Закономерные чудеса

Романцев Евгений Федорович

Глава I. За сто лет до сенсации

 

 

Не так давно известный биохимик М. Перутц в шутку уверял, что в экзаменационном билете по молекулярной биологии в 2000 году можно будет встретить такой вопрос: "Горох обычно завивается вокруг подпорки спиралью, закрученной вправо. Какие генетические изменения необходимы для того, чтобы горох закручивался в противоположную сторону?"

Таким образом ученый полагает, что в недалеком будущем знание механизмов наследственности станет азбучной истиной и войдет в учебники.

Молекула дезоксирибонуклеиновой кислоты служит основой наследственности. И чтобы управлять наследственностью, надо многое знать о строении, синтезе, распаде и обмене этой удивительной молекулы. И пожалуй, главное — научиться понимать, каким образом происходит передача наследственных признаков.

Одно из самых значительных открытий в биологии XX века — разгадка структуры молекулы ДНК, хранящей информацию о наследственных признаках организма, — поражает своей логичностью. История этого открытия, которое потрясло мир, на редкость поучительна. Первый решительный шаг был сделан больше ста лет назад в Германии швейцарским исследователем. И, как часто бывает с большинством открытий, о нем сначала знала только небольшая горстка ученых. Обыватели в чистеньких немецких и швейцарских городках продолжали заниматься своими каждодневными, житейскими делами. Научных журналов они не читали, а научно-популярная литература еще не вошла в моду. Да что там обыватели. Сам автор открытия Ф. Мишер не смог бы даже предположить, к каким научным потрясениям приведут начатые им работы через сто лет.

Ф. Мишер родился в семье врача, который работал в швейцарском городе Базеле. Получив ученую степень, Ф. Мишер направился в Германию. Здесь он изучал органическую химию, а затем специализировался в лаборатории известного немецкого биохимика Э. Гоппе-Зейлера.

Первая в мире биохимическая лаборатория размещалась в средневековом замке, одиноко стоявшем на холме над рекой. Закопченные сводчатые потолки и узкие щели каменных окон придавали комнатам мрачноватый вид. Впоследствии Ф. Мишер часто рассказывал студентам, что его рабочее место очень напоминало обстановку алхимика средних веков, пытавшегося превратить свинец в золото.

Ф. Мишер был пытливым исследователем. Объект его работ был прозаичен. Более того, непосвященным он показался бы просто неприятным. Короче говоря, Ф. Мишер работал с ядрами клеток, полученных из гноя.

В 1868 году ученый открыл новый класс биологически важных органических соединений, которые содержали в своем составе углерод, фосфор и азот. Кроме того, эти соединения обладали кислотными свойствами. В своем лабораторном журнале Ф. Мишер записал: "Согласно известным гистохимическим данным я должен отнести полученный материал к ядрам клеток... Следовательно, я фактически пытался выделить материал ядер". Во времена Ф. Мишера латынь была языком ученых. Ядро клетки по-латыни — "нуклеус". Поэтому автор назвал свое детище нуклеином, то есть выделенным из ядра.

Открытие нового соединения показалось руководителю лаборатории настолько необычным, что он решил собственными руками повторить работу своего сотрудника. Э. Гоппе-Зейлер дорожил высокой научной маркой своей лаборатории. Тщательные исследования велись в течение нескольких лет. Они полностью подтвердили правильность открытия Ф. Мишера. Только через три года Э. Гоппе-Зейлер решился опубликовать эти работы. Пройдя в лаборатории Э. Гоппе-Зейлера отличную биохимическую стажировку, Ф. Мишер провел следующий год в Лейпцигском университете, в лаборатории другого известного ученого, К. Людвига. В то время его лаборатория считалась крупным центром физиологических исследований. Вернувшись в родную Швейцарию, Ф. Мишер выполнил одну из своих лучших работ. Он провел химический анализ нуклеина, выделенного из молок лосося.

В то далекое от нас время воды Рейна были еще очень чистыми, а не загрязненными, как сейчас, отходами заводов и канализационными стоками. Рыба с охотой шла на нерест из моря, и промысел лосося процветал.

Ф. Мишер работал как одержимый, на редкость много. Он считал, что его детище, его нуклеин, надо получать при низкой температуре. Поэтому ученый экспериментировал осенью и зимой, всегда в неотапливаемом помещении, с пяти часов утра до позднего вечера. Титаническая деятельность подорвала его здоровье, и на пятьдесят втором году жизни Ф. Мишер умер от воспаления легких.

Незадолго до начала нового века соединение, выделенное Ф. Мишером, получило знакомое сегодня каждому грамотному человеку название нуклеиновой кислоты.

По иронии судьбы в жизни нуклеиновой кислоты вскоре после ее рождения наступил растянувшийся на десятилетия период глухой безвестности. Медленно, очень медленно накапливались новые сведения об открытом соединении. И пожалуй, самое главное — никто не понимал, какую биологическую роль играют нуклеиновые кислоты в живом организме.

Доброжелательное знакомство с историей развития исследований нуклеиновых кислот свидетельствует, что это было постепенное познание механизмов ее действия; поэтапное изучение ее структуры и функции. В течение долгих лет и десятилетий исследование шло по линии накопления больших и маленьких фактов. Практический выход таких работ был нулевым. Более того, его невозможно было предвидеть.

Знакомство с нуклеиновыми кислотами лучше всего начинать с изучения их строения. Можно сказать и так: с биохимической азбуки.

Но все по порядку.

В русском алфавите 32 буквы. Много это или мало? Что за вопрос, скажет благоразумный читатель. Это количество вполне удовлетворяло таких гениев русского языка, как А. Пушкин, Л. Толстой... Аксиома не требует доказательств.

А можно ли объясняться с исчерпывающей полнотой, если знаков будет значительно меньше? Например, два.

Конечно, можно. Азбука Морзе. Точки и тире достаточно, чтобы поговорить по широкому кругу вопросов.

Ну а каков алфавит в молекулярной биологии и генетике?

Нуклеиновые кислоты — это содержащие азот органические соединения с большим молекулярным весом. Если расщепить молекулу нуклеиновой кислоты на составные части, то получится не так уж много значительно более простых соединений, молекулярный вес которых будет, естественно, значительно меньше. Каждое из них имеет достаточно короткое и простое имя, чтобы его можно было запомнить. Вот эти соединения. "Великолепная пятерка" азотистых оснований: аденин, гуанин, цитозин, тимин и урацил. Потом сахар. Но не тот, что стоит в сахарнице на обеденном столе. И все же сахар, имеющий собственное имя, — рибоза. Наконец, остаток фосфорной кислоты.

