Физика для любознательных. Том 1. Материя. Движение. Сила

Роджерс Эрик

Интерлюдия

ПРИЛОЖЕНИЕ ПО АРИФМЕТИКЕ

 

 

Глава 11

Приближенные вычисления, ошибки, пропорции

Стандартная запись чисел

Размеры атомов и электронов крайне малы, а число их невообразимо велико. Если выражать массы атомов и электронов в обычных единицах, то получаются чрезвычайно маленькие числа, а если выражать величину электрического тока количеством протекающих электронов, то мы получим огромное число. В атомной физике и астрономии производят арифметические действия над огромными числами и очень малыми числами, которые всегда выражают в виде десятичных дробей. И с теми, и с другими числами оперировать весьма неудобно, если они записаны полностью, как в элементарной арифметике. Поэтому обычно используют стандартную форму записи таких чисел. Любое число представляется в виде числа с одной значащей цифрой перед запятой, умноженного на число 10 в соответствующей степени, например 2,3 х 106. Числа, записанные в стандартной форме, легко умножать (или делить), так как степени числа 10 просто складываются (или вычитаются).

При такой записи легко пользоваться счетной линейкой и при расчетах с помощью логарифмических таблиц. (Степень 10 дает непосредственно целую часть логарифма, а таблицы — дробную часть логарифма по первой части в стандартной записи.) Числом цифр после запятой можно охарактеризовать точность исходных данных или точность результата расчетов.

Например, толщина волоса близка к 0,00015 м.

Умножение этого числа на 10 дает 0,0015,

еще на 10 дает 0,015,

еще на 10 дает 0,15,

еще на 10 дает 1,5.

Отсюда стандартная запись числа:

0,00015 x 10 x 10 x 10 x 10 равно 1,5, или 0,00015 х 104 = 1,5.

Следовательно,

0,00015 равно 1,5/104 или 1,5 х 10-4.

Это и есть стандартная запись числа 0,00015.

Если попытаться рассортировать волосы по толщине и измерить толщину волоса с большой точностью, то можно было бы найти волос диаметром, скажем, 0,0001502 м. Мы должны записать это число в виде 1,502 х 10-4 м. Сомневаясь в такой точности, можно отбросить две последние цифры и записать результат измерений в виде 1,50 x 10-4 м. Заметьте: 1,50 x 10-4 — это не то же самое, что 1,5 x 10-4. Число 1,50 означает, что мы вполне уверены в цифре 1, вполне уверены в цифре 5 и считаем, что следующая цифра 0; она ближе к 0, чем к 1, или к цифре 9 числа 1,49. В то же время 1,5 означает число, лежащее где-то между 1,45 и 1,55.

Масса атома водорода равна

0,00000000000000000000000000166 кг.

Чтобы избавиться от одного нуля, нужно умножить это число на 10. Чтобы избавиться от всех двадцати шести нулей, нужно умножить его на 1026, тогда получим 0,166. Умножение еще на 10 дает 1,66. Таким образом, чтобы получить число 1,66, следует передвинуть запятую на 27 разрядов вправо, т. е. произвести умножение на 1027. Но масса атома должна остаться неизменной, значит, нужно разделить 1,66 на 1027. «Разделить на 1027» записывают как «умножить на 10-27», следовательно, масса атома водорода равна 1,66 х -27 кг.

Один килограмм гелия содержит

1500000000000000000000000000 атомов гелия.

В стандартной форме это число будет записано в виде 1,5 х 1027.

Чтобы перемножить числа, записанные в стандартной форме, нужно перемножить их «главные части» на линейке и сложить оба показателя степени числа 10 — сумма показателей даст новый показатель степени десяти.

Чтобы разделить одно число на другое, нужно вычесть из одного показателя степени числа 10 другой. Например,

a) (3,1 x 104)x(2,0 x 103) = 6,2 x 104+3= 6,2 x 107,

б) (3,1 x 10-4)х(2,0 x 10+1) = 6,2 x 10-4+1= 6,2 x 10-3

в) 3,1 x 104/2,0 x 103 = 1,55 х 104–3 = 1,55 х 101

г) 3,1 x 10-4/2,0 x 10+1 = 1,55 х 10-4-1  = 1,55 х 10-5

д) 3,1 x 10-4/2,0 x 10-7 = 1,55 х 10-4-(-7)  = 1,55 х 10+3

е) (3,1 x 10-4 х 6,0 x 107)/(2,0 x 10-3 х 1,55 x 102) = 6,0 х 10-4+7-(-3)-2 =

= 6,0 х 10-4+7+3–2 = 6,0 х 104

Счетная линейка

Счетная линейка позволяет легко и быстро умножать и делить числа, если научиться оценивать доли мелких делений линейки. Но линейка ничего не говорит о том, где должна стоять запятая. Чтобы установить положение запятой, нужно либо проделать грубый подсчет в уме, либо записать все числа, над которыми производятся действия, в стандартной форме и после этого сделать приближенный расчет. Например, требуется вычислить

(126 x 79,2 x 0,074)/(0,00521 x 876)

Линейка дает 1618. Грубый подсчет дает

(120 х 80 х 7/100)/(5/1000 х 800), или (120 х 7)/5, или примерно 160

Поэтому запятую следует поставить так: 161,8.

Стандартная запись дает

Следовательно, ответ 161,8.

Проценты

Знак % означает просто 1/100, так что 2 % означает 2/100; 6,21 % означает 6,21/100, a 0,03 % означает 0,03/100. Если вы хотите, например, выразить 3/20 с помощью знака %, то нужно превратить 3/20  в равновеликую дробь со знаменателем 100. В данном случае это просто: 3/20  — это то же самое, что 15/100. Значит, 3/20  равно 15 %, т. е. 15 % — это просто иной способ записи дроби 3/20 !

Чтобы перевести в % число 3,2/23, мы должны перевести его в равновеликую дробь со знаменателем 100. Для этого запишем 3,2/23 в виде дроби со знаменателем 1, после чего умножим числитель и знаменатель на 100. Производя затем деление в числителе, получаем

Значит, 3,2/23 — это то же самое, что дробь 14/100, которую мы записываем в виде 14 %. Выразить 3 в процентах от 20 означает просто записать дробь 3/20 и превратить ее в равновеликую дробь со знаменателем 100, а затем записать новую дробь с помощью знака %. Мы записываем 3/20 в виде 15/100, следовательно, ответ 15 %.

