему был отдан приоритет.
Армстронг тоже получил патент на супергетеродин, но в США. Он, капитан корпуса связи, находился в ту пору (шла первая мировая война) во Франции; 30 декабря 1918 года послал из Парижа в США заявку на патент и получил его в июне 1920 года. В Америке считают изобретение супергетеродина величайшим достижением Армстронга.
В чем же идея супергетеродина? Она, кстати, блеснула еще в 1902 году. Смысл ее в том, что сигнал радиочастоты переносится с помощью местного генератора — гетеродина — на другую, более низкую частоту, где нет проблем с усилением и где можно сделать фильтры с нужной формой частотной характеристики. И главное, чтобы эта более низкая частота, которую во всех странах Европы назвали «промежуточной», была бы постоянной. Тогда и усилительные элементы, и резонансные контуры будут работать на одной и той же частоте. Так что их контуры не надо будет перестраивать. В таких условиях намного проще получить требуемую форму частотной характеристики приемника, или, как говорят радисты, согласовать ее с частотным спектром принимаемого сигнала.
Слово «гетеродин» произошло от двух греческих слов: «гетерос» — иной, другой и «динамис» — сила. То есть принимаемый сигнал радиочастоты подвергается воздействию другого, местного сигнала иной частоты. Этот процесс переноса сигнала с одной частоты на другую называется гетеродированием. Осуществляется он перемножителем, который в приемнике обычно называют смесителем. Интересно: сигналы перемножаются, а частоты их вычитаются! А чтобы частота на выходе смесителя была бы постоянной, равной промежуточен, надо подстраивать частоту гетеродина. Именно от качества усилителя промежуточной частоты, который сокращенно называют УПЧ, главным образом зависит чувствительность и избирательность приемника. Ведь независимо от длины волны принимаемой станции основная обработка сигнала происходит в УПЧ.
Смесителем же может быть любой нелинейный элемент: и диод, и электронная лампа, и транзистор. Мы уже знаем, что нелинейность обогащает частотный спектр сигналов, которые подаются на нелинейный элемент. Надо только среди рожденных нелинейностью новых частот отфильтровать интересующую нас разностную частоту.
«Суперы» не сразу покорили мир. Мешал французский патент, отчасти монополизировавший их промышленное производство. Правда, для радиолюбителей он не служил помехой, а в профессиональной сфере с ним вынуждены были считаться. Сложны были «суперы» и в настройке — приходилось крутить сразу две ручки: настройки входных контуров и гетеродина. Лишь потом их совместили.
В начале 30-х годов срок действия патента истек и началось победное шествие супергетеродинов, которое продолжается и в наши дни…
ОТ ТРАНЗИСТОРА ДО ЧИПА
1 июля 1948 года, на следующий день после того, как фирма «Белл телефон лабораториз» объявила об изобретении нового прибора — транзистора, только газета «Нью-Йорк тайме» откликнулась на это событие. На предпоследней странице в колонке «Новости радио» самой последней стояла следующая короткая заметка:
«Вчера фирма «Белл телефон лабораториз»… впервые продемонстрировала изобретенный ею прибор под названием «транзистор», который в некоторых случаях можно использовать в области радиотехники вместо электронных ламп.
Прибор был продемонстрирован в схеме радиоприемника, не содержавшей обычных ламп. Было также показано его применение в телефонной системе и в телевизионном устройстве, управляемом с помощью приемника, расположенного на нижнем этаже. В каждом из этих случаев транзистор использовался в качестве усилителя, хотя фирма заявляет, что он может использоваться и в качестве генератора, способного создавать и передавать радиоволны.
Транзистор, имеющий форму маленького металлического цилиндра длиной около 13 миллиметров, не содержит полости (из которой откачан воздух), сетки, анода или стеклянного корпуса, предохраняющего от попадания в прибор воздуха. Он начинает работу мгновенно, без задержки на разогрев, так как в отличие от радиолампы в нем нет накала.
Рабочие элементы прибора состоят всего лишь из двух тонких проволочек, подходящих к кусочку твердого полупроводникового материала величиной с булавочную головку, приплавленному к металлическому основанию. Вещество, помещенное на металлическое основание, усиливает ток, подводимый к нему по одной проволочке, а другая проволочка отводит усиленный ток».
Первый транзистор по внешнему виду напоминал радиолампу. Видимо, сказалась приверженность человеческого глаза к привычным формам. Не потому ли и первые автомобили были похожи на кареты и дилижансы?
Авторами изобретения были американские ученые Д. Бардин и У. Браттейн, получившие патент. Они работали под руководством Шокли, и его теоретические разработки сыграли не последнюю роль в открытии. Поэтому всем троим в 1956 году присуждена Нобелевская премия по физике за исследование полупроводников и открытие транзисторного эффекта. Кстати, Бардин в 1972 году получил и вторую Нобелевскую премию за работы в области сверхпроводимости, он также был удостоен высшей награды АН СССР — золотой медали имени М. В. Ломоносова за 1987 год.
Фирма только спустя семь месяцев объявила об открытии своих сотрудников. Во-первых, потому что сами изобретатели еще полностью не уяснили, что же такое транзисторный эффект. Во-вторых, надо было показать изобретение военным и решить с ними — следует ли его секретить. Затем подать заявку на патент и написать научную статью и еще оставалось сделать не менее главное — дать название новому прибору.
Бардин и Браттейн хотели подобрать термин, сходный с «варистором», «термистором» (полупроводниковые приборы, сопротивление которых меняется в зависимости, соответственно, от напряжения и температуры), но не могли найти подходящего слова. Изобретателям помог известный специалист по радиоэлектронике и ее популяризатор Дж. Пирс. Он считал, что в названии должен найти отражение основной, как это казалось в то время, параметр прибора — его переходное сопротивление. По-английски оно звучит как «транзистенс». Поэтому Пирс и подсказал назвать новый прибор транзистором.
Если «транзистор» — термин, изобретенный в середине XX века, то слово «полупроводник» было в ходу уже в XIX веке. В учебнике 1826 года «Начальные основания опытной физики», написанном Иваном Двигубским, есть такие слова: «Английский физик Кавендиш опытами доказал, что вода проводит электричество в 400 миллионов раз хуже металла; невзирая на сие, она еще не совсем худой проводник электричества. Тела, кои в рассуждении способности проводить электричество, занимающие как бы среднее место между проводниками и непроводниками, обыкновенно называются полупроводниками».
А теперь откроем последний Советский энциклопедический словарь и прочитаем значение слова «полупроводники»: «Вещества, электропроводность которых при комнатной температуре имеет промежуточное значение между электропроводностью металлов… и диэлектриков…» Как мы видим, несмотря на более чем 150-летнюю временную дистанцию, формулировки весьма схожи.
В 1821 году немецкий физик Томас Зеебек под впечатлением опытов Эрстеда провел следующий эксперимент. Он припаивал друг к другу два разнородных металла и соединял их медным проводником, а внутри петли, образованной проводником, помещал магнитную стрелку. При нагреве места спая магнитная стрелка отклонялась. Значит, нагретый спай служил источником электрического тока. Когда одним из элементов спая были теллур, сульфид свинца и некоторые другие материалы, стрелка реагировала более энергично. Через сто лет такие вещества станут называться полупроводниками. Пожалуй, это был первый сигнал о наличии у полупроводников необычайных свойств.