Все перечисленные соединения — простейшие кирпичики, из которых строится грандиозное по размеру и удивительное по конструкции здание высокомолекулярной нуклеиновой кислоты.

Существуют так называемые дезоксирибонуклеиновая и рибонуклеиновая кислоты. Даже специалистам биохимикам эти названия кажутся длинноватыми и не очень удобными для повседневного употребления. Поэтому первую обычно называют сокращенно — ДНК, а вторую — РНК. Между ними существует различие. Тимин встречается главным образом в ДНК, а другое азотистое основание — урацил находится только в РНК. Зато три других основания — аденин, гуанин и цитозин входят с одинаковым успехом в молекулу ДНК и РНК. Наконец, обе молекулы различаются и своими углеводными остатками. В РНК находят углевод рибозу, а в ДНК — дезоксирибозу.

Если азотистое основание соединено с углеводом, то такое соединение называют нуклеозидом. Стоит к такому нуклеозиду присоединиться остатку фосфорной кислоты, как образовавшееся вещество начинает называться нуклеотидом.

Научная терминология — вещь удобная, но если можно объясняться более простым языком, то к этому всегда нужно стремиться. Биохимики поняли это давно, и поэтому все пять азотистых оснований в чисто научных книгах и в журнальных статьях изображают заглавными буквами русского алфавита. Аденин — это А, Г — гуанин, Ц — цитозин, Т — тимин, У — урацил. Структура и биологические свойства нуклеиновых кислот определяются их химическим составом, количественным соотношением азотистых оснований и последовательностью соединения соответствующих нуклеотидов.

Прошло не два и не три десятилетия после дня рождения нуклеина и именин нуклеиновых кислот. И наконец стало ясно, что нуклеиновые кислоты, выделенные из клеток жизотных, птиц, рыб, растений, различных представителей живых организмов, разнятся по своему нуклеотидному составу.

Много крупных ученых в разных лабораториях исследовали нуклеотидный состав живых организмов. Работа эта была поистине титанической. Известные советские ученые — академик А. Белозерский, академик А. Спирин и другие внесли в эту работу значительный вклад.

Опубликованные в 1962 году данные А. Спирина о нуклеотидном составе ДНК и РНК у разных организмов и сегодня производят внушительное впечатление. Был изучен нуклеотидный состав у человека, быка, мыши, курицы, осетра, морского ежа, осьминога, тутового шелкопряда, у таких высших растений, как пшеница, лук, фасоль, папоротник, сосна. Определили нуклеотидный состав у грибов, например известных всем грибникам на нашей планете — шампиньонов. Нуклеотидный состав исследовали у десятков видов бактерий и вирусов.

Очень важна последовательность, в которой располагаются нуклеотиды в огромной по длине молекуле нуклеиновой кислоты. Чтобы определить последовательность нуклеотидов в ДНК или РНК, надо научиться осторожно "скалывать" их с конца молекулы нуклеиновой кислоты. Задача эта в высшей степени непростая. Молекулярный вес нуклеиновой кислоты может исчисляться сотнями тысяч и выше. И построены нуклеиновые кислоты главным образом из четырех нуклеотидов разных типов. Из этого следует, что именно последовательность нуклеотидов определяет все основные свойства молекул ДНК и РНК.

Осторожное "скалывание" нуклеотидов — самая настоящая ювелирная работа. Существуют приемы, с помощью которых проводят эту операцию. Например, можно подвергнуть ДНК мягкому гидролизу, или, проще говоря, воздействовать на нее слабой кислотой.

Для работы с РНК используют другие приемы. Можно подобрать такие ферменты, такие ускорители биохимических реакций, которые способны действовать только на совершенно определенные химические связи между нуклеотидами. Иными словами, одним "ферментативным ключом" открыть ряд одинаковых "химических замков".

Итак, дело сделано, молекулы ДНК или РНК разрезаны на сравнительно мелкие кусочки. Конечно, они имеют и собственные названия. Биохимик или химик в этом случае скажет: "Мы получили смесь мононуклеотидов и олигонуклеотидов". Теперь смесь нужно разделить на составные части. Для этого можно воспользоваться хорошо разработанными методами.

Один из них — хромография на бумаге. Если анализируемую смесь нанести на "старт", а затем бумагу медленно промыть смесью различных растворителей с некоторыми добавками (примером такой смеси может служить раствор изопропилового спирта, соляной кислоты и воды), молекулы разных соединений застрянут в различных участках бумаги. После хроматографирования "застрявшие" в разных местах бумаги химические соединения удаляют, например, с помощью воды или других растворителей. Собрав отдельные мононуклеотиды или олигонуклеотиды, исследователь может определить их химические и физико-химические свойства и выяснить, с каким конкретным соединением имеет дело. И конечно, не надо забывать самого главного. Очередность высвобождения нуклеотидов из молекулы ДНК или РНК указывает, в какой последовательности они там были соединены.

Определение последовательности нуклеотидов всегда сталкивается с большими трудностями. Действительно, если молекулярный вес составляет несколько сот тысяч или миллионов, то даже неспециалисту ясно, сколько мелких "осколков" можно получить из нуклеиновой кислоты. Правда, некоторые из рибонуклеиновых кислот обладают значительно меньшим молекулярным весом. Например, так называемая транспортная РНК имеет молекулярный вес порядка 30 тысячей состоит из 100 нуклеотидов.

Логично предположение: последовательность нуклеотидов в ней определяется легче. Так оно и случилось, только легкость оказалась весьма относительной. В 1963 году была опубликована работа Д. Кантони и сотрудников, в которой они сообщили: установлена возможная первичная структура РНК, которая транспортирует аминокислоту серии в дрожжах. Прошло три года, и известный биохимик Р. Холли удивил научный мир своим сообщением. В результате чрезвычайно трудоемких исследований он вместе с сотрудниками установил последовательность нуклеотидов в так называемой аланинтранспортной РНК. Иными словами, в РНК, которая переносит другую аминокислоту — аланйн.

Блестящие работы по изучению строения и функции другой транспортной РНК — валиновой были проведены академиком А. Баевым, его учениками и сотрудниками. Эта РНК переносит аминокислоту валин к месту, где строится белковая цепь. Исследования начались в 1963 году, а через четыре года химическое строение этой РНК было разгадано. Оказалось, ее молекула состоит из 77 нуклеотидов, расположенных в строгой последовательности.