Чтобы выразить 0,032 в процентах от 7,91, мы записываем дробь 0,032/7,91 и преобразуем ее так, чтобы числитель и знаменатель были целыми числами: 32/7910. Затем превращаем эту дробь в дробь со знаменателем 100 и получаем

Запись ошибок экспериментальных данных в процентах

Если результаты двух измерений какой-нибудь величины несколько отличаются друг от друга, то их расхождение выражают в процентах от всего результата измерений. Так сделано в приводимых ниже примерах:

1) Экспериментаторы А и В фиксируют время на соревнованиях, они получили соответственно 506 и 504 сек. Разница в замерах 2 сек, ее нужно отнести к результату самих замеров, который немногим превышает 500 сек. Чтобы указать, насколько близко оба результата совпадают, мы выражаем их разность в виде доли всего времени: 2 сек/500 сек. Разность 2 сек составляет 2/500 замеренного времени. Превращая эту дробь в дробь со знаменателем 100, получаем 2/500 = 0,4/100 = 0,4 %. Мы говорим, что результаты измерений различаются на 0,4 %.

2) Два взвешивания одного и того же предмета дают 2,130 и 2,132 кг. Оба взвешивания различаются на 0,002 кг, эту разницу нужно отнести к результату взвешивания, равному 2 кг. Таким образом, интересующая нас дробь равна 0,002/2, или 0,001, т. е. 0,1 %. Мы говорим, что расхождение результатов взвешивания составляет 0,1 %.

Считая оба измерения одинаково надежными, (допустим, что они произведены двумя хорошо успевающими учащимися), мы можем выразить в процентах их расхождение, но это нельзя называть ошибкой в процентах. Если же экспериментатор проверяет новый прибор, измеряя с его помощью какую-либо известную величину, то расхождение между полученным результатом и стандартным значением можно выразить в процентах. Полученную таким образом величину можно назвать ошибкой (в процентах) и приписать ее прибору. Иногда проделывают много измерений той или иной величины и берут среднее из полученных результатов, рассчитывая таким путем исключить случайные ошибки. При этом можно выразить в процентах разности между отдельными результатами и средним значением и назвать их ошибками отдельных измерений, выраженными в процентах.

«Ошибка» (в процентах) характеризует небрежность при выполнении эксперимента или недостатки приборов, она свидетельствует о неопределенности в аппаратуре или в наших рассуждениях. Стремиться к чрезмерной точности при указании ошибок нет смысла. Это нелогично. Например, если разрубить обеденный стол на дрова, то вряд ли стоит потом зачищать куски дерева наждачной бумагой! Допустим, что, вычисляя ошибки, мы получили величину 0,4219365 %. Представлять ошибку таким числом — совершенно неразумно; так никогда не поступают. Если же указать, что ошибка равна 0,4 %, то это вполне имеет смысл, таким числом можно пользоваться.

Поэтому безразлично, на какое число мы будем делить при подсчете процентной ошибки: на один из результатов измерений, на их среднее или на какое-то близкое к ним округленное число. Выражая в процентах ошибку, т. е. недостаток точности, стараться вычислить ее как можно точнее — это просто тратить впустую время. В приведенном выше втором примере можно делить 0,002 на 2,130, или 2,132, или просто на 2. Ответы будут такие:

0,002/2,130 = 0,0939 %, 0,002/2,132 = 0,0938 %, 0,002/2 = 0,1000 %.

Все три результата дают при округлении одно и то же значение 0,1 %. Именно этим значением, легко вычисляемым в уме, и стал бы пользоваться любой физик.

Вычисления с ошибками

Предположим, что для вычисления какой-то величины требуется перемножить несколько результатов измерений. Для нахождения ошибки произведения нужно сложить все ошибки (или неопределенности) сомножителей. При этом ошибку произведения, как и ошибки сомножителей, выражают в процентах. Например, допустим, что при измерении площади прямоугольного участка землемер по небрежности находит завышенные значения длины и ширины. Предположим, что измеренная им длина завышена на 2 %, а ширина — на 3 %. Результат вычисления площади участка будет завышен на 2 + 3 %, т. е. на 5 %, а не на 2 x 3 %, что составляет 0,06 %. Предлагаем вам разобрать следующие задачи.

Задача 1. Ошибки в сомножителях

а) ( Арифметическая задача .) Длина прямоугольного участка 400 м, а ширина 300 м. Измерения выполнены неточно, они дали значения 408 м на 309 м.

Вычислите истинную площадь поля.

Вычислите площадь поля по результатам измерений.

Выразите ошибку, допущенную при измерении длины участка, в процентах от длины. Найдите также ошибку в процентах, допущенную при измерении ширины.

Выразите ошибку в определении площади участка в процентах от площади.

Чтобы найти площадь участка, мы умножаем его длину на ширину. Какое правило нужно применить для определения ошибки, допущенной при вычислении площади в приведенном примере? Как мы должны поступить: перемножить ошибки, допущенные при измерении длины и ширины участка, или сложить эти ошибки?

б) ( Более формальный подход .) Рассмотрите задачу следующим образом:

Результат определения длины

408 м или (400) + (2 % от 400).

Мы можем записать это в виде

400 + ( 2 / 100 )∙400

и представить произведением 400∙(1 + 2 / 100 )

Точно так же запишите ширину участка. Вычислите площадь участка по полученным результатам измерений, перемножив длину и ширину, записанное в виде произведений:

(400∙(1 + 2 / 100 ))∙(300 + ())

Это дает

400∙300∙()()

или

120 000∙()()

Величина 120 000 кв. м характеризует истинную площадь. Поэтому произведение ()(), будучи представлено суммой (1 + некоторое число), прямо дает ошибку в процентах при определении площади. Преобразуйте произведение ()() к сумме вида (1 + некоторое число), как это делается в алгебре. Точно так же, как запись 400∙(1 + 2 / 100 ) указывает ошибку 2 % в измерении длины, 400 м, результат такого преобразования покажет, что ошибка в определении площади равна…%.

в) ( Алгебраический вариант .) Размеры прямоугольного земельного участка X м на Y м. Длина участка завышена при измерении на x % и равна по данным измерений Х  + ( x /100)∙ Х м; ширина завышена на у %.

Разложите длину и ширину, найденные при измерениях, на множители, как в задаче ( б ). Перемножьте обе величины, чтобы найти площадь. В полученном результате нужно выделить ту часть, которую можно истолковать как ошибку в процентах, допускаемую при определении площади. [Обратите внимание на то, что ошибка не равна в точности величине, вычисляемой по приведенному выше простому правилу. Произведение ()(), приведенное к сумме (1 + некоторое число), содержит еще одну очень малую дробь со знаменателем 10 000. Эта дробь представляет собой чрезвычайно малую добавку к ошибке, и ею можно пренебречь. Убедитесь в этом сами, подставив конкретные числа; например, возьмите 2 вместо х и 3 вместо у .]

г) ( Геометрический вариант .) Нарисуйте прямоугольный участок поля. Удлините стороны прямоугольника так, чтобы длина увеличилась на х %, а ширина — на у %, и очертите новые границы участка. Какую долю первоначальной площади составляют добавочные полоски?