«Термоэлектрический эффект» — так окрестили впоследствии данное явление. На его основе в 1940 году в Ленинградском физико-техническом институте пол руководством Ю. П. Маслаковца была собрана и испытана первая экспериментальная полупроводниковая термобатарея. Материалом у нее (как и в опыте Зеебека) служил сульфид свинца.
В 1833 году Майкл Фарадей столкнулся с необычной ситуацией: он заметил, что электропроводность сульфида серебра растет с повышением температуры (у металлов все происходит наоборот). «…Если поискать, то можно будет найти немало таких веществ», — прозорливо заметил Фарадей. И действительно, впоследствии он обнаружил еще ряд образцов с необычной зависимостью сопротивления от температуры — одной из характерных особенностей полупроводников.
В 1873 году было открыто еще одно их свойство. Инженер-электрик из Лондона У. Смит объявил, что при освещении селен, химический элемент, открытый еще в начале века, изменяет свою электропроводность. Сам инженер занимался испытанием подводного телеграфного кабеля, для изоляции которого применялся селен. В расплавленном состоянии он застывал, образуя стекловидную массу с очень большим сопротивлением. Наблюдательный помощник Смита заметил, что на свету сопротивление селена становится меньше, чем в темноте. Сообщение вызвало живейший интерес. Физики бросились воспроизводить опыт и обнаружили, что селен, названный так в честь Луны, чувствителен даже к ее свету.
Свойству селена изменять свое сопротивление в зависимости от падающего света нашел интересное применение Грэхем Белл. Тот самый Белл, в честь которого названа логарифмическая единица отношений двух одноименных физических величин — бел. Правда, на практике мы сталкиваемся с более мелкой величиной: одной десятой бела — децибелом.
Так вот, Белл придумал прибор, передававший звук на большое расстояние при помощи светового луча, и назвал его фотофоном. Принцип действия прибора состоял в следующем. Гибкое плоское зеркало освещалось сильным источником света так, что отраженный луч попадал на приемном конце на линзу, фокусировавшую свет на селеновую пластинку, соединенную с батареей и телефоном. При передаче звук, направленный на заднюю поверхность зеркала, заставлял его колебаться. В такт с колебаниями «дрожал» и световой луч, а от этого менялась и освещенность селеновой пластины.
В цепи телефона возникали колебания электрического тока звуковой частоты, и речь отлично воспроизводилась в наушниках. Но фотофон быстро сошел со сцены: не выдержал соперничества с другим, более удачливым детищем Белла — телефоном.
Как говорят, все повторяется. Через сто лет на более высоком уровне — в лазерном исполнении — этот принцип возродился. В частности, в подслушивающих лазерных устройствах. Оконное стекло комнаты, где происходят переговоры, освещают снаружи лазерным лучом. Роль зеркала выполняет стекло, а вместо селеновой пластинки — лазерный приемник.
В 1874 году уже упоминавшийся К. Ф. Браун обнаружил выпрямляющую способность контакта металла и сернистого свинца: при одном направлении тока сопротивление контакта мало, при противоположном — очень велико. Позже, используя эту особенность, Браун создал детектор — полупроводниковый диод.
В последнее 20-летие XIX века полупроводники не были обделены вниманием ученых, и число опубликованных работ, им посвященных, исчислялось сотнями, так что уже в начале XX века сформировались правильные представления о природе электропроводимости полупроводников. Потом с началом эры радиоэлектронной лампы интерес к полупроводникам упал. Это продолжалось вплоть до конца первой мировой войны.
В 20-х и особенно в 30-х годах полупроводники вновь стали объектами научного любопытства. На вооружении ученых появилась квантовая теория и уравнение Эрвина Шредингера, которые могли объяснить поведение электронов в твердых телах. Большой вклад в экспериментальные и теоретические исследования полупроводниковых приборов внесли и советские ученые О. В. Лосев, Б. И. Давыдов, Я. И. Френкель, А. Ф. Иоффе. А в 1931 году вышла первая в нашей стране книга под названием «Полупроводники» известного ученого Д. Н. Наследова.
Многие изобретатели бились над созданием полупроводникового усилителя. В 1925 году в США, а в 1935 году в Англии были выданы патенты на прибор, который впоследствии назовут полевым транзистором. Но экспериментально его воспроизвести не удалось.
И вот в 1947 году к тройке американских ученых пришел заслуженный успех. Их настойчивость была вознаграждена появлением транзистора.
Так же как и лампа, транзистор может быть и электронным переключателем, и усилителем. Только в отличие от лампы он управляется током, а не напряжением. В лампе через ее вход (участок сетка-катод) в большинстве режимов работы ток пренебрежимо мал, так что с ним можно было не считаться. А в транзисторе входной ток приходилось учитывать. Хоть небольшой, но есть. Он течет через определенную часть транзистора, и его изменения вызывают соответствующие изменения большего тока, текущего через весь транзистор. Поэтому транзистор иногда называли усилителем тока. И названия электродам в транзисторе придумали другие. Если провести аналогию с радиолампой, то роль катода в нем выполняет эмиттер (выпускает носители электрического тока), анода — коллектор (собирает их), а сетки — база.
В современной электронике получили распространение два типа транзисторов — биполярные и полевые. Кстати, прибор, созданный Бардиным и Браттейном, относится к биполярным транзисторам, а запатентованные в 1925 и 1935 годах — к полевым. Хотя запатентованы полевые транзисторы много раньше — применять их стали много позже: в конце 50-х — начале 60-х годов. Несмотря на различия между ними, принципы работы биполярного и полевого транзистора похожи. Правда, соответствующие электроды у последнего носят иные названия: эмиттер — это исток, коллектор — сток, а база — затвор. Проходящий через полевой транзистор ток между истоком и стоком управляется электрическим полем, возникающим в области, прилегающей к затвору, за счет поданного на него напряжения (поэтому и название — полевой транзистор), а затвор находится как раз на пути между истоком и стоком.
Электрическое поле может как бы сужать диаметр канала в полупроводнике, по которому бегут электроны от истока к стоку, или вообще перекрывать его.
Похожая картина наблюдается в поливочном шланге, если наступить на него ногой. Можно уменьшить напор воды, а можно и совсем перекрыть воду. Роль ноги в полевом транзисторе и выполняет электрическое поле у затвора. Входной ток у полевого транзистора, протекающий в нем между истоком и затвором, может быть очень малым. В этом отношении полевые транзисторы приближаются к вакуумным лампам.
Поначалу американская и западноевропейская промышленность не проявили интереса к новому прибору. Трудно было в одночасье сбросить со счетов почти три десятилетия разработки и совершенствования радиоламп разных конструкций. А ведь транзисторы требовали абсолютно новых методов производства. Лампы же применялись не только в радиоприемниках и телевизорах, но и в передатчиках радаров, систем связи, телевизионных и радиопередающих станциях, словом, и там, где требуются большие мощности излучения. (Кстати, в этих областях лампы еще и по сей день не сошли со сцены.)