Конечно, определение последовательности нуклеотидов только один из первых шагов к разгадке "секретов" макромолекул. Но именно расшифровка строения валиновой РНК позволила академику А. Баеву и его коллегам перейти к изучению функций этих удивительных молекул.

Разгадка последовательности нуклеотидов в молекуле ДНК оказалась еще более сложной задачей. Вед1 ДНК имеет значительно больший молекулярный вес, а значит, нуклеотидов существенно больше. К этой трудности добавлялась еще одна. Отсутствовали достаточно удобные методы разделения ДНК на химически однородные молекулы.

Штурм нуклеиновой крепости давался ученым нелегко.

Попробуем написать какую-нибудь известную со школьных лет фразу слитно, не разделяя ее на отдельные слова:

встосороксолнцзакатпылалвиюлькатилосьлето. В таком виде прочитать ее непросто. Накопив определенный багаж знаний, мы без труда расшифровываем содержание словесного ребуса: "В сто сорок солнц закат пылал. В июль катилось лето".

Если бы ученые научились разбивать чрезвычайно длинную молекулу нуклеиновой кислоты на отдельные "слова", то, вероятно, скорее бы удалось понять смысл того, что записано в этой "фразе" ДНК. Но долгое время не находили фермента, способного расщеплять длинную "фразу" ДНК на отдельные "слова". И вот совсем недавно такой фермент эндонуклеаза IV был найден.

Эндонуклеаза IV оказалась очень удобным ферментом. Она всегда разрывала молекулу ДНК в строго определенных местах — только между тимином и цитозином. Иными словами, эндонуклеаза действовала между Т и Ц.

Если молекулу ДНК обрабатывали этим ферментом, то получали смесь фрагментов. Казалось бы, дело сделано: длинная фраза разбита на отдельные слова. Но вот в чем трудность. Откуда, с какого именно "слова" начинать чтение. Значит, необходимо выделить из большого числа похожих фрагментов молекулы какой-то один.

Английский ученый Э. Зифф и его коллеги так и поступили. В своей лаборатории в Кембридже они обработали молекулу ДНК эндонуклеазой IV и получили три больших фрагмента молекулы, состоящие из 48, 35, 13 нуклеотидов. Эти соединения снова подвергли воздействию фермента. И получили "слова", состоящие всего из пяти и восьми нуклеотидов.

Потом исследователи взяли другой фермент, экзонуклеазу. Этот фермент последовательно "состругивал" один нуклеотид за другим. Полученные "стружки" подвергались хроматографическому анализу. Теперь уже экспериментатор знал, с чем он имеет дело. Шаг за шагом, нуклеотид за нуклеотидом читалось биохимическое "слово". Конечно, сначала короткие "слова". В 1973 году были расшифрованы 99 нуклеотидов молекулы ДНК такого простейшего организма, которым является фаг.

Обратите внимание — простейшего. Когда вы прочитаете эти строчки, наука уйдет далеко вперед. Эти данные будут представлять, пожалуй, уже исторический интерес. Но прошедшие события по-прежнему будут свидетельствовать о трудных дорогах познания уникальной молекулы ДНК.

 

"...Самая золотая из всех молекул"

Древние греки утверждали, что судьбу каждого человека предопределяют три богини, три грозные Мойры. Неумолимые Мойры жили на Олимпе. Судьба самого Зевса была в их руках. Обязанности между женщинами распределялись довольно-таки четко. Одна из них пряла нить жизни человека и определяла срок его существования. Другая, не глядя, вынимала жребий, который выпадает каждому, третья заносила в длинный свиток все, что предписывали человеку ее сестры, и, наконец, обрезала нить.

К сожалению, для простого смертного на этом все кончалось. Правда, была на Олимпе еще одна богиня, Тюхэ, которую римляне называли Фортуна. Она могла внести в жизнь человека существенные коррективы. Кому крупно везло, тому доставалось что-нибудь из рога изобилия, который держала в руках богиня.

В 1964 году крупнейший специалист в области изучения структуры белков, лауреат Нобелевской премии Д. Кендрью выступил по английскому телевидению с серией лекций о молекулярной биологии. Они легли в основу книги "Нить жизни". Своим названием эта интересная книга обязана молекуле дезоксирибонуклеиновой кислоты.

Как это ни парадоксально, но в "нити жизни" древнегреческих богинь и в "Нити жизни" Д. Кендрью было кое-что общее. Современные ученые могут говорить о "нити жизни", вкладывая в это понятие совершенно конкретный смысл.

Возьмем, например, одну из широко распространенных и безвредных бактерий, кишечную палочку. Вся гигантская молекула ДНК в этой бактерии "упакована" в образовании, напоминающем крошечное ядрышко. В поперечнике оно равняется одной стотысячной доле миллиметра. Что и говорить, ничтожная величина! Если теперь извлечь хитроумно уложенную в клубок огромную молекулу нуклеиновой кислоты, размотать его и вытянуть ДНК в одну линию, то длина ее составит миллиметр. Это в сто тысяч раз больше диаметра ядра, в котором была "уложена" молекула. Ну чем не настоящая нить жизни?!

Молекула ДНК передает от родителей к детям, от поколения к поколению всю наследственную информацию. Пожалуй, это самое удивительное свойство уникальной молекулы.

Над разгадкой этого явления работали многие выдающиеся исследователи в разных странах. Некоторые вплотную приблизились к решению "загадки № 1", но удача сопутствовала только единицам.

Случайно это или закономерно? Как мы увидим в дальнейшем, "случай помогает только подготовленному уму".

Фотография самого близкого вашего товарища, если использовать научную терминологию, содержит ограниченную информацию об этом человеке. Вы знаете это очень хорошо, так как он ваш большой и старый друг.

Откровенно говоря, формула нуклеиновой кислоты, даже сведения о нуклеотидном составе ДНК не содержат достаточной информации, на основании которой модаю было бы судить, каким способом происходит самовоспроизведение молекулы ДНК. И вот теперь со всей остротой встает вопрос, как расположены в пространстве атомы в молекуле ДНК?

Совершенно очевидно, что молекула ДНК не может быть плоской, как лист бумаги. Как и всякая другая молекула, она должна иметь пространственную структуру, объемность. Когда говорят о первичной структуре, подразумевают последовательность, в которой соединены простейшие составные части молекулы. Например, первичная структура белка — это последовательность' аминокислотных остатков. Когда говорят о вторичной структуре ДНК, имеют в виду расположение ее полинуклеотидных цепей. Если бы речь шла о вторичной структуре белка, подразумевалось бы расположение, или, другими словами, укладка полипептидных цепей.