Задача 2. Ошибки в сомножителях со знаками плюс и минус

Предположим, что в задаче 1 при обмере участка длина оказалась завышенной, а ширина заниженной. Покажите в общем виде с помощью алгебраических преобразований или на примере с конкретными числами, что ошибка в процентах при вычислении площади равна разности ошибок в определении длины и ширины или алгебраической сумме этих ошибок, если ошибку заниженного результата измерений считать отрицательной.

Задача 3. Ошибки в двух и более одинаковых сомножителях

Предположим, что прямоугольный участок в приведенных выше задачах представляет собой квадрат. Если землемер это знает, он измеряет лишь одну сторону квадрата X (с ошибкой х %) и для определения площади возводит результат измерения в квадрат.

1. Какова ошибка в процентах при таком подсчете площади?

2. Вообще если произведение содержит сомножитель X 2 , то ошибка х % сомножителя X приводит к ошибке в произведении, равной…%.

3. Если произведение содержит величину X 3 , то ошибка х % сомножителя X приводит к ошибке в произведении, равной…%.

4. Если произведение содержит величину X n , то ошибка х % сомножителя X приводит к ошибке в произведении, равной…%.

Задача 4. Ошибки в квадратных корнях

Предположим, что произведение содержит в качестве множителя √ Х .

Как повлияет ошибка в X , равная х %, на точность произведения? Попытайтесь сообразить, какой будет ответ, воспользовавшись одним из следующих способов:

1. Запишите √ Х в виде X 1/2 и примите в качестве допущения, что правило решения четвертого вопроса задачи 3 применимо и в том случае, когда n — дробное число.

2. Если множитель √ Х фигурируете произведении дважды, то мы получаем √ Х ∙√ Х , или (√ Х ) 2 , т. е. X . Значит, ошибка в X , равная х %, дает ошибку х % в произведении. Поэтому если множитель √ Х встречается только один раз, то мы полагаем, что ошибка составит… %.

…текст не читается…

сталкиваются, например, при разделении изотопов урана для получения атомной энергии. См. задачу в гл. 30 [169] .)

Задача 5. Ошибки в делителях

Предположим, нам нужно вычислить частное X / Y . Если значение Y завышено на у %, то как это отразится на частном? Предположим, мы увеличили X на столько же процентов, что и Y . Тогда частное будет, равно

или X / Y , т. е. не изменится. Если знаменатель дроби завышен на у %, то эта ошибка в точности компенсирует ошибку у % в числителе, который тоже завышен. Обе ошибки дают одинаковый по величине и противоположный по знаку вклад в ошибку частного. Следовательно, если завысить на у % знаменатель дроби, то это приведет к такому же результату, как занижение на у % числителя. Значит, ошибка + у % в делителе Y приведена к ошибке частного X / Y , равной — у %. Заметьте, что это следует и из решения четвертого вопроса задачи 3 .

Задача 6. Вычисление результата с несколькими множителями

Предположим, эксперимент приводит к результату

Экспериментаторы дают для своих измерений следующие ошибки в процентах:

от точного значения 126 может отличаться на ±1 %,

9,25 — на ±0,2 %,

0,0740 — на ±0,1 %,

29,62 — на ±0,2 %,

0,00521 — на ±0,1 %.

Если бы все результаты отдельных измерений были занижены на величину ошибки, то

а) числитель записанной выше дроби R был бы занижен на…?…%,

б) знаменатель дроби R был бы занижен на…?…%;

в) вследствие этого окончательный результат ( R = 1530) был бы за…ен?

на…?…%.

В самом худшем случае все результаты измерений, стоящие в числителе, могут быть занижены на величину ошибки, а все результаты измерений, стоящие в знаменателе, — завышены на величину ошибки;

г) в этом случае результат будет за…ен? на…?…%.

На практике мы рассчитываем, что столь коварного заговора против нас не будет. Тем не менее результат, который получается в последнем случае, может служить серьезным предостережением.

Оценка как единственная возможность

Часто бывает необходимо прикинуть ответ, хотя нет данных для точного расчета или нет ни времени, ни возможностей использовать все данные полностью. Например, при сильном снегопаде в большом городе городские власти хотят знать, сколько человек требуется для уборки снега. Неважно, будет ли это 3219 или 3456 человек: вполне достаточно установить, что требуется 3000–4000 человек. Но эту цифру нужно получить быстро: обсуждать и уточнять, требуется ли 3119 человек или на 100 больше или на 50 меньше, не приходится — задержка повлечет большие затраты времени и денег, а может привести и к серьезной опасности.

Однако уборка снега — старая проблема, где подсчет может базироваться на опыте прошлых лет. Иногда возникают новые проблемы, требующие быстрого ответа, хотя даже исходные данные можно оценить лишь ориентировочно. Например, генерал спрашивает полковника, указывая на карту. «Сколько человек может прокормить этот район в течение месяца?» Генерала устраивает незамедлительный, пусть ненадежный ответ: «Около 7000».

Тщательное обследование и точный учет продовольствия и потребностей, включая детальное рассмотрение транспортной проблемы, могли бы дать более достоверный ответ, скажем 9250. Но необходимые данные нельзя получить, пока район не будет занят!

Еще один пример. При пересмотре налогов нужно быстро получить приближенную оценку объема импорта табака. Ошибка даже на 40 % не помешает решению задачи. Детальное изучение вопроса могло бы привести к результату, отличающемуся от истинной цифры всего на 0,1 %. Но оно было бы сопряжено с ненужной тратой средств и не имело бы ничего общего с научным подходом к проблеме. Дело в том, что этот точный результат играет лишь второстепенную роль в общем комплексе вопросов и должен учитываться совместно с другими сведениями, которые не могут быть точными.

На рубежах новых знаний приближенная оценка может оказаться главным и единственным результатом эксперимента. Тем не менее ученые могут быть очень рады такому результату.

Например, в раннюю эпоху развития атомной физики эксперименты позволили высказать предположение, что «атомы углерода имеют по 6 электронов». Сегодня мы знаем, что каждый нейтральный атом углерода имеет ровно 4 электрона, ну а 50 лет назад физики были рады узнать, что это число электронов близко к 6, а не к 2 или 20. Они смело приняли число электронов равным 6 и выдвинули теорию строения атомов, которая содействовала дальнейшему развитию атомной физики, направляя экспериментаторов и теоретиков по верному пути. Опытная проверка теории на основе содержащихся в ней положений подтвердила правильность этой теории и окончательно оправдала выбор числа 6 в ретроспективном плане.

Мы встречаем много задач, в которых отыскание точного ответа либо требует затраты неоправданных усилий, либо просто невозможно, но где в то же время можно удовлетвориться приближенным решением. В таких случаях не остается ничего другого, как на основе разумных предположений, требующих смекалки и работы мысли, произвести оценку, или, как говорят, «грубую прикидку».