Да и хрупки из-за точечных контактов были первые транзисторы. Они так и назывались точечными. Область контакта между двумя веществами (или, иначе, область электронно-дырочного перехода) была очень мала: только в местах соприкосновения с полупроводником двух заточенных металлических проволочек (почти так же, как в кристаллических диодах). Такие контакты были нестабильны. Эра плоскостных транзисторов, которая продолжается и сегодня, наступила позднее — с начала 1950-х годов, когда научились выращивать монокристаллы полупроводников промышленным способом. Несовершенны и дороги были первые транзисторы. Их параметры сильно разнились от экземпляра к экземпляру.
Была еще одна причина, по которой американская промышленность встретила новый электронный прибор с прохладцей. Многие инженеры выросли в век радиоламп и потому отрицательно отнеслись к только что появившемуся транзистору. Было ясно, что речь идет не о простой замене радиоламп транзисторами. У новых приборов были другие напряжения питания, мощностные характеристики и даже принцип работы. (Его мы уже знаем — усиление по току.) Все это заставляло переучиваться, по-иному подходить к разработке схем. Но инженеры старой школы не хотели перестраиваться.
Чтобы привлечь внимание к транзистору, фирма «Белл» стала его усиленно рекламировать, устраивать семинары, предоставлять лицензии на него всем желающим. Она отказалась от всех лицензионных пошлин с транзисторов, используемых в слуховых аппаратах. Это была дань памяти Грэхему Беллу, который заботился о глухих.
Именно разработчики слуховых аппаратов оказались наиболее восприимчивыми к новому. Они сразу же ухватились за транзистор, несмотря на его дороговизну. (В начале 50-х годов транзистор стоил 15 долларов.) Еще задолго до появления транзистора производители слуховых аппаратов добились успеха в миниатюризации электронной аппаратуры. В общем, «новичок» пришелся им как нельзя кстати.
Первый транзисторный слуховой аппарат вышел в 1953 году. В нем было использовано пять транзисторов. Правда, потребовалась помощь двух миниатюрных ламп для входного и оконечного каскадов, поскольку сами полупроводники еще служили источником добавочного шума и их усиления было недостаточно.
Без «раскачки» отреагировали на новый прибор и военные. Они были заинтересованы в снижении веса и габаритов радиоэлектронной аппаратуры, а дороговизна их не смущала (деньги ведь не свои, а налогоплательщиков.)
Вот один из многочисленных примеров, какую выгоду дало бы использование транзисторов в военное деле. В конце войны США имели самолет-бомбардировщик В-29, прозванный «летающей сверхкрепостью». Он развивал скорость 600 километров в час и имел полетную массу около 54 тонн. Электронное оборудование самолета весило одну тонну. Применение транзисторов позволило бы уменьшить его вес в 10 раз, в результате чего полетная масса убыла на 4,5 тонны. То есть каждый лишний килограмм оборудования увеличивает полетную массу самолета примерно на пять килограммов. Такая «плата» в пятикратном размере объясняется необходимостью дополнительного запаса, горючего, усилением конструкции. А полетная масса — это и скорость, и маневренность, и потолок самолета.
Для ракет выигрыш еще ощутимее. Для них каждый лишний килограмм оборудования повышает массу ракеты на 40—50 килограммов. А если учесть, что стоимость электроники для современных ракет составляет около 70 процентов от стоимости ракеты, то нетрудно догадаться, что значат полупроводниковые приборы для ракетного дела.
Помимо военных новый прибор ждали и разработчики электронных вычислительных машин. Вспомним первые ЭВМ. Они покажутся сейчас мастодонтами.
В феврале 1945 года вступила в строй американская ЭВМ «Эниак-15». Ее первым практическим применением были расчеты для сверхсекретного проекта атомной бомбы. Задачи подготовил известный математик фон Нейман. Компьютер содержал 18 тысяч радиоламп. Занимала машина помещение в 135 квадратных метров, весила 30 тонн и потребляла 135 киловатт. Операция сложения длилась 0,2 миллисекунды, а умножения — 2,8 миллисекунды. (У современных быстродействующих машин — миллионные и даже миллиардные доли секунды.)
По существу, такую ЭВМ можно было уподобить огромному нагревательному прибору. Представьте себе помещение, где на каждом квадратном метре стоит по электрокамину мощностью чуть более одного киловатта. Охлаждать ЭВМ было весьма непросто. Но главная проблема заключалась в малой надежности. Электронные лампы имели срок службы около 500—1000 часов. За это время выходило из строя не менее двух процентов ламп. Через несколько часов работы надо было искать вышедшую из строя лампу, заменять ее и проверять работу машины с помощью тестов. А ведь для решения сложных задач требовалось ЭВМ с числом ламп, измеряемых не десятками, а сотнями тысяч.
Наиболее уязвимое место у ламп — нить накала и катод. Как и у осветительной лампы, нить накала с течением времени перегорает, а катод, подогреваемый теплом нити, теряет способность испускать электроны, или, как говорят, теряет эмиссию. У транзистора нет ни нити накала, ни подогревного катода, и потому нет и этих трудностей. Срок службы современного транзистора сравним с долговечностью обычного сопротивления. Сегодня же ЭВМ такого класса, как «Эниак-15», можно спокойно уместить в чемоданчике.
Первым полупроводниковым материалом для транзисторов был германий. Но как оказалось, германиевые транзисторы имели много недостатков, главный из которых — нестабильность. Никакие защитные покрытия не могли уберечь их на долгое время от контакта с внешней средой — пылью, влагой… По истечении некоторого времени параметры транзистора начинали «дрейфовать», работа электронных схем зачастую нарушалась. Плохо «вели» себя германиевые транзисторы и при повышенной температуре — тоже «дрейфовали».
В 1954 году появился первый транзистор из кремния — самого распространенного на Земле твердого вещества. Кремний — термостабилен, и что еще немаловажно — образует на поверхности пленку окисла, которая помогает надежно защитить электронно-дырочные переходы от внешних воздействий. Начался период кремниевых полупроводников, продолжающийся и в наши дни.
Еще в 1952 году на ежегодной конференции по электронным компонентам, проходившей в Вашингтоне, сотрудник Британского королевского радиолокационного управления Даммер в своем докладе произнес такие пророческие слова: «С появлением транзистора и работ в области полупроводниковой техники вообще можно себе представить электронное оборудование в виде твердого блока, не содержащего соединительных проводов. Блок может состоять из слоев изолирующих, проводящих, выпрямляющих и усиливающих материалов, в которых определенные участки вырезаны таким образом, что они могли непосредственно выполнять электрические функции».
Предсказание начало сбываться уже в конце 50-х — начале 60-х годов: появились интегральные микросхемы, которым стало суждено произвести переворот в радиоэлектронике, подобно тому, как это раньше сделал транзистор.