Но молекулы органических веществ — могут принимать и более сложные формы. Говоря о третичной структуре, имеют в виду форму, которую принимают полинуклеотидные цепи ДНК, или, например, способ укладки полипептидных цепей белка.

Итак, перед учеными со всей остротой встал вопрос: какова пространственная конфигурация молекулы дезоксирибонуклеиновой кислоты? Ответ на него был подготовлен независимо друг от друга учеными разных специальностей в разных странах. Но только трем из них удалось разгадать строение удивительной молекулы.

Два важных события уже совершились к этому моменту в научном мире. Во-первых, исследователи знали, что о взаимном расположении атомов в молекуле можно судить с помощью методов рентгеновского структурного анализа. А во-вторых, к этому времени уже были известны правила сочетания между собой азотистых оснований в молекуле ДНК, или, как их называют биохимики, правила Э. Чаргаффа. Конечно, деление на "во-первых" и "во-вторых" чисто условное. Оба эти события спокойно можно поменять местами или одновременно поставить на первое место.

Новый метод исследования для ученого — это все равно что новый шаг к вершине недоступной горы. И с каждым шагом вперед открываются новые бескрайние дали.

В самом упрощенном виде рентгеновский структурный анализ можно представить так. Если на пути пучка рентгеновских лучей поместить какое-то вещество, на рентгеновской пленке обнаружится серия упорядочение расположенных пятен. Они образовались за счет того, что рентгеновские лучи отразились от рядов упорядочение расположенных молекул. Если у вас в руках такая рентгенограмма, остается только понять, что символизируют эти пятна.

А теперь пора рассказать и о второй предпосылке, о правилах Э. Чаргаффа. Он первый получил образцы ДНК очень высокой степени чистоты и провел тщательный анализ относительного числа азотистых оснований в каждом образце. Талантливый ученый обнаружил: из какого бы живого организма ни выделяли основания, количество А всегда равнялось Т, а количество Г равнялось Ц. Так была установлена комплементарность оснований, которые и составили сущность правил Э. Чаргаффа.

Итак, научная почва, на которой должно вырасти открытие структуры ДНК, была подготовлена. Логично предположить, что это событие произойдет в одной из лабораторий, которые работали именно в этом направлении.

Так оно и случилось.

Двое из первооткрывателей пространственной организации ДНК работали в Англии, в Кавендишской лаборатории Кембриджского университета, которую возглавлял сэр Л. Брегг. Третий — в Кингзколледже Лондонского университета.

Если бы зимой 1953 года кому-нибудь удалось заглянуть в скромную комнату, в которой работали Д. Уотсон и Ф. Крик, он бы увидел примерно следующую картину. Старый шкаф и два лабораторных стола были плотно набиты книгами и негативами рентгенограмм. Стояли чем-то похожие на фантастические творения художника-абстракциониста сделанные из металлических пластинок и вращающихся сочленений модели молекул. Около стены возвышалась очень странная на вид металлическая конструкция. При более внимательном рассмотрении можно было обнаружить, что она сделана из нескольких обыкновенных в химической лаборатории штативов Бунзена, на которых в разных положениях закреплены металлические пластинки разной формы. Каждая символизировала одну из шести составных частей нуклеиновой кислоты: четыре — разные азотистые основания, одна — сахар, другая — остаток фосфорной кислоты.

Со стороны могло показаться, что два молодых ученых — Д. Уотсон и Ф. Крик — играют в какую-то непонятную детскую игру, периодически перемещая металлические пластинки или вращая их в металлических сочленениях. При этом каждый поворот пластинки или перемещение их вдоль оси штатива вызывали, как правило, оживленную дискуссию. А дело заключалось в следующем. Необходимо было так расположить составные части металлической конструкции, чтобы дифракция рентгеновских лучей, рассчитанная теоретическим путем, полностью совпадала с рентгенограммами, полученными с образцов реально существующей ДНК.

Мы бы погрешили против исторической правды, если бы представили развитие событий только в спокойных академических тонах: тихая комната, мирная дискуссия двух ученых, размеренный образ жизни. Работа над расшифровкой структуры ДНК была напряженной, азартной, а мотивы чисто человеческих поступков действующих лиц иногда не лишены недостатков...

Послушаем, что по этому поводу говорит один из авторов открытия, Д. Уотсон, имевший среди друзей прозвище "Честный Джим". "Действующих лиц, собственно говоря, было пятеро — Морис Уилкинс, Розалинд Фрэнклин, Лейнус Полинг, Фрэнсис Крик и я". Попробуем охарактеризовать действующих лиц, воспользовавшись для этих целей высказываниями самого "Честного Джима".

Итак, М. Уилкинс.

"В то время работа над молекулярным строением ДНК в Англии практически была вотчиной Мориса Уилкинса, работающего в Кингзколледже. Как и Фрэнсис (Крик), Морис был физиком и также пользовался в своих исследованиях рентгенографическими методами. Было бы не слишком красиво, если бы Фрэнсис вдруг занялся проблемой, над которой Морис работал уже несколько лет. Дело осложнялось еще и тем, что оба они, почти ровесники, были хорошо знакомы и до второй женитьбы Фрэнсиса часто обедали и ужинали вместе, чтобы поговорить о науке".

Второе действующее лицо по определению "Честного Джима" — Р. Фрэнклин. Д. Уотсон обычно называет ее Рози.

"Годы кропотливых, бесстрастных занятий кристаллографией наложили на Рози свой отпечаток. Нелегкое кембриджское образование она получила не затем, чтобы растрачивать его на пустяки. Она твердо знала, что установить строение ДНК можно только чисто кристаллографическим путем".

Лайнус Полинг, работавший в Америке над разгадкой структуры ДНК, по определению Д. Уотсона, "...легендарный химик из Калифорнийского технологического института... Ведь Полинг не был бы величайшим из химиков, если бы не понял, что именно молекула ДНК — самая золотая из всех молекул".

Теперь следует привести характеристику, которую Д. Уотсон дал своему постоянному напарнику по работе — Ф. Крику.

"У него постоянно появлялись новые идеи, он весь загорался и тут же выкладывал их каждому, кто готов был его слушать".

"Быстрота, с которой он схватывал открытые другими факты и пытался найти их истолкование, часто заставляла сжиматься сердца его приятелей при мысли, что вот-вот он окажется прав и обнажит незрелость их ума, которая до сих пор оставалась скрытой от мира благодаря кембриджской сдержанности и благовоспитанности".