Оценки, к которым приходится прибегать деловым людям, государственным деятелям, или ученым, — не простое дело: тут нельзя обойтись примитивным угадыванием решения. Оценки требуют не только уменья и навыка, разностороннего опыта и широты знаний, но и твердости характера. Не упускайте возможности проделывать такие расчеты в вашей повседневной работе, будь то нынешние учебные занятия или будущая профессиональная деятельность.

Если вы достигнете успехов в своей деятельности, то вам наверняка придется часто проделывать ориентировочные расчеты — навык в этом деле представляет собой важнейшее качество хорошего администратора. При правильном применении оценочные расчеты с их приближенными ответами играют важную роль в научных исследованиях. В самом деле, они могут даже стать самостоятельной областью знания: мастер в оценочных расчетах должен обладать способностью к широким обобщениям в науке.

Вот два примера:

Пример А . «Сколько времени потребуется, чтобы скосить этот газон?»

Ширина косилки около полметра, ширина ряда (полосы скошенной травы) с учетом частичного перекрытия рядов должна быть самое большее 45 см и самое меньшее 30 см. Газон, насколько можно судить, имеет примерно 30 м в длину и 9 м в ширину. На газоне укладывается от 9 / 0,45 до  9 / 0,3 , т. е. от 20 до 30 продольных рядов. Остановимся на 30 рядах. Косилка должна пройти 30 рядов, каждый длиной примерно 30 м, т. е. всего ее путь составит 300 м, или 0,9 км. Рабочий, толкающий перед собой косилку, вряд ли идет со скоростью 6 км/час, но вполне может идти со скоростью 3 км/час, в этом случае рабочему потребуется (0,9 км)/(3 км/час), т. е.  3 / 10 часа. Наш ответ — 20 минут — представляет собой грубую прикидку, но ее можно использовать для проверки правильности расценок.

Пример Б . «Во сколько раз масса Солнца больше массы Земли?»

Очень интересно получить хотя бы приближенный ответ на этот вопрос. Тогда можно было бы узнать, достаточно ли массивна Земля по сравнению с Солнцем, чтобы вызывать заметное возмущение орбит других планет и комет. Астрономы могут «взвесить» Солнце по отношению к Земле, воспользовавшись законом всемирного тяготения Ньютона. Имеющиеся точные данные дают отношение

Грубое округление с целью быстро получить приближенный ответ дает

Масса Солнца / Масса Земли ~= 200 000/1 или 300 000/1 или 400 000/1

в зависимости от того, как именно производить округление. Это наверняка неправильный, вернее «неточный», ответ по сравнению с точностью исходных данных. Все, что можно на самом деле сказать, это то, что ответ лежит где-то между 100 000 и 500 000.

Но в данном случае этого достаточно: ответ показывает, что масса Земли составляет ничтожную долго массы Солнца, поэтому Земля едва ли в состоянии как-нибудь повлиять на движение других планет, скажем Марса, вокруг Солнца.

Приближенная оценка и приемы быстрого счета

Чтобы произвести грубую оценку, имеет смысл в силу самого ее существа пользоваться лишь приближенными вычислениями. Для ускорения процесса вычислений исходные данные округляют.

Способ округления всех чисел до ближайшей степени числа 10 может оказаться слишком грубым. При таком способе вместо 8 нужно взять 10, вместо 67 взять 100, а вместо 1453 взять 1000. В тех случаях, когда числа близки к 10 или какой-нибудь степени 10, этого достаточно. Так, вместо любого из чисел 8, 9, 10, 11 или 12 следует написать ровно 10, а вместо числа 1193 написать 1000. Округление 73 до 100 представляется слишком грубым; если же округлить 73 до 70, то получается много малых чисел, вроде 7, которые приходится умножать и делить, а это все же неудобно — нужен более смелый оценочный расчет. Поэтому, производя приближенную оценку, необходимо при округлении чисел пользоваться следующими двумя правилами.

Правило I. Если число близко к числу 10 в соответствующей степени, то его округляют до этой степени 10.

Правило II. Если число существенно отличается от числа 10 в соответствующей степени, то его округляют до ближайшей степени 2 или до произведения числа 2 в некоторой степени на число 10 в соответствующей степени. В соответствии с этим правилом вместо числа 7 берут 2 3 , вместо 4200 — 2 2 х10 3 , вместо 67 берут 2 3 х10 1 или еще лучше 2 6 (=64) вместо 3–2 2 (=4), или еще лучше 2 5 /10(= 32/10).

В некоторых случаях есть возможность выбора: например, 8 можно записать в виде 23 или округлить до 10. Число 27,3 можно округлить до произведения 2 на 10 или до произведения 22х10 (на самом деле число 27,3 лежит примерно посредине) или еще лучше до 25. Умелый вычислитель округлит 27,3 до числа 25, которое равно 100/4, или 102/22. Еще более искусный вычислитель, которому нужно возвести множитель 27,3 в квадрат, округлит его один раз в сторону увеличения до 22х10, а второй раз в сторону уменьшения до 2х10. Однако такой прием не дает экономии времени, если только он не будет прочно усвоен.

Одновременное применение правил I и II, кажущееся на первый взгляд странным, дает надежные приблизительные ответы. Применение этих правил приводит к результату, содержащему числа 10 и 2 в соответствующих степенях: полученный результат может быть затем превращен в простой окончательный ответ. Советуем вам запомнить степени числа 2, приведенные здесь в таблице.

Обратите внимание, что 210 ~= 1000, т. е. 103. Это дает удобный способ избавляться от огромных степеней числа 2 в конечном результате. Если представить все числа в стандартной форме записи, то первую цифру числа, лежащего между единицей и десятью, можно округлить до 1, 2, 4, 8 или 10; остальная часть представляет собой степень числа 10. Это очень грубое приближение. Для лучшего приближения берут первые две цифры и округление производят до одного из следующих чисел в соответствии с правилами I или II:

10 16 20 32 40 64 80 100.

Пример:

(Примечание. Честности ради мы округлили все множители в числителе, а также в знаменателе в сторону увеличения.)

Это неплохая оценка. Расчет с использованием более сложных приемов приближенных вычислений дал бы результат, более близкий к точному значению 330 000.

Приближенные ответы и достоверное знание

Иногда бывает достаточно получить результаты с точностью не хуже 1 %. Примерами могут служить измерения удельных теплоемкостей, необходимых для проектирования приборов; измерения межатомных расстояний в кристаллах. с помощью рентгеновских лучей для определения химического строения; измерение периода полураспада радиоактивного элемента, которое производят, чтобы опознать этот элемент; измерение периода обращения спутника Земли с целью определить среднее удаление его от Земли.