Главную роль в перевороте сыграла планарная технология (термин «планарный» образован от английского слова «планар» — плоский). Она дала возможность перейти от изготовления каждого прибора в отдельности к изготовлению на едином полупроводниковом образце, или, как говорят, кристалле, одновременно многих тысяч транзисторов.
Что же такое интегральная схема? Это какая-либо, чаще всего типовая, электронная схема, выполненная на едином кристалле. Например, берут кристалл кремния. В поверхностном его слое с помощью методов полупроводниковой технологии (очень изощренные по точности исполнения методы) формируют элементы электрической схемы, как то: диоды, транзисторы, сопротивления (или, иначе, резисторы), емкости, индуктивности и соединения между ними. Вот вам и полупроводниковая интегральная микросхема, или, как ее иногда называют за рубежом, «чип». (В переводе с английского «чип» — не то «ломтик», не то «дешевка».)
Интересно, что интегральные микросхемы так же, как и в свое время транзисторы, встретили скептически. Критические замечания в основном были по делу. Например, нужный прибор можно было составлять только из имеющихся в наличии готовых «кирпичиков», то бишь микросхем. А это зачастую лишало возможности оптимально построить электрическую схему прибора. Здесь напрашивается аналогия с индивидуальным пошивом в ателье. Можно костюм подогнать по фигуре, не то что в магазине — бери, что предложат.
Кроме того был при производстве микросхем большой процент брака. И еще — однажды созданную схему почти невозможно изменить. Многие недостатки потом устранили, а на другие на фоне огромных возможностей, которые сулила интегральная технология, можно было не обращать внимания.
Буму в области интегральных микросхем в США во многом способствовали военные. Как всегда, они напугали налогоплательщиков «советской угрозой». Поводом послужили успехи СССР в области освоения космического пространства. Под эту шумиху они затеяли в 60-х годах модернизацию своих баллистических ракет «Минитмен». Наметили снизить с помощью микросхем массу электронного оборудования на ракете и тем самым компенсировать отставание в области ракетных двигателей. Программа потребовала организовать производство невиданными ранее темпами — по 4000 интегральных микросхем в месяц.
Мы часто слышим слово «микроэлектроника». Данному понятию есть вполне определенная количественная мера. Принято считать, что микроэлектроника начинается тогда, когда плотность монтажа превышает пять элементов (диод, транзистор, резистор и др.) на кубический сантиметр. На этом рубеже кончается миниатюризация электронной аппаратуры и начинается ее микроминиатюризация.
Но не только «плотность упаковки», то есть количество элементов на единицу площади или объема, характеризует микроминиатюрность чипа, но и такой показатель, как степень интеграции — количество элементов в одной микросхеме.
В так называемых больших интегральных схемах (БИС) содержится от 100—1000 до 10—100 тысяч элементов, а в СБИС (сверхбольших интегральных схемах) — свыше 10—100 тысяч. Есть уже название для чипов следующей степени интеграции — УБИС (ультрабольшие интегральные схемы), но число схемных элементов для них пока не определено…
«ЛЕГКИЕ ЭЛЕКТРОНЫ»
Одна из важнейших характеристик полупроводниковых приборов — их быстродействие. Лучшие из кремниевых микросхем могут переключаться с частотой три миллиарда импульсов в секунду, то есть работать на частотах три миллиарда герц. Быстродействие немыслимое, трудно представимое. Но ненасытный прогресс требует большего. Если суметь заставить транзисторы переключаться быстрее, можно повысить вычислительную мощность компьютеров, создать новые типы радиолокационных станций и спутников связи, работающих как в диапазоне СВЧ, так и на более высоких частотах.
Быстродействие полупроводниковых приборов можно повысить, уменьшая их размеры, то есть сокращая расстояние, на которое должны перемещаться электроны, участвующие в передаче сигнала.
Но есть и другой путь — использовать такие полупроводники, в которых электроны движутся быстрее, чем в кремнии. И такие вещества есть. К ним относятся материалы, полученные из элементов III и V групп таблицы Менделеева. Из них лучше всех изучен арсенид галлия (соединение редкого металла галлия и мышьяка).
Уникальные свойства электронов в этом материале объясняет квантовая механика. Электрон, как мы знаем, проявляет себя не только как частица, но и как волна. Когда электронные волны взаимодействуют с периодической атомной структурой полупроводникового кристалла, возникают необычные с точки зрения классической физики явления. Например, электрон в полупроводнике ведет себя так, будто его масса стала намного меньше, чем в вакууме. В кремнии уменьшение происходит в пятикратном размере, а в арсениде галлия — в пятнадцатикратном. Именно за счет эффекта большего, чем в кремнии, уменьшения массы электроны в арсениде галлия перемещаются быстрее. Скорость их дрейфа может достигать 500 километров в секунду, правда, на весьма короткой дистанции — всего лишь несколько долей микрометра.
Хотя арсенидгаллиевые интегральные схемы, несомненно, превосходят кремниевые в быстродействии (в 2—5 раз), вряд ли они их полностью вытеснят. Скорее всего, те и другие неплохо дополнят друг друга. Кремниевые чипы будут по-прежнему использоваться в недорогих универсальных компьютерах, поскольку их производство обходится значительно дешевле. Однако там, где требуется максимально возможное быстродействие, например, в блоках памяти суперкомпьютеров, предпочтение отдается схемам на арсениде галлия. Кроме того, в условиях повышенных температур и радиации они ведут себя лучше, чем кремниевые.
Арсенид галлия в недалеком будущем преобразует передатчики и приемники радаров, систем связи и других устройств сверхвысокочастотного диапазона. С громоздкими СВЧ, лампами и волноводами, используемыми и по сей день, уже соперничают крошечные монолитные СВЧ-схемы.
Все мы не раз видели, хотя бы по телевидению, огромные чаши приемных антенн спутниковой связи «Орбита». Надобность в них отпадает. В будущем их заменят дешевые, небольшие по размеру (около одного метра) антенны. Это станет возможным за счет перехода на более высокие частоты. Недорогие приемники на арсенидгаллиевых СВЧ-схемах станут напрямую принимать телевизионные сигналы со спутника. Через спутник можно будет и поговорить по телефону с далеким абонентом.
Но, как не раз бывало и раньше, все наиболее передовое в науке и технике обращают на военные цели. Например, в одной из статей в зарубежном журнале набросали такой эскиз. Из ствола танковой пушки выстреливается снаряд, но не простой, а «разумный». В него встроен маленький радар, который наводит снаряд на цель. Малютка работает на миллиметровых волнах. Такая система возможна благодаря полупроводниковым приборам на арсениде галлия, способным как генерировать, так и принимать миллиметровые волны. Во всяком случае, посты патрульно-дорожной службы уже используют миниатюрные радары для контроля скорости движения автомобилей.
Полупроводниковые приборы на арсениде галлия и других перспективных материалах откроют новую страницу в освоении электромагнитного спектра. Недалеко то время, когда интегральные СВЧ-схемы станут широко использоваться и в бытовой радиоаппаратуре.