Среди действующих лиц, перечисленных Д. Уотсоном, остался он сам. Прозвище "Честный Джим", которое дали ему коллеги и друзья, конечно, кое о чем уже говорит. Следует добавить, что, когда этот талантливый ученый приехал из Америки в Кембридж и должен был заниматься изучением структуры белка, ему было всего 24 года. Его суждения о самом себе нередко отличаются полной беспощадностью.

К тому моменту, когда Д. Уотсон и Ф. Крик начали яростный штурм ДНК, ситуация складывалась так. o М. Уилкинс, много лет работавший в Англии над разгадкой строения ДНК, накопил огромный фактический материал и был близок к правильному решению задачи. Р. Фрэнклин — кристаллограф, работавшая с ним вместе, сумела получить отлично выполненные рентгенограммы ДНК. Судя по описанию Д. Уотсона, чисто человеческие отношения Р. Фрэнклин с ним самим, с М. Уилкинсом и Ф. Криком, особенно в начале работы, складывались далеко не лучшим образом. Наконец за несколько тысяч километров от Лондона, в Америке, "легендарный химик" Л. Полинг с не меньшим желанием, чем Д. Уотсон и Ф. Крик, хотел разгадать строение "самой золотой из всех молекул". Это подогревало азарт двух лондонских коллег в честном научном поединке с американцем.

Во всяком случае, Д. Уотсон писал: "Я надеялся, что критическая ситуация, вызванная наступлением Лайнуса на ДНК, заставит Мориса обратиться за помощью к нам с Фрэнсисом".

Истина родилась в дискуссиях и спорах. В который раз обсуждалась очередная рентгенограмма. Снова и снова перестраивалась металлическая конструкция предполагаемой структуры ДНК. Временами им казалось, что строение ДНК разгадано. Но на следующий день наступало горькое разочарование. И наконец пришла удача. Фактически уже через несколько недель после начала работы исследователи поняли: решение почти что найдено.

О том, как это произошло, Д. Уотсон рассказывает: "Я подумал, а что, если каждая молекула ДНК состоит из двух цепей с одинаковой последовательностью оснований, а сцепляют эти цепи водородные связи между парами одинаковых оснований?

К полудню следующего дня от моей схемы не осталось камня на камне. Теперь Фрэнсис занимался только ДНК.

Я направился в лабораторию, где Фрэнсис, который на этот раз пришел раньше меня, раскладывал картонные пары оснований вдоль воображаемой оси. Примерно за час я расположил атомы, как того требовали и рентгенографические данные, и законы стереохимии. Получилась правозакрученная спираль с противоположным направлением цепей.

Фрэнсис повозился с моделью минут 15 и не нашел ошибок".

Согласно Д. Уотсону и Ф. Крику структуру ДНК можно представить следующим образом: две углеводнофосфатные цени, идущие в противоположных направлениях и закрученные одна вокруг другой так, как могла бы закрутиться веревочная лестница, если бы ее вращали по продольной оси. Ступеньками в такой лестнице служили бы пары азотистых оснований, удерживаемых водородными связями. Эти пары были комплементарны, а именно: основанию А всегда соответствовало Т, а Г — всегда Ц.

Таким образом, говоря уже современным языком, двойная спираль является правозаходной, полинуклеотидные цепи антипараллельными и комплементарными. Азотистые основания располагаются в одной плоскости приблизительно перпендикулярно к оси спирали. Если один миллиметр разделить на тысячу равных частей, а потом одну тысячную миллиметра снова разделить на тысячу, получим величину, которую называют ангстрем. Так вот диаметр двойной спирали 20 ангстрем, а расстояние между параллельными плоскостями пар оснований 3,4 ангстрема.

"В самой золотой из всех молекул" существует упорядоченная жесткая система водородных связей между полинуклеотидными цепями. При этом всегда наблюдается определенная закономерность: последовательность оснований в одной цепи определяет последовательность в другой.

И вот наступил тот сладостный момент, когда работа Д. Уотсона и Ф. Крика была завершена. Авторы решили послать готовую статью, которая являлась итогом их выдающейся работы, в журнал "Нейче" ("Природа"). Статья, насчитывающая всего 900 слов, начиналась так: "Мы предлагаем вашему вниманию структуру соли дезоксирибонуклеиновой кислоты (ДНК). Эта структура имеет некоторые новые свойства, которые представляют значительный биологический интерес".

...Значительный биологический интерес... Авторы более чем скромны. Разгадка двуспиральной структуры ДНК была настоящим революционным взрывом в биологии. Еще бы, только теперь можно было представить,, как происходит самовоспроизведение молекул ДНК при делении клетки.

Двойная спираль ДНК раскручивается. Одновременно вокруг каждой из раскрутившихся цепей формируются новые цепи. В результате этого процесса образуются две новые спирали. Каждая из них подчиняется o правилам комплементарности азотистых оснований. А из этого следует, что в двух новых дочерних двойных спиралях та же последовательность оснований, которую имела исходная, материнская, молекула ДНК.

Мудра народная пословица: "Лучше один раз увидеть, чем сто раз услышать". Ученым всегда было заманчиво увидеть, каким образом копируется удивительная молекула ДНК. И не только увидеть, но и сфотографировать с помощью электронного микроскопа. Вопрос этот, как оказалось, совсем не простой для разрешения. Одна из главных трудностей в том, что молекула ДНК в тканях животных чрезвычайно длинная. Поэтому выделить ее из ядра клетки в неповрежденном виде весьма трудно. Более того, эта длинная молекула ДНК легко повреждается, или, как говорят биохимики, очень лабильна.

А вот если бы удалось отыскать молекулу ДНК покороче? Наверное, тогда было бы легче понять и, главное, увидеть, как происходит самокопирование молекулы.

Несколько лет назад в биохимии произошло заметное событие. Было обнаружено, что ДНК содержится не только в ядре клетки, но и в других ее мельчайших образованиях, так называемых митохондриях. Исследователям в определенном смысле повезло. Митохондриальная ДНК из тканей животных сравнительно невелика, всего около пяти микрон. Поэтому выделить ее и приготовить для электронно-микроскопического исследования было попроще.

Вскоре обнаружили, что митохондриальная ДНК имеет форму замкнутого кольца. Каким же образом снимается "копия" с такого кольца?

Исследования в этом направлении начались практически одновременно в нескольких странах: Советском Союзе, США, Голландии... И вот совсем недавно в Москве, в Институте биологии развития Академии наук СССР, в лаборатории профессора И. Збарского удалось сфотографировать митохондриальную ДНК в процессе ее удвоения. Ученые теперь увидели собственными глазами, как снимается копия с молекулы ДНК. Иными словами, как идет процесс репликации.