Во многих случаях точность измерения величин должна быть не хуже 0,1 %. Такое требование может возникнуть при выборе объяснений того или иного явления. В некоторых случаях для выяснения какого-нибудь существенного вопроса приходится определять измеряемые величины с точностью до одной миллионной или даже одной миллиардной. Например, чтобы надежно предсказать выделяющуюся ядерную энергию, исходя из малых разностей атомных масс, сами массы нужно определить (масс-спектрографическим путем) с колоссальной точностью. Для решения проблем, возникающах на современном этапе изучения строения атома, необходимо определять длины световых волн с точностью до одной миллионной. А измерения гравитационного поля, чтобы можно было использовать их для дальнейшей проверки общей теории относительности, должны выполняться с точностью до одной миллиардной.

Но на ряд важных вопросов можно получить ответ, проделав весьма приближенные измерения. Например, мы вполне можем примириться с 20 %-ной погрешностью при определении химической валентности (которая должна быть малым целым числом), температуры термоядерной реакции или возраста Вселенной.

Добиваться большой точности — не всегда означает поступать разумно. Увеличение точности не самоцель. Следует прилагать большие усилия в этом направлении, если отсюда можно получить важные преимущества. Правда, иногда ученый стремится к повышению точности просто в силу чувства долга или находит удовольствие в том, чтобы сделать прибор как можно лучше.

Повышенная точность прибора сможет быть использована только в будущем. Проводя измерение, ученый приводит его точность согласно своей оценке. Он не ограничивается сообщением о том, что он измерил g и получил значение g = 9,8 м/сек2, а добавляет; «С ошибкой ±0,1 м/сек2. Тех, кто желает воспользоваться полученным результатом, ошибка часто интересует в такой же степени, как сам результат. Без указания ошибки ±0,1 результат измерения едва ли можно считать надежной информацией, которой может еще кто-то воспользоваться. Чтобы оценить ошибку, необходим большой навык: нужно принимать во внимание разброс результатов измерений, исключать влияние известных источников ошибок, определить скрытые систематические ошибки; не последнее значение имеет разумный и трезвый подход в целом, который появляется у экспериментатора, досконально знающего свою аппаратуру. (Обратите внимание, насколько у вас самих повышаются навыки экспериментатора после того, как вы поработаете некоторое время с каким-нибудь прибором в лаборатории, как появляется растущее чувство уверенности в результатах ваших измерений.)

Знаки

Результат измерения, погрешность которого экспериментатор считает равной 0,001, может быть записан тремя способами:

x = 3,1642 ± 0,003,

x = 3,1642 ± 0,1 %,

x = 3,164.

В третьей строчке последняя цифра 4 рассматривается как недостоверная. Ниоткуда не следует, что цифра 4 отличается от верной на ±3. Эта форма записи дает лишь основание считать, что последняя цифра сомнительна — обычно такой записи достаточно, чтобы указать на имеющуюся погрешность. В двух предыдущих строчках появление последней цифры 2 совершенно неоправдано: ошибка показывает, что такая запись результата (с точностью до последней цифры 2) лишена смысла. Экспериментатор, сохраняющий эту цифру, обманывает сам себя.

Если эксперимент дает приближенное значение или приближенный ответ появляется в результате оценки, не следует записывать результат как х = 800, ибо это противоречит точному смыслу знака =. Вместо этого нужно писать

х  (~=) 800.

Такая запись означает их приближенно равно 800». Символ  обычно означает «приблизительно равно» (хотя это утверждение не совсем логично).

При более грубой оценке можно написать

у ~ 1000.

Это значит, что у ближе к 1000, чем к 100 или к 10 000. Подобная грубая оценка «порядка величины» часто имеет огромное значение.

Так было с оценкой размера атома столетие назад, так обстоит дело с определением радиуса Вселенной (если он вообще не бесконечен) в наши дни. Во многих случаях достаточно произвести измерение с точностью до порядка величины. Например, когда речь идет о росте температуры, достаточно малом, чтобы им можно было пренебречь, или о весе, заведомо настолько большом, что поверхностное натяжение можно считать несущественным, то же самое можно сказать об определении приближенной даты исторического события, когда излишнее уточнение даты только отвлекает внимание от сущности события.

Если результаты представлены в стандартной форме, например

z = 2,34 х 106 и w = 7,8 х 103

то их порядки величины будут

z ~ 106 и w ~ 104.

Вы несомненно найдете применение знакам  в своей работе, чем бы вы ни занимались, и привыкнете проводить между ними различие. Заметьте, что символы эти не вполне установившиеся. Некоторые авторы и издатели заменяют символ  другими знаками.

Пропорциональная зависимость — ключ ко многим законам

Выражая наши знания о природе в виде простых законов, мы прежде всего ищем постоянство в явлениях: масса тела остается постоянной, полный электрический заряд тоже, количество движения сохраняется неизменным, все электроны одинаковы. Почти столь же простой и плодотворный принцип выражает прямая пропорциональность между величинами, при которой две измеряемые величины возрастают в одинаковой пропорции: удлинение пружины при увеличении нагрузки, сила и ускорение, давление и плотность газа.

Мы говорим, что для пружины (в пределах действия закона Гука)

УДЛИНЕНИЕ пропорционально НАГРУЗКЕ

или

УДЛИНЕНИЕ изменяется прямо пропорционально НАГРУЗКЕ.

Это записывают в виде

УДЛИНЕНИЕ ~ НАГРУЗКА.

Как и процентам, в элементарных курсах часто отводят особое место пропорциям и функциональной зависимости, и эти понятия кажутся чем-то таинственным и труднодоступным. Не будь этого, их считали бы очевидными с точки зрения здравого смысла. Рассмотрим несколько простых примеров.

Пример В . Предположим, что при снабжении картофелем некоего лагеря недельные потребности определяются следующим образом:

для лагеря на 100 человек требуется 200 кг картофеля

… 200… 400…

… 300… 600…

… 500… 1000…

Масса картофеля возрастает пропорционально размерам хозяйства. Это простейший тип соотношения между двумя величинами, с которым мы так часто встречаемся в физике [172] .

Можно сформулировать это соотношение несколькими способами:

1) МАССА КАРТОФЕЛЯ пропорциональна  ЧИСЛУ ЛЮДЕЙ;

2) МАССА КАРТОФЕЛЯ изменяется прямо пропорционально  ЧИСЛУ ЛЮДЕЙ;

3) МАССА КАРТОФЕЛЯ ~ ЧИСЛУ ЛЮДЕЙ (это сокращенная запись формулировок 1 и 2);

4) МАССА КАРТОФЕЛЯ = (ПОСТОЯННАЯ)∙(ЧИСЛО ЛЮДЕЙ).

Варианты 1 и 2 (и их математическая запись — вариант 3) — это просто попытки дать формулировку простым в очевидным вещам. « Две величины возрастают в одинаковой пропорции . Если удвоить одну из них, то удваивается вторая, если утроить одну, — утраивается вторая, и т. д.».