КРОШЕЧНЫЕ «СИЛАЧИ»
В 80-х годах появился новый тип интегральных микросхем. Несмотря на малые размеры, их назвали «силачами». На одной пластинке кремния совмещается компьютерная логика со способностью управлять довольно сильным электрическим током. Эту операцию обычно выполняют батареи мощных транзисторов вкупе с тиристорами, диодами, конденсаторами и другими элементами. Всех их заменит «силач» — высоковольтная интегральная схема. Она работает при напряжениях, во сто крат больших, чем напряжения пятивольтовых чипов для компьютеров.
Интересна история создания новой схемы. В начале 70-х годов Джеймс Пламмер, профессор электротехники Станфордского университета, пытался повысить мощность портативной считывающей машины для слепой дочери своего коллеги. Ученый использовал уже известную технологию изготовления интегральных схем, так называемую технологию МОП-транзисторов, разновидности полевых, и сумел получить высоковольтный чип. (МОП — аббревиатура, составленная из первых букв названий слоев, составляющих структуру затвора: металл — оксид — полупроводник.)
На основе микросхемы был создан прибор «Оптакон», включающий в себя миниатюрную фотокамеру, которая по буквам считывала тексты с обычных книг и газет. Новый чип преобразовывал начертания букв в электрические импульсы, с помощью которых автоматически составлялись знаки рельефно-точечной азбуки Брайля для слепых.
Если интегральные схемы произвели революцию в компьютерной технике, сделали ее доступной рядовому пользователю, то высоковольтные чипы произведут еще одну электронную революцию, только в иной сфере — в области промышленной и бытовой электротехники. «Силачи» могут переключать токи в десятки и даже более сотни ампер. Это стало возможным благодаря параллельному соединению десятков тысяч транзисторов в крошечном кристалле.
Особая польза ожидается от применения высоковольтных чипов в небольших электромоторах переменного тока, и их частота вращения жестко связана с частотой сети — 50 герц. Электромоторы расходуют в США около 60 процентов всей электроэнергии страны, и большая ее часть тратится впустую, так как они работают в режиме постоянной скорости.
«Силач» может электронно регулировать частоту вращения электродвигателей и, следовательно, потребляемую энергию. Например, число оборотов электродрели будет автоматически увеличиваться, а не уменьшаться, если сверло в процессе работы натолкнется на более твердый металл. А в недалеком будущем чипы станут применяться для управления и более мощными электродвигателями.
Высоковольтные чипы вскоре заменят все виды электромеханических реле и переключателей, особенно в бытовых приборах. В стиральных машинах ненужными станут редукторы для изменения скорости вращения электромотора в различных режимах работы. Уже есть кондиционеры воздуха с высоковольтными чипами Электродвигатель, оборудованный «силачом», не выключаясь, только замедляет или увеличивает скорость вращения, поддерживая тем самым постоянную температуру. Такой режим наиболее эффективен. У прежних кондиционеров электродвигатель при достижении определенной температуры отключался.
Применение чипов в люминесцентных светильниках поможет избавиться от неприятного мерцания лампы, назойливого жужжания дросселя, а также позволит регулировать яркость свечения люминесцентных ламп.
Широкое распространение получат «силачи» в автомобильной промышленности. В современном автомобиле много потребителей электроэнергии, а в будущем их число еще более возрастет. От каждого потребителя к источнику питания тянутся провода. Специалисты подсчитали, что в среднем в каждом автомобиле вес проводов составляет 32 килограмма. Применение высоковольтных чипов даст возможность использовать совсем иную, более экономичную схему электропроводки. Только один-два провода протянут через весь автомобиль по замкнутому контуру. Все электрическое оборудование подключат к ним подобно лампочкам, украшающим новогоднюю елку. В месте подсоединения каждого потребителя будет вмонтирован «силач», который, например, не только включит задний фонарь, но и подаст сигнал на переднюю панель в случае, если лампочка неисправна.
Правда, и сейчас многие автомобили оснащены индикаторами неполадок, но они работают на датчиках и другой дорогостоящей электронике, а с применением дешевых чипов такой контроль получит более широкое распространение. По подсчетам специалистов, применение высоковольтных чипов в авиалайнере «Боинг-747» поможет снизить вес электропроводки более чем на четыре тонны.
Нажимая на клаксон, можно будет подавать чипу разные команды. Легкое нажатие — предупреждающий слабый сигнал, сильное нажатие — громкий гудок.
«Силачи» уже работают в плоских дисплеях некоторых компьютеров. Такие экраны построены на принципе газового разряда. Изображение получается более совершенным, чем на обычных жидкокристаллических дисплеях.
Технология производства высоковольтных чипов совершенствуется, цены на них на международном рынке падают. Если в 1984 году стоимость «силача» составляла 45 долларов, то в 1987 году уже 6,5 доллара, и эта тенденция будет продолжаться.
ЭВМ НА ОСТРИЕ ИГЛЫ
Чтобы получить представление о достигнутом уровне микроминиатюризации электронных схем, нью-йоркский журнал «Бизнес уик» в своем выпуске, вышедшем где-то в середине 1985 года, советовал сделать следующее:
«Вырвите у себя волос. Его толщина равняется приблизительно ста микронам. Представьте себе теперь, что вы умещаете в сетку из 400 транзисторов, каждый из которых состоит из линий, толщиной в один микрон, на кристалле кремния размером с сечение вашего волоса. Теперь сожмите эти линии до толщины в полмикрометра и вы сможете примерно на той же площади разместить почти 1500 транзисторов-полупроводников. Еще раз разделите все пополам. При толщине четверть микрометра каждый транзистор по размеру будет приблизительно равен крупному вирусу, и вам хватит места для 4500 транзисторов».
Данный пример лишь приблизительная оценка, которая дает представление и об уже имеющемся и о том, что уже почти на выходе. Но и это не предел. В 1987 году в печати сообщалось, что сумели сделать транзистор, где толщина линии 0,1 микрона (или в новых терминах — микрометра), то есть одна десятая от миллионной доли метра. А линиями как раз и «рисуют» с помощью литографических приемов на пластинке кремния, арсенида галлия или другого материала транзисторы, соединительные провода и все прочие детали электрической схемы. Чем тоньше линия, тем меньше элементы схемы, тем плотнее ее электронная начинка. Поэтому не только количество транзисторов в кристалле характеризует микросхему, но и толщина линии.
Весьма показателен следующий пример, демонстрирующий фантастические успехи микроминиатюризации. Все мы имеем более или менее ясное представление о Магнитных головках. С их помощью в магнитофонах происходит запись на магнитную ленту и воспроизведение с нее. В вычислительных машинах магнитная лента, а чаще магнитные диски, используются в качестве памяти. Так вот, создана головка для записи информации на магнитный диск размером… с точку в конце этого предложения. Причем она более чувствительна к электромагнитным полям, чем головка с проволочной катушкой, что позволяет записывать на магнитный диск информацию с большой плотностью.
Есть такая английская притча — вариант лесковского Левши. Будто один мастер-виртуоз послал другому булавку. На ее головке он выгравировал слова: «Как тебе это нравится?» Последовал ответ: «Ничего особенного». Написано это было на той же булавке, но… внутри одной из букв. Что-то подобное происходит в микроэлектронике.