"Кольцо" митохондриальной ДНК сплетено из двух нитей. На одном из снимков, полученных с помощью электронного микроскопа, было отчетливо видно, как две нити ДНК расплелись на небольшом участке и на одной из нитей идет синтез новой молекулы ДНК. Иными словами, снимается копия. На второй нити синтеза ДНК не происходит.

На других снимках видно, как со временем кольцо ДНК расплетается все больше и больше, на одной из нитей продолжает строиться новая ДНК, а вторая, свободная, нить становится все длиннее и длиннее. Так продолжается до тех пор, пока полностью не снимается копия с одной нити. После этого начинается процесс удвоения второй, свободной, нити ДНК. Процесс этот идет с помощью фермента, который называется ДНК-полимераза. Остается добавить, что митохондриальную ДНК, о которой было только что рассказано, выделили из печени лабораторных крыс.

Эпоха "великих географических открытий" в молекулярной биологии только начинается. Мы еще очень мало знаем и понимаем физико-химические механизмы функционирования ДНК. Откуда и как поступает команда молекуле начинать процесс воспроизведения? Почему некоторые бактериофаги имеют однотяжевую ДНК, а внутри бактериальной клетки эта ДНК приобретает форму двойной спирали? Можно задать десятки подобных вопросов. Одним словом, надо сказать, что только сейчас мы начинаем понимать, как мало знаем о молекуле дезоксирибонуклеиновой кислоты. Так что работы хватит на всех и не на одно поколение.

Наш короткий рассказ о структуре "самой золотой молекулы" подошел к концу. В 1962 году Д. Уотсон и Ф. Крик были удостоены Нобелевской премии за установление структуры ДНК — главного генетического материала клетки, хранящего всю информацию о наследственных признаках организма. Ученые в разных странах с глубоким удовлетворением встретили сообщение, что одновременно с этими исследователями за разгадку структуры ДНК Нобелевской премией был награжден и М. Уилкинс.

 

...И ее родные сестры

Рибонуклеиновые кислоты, безусловно, заслуживают отдельного рассказа.

По молекулярному весу РНК можно разделить на две группы: с относительно небольшим молекулярным весом и высокомолекулярные.

Низкомолекулярные РНК, их вес от 18 до 35 тысяч, сначала называли растворимыми РНК, потому что при выделении из биологического материала они оставались в надосадочной жидкости и в осадок не попадали. В настоящее время их обычно называют транспортными РНК, потому что они выполняют функции переносчиков (транспортеров) аминокислот в клетке (сокращенно т-РНК).

Высокомолекулярная РНК имеет молекулярный вес значительно больший — от нескольких сотен тысяч до нескольких миллионов единиц. Различают три вида высокомолекулярной РНК. Рибосомная РНК (сокращенно р-РНК) находится внутри мельчайших образований внутри клетки, называемых рибосомами. Информационная РНК переносит определенную информацию. Но что это за информация и как это делается, читатель узнает позже. И наконец, вирусная РНК, которая входит в состав вирусов.

Надо сразу признаться, что структура и физико-химические свойства РНК изучены хуже, чем у ДНК, с которой мы уже знакомы. И это не случайно. Долгое время экспериментаторы не умели получать однородные образцы РНК с высоким молекулярным весом, которые легко разрушались при "жестких" условиях выделения, а при "мягких" подвергались действию ферментов и распадались.

Фундаментальные, многолетние исследования макро-молекулярного строения рибонуклеиновых кислот были проведены талантливым советским ученым А. Спириным, его сотрудниками и учениками. Уже в 1963 году ими было доказано, что молекула такой РНК построена из единой, непрерывной цепи. Молекулы высокополимерной РНК обладают вторичной и третичной структурой. Полинуклеотидные цепи этой нуклеиновой кислоты построены по типу спиралей уже хорошо известной нам ДНК. Спиральные участки есть не только в высокополимерных вирусных и рибосомных РНК, но и в низкомолекулярных, так называемых транспортных РНК. Рентгенографические исследования показали, что в молекулах различных РНК есть двухтяжевые спирали, весьма похожие на те, которые так характерны для ДНК. Вполне возможно, что в составе молекулы РНК, помимо настоящих спирализованных участков, есть спирали с "дефектами" и петлями.

Некоторое время назад известный советский ученый и один из создателей молекулярной биологии, академик В. Энгельгардт сказал, что, по его мнению, одной из наиболее характерных черт молекулярной биологии является трехмерность.

Какова же третичная структура РНК? Есть ли в молекуле РНК четко организованная укладка спиральных участков?

По мнению известного специалиста в этой области А. Спирина, РНК может существовать в трех состояниях, или, иными словами, в трех конформациях. При одних условиях РНК может иметь форму асимметричной, но компактной палочки. Изменяя условия, можно превратить палочку РНК в плотный клубочек. Еще повысив температуру раствора или переводя РНК в бессолевую среду, можно добиться, что РНК перейдет в состояние развернутых нитей.

Путь к разгадке третичной структуры РНК оказался не менее тернистым, чем при расшифровке двухспирального строения "самой золотой молекулы" — молекулы ДНК.

Несколько лет назад в Советском Союзе состоялся очередной международный симпозиум по химии природных соединений, организованный Академией наук СССР при поддержке Международного союза теоретической и прикладной химии. В его работе приняли участие более полутора тысяч ученых из сорока стран мира. Это был представительный форум специалистов.

За несколько дней до открытия международного симпозиума ученых начали работать так называемые пресимпозиумы, которые служили составной частью самого симпозиума. Одним из председателей такого заседания был академик В. Энгельгардт. Работа совещания была посвящена одному вопросу — структуре и функции РНК.

Мне часто приходилось слушать выступления и доклады В. Энгельгардта. Более того, студентом я посещал его блестящие лекции по биохимии в Московском университете, работал в его лаборатории.

Надо признаться, что и сейчас на лекции и доклады В. Энгельгардта идешь с уверенностью, что снова услышишь умную, полную интересных мыслей, гипотез и прогнозов, поражающую стройной логичностью речь одного из самых известных советских ученых.

И на этом международном симпозиуме выступление В. Энгельгардта было выслушано с огромным вниманием. "Если пять лет назад, — сказал ученый, — установление строения каждой очередной транспортной РНК было мировой сенсацией, то сегодня все методики настолько разработаны, что любой мало-мальски квалифицированной группе химиков достаточно полгода для того, чтобы выделить и очистить очередную транспортную РНК, а затем установить ее первичную структуру, то есть последовательность входящих в ее состав семи-восьми десятков нуклеотидных звеньев. Поэтому сегодня усилия направлены главным образом на то, чтобы установить третичную структуру этой транспортной РНК".