Имея это в виду, можно легко решать задачи, не вычисляя «постоянную», содержащуюся в записи варианта 4. Например, известно, что для 100 человек требуется 200 кг картофеля. Сколько потребуется его для 600 человек? Для вшестеро большего числа людей требуется в 6 раз больше продовольствия: 1200 кг.

Пример Г . Объем шара изменяется пропорционально третьей степени радиуса . Шар увеличен так, что радиус его стал в 5 раз больше первоначального. Что произойдет с его объемом? Если радиус увеличивается в 5 раз по сравнению с первоначальным, то величина (радиус) 3 возрастает в 5 3 раз по сравнению с первоначальным значением (поскольку R 3 = R ∙ R ∙ R и 5 R ∙5 R ∙5 R = 5 3 ∙ R 3 ). Следовательно, объем возрастает По сравнению с первоначальным в 125 раз. Это должно быть следствием здравого смысла, дли которого вовсе не нужно обращаться к соотношению 4/3π R 3 .

«Коэффициент пропорциональности»

Формулировка 4

МАССА КАРТОФЕЛЯ = (Постоянная)∙ЧИСЛО ЛЮДЕЙ

очень похожа на запись варианта 3, но для специалиста формулировка 4 не столь четко выражает идею зависимости между величинами. Поэтому советуем избегать ею пользоваться, если только можно получить нужный результат, прибегнув к здравому смыслу, как в приведенных выше двух примерах.

Для каждой пары значений в примере с картофелем, очевидно, справедливо соотношение

МАССА КАРТОФЕЛЯ Р = 2N∙ЧИСЛО ЛЮДЕЙ,

поэтому все четыре случая можно описать с помощью формулы P = 2N. Сущность этой записи в том, что она выражает зависимость между величинами: дело не в конкретном значении 2, а в том, что это число остается одним и тем же, т. е. постоянным. (Фактически это потребление картофеля, приходящееся на одного человека, т. е. 2 кг на человека.) Поскольку число 2 постоянно, мы можем записать

Р = (Постоянная)∙N.

Эта общая формулировка применима и к случаю, когда в лагерь собираются люди, потребляющие много картофеля, и на одного человека уходит уже 5 кг картофеля. Тогда наша форма примет вид P = 5∙N. (Конечно, если одни обитатели лагеря съедают по 2 кг картофеля в неделю, а другие по 5 кг, то вся схема рассуждений теряет силу. Надо иметь в виду, что такая же опасность существует и при выводе научных законов).

Проверка пропорциональности

Каким образом можно убедиться в наличии прямой пропорциональности между величинами при анализе результатов измерений? В примере с картофелем эта зависимость видна сразу. Нам же необходимо располагать простыми способами проверка в более запутанных случаях. Вот эти способы:

Способ I. Измеренное значение одной величины делят на значение другой и проверяют постоянство частного. В нашем примере:

и т. д., результат деления во всех случаях равен 2 кг на человека.

Это надежный способ проверки прямой пропорциональности. Разумеется, его можно применять двояким образом: если мы разделим число людей на массу картофеля, то получим еще один постоянный результат: 1/4 человека на 1 кг.

Способ II. Графики . Французский математик и философ Декарт, который жил вскоре после Галилея, изобрел метод построения графиков в координатах x и y. Сегодня мы видим в графиках нечто само собой разумеющееся и читаем их так же легко, как печатный текст. Может даже появиться опасность, что, скажем, позволив газетам представлять все наши статистические данные в форме графиков, мы воспитаем целое поколение верхоглядов, отвыкших вдумываться в слова и цифры статистики. В то же время несколько поколений назад многие считали графики запутанными и сложными. В наше время нужно научиться аккуратно и быстро строить графики и так же быстро читать их. Для этого лучше пользоваться некоторыми стандартными масштабами и приучиться соблюдать принятую точность построения, оценивая десятые доли деления.

Графики служат превосходным средством выражения зависимости между величинами. Совокупность результатов наблюдения двух величин (например, числа людей и количества картофеля) можно представить в виде совокупности точек, откладывая в удобном масштабе значения одной, измеряемой величины по вертикали, а другой — по горизонтали. Расположение точек показывает зависимость между двумя измеряемыми величинами. На фиг. 294 построен график А по приведенным выше данным о количестве людей и потребляемого ими картофеля. Сами по себе эти данные не дают нам права вставлять промежуточные точки, как если бы мы знали потребности любого возможного (даже дробного) числа людей. Однако мы можем предположить, что промежуточные точки ничуть не менее законны, чем те, по которым мы построили график.

Это позволит обеспечить продовольствием любое другое число людей. Чтобы найти (или продемонстрировать) соотношение между нашими данными, мы перейдем, забегая вперед, к простейшему соотношению между двумя величинами — к прямой связи или прямой пропорциональности — и будем от нее отталкиваться. Предположим, известно, что масса картофеля Р находится в прямой связи с числом людей N, и мы хотим предсказать вид зависимости Р от N. Мы знаем, что отношение P/N постоянно. Для любой точки на графике P/N характеризует наклон линии, соединяющей данную точку с началом координат.

Поэтому проведенные из начала координат до каждой точки прямые должны иметь одинаковый наклон и должны слиться в одну. Таким образом, все точки лежат на одной прямой, проходящей через начало координат. Если же все точки, определяющие зависимость Р от N, лежат на одной прямой, проходящей через начало координат, то мы можем сказать, что отношение P/N постоянно.

График в этом случае представляет собой прямую, проходящую через начало координат, и показывает, что масса картофеля возрастает в прямой пропорции к числу едоков.

Линейная зависимость

Графики В и С на фиг. 295 обнаруживают «линейную зависимость» между величинами x и y.

На графике В все нанесенные точки х1, у1 и т. д. лежат на прямой, проходящей через начало координат 0,0. Заштрихованные треугольники подобны: отношение высоты к основанию y/x, определяющее наклон гипотенузы, у них одно и то же. На графике С точки х5, у5 и т. д. лежат на прямой, которая не проходит через начало координат 0,0, и мы не можем говорить о прямой связи или пропорциональности между у и х.

Гипотенузы заштрихованных треугольников имеют неодинаковый наклон, и нельзя утверждать, что все отношения y5/x5, y6/x6, y7/x7 и т. д. одинаковы. Отыскивая соотношение между у и х, мы должны быть внимательны и иметь это в виду. Тем не менее очевидно, что между этими величинами существует какая-то зависимость, изображаемая графиком С. Если выбрать начало координат на самой прямой, то это вернуло бы нас к прежним простым рассуждениям. Это можно сделать, рассматривая приращения (или изменения) х и у по отношению к их значениям в выбранной точке на прямой. Так, на графике D (фиг. 296) мы провели новые оси координат (они показаны пунктиром). Если теперь вести отсчет от новой начальной точки 0', то можно сказать: (приращение величины у по отношению к ее значению в О') изменяется прямо пропорционально (приращению х), т. е. Δу ~ Δх. Математический символ Δ означает «приращение», или «изменение», такой-то величины. В случае графика D можно записать, что Δу ~ Δх, или сказать, что величина Δу/Δх, постоянна (для всех точек прямой).