Начиная с 60-х годов, число элементов в наиболее сложных интегральных схемах каждый год примерно удваивалось, а ширина линии соответственно уменьшалась. В 1960 году ширина типичной линии в обычных схемах составляла 30 микрометров. К 1970 году степень интеграции увеличилась настолько, что кристалл площадью 1,5 квадратных сантиметра стал вмещать больше электронных элементов, чем самое сложное электронное устройство, которое могло быть создано в 1950 году. В настоящее время в основном в ходу микросхемы с микрометровой линией, хотя получены кристаллы, у которых линия в два раза тоньше.
Современные чипы для запоминающих устройств содержат более двух миллионов элементов. С другими кристаллами каждый из них соединяют пять миллионов проводников, и такие чипы не единичны, они выпускаются в большом количестве. Менее трех десятилетий назад, до возникновения микроэлектроники, радиомонтажнику пришлось бы потратить 10 лет на установку двух миллионов дискретных элементов такой схемы. Только зарплата рабочего за это время составила бы сотни тысяч долларов. Теперь же такое изделие стоит на рынке лишь десятки долларов, а в перспективе его цена упадет до нескольких долларов.
Мало найдется мест более чистых, чем завод полупроводников. Ведь одна пылинка может безнадежно испортить микросхему. Создать условия такой стерильности, с которой не сравнится ни одна больничная операционная, очень непросто. Судите сами.
В одном кубическом метре обычного городского воздуха содержится около 50 миллионов пылинок. В зеленых зонах их содержание падает до 2 миллионов в одном кубометре, а при изготовлении наиболее сложных БИС запыленность воздуха в основных помещениях не должна превышать 3000 пылинок на кубометр, причем на рабочем месте, возле обрабатываемой пластины, запыленность должна быть не более 30 пылинок. Конечно, брак все равно будет, но с ним приходится мириться, как с неизбежным злом.
О том, зачем нужна такая чистота, дает представление следующий пример. Если в помещении запыленность достигнет 50 тысяч пылинок на кубометр, то на поверхности в один квадратный сантиметр за один час осядет около 40 пылинок размером в несколько микрометров и гораздо больше более мелких частиц. Неумолимая статистика свидетельствует: при такой запыленности на каждый квадратик поверхности со стороной 1,4 миллиметра придется не менее одной пылинки размером 1—3 микрометра и пять-десять пылинок размером 0,3—0,5 микрометра. Такие условия гарантируют стопроцентный брак.
Приведу еще несколько цифр, чтобы окончательно убедить читателя, что мы живем в пыли и сколь труд, но от нее избавиться. Даже в состоянии покоя человек каждую минуту создает до 100 тысяч пылинок, а если еще начнет энергично двигаться, число «генерируемых» им пылинок возрастает в 10 и более раз. Если в помещении площадью сто квадратных метров в отсутствие людей в одном кубометре насчитывается 10 000 пылинок, то при наличии здесь же 12 человек запыленность возрастает до 3,5 миллиона пылинок в одном кубометре.
А вот еще одна статистика, свидетельствующая о том, что курильщик — потенциальный источник брака в полупроводниковом производстве. Оказывается, любой курящий выдыхает в течение примерно часа после курения частицы, загрязняющие среду.
В экспериментах, проведенных одним американским исследователем, воздух, выдыхаемый курящим и некурящим, направлялся в устройство, подсчитывающее количество содержащихся в нем частиц. Устройство устанавливалось на расстоянии 25 миллиметров от рта испытуемых. В первую минуту после выкуренной сигареты курильщик выдыхал (в пересчете на один кубометр) более 800 тысяч частиц, в то время как некурящий — 27 тысяч частиц. Через 10 минут количество частиц в воздухе, выдыхаемом курильщиком, снижалось до 160 тысяч. Большинство частиц оказалось клетками эпителия, покрывающими полость рта. Размер частиц — в пределах от 0,2 до 12 микрометров.
В другом эксперименте в промежутках между замерами пили кофе. По-видимому, курильщики вместе с напитком проглатывали большую часть клеток эпителия. Число выдыхаемых ими частиц сократилось, но и спустя 63 минуты все же была видна существенная разница в замерах для заядлого курильщика и некурящего. Даже когда некурящий съел 12 крекеров, количество выдыхаемых им частиц не увеличилось.
Правда, экспериментатор нашел довольно простое решение, как частично нейтрализовать курильщика: дать ему выпить стакан воды, прежде чем он вернется в цех.
Эти данные еще раз подтверждают, что находиться рядом с курящим далеко не безвредно. Курильщика можно уподобить микровулкану никотиновой пыли.
Что только не делают, чтобы избавиться от пыли. Изолируют помещение от внешней среды, рабочие облачаются в белоснежные халаты, маски и перчатки, причем из «непылящих» материалов (на поверку вышло, что самая гигиеничная одежда, из хлопчатобумажных тканей, сильно пылит). В течение часа воздух в рабочем помещении сменяется несколько сот раз.
Однако для изготовления схем с толщиной линии в доли микрометра даже такие цехи покажутся безнадежно грязными. Для их производства в одном кубометре допускается не более 10 частиц размером 0,2 микрометра. Такой степени обеспыленности можно достичь только в герметичных камерах с особым микроклиматом в атмосфере инертного газа. Присутствие человека в производственной зоне, конечно, исключается.
Пожалуй, одна из самых больших трудностей состоит в том, как отпечатать запутанные тончайшие схемы из миллионов элементов на полупроводниковую пластинку. Причем процесс печати повторяется не единожды, и каждый раз надо точно совмещать новую «картинку» с предыдущей. Самое крошечное несовпадение, и — брак. Схема работать не будет.
При толщине линии 1—2 микрометра схема отпечатывается на кристалле с помощью ультрафиолетовых лучей. При более тонких, субмикронных линиях копирование исходного оригинала под силу лишь рентгеновским лучам и сфокусированным пучкам электронов.
Чтобы создать чип, надо его спроектировать, изготовить и испытать. Эти задачи уже вышли за рамки человеческих возможностей. Разместить несколько миллионов деталей на крохотной полупроводниковой пластине — с такой задачей может справиться только компьютер. А под силу ли человеку проверить десятки, сотни тысяч схем в чипе? Тоже без компьютера не обойтись. В общем, наступает пора, предсказанная фантастами: чипы начнут производить себе подобных. Возникает естественный вопрос; где же предел малости? Где предел интеграции схем? А бели конкретнее — сколько все-таки можно будет разместить транзистор0в на одном кристалле?
Грубую оценку можно дать, разделив наибольший практический размер кристалла на наименьший практический размер транзистора.
Чтобы транзистор устойчиво работал, число подвижных электрических зарядов в его кристалле должно быть не менее определенной величины. При меньшем числе зарядов он просто не сможет нормально выполнять свои функции по обработке информации на тех физических принципах, которые приняты в современной вычислительной технике.