Другой видный советский биохимик, академик Ш. Спирин, отметил, что во многих лабораториях удалось получить кристаллические препараты транспортной РНК, пригодные для рентгеноструктурного анализа. "Модели-то можно придумать, — сказал тогда А. Спирин, — а вот доказать, что та или иная модель соответствует действительности, может только рентгеноструктурный анализ". К моменту работы симпозиума в некоторых лабораториях удалось закристаллизовать около пятнадцати транспортных РНК, многие из которых были вполне готовы для рентгеноструктурного анализа.

Прогнозы оказались правильными. Ранней весной 1973 года группа ученых Массачусетского технологического института в Америке опубликовала работу, в которой сообщалось: методом рентгеноструктурного анализа определено строение фрагмента двойной спирали РНК. Он состоял из двух пар азотистых оснований гуанин-цитозин: Г-Ц /Ц-Г Авторам удалось закристаллизовать динуклеотид Г-Ц. И вот рентгенограммы кристаллов этого динуклеотида позволили прямым путем "увидеть" повторяющийся элемент двойной спирали.

Геометрия любой части двойной спирали практически одна и та же. А это значит, что представления о двухтяжевой модели РНК оказываются правильными. Чрезвычайно любопытно, что, по данным этих ученых, транспортная РНК представляет собой спирально сплетенную молекулу, причем сплетенную в форме Г-образного крючка. Размер восемь миллионных долей миллиметра.

А почему в природе существует столько рибонуклеиновых кислот? Не одна, не пять, не десять, а значительно больше?

Чтобы ответить на эти вопросы, надо рассказать о биологической роли нуклеиновых кислот. Открытие, которое произвело революцию в биологии в XX веке, фактически состоялось во второй половине прошлого века. Но биологическая значимость нуклеиновых кислот оставалась неясной практически до самого последнего времени.

Шли сороковые годы нашего столетия. И вот фактически одновременно в нескольких странах ученые обнаружили интересное явление. В Советском Союзе Б. Кедровский, в Бельгии — Д. Браше, в Швеции — Т. Касперсон заметили, что в тех местах ткани, где синтез белка идет более интенсивно, и нуклеиновых кислот больше. Сегодня участие нуклеиновых кислот в биосинтезе белка неопровержимо доказано.

Как известно, строительным материалом для биосинтеза белка служат аминокислоты. Но для того чтобы строительный матерлал можно было использовать, аминокислоты должны быть активированы. Этот процесс идет при обязательном участии аденозинтрифосфорной кислоты (АТФ), богатого свободной энергией соединения. Затем активированная аминокислота реагирует с транспортной РНК (т-РНК). Каждая индивидуальная аминокислота имеет персональную т-РНК. Из этого следует, что т-РНК должно быть никак не меньше, чем самих аминокислот. т-РНК транспортирует аминокислоту к местам синтеза белковой молекулы. Синтез белка происходит в крошечных по размеру специальных клеточных образованиях, которые называются рибосомами. Любопытно, что сами рибосомы состоят на 55-65 процентов из РНК и на 35-45 из белка. Рибосомы вполне можно уподобить настоящему конвейеру по сборке белковых молекул.

Если в молекуле ДНК "записана" наследственная информация, то при синтезе белка эта информация должна передаваться с помощью какого-то посредника. В 1961 году настоящую научную сенсацию произвело сообщение Ф. Жакоба и Ж. Моно, которые объявили о существовании такого "посредника". Им оказалась молекула РНК, которая, в свою очередь, синтезировалась на молекуле ДНК. В этом случае молекула ДНК служила настоящей матрицей, на которой строилась молекула рибонуклеиновой кислоты.

Эта РНК — посредник — получила название информационной РНК, или сокращенно м-РНК. "М" — начальная буква английского слова "месиндже" — "посыльный". Функция м-РНК состоит в том, чтобы извлекать информацию оттуда, где она хранится, и доставлять туда, где она используется.

М-РНК характеризуется высокой степенью метаболизма, или, иначе, высокой подвижностью. Она способна образовать с ДНК молекулярные комплексы, а ее первичная структура соответствует структуре определенных участков ДНК. Отсюда следует важный вывод: истинной матрицей для синтеза белка служит посредник, который переносит информацию от ДНК к рибосоме.

При синтезе белка из аминокислот сначала образуются полипептидные цепи. Биохимики полагают, что синтез полипептидной цепи происходит на рибосоме. Но как, пока никто сказать точно не может.

В самом общем виде процесс идет так. Первая стадия белкового синтеза — стадия активации. При этом аминокислота взаимодействует с соответствующей ей транспортной РНК за счет энергии, содержащейся в молекуле аденозинтрифосфорной кислоты. Затем подготовленная таким образом аминокислота, как баржа на буксире, транспортируется к месту сборки белковой молекулы, к рибосоме. Нос этого "буксира" непростой. Он чем-то напоминает ключ, который будет искать свою "замочную скважину" на молекуле информационной РНК. Найдя свое место на молекуле м-РНК, т-РНК прикрепляется к нему и продолжает удерживать доставленную аминокислоту. К ней подходит последнее звено строящейся полипептидной (белковой) цепи. Аминокислота "отцепляется" от транспортной РНК и присоединяется к белковой молекуле. Одновременно с этим информационная РНК перемещается по рибосоме и готовится к встрече с новой аминокислотой, которая будет доставлена другой транспортной РНК.

Рост полипептидной цепи (четвертая стадия) заканчивается, когда соответствующий "сигнал" о прекращении синтеза поступает от той же информационной РНК. Полипептидная цепь отделяется от рибосомы.

Одним из лучших доказательств любой биохимической гипотезы является возможность провести процесс, характерный для живой клетки, в пробирке, на лабораторном столе. Сегодня удается воспроизвести биосинтез белка в бесклеточных системах. Однако если для этих целей взять аминокислоты, рибосомы, транспортную РНК, информационную РНК, некоторые активирующие ферменты и кое-какие добавки, то биосинтез будет идти в значительно меньших количествах и с меньшей скоростью, чем в живой клетке. А это свидетельствует, что наша схема биосинтеза белка, по-видимому, не является универсальной.

Всем известно, что такое код, в самом обычном значении этого слова. Когда мы говорим о "генетическом коде" ДНК, то подразумеваем последовательность нуклеотидов в ее молекуле. В конце концов, именно это определяет, почему из оплодотворенной женской яйцеклетки формируется человеческий зародыш, из яйца курицы вылупляется цыпленок, а из макового зернышка вырастает мак.