Мы можем поступить и по-другому, как это сделано на примере графика Е (фиг. 297).

Можно переходить от точки к точке, каждый раз фиксируя при этом изменения у и х. Тогда какие бы точки на прямей мы ни выбрали, можно сказать, что Δу ~ Δх или что Δу/Δх постоянно, ибо мы всегда получаем подобные треугольники. (Правда, в этом случае Δу и Δх имеют несколько иной смысл.) Для графиков С и D отношение Δу/Δх дает наклон прямой точно так же, как отношение у/х определяет наклон прямой графика А. Величина наклона представляет собой ту постоянную, которая фигурирует в формуле прямой пропорциональности.

Обычно поступают следующим образом. Прежде всего результат наблюдений изображают графически точками на плоскости. Затем, отыскивая простую зависимость между интересующими нас величинами, проводят прямую — она как раз изображает такую зависимость — и проверяют, насколько хорошо точки укладываются на эту прямую. Стараются провести «наилучшую» прямую, которая проходила бы «как можно ближе к возможно большему числу точек». (Это указание относительно «наилучшей» прямой, несмотря на внешне безупречную формулировку, не выдерживает строгого логического анализа, и все же смысл указания ясен — примите его как некий неписаный закон.) Желая проверить, существует ли прямая зависимость (прямая пропорциональность) между наносимыми значениями у и х (у ~ х), прямую пытаются провести через начало координат. Если такая прямая существенно отклоняется от точек, то следует взять другую прямую, не проходящую через начало координат, и проверить, что Δу ~ Δх. В любом случае «наилучшая прямая» — это, так сказать, «пробная» прямая. Она не представляет собой ни формулировку правильного ответа, ни попытку увязать друг с другом нанесенные точки с учетом экспериментальных ошибок. Прямая является лишь графическим выражением простой зависимости, которую мы рассчитываем обнаружить. Проводя эту прямую наряду с нашими точками, мы хотим сопоставить искомую зависимость с реальными фактами, ибо точки выражают фактические результаты наблюдений.

Если нам удастся провести прямую, которая мало отклоняется от нанесенных точек, то можно будет сказать, что наблюдения хорошо представляются выбранной зависимостью. Мы можем даже говорить здесь о точном представлении (что бы ни означало такое утверждение) и приписывать небольшие расхождения на графике ошибкам, допущенным нами самими при наблюдении. Эта ссылка на «экспериментальную ошибку» удобна и служит нам утешением, пока мы не рассмотрим внимательно, в чем тут дело. А тогда мы убедимся, что на самом деле мы невнимательные экспериментаторы или орудуем с очень плохими приборами. Уточняя «насколько невнимательные?» или «насколько плохие?», мы можем указать разумные пределы ошибок. Если отклонения точек лежат в этих пределах, то мы с уверенностью скажем, что выбранная простая зависимость во всяком случае удовлетворительно описывает факты.

На графике F (фиг. 298) представлены данные, относящиеся к двум лагерям, обитатели которых принадлежат, так сказать, к двум типам едоков. Там же проведены наилучшие прямые. Данные эти вымышленные, но напоминают настоящие, потому что они не ложатся точно на прямую, как округленные числа в первоначальном примере, а разбросаны относительно нее. Если считать, что прямые линии выражают действительную зависимость, которой подчиняются данные, то каждой прямой можно сопоставить соотношение вида P ~ N. Мы можем даже записать

P = 4,1∙N для одной прямой

и

P = 8,0∙N для другой.

Постоянную (4,1 или 8,0) лучше всего определять по наклону прямой, а не по отдельным точкам или части данных. Проводя прямую линию, наименее уклоняющуюся от точек, мы автоматически находим среднее взвешенное значение.

Средние взвешенные значения

Среднее взвешенное — это такое среднее, при нахождении которого приписывают добавочный вес наиболее надежным данным и очень малый вес данным, содержащим, по-видимому, грубые ошибки. Определяя такое среднее арифметически, мы придаем большой вес достоверным данным, учитывая их при составлении суммы несколько раз, в то время как ненадежные данные учитываются только один раз. Потом мы делим сумму на число всех слагаемых, разумеется, считая слагаемые, которые брались повторно. Этот способ усреднения вполне приемлем и разумен, но таит в себе опасность. Дело в том, что он может побуждать нас получить как раз такой ответ, который мы надеемся получить!

Проводя прямую по точкам, мы замечаем следующее. Может получиться, что почти все точки хорошо укладываются на прямую, а одна или две точки отстоят далеко от нее. Если мы в конечном счете выбираем эту прямую, то ее наклон дает среднее взвешенное значение, при этом одна или две «выскочившие» имеют очень малый вес. Выпадение этих точек может быть результатом небрежности, и мы поступим разумно, если по существу пренебрежем ими. С другой стороны, большинство точек может укладываться на прямую из-за случайных ошибок; кроме того, немногочисленные выпадающие точки могут послужить ключом к важным выводам. Таким образом, есть опасность, что, проводя прямую по экспериментальным точкам, мы явимся жертвой предвзятого подхода к задаче. Но при достаточно внимательном отношении и хорошем навыке можно надеяться получить взвешенное среднее, которое будет достаточно надежным.

Прямая зависимость или пропорции

Проводя пробную прямую, мы задаем вопрос: «Имеет ли место линейная зависимость?». Мы должны прежде всего попытаться провести прямую через начало координат, даже если в начале координат нет ни одной экспериментальной точки. Это требование, возможно, бессмысленно. Так, на фиг. 299 дан график G для лагеря, в котором повара тоже едят картофель, но не входят в число обитателей.

Пунктирная прямая, проведенная через начало координат, заметно уклоняется от ряда точек, тогда как сплошная прямая проходит вблизи всех точек. В этом случае правильнее записать

ΔP ~ ΔN или ΔP = 2,1∙ΔN.

Прямая отсекает на вертикальной оси отрезок, равный 21,0, и мы можем написать

P = 21 + 2,1∙N.

Можно сказать, что персонал кухни съедает 21 кг картофеля в неделю и состоит, по-видимому, из десяти человек.

Указания к построению графиков

Приближенные графики. В процессе опыта бывает желательно сразу построить приближенный график, который позволит определить, достаточно ли проделано измерений. Здесь можно обойтись карандашом и бумагой в клетку (например, 0,5 см х 0,5 см).

Точные графики. Чтобы строить графики, которые можно легко читать и в то же время использовать для точной проверки результатов эксперимента, мы рекомендуем следовать приводимым ниже правилам.