Подвижными зарядами в транзисторе являются атомы примеси. Обычно один атом примеси дает один подвижный заряд. Чтобы число этих зарядов, например в кремниевом транзисторе, было достаточным, его линейный размер должен быть не менее 400 постоянных кристаллической решетки. (Постоянная кристаллической решетки — это линейный размер элементарной ячейки кристалла.) На практике приходится учитывать целый ряд других факторов, поэтому размер транзистора увеличивается еще в три раза. У кремния постоянная решетка равна 5,4∙10—8 сантиметра. Если умножим ее значение на 400, а затем еще на три, получим, что минимальный линейный размер транзистора равен примерно одному микрометру, а его площадь соответственно одному квадратному микрометру, или 10—8 квадратных сантиметра.
Предельный размер кристалла самого чипа определяется экономическими соображениями. Кристаллы нарезаются из одной пластины большого размера. В свою очередь, эта пластина, одна из многих десятков тонких пластин, на которые разрезан цилиндр монокристаллического кремния. Современная технология позволяет выращивать кристаллы кремния диаметром до 15 сантиметров, а в ближайшем будущем, возможно, удастся получать кристаллы диаметром до 20 сантиметров.
В большой пластине кремния неизбежно где-то есть микроскопические дефекты, и внутри и на поверхности. Чем на более крупные квадратики разрезается круглая пластина, тем больше вероятность того, что в исходную пластину для чипа попадет микродефект. В настоящее время считается, что нарезать кристаллы площадью более одного квадратного сантиметра неэкономно. Но специалисты надеются, что со временем предельная площадь кристалла увеличится до 10 квадратных сантиметров.
Сколько же транзисторов можно расположить на пластине такого размера? К сожалению, большая ее часть (90 процентов) пойдет на соединения элементов схемы и изоляцию их друг от друга. И только около одного квадратного сантиметра может быть заполнено транзисторами. Если каждый транзистор будет занимать площадь примерно 10—8 квадратного сантиметра, то на одном кристалле уместится 100 миллионов транзисторов. Если учесть, что современные чипы уже содержат два миллиона транзисторов, то их сложность может быть увеличена в 50 раз, прежде чем кремниевая технология исчерпает себя.
При нынешних темпах научно-технического прогресса этот рубеж будет достигнут за десятилетие. Тогда один такой суперчип сможет выполнять всю работу сегодняшних стационарных ЭВМ. По имеющимся оценкам, мировой объем изделий электронной промышленности в настоящее время превышает 200 миллиардов долларов, что приблизительно равно объему валового национального продукта такой страны, как Индия. Не так уж и мало, если учесть, что она по этому показателю возглавляет вторую десятку государств. К концу нынешнего столетия объем продажи составит примерно один триллион долларов. Так что в перспективах электронной промышленности сомневаться не приходится.
Инженеры сейчас всерьез размышляют над тем, что еще недавно проходило по ведомству научной фантастики. Например, как уместить музыкальный синтезатор, способный играть за целый оркестр, в одном кристалле. Полагают, что в недалеком будущем появится «кремниевый секретарь», который сумеет говорить и понимать речь, составлять телеграммы, назначать совещания и в вежливой форме напоминать о делах. А к концу века ожидаются и личные роботы.
Уже сейчас начинается революция в телевидении. Передача сигналов в цифровом коде — метод, который при использовании суперсхем станет дешевым, обеспечит качество изображения, значительно превосходящее нынешнее. Появятся телевизоры, способные хранить понравившиеся передачи в своих запоминающихся устройствах на суперчипах.
Правда, мешает использование чипа в качестве долговременной памяти пока одно «но», которое не всегда удается обойти.
При выключении питания записанная информация пропадает, поэтому на них постоянно надо подавать питание. Но крошки-чипы потребляют не так уж и много, так что в стационарных условиях с этим недостатком можно примириться.
Пожалуй, не найти радиотехнических систем, которых не коснется «чипизация». Радары не столь уж далекого будущего, например, будут состоять лишь из антенны, которая опять же будет исполнена в виде множества интегральных СВЧ-микросхем (антенны такого типа называются фазированными антенными решетками, или сокращенно ФАР) и миниатюрной ЭВМ на суперчипе.
А остановится ли электроника на суперчипах? Какие пути ее развития намечаются уже сейчас, в наше время?
ЭЛЕКТРОНИКА ЧЕТВЕРТОГО ПОКОЛЕНИЯ
Как мы видели, начиная с 1960-х годов, момента старта интегральной электроники, инженеры и технологи словно втянулись в марафонскую гонку: кто быстрее уменьшит в размере транзисторы и плотнее разместит их в одном чипе. Принцип был один: изготовить уже известную схему, только в меньшем масштабе, соответственно уменьшив напряжение питания.
При всей своей прогрессивности и достоинствах сама идея интегральной электроники не несла в себе ничего принципиально нового. Это был все тот же схемотехнический путь, то есть известные схемы, которые работали на дискретных полупроводниках, воспроизводились на кристалле кремния. Конечно, не обошлось и без взаимного влияния.
Само развитие интегральной технологии открывало новые возможности, рождались новые типы транзисторов, что, безусловно, отразилось и на принципах построения схем. Но все равно это путь безудержного роста числа элементов в микросхеме по мере усложнения выполняемых ею функций.
И вот виден финиш марафона — известны те пределы, до которых может быть уменьшен транзистор.
Хотя, чтобы дойти до финиша, надо преодолеть еще много преград. Но специалисты сходятся во мнении, что работать с линией тоньше, чем 0,1 микрометра, видимо, нет смысла. При таких размерах знакомые материалы ведут себя странно. Например, тончайшие полоски алюминия, которые соединяют транзисторы, извиваются как змеи, когда по ним проходят электроны. В этом тонком мире действуют уже и другие законы, и вполне вероятно, что там нас ждут неожиданные открытия.
Кроме того, не только физика накладывает ограничения, но и экономика. Возможно, что еще раньше, чем будет достигнут физический предел малости транзистора, наступит экономический предел. В последние два десятка лет стоимость чипов неуклонно снижается. При переходе на субмикронные размеры элементов микросхемы изменятся и методы изготовления чипов и тенденция снижения их стоимости может обратиться вспять. Сверхмалые и сверхсложные чипы просто невыгодно будет производить. Как говорят: «Овчинка выделки не стоит», И наука ищет выход из ожидаемого, но еще не достигнутого тупика…
А что если отказаться от привычных электрических схем? Что если для обработки информации использовать непосредственно какие-либо явления в разных средствах — твердых, жидких, плазменных, полупроводниковых, магнитных, биологических… Функцию сложной схемы их транзисторов, диодов, резисторов и других элементов пусть выполняет непосредственно какой-либо физический процесс.
Такой принципиально новый подход получил название функциональной электроники. Понятие емкое, обширное. В нем множество направлений, каждое из которых заслуживает отдельной популярной книги. Здесь и оптоэлектроника, и магнитоэлектроника, и акустоэлектроника, и криогенная электроника, и биоэлектроника…
Особенно часто сейчас в газетах пишут о биоэлектронике. Вероятно, из-за экзотики. Еще бы, биологические системы — своего рода рекордсмены. Диву даешься и отказываешься верить, когда читаешь, что слуховой орган кузнечика чувствует колебания, амплитуда которых составляет половину диаметра атома водорода! Чувствительность слуха кузнечика столь высока, что, находясь, скажем в Подмосковье, он может воспринимать самые малые землетрясения, происходящие на Камчатке. Неудивительно, что творения живой природы, своего рода биологические «патенты», — постоянный источник новых идей для инженеров, конструкторов, ученых.
Отчасти особое внимание к биоэлектронике связано с такими заманчивыми идеями, как, например, имплантация в мозг биоэлектронного устройства для восстановления зрения у слепых или создания самостоятельно собирающихся биологических вычислительных машин. Представьте себе ЭВМ, синтезированную с помощью бактерий! Вполне возможно, что лет через 15— 20 такая ЭВМ перейдет из мира фантастики в мир реальный. Уже многие научные коллективы в различных странах работают в этом направлении.
Одним из кирпичиков биологических ЭВМ может стать молекула белка с «памятью», то есть обладающая способностью находиться в одном из двух состояний, как и транзистор.
С переходом от кремниевых микросхем к «молекулярной электронике» на органических материалах, по-видимому, можно будет добиться плотности записи информации до одного миллиарда миллиардов (1018) бит в одном кубическом сантиметре материала! Для сравнения отметим, что в человеческом мозге (его объем составляет 750 кубических сантиметров) можно записать информацию, эквивалентную одной тысяче миллиардов (1012) бит (текст примерно нескольких сотен книг), а в одном кубическом сантиметре генетического материала «спрессовано» две тысячи миллиард миллиардов (2∙1021) бит информации.
Некоторые результаты уже получены. Например, в области активных биологических пленок. Их можно использовать в качестве оптических запоминающих устройств ЭВМ.
В институте биофизики АН СССР было обнаружено, что обезвоженный белок бактериородопсин может «останавливаться» на определенной стадии своего фотохимического цикла, или, попросту говоря, фиксировать записанное на нем изображение.
Бактериородопсин относится к так называемым фитопигментам, которые вступают во взаимодействие со светом. Особое место среди них занимает родопсин — светочувствительное вещество, входящее в состав клеток сетчатки глаза человека и животных. Поглощая квант света, родопсин меняет свою окраску. Он содержится, например, в солелюбивых пурпурных бактериях. Их также называют «зрячими» за способность преобразовывать энергию света в электрохимическую энергию.
Удивительное превращение происходит с помощью родопсина, и в этом варианте он называется бактериородопсином. Светочувствительные молекулы именуют также хромофорами.
Первая пленка на основе бактериородопсина создана в 1978 году. С помощью лазера на нее записывают и с нее считывают информацию. Теоретически можно получить большую плотность записи: 1014 бит на один кубический сантиметр, ведь цвет меняет единичная молекула, а значит, каждая молекула может хранить информацию.
Создать молекулярный электронный переключатель — проблема сложная и пока еще не воплощенная в практическое устройство. Нужно, чтобы молекула могла изменять свое строение (например, конфигурацию электронных оболочек) и возвращаться в исходное состояние вполне определенным и контролируемым образом.
Возбуждать биомолекулу, или, иначе, переводить ее в одно из устойчивых состояний надо осторожно. В момент перестройки электронных оболочек она поглощает энергию, что приводит к ее тепловому разрушению. И ученые вспомнили об одном интересном явлении — о солитонах. Им-то и решили поручить эту работу.
Солитоны — устойчивые уединенные волны — порой возникают в самых разных средах: в кристаллах, магнитных материалах, в сверхпроводниках, в живых организмах, в атмосфере Земли и других планет, в галактиках…
Уединенная волна ведет себя как частица, хотя ею и не является, а представляет собой особое возбужденное состояние среды. Два солитона могут столкнуться и разлететься подобно бильярдным шарам, поэтому в некоторых случаях солитон рассматривают как частицу, движение которой подчиняется закону Ньютона. Иногда солитоны называют также «частицеподобными волнами».
Мы уже говорили о монополе — частице, несущей магнитный заряд. Его носителем мог бы быть и солитон. Во всяком случае, теория не отвергает такой возможности. Интересный результат получил советский физик В. А. Рубаков: вблизи монополя вечный пока протон распадался бы мгновенно. Наше счастье, что монополи не обнаружены. Значит, их или очень мало, или вовсе нет.
Исследователи заметили, что в определенных условиях тонкие пленки органических веществ из белков и ферментов могут быть той средой, в которой распространяются солитоны за счет энергии, в ней запасенной. Замечательно, что при движении солитонов не происходит потери энергии. Это очень ценное свойство с точки зрения создателей нового поколения микросхем.
Была предложена такая модель молекулярного переключателя на органической основе. Белковая цепочка присоединена к светочувствительной молекуле — хромофору. Молекула хромофора переходит из активного состояния в пассивное и обратно при движении солитонов вдоль цепочки белка. Если она находится в возбужденном состоянии, то под влиянием падающего света в ней возникает электрическое напряжение. Если в спокойном, то при воздействии света напряжения не возникает. Используя такой переключатель как элементарную ячейку, можно составить более сложные переключающие схемы вплоть до устройств сложения и деления, применяемых в ЭВМ.
Ученых привлекают две заманчивые идеи конструирования органических материалов для будущих биосхем. Первая состоит в том, чтобы создать тонкую органическую пленку с помощью последовательного нанесения мономолекулярных слоев с поверхности жидкости на подложку. После высыхания слои можно скрепить электронным пучком. Вторая идея — более отдаленного будущего: использовать успехи генной инженерии, с тем чтобы «подправить» нужным образом белковые структуры, особенно те, которые обладают необычными свойствами.
Ряд ученых прочат в качестве «памяти» будущих биологических ЭВМ молекулы ДНК (дезоксирибонуклеиновой кислоты), в которых природа зашифровала код нашей жизни. Один из руководителей американской компании «Белл телефон» выразился так: «Первоначально наше внимание было обращено на то, каким образом природа создала исключительно эффективную сигнальную систему. Если рассмотреть все имеющиеся виды хранения и передачи информации, нетрудно увидеть, что один из наиболее удачных способов, существующих в природе, осуществляется при помощи молекул ДНК. Мы еще не вполне готовы подключить телефонные провода к ним. Пока мы просто хотим посмотреть, чему у таких молекул можно научиться».
Специалист невольно отметил еще одну из проблем будущих биоустройств. Как электрически соединять молекулы-переключатели? Ведь молекула слишком мала; ее невозможно подсоединить к обычному электрическому проводнику. Ученые рассчитывают сделать это с помощью «химических проводов» — полимеров. Они имеют цепную структуру и могут проводить электрический ток.
Микротехника, создаваемая сегодня из биологических материалов, делает первые, пока еще робкие, шаги, и, возможно, лет через 10—15 информационные биоустройства станут нам столь же привычны, как и нынешние ЭВМ. А дальше, как говорится, чем черт не шутит, может, удастся создать робота на биоэлементах, похожего на нас с вами?