Бумага. Строить графики нужно на бумаге, разграфленной на сантиметры и миллиметры, так называемой миллиметровке. Миллиметровые клетки можно делить на глаз на десятые доли (т. е, на сотые доли сантиметра). Бóльшие или меньшие клетки трудно делить на глаз с приемлемой точностью.

Масштаб. При построении графиков следует пользоваться такими масштабами, чтобы легко было наносить точки, умножая и деля числа на десять. Предположим, вы наносите на график значения массы в килограммах. Самый удобный масштаб — в 1 см 1 кг; выражать в 1 см 10 кг, 100 кг… или 0,1 кг… и т. д, тоже удобно. Следующая удобная для пользования серия масштабов: в 1 см 2 кг, 20 кг…, 0,2 кг… и т. д. При этих масштабах результаты измерений делят в уме на два и прямо наносят на график.

Еще одна серия масштабов, облегчающих построение графиков: в 1 см 5 кг, 50 кг…, 0,5 кг… и т. д. В этом случае нужно в уме удваивать результаты измерений передаем, как наносить их на график. Все другие масштабы, например 4 кг в 1 см и т. д., неудобны для пользования и обычно приводят к ошибкам при построении. Поэтому следует пользоваться одним из приведенных выше масштабов.

Масштабы нужно выбрать так, чтобы график занимал 10–15 см по горизонтали и столько же по вертикали, — нет смысла растягивать график в одном направлении и ужимать в другом. Наклон графика должен составлять, скажем, от 30 до 60° с горизонтальной осью координат. При этом, возможно, придется выбрать разные масштабы по обеим осям.

Прямая. Чтобы найти положение «наилучшей прямой» после того, как нанесены экспериментальные точки, воспользуйтесь натянутой нитью и проведите прямую. Затем нарисуйте маленькие кружки вокруг каждой экспериментальной точки (или прямоугольнички, если вы располагаете необходимыми данными). Сначала проведите прямую, иначе кружки будут вас смущать. Если прямая линия кажется неподходящей, проведите плавную кривую.

Интерполяция и экстраполяция

Даже если прямая линия кажется неподходящей и вы проводите просто плавную кривую через эти точки (или вблизи них), то график дает возможность получить дополнительные данные.

Предполагая, что кривая правильно описывает работу прибора, можно с уверенностью проставить промежуточные точки и определить новые значения, не являющиеся результатом непосредственных измерений. Эта процедура называется интерполяцией. Можно также продолжить кривую и определить значения величины за пределами той области, в которой получены данные. Этот процесс называется экстраполяцией. Например, если вы знаете, что поезд выходит из Бостона в 14.00 и прибывает в Нью-Йорк в 18.00, то могли бы путем интерполяции определить, когда он проходит через Нью-Хейвен. Можно было бы также путем экстраполяции определить время прибытия поезда в Вашингтон, но это сопряжено со значительно большим риском, так как Нью-Йорк может быть конечной остановкой поезда.

Очевидно, и интерполяцию, и экстраполяцию выполнить проще, если график — прямая линия. Но даже в этом случае интерполяцию и экстраполяцию нельзя считать одинаково надежными источниками информации. Как вы думаете, какой из этих обоих приемов представляет большую ценность? В заключительной главе всего курса, когда будет идти речь об успехах науки, вы увидите, какую важную роль играют интерполяция и экстраполяция.

Задача 7

Вычисление

на счетной линейке дает значение 375, в котором запятая не проставлена. Определите положение запятой, четко объяснив, каким методом ею пользовались.

Задача 8. Стандартная запись чисел

Выразите числа, которыми, представлены приведенные ниже данные, в стандартной форме.

Плотность ртути d Hg =13 600 кг/м 3 .

Расстояние от Луны до Земли R М = 380 000 км.

Заряд электрона = —0,000 000 000 000 000 00016 кулон.

Задача 9

«Кинетическая энергия» (= энергия движения) массы М кг, движущейся со скоростью v м/сек, равна 1 / 2 Mv 2 дж. Молекула азота N 2 в воздухе при комнатной температуре имеет массу 0,000 000 000 000 000 000 000 000 0465 кг и скорость 520 м/сек.

Энергия измеряется также в «электрон∙вольтах», 1 эв равен

0,000 000 000 000 000 00016 дж.

1) Выразите каждое из этих значений в стандартной форме.

2) Вычислите кинетическую энергию молекулы азота при комнатной температуре и запишите полученное значение в стандартной форме: а) в джоулях; б) в электрон∙вольтах.

3) Если масса М кг исчезает и переходит в излучение, то энергия этого излучения Е дж дается формулой

E = M ∙ c 2

где с — скорость света, равная 300 000 000 м/сек.

Подсчитайте, какая выделилась бы энергия, если бы можно было полностью обратить в ничто одну молекулу азота. Выразите полученное значение в стандартной форме в электрон∙вольтах.

4) Расчет в вопросе 3 относится к области необузданной фантазии; весьма маловероятно, чтобы подобную ситуацию можно было когда-нибудь наблюдать. Правда, мы наблюдаем деление ядер урана, но это просто расщепление ядер, при котором исчезает лишь незначительная доля всего вещества. При делении ядер урана-235 выделяется примерно 200 000 000 эв. Сравните это значение с ответами на вопросы 2 и 3 .

Задача 10

Учащийся измеряет длину нити маятника линейкой, на которой нанесены деления в метрах, сантиметрах и миллиметрах. Штрихи миллиметровых делений имеют заметную толщину, и оценить десятые доли миллиметра нелегко. Учащийся получает результат: длина нити 1,186 м. Он измеряет диаметр груза кронциркулем и, разделив результат измерения пополам, находит радиус = 0,01425 м.

а) Учащийся говорит, что длина маятника до центра груза равна 1,20025 м. Почему его утверждение неправильно?

б) Как следует охарактеризовать утверждение учащегося относительно длины маятника до центра груза, если он определяет ее в 1,2 м?

Задача 11

Измеряя величину g , учащийся находит значение 9,83 м/сек 2 , тогда как общепринятое значение 9,80.

а) Какую ошибку (в процентах) допускает учащийся?

б) Он переводит полученный им результат в см/сек 2 и сравнивает новое значение с общепринятым значением g в см/сек 2 . Какова ошибка (опять-таки в процентах) в этом случае?

е) Дайте обоснование вашему ответу на вопрос ( б ).

Задача 12

Два взвешивания дают 0,040593 и 0,040591 кг. Каково расхождение между ними в процентах? (Вспомните предостережение, сделанное в начале этой главы, когда для наглядности мы привели пример не особенно рационального применения наждачной бумаги.)

Задача 13

Вычисляя ускорение по формуле a = 2 s / t 2 , учащийся подставляет в нее значения s и t , завышенные соответственно на 4 и на 3 % (оба значения учащийся определил в результате измерений). Какова ошибка вычисленного им значения а , выраженная в процентах?

* * *