И вот что важно помнить: последовательность нуклеотидов в молекуле ДНК определяет последовательность аминокислот в любой молекуле белка. Сначала нуклеотидный код ДНК (или, иными словами, генетический код) передается на информационную РНК. По предложению Ф. Жакоба и Ж. Моно этот процесс называют транскрипцией.

Затем нуклеотидный код информационной РНК воплощается в определенной последовательности аминокислот при синтезе белка. Этот процесс специалисты по молекулярной биологии называют трансляцией. С помощью остроумных и тщательно выполненных исследований было показано, что включение молекулы аминокислоты в молекулу белка кодируется определенной комбинацией трех нуклеотидов. Нередко разные комбинации нуклеотидов кодируют включение в молекулу белка одной и той же аминокислоты.

Считают, что в каждую секунду к растущей белковой цепи присоединяются две аминокислоты. Для синтеза молекулы белка требуются минуты. А для построения гигантской молекулы ДНК необходимо несколько часов.

Возникает вопрос: а является ли схема белкового синтеза настолько универсальной, чтобы объяснить все стороны синтеза белка в организме млекопитающих и растений? Конечно, нет. Схема синтеза белка, о которой говорилось выше, получила широкое распространение. Но в то же время исследователи помнят, что она была разработана на основании экспериментов с бесклеточными, изолированными системами, полученными из микроорганизмов.

В лаборатории известного советского ученого-биохимика, вице-президента Академии наук СССР Ю. Овчинникова висит забавный, но полный глубокого смысла плакат, талантливо нарисованный кем-то из младших научных сотрудников. Первобытный человек, одетый в косматые звериные шкуры, палицей замахнулся на маленькую, хрупкую и беззащитную молекулу. Несмотря на выдающиеся успехи молекулярной биологии, исследователи считают, что работы по изучению белковой молекулы достигли в своем развитии примерно уровня охоты людей каменного века на мамонта. Так что эпоха "великих географических открытий" в молекулярной биологии только начинается.

 

Клеверный лист, разрезаншй слон и хирургия молекул

Если было трудно ответить на вопрос, как построены молекулы нуклеиновых кислот, то не менее сложным оказалось выяснить, какие функции они выполняют. И вот тут снова целесообразно вспомнить о валиновой РНК, о титанической работе академика А. Баева и его сотрудников, изучавших функции этой нуклеиновой кислоты.

Она обладала рядом общих для транспортных РНК свойств. Сродством к определенной аминокислоте — валину, который используется при строительстве молекулы белка. Сродством к информационной РНК, которая содержит программу синтеза нового белка. Наконец, валиновая РНК находилась в самых близких отношениях с ферментом, который обеспечивает присоединение к ней нужной аминокислоты.

Но у валиновой РНК были и свои характерные особенности. Она, как приличествует любой солидной биологической макромолекуле, существовала не в виде одномерной нити, а обладала хитроумной пространственной структурой. Двумерная ее модель имела форму хорошо известного многим листика клевера.

Дальнейшие исследования показали, что этот "клеверный лист" устроен еще сложнее. Некоторые части нити валиновой РНК образуют петли, другие закручены в спираль. И только участок, к которому прикрепляется транспортируемая аминокислота валин, свободен.

Группа ученых во главе с академиком А. Баевым решила исследовать сначала только одну из функций этой нуклеиновой кислоты — ее взаимодействие с ферментом, ответственным за присоединение валина. Разработали метод "разрезанных молекул". Но чтобы резать молекулу, нужен инструмент. Таким ножом оказался фермент гуаниловая рибонуклеаза. Он расщеплял целую молекулу на половинки, четверти и еще более мелкие кусочки.

Все составные части подвергали сначала химическому анализу, а потом функциональному. Что такое химический анализ, понятно всем. А вот функциональный заключался в следующем. Выясняли, способен тот или иной фрагмент молекулы валиновой РНК в присутствии фермента присоединять аминокислоту валин. Иными словами, способен ли отрезанный кусочек делать работу, которую выполняла неразрезанная молекула.

Начались кропотливые многолетние опыты.

С помощью фермента гуаниловой рибонуклеазы валиновую РНК резали на кусочки, очищали, делили на половинки, четверти и более мелкие части, анализировали и запаивали в очень маленькие трубочки из полиэтилена. Создав запас обломков, определяли их способность присоединять аминокислоту в присутствии фермента. Это была не только кропотливая и трудоемкая работа. Это была ювелирная работа высшего класса точности. Недаром один из создателей молекулярной биологии, академик В. Энгельгардт, остроумно назвал методический прием, использованный А. Баевым и сотрудниками, "хирургией молекул".

Спустя несколько лет А. Баев рассказывал: "...Когда мы работали только с половинками молекул валиновой РНК, было сделано наблюдение, которое оказалось подлинным открытием. Мы обнаружили, что фрагменты валиновой РНК способны к самопроизвольной реассоциации — самосборке, в результате которой структура молекул восстанавливается. Еще более поразительным было то, что при этом, как выяснилось, восстанавливаются и функциональные свойства, утраченные после ее разделения на части". Половинки валиновой РНК свободно отыскивали своих "родных братьев" — другие половинки молекул, хотя в растворе присутствовали осколки иных транспортных РНК — невалиновых!

Кто хотя бы раз слышал рассказ А. Баева об удивительном явлении самосборки молекул, конечно, помнит зрительно ощутимый пример, который он приводил. "Нарисуем на бумаге фигурку слона, — говорил он, — и разрежем ее ножницами на четыре части. Если мы возьмем три части из четырех, то сколько бы мы их ни складывали вместе, фигурки слона не получится. Если возьмем все четыре части, то фигурку можно сложить и правильно и неверно.

Представим себе, что наш слон — это и есть молекула валиновой РНК. По желанию играющего в эту игру можно собрать из четырех частей фантастическое существо, совсем непохожее на слона. А вот с молекулами валиновой РНК, разрезанной на четыре части, подобной картины почти никогда не наблюдается. Самосборка молекул идет правильно, и "слепые силы" природы не ошибаются".

В чем же секрет правильной самосборки?

А вот в чем. Точность самосборки молекулы связана с существующим порядком расположения нуклеотидов в молекуле валиновой РНК, а движущими силами служат межмолекулярные силы, которые ответственны за образование комплементарных пар Уотсона — Крика.

Наше довольно-таки подробное повествование о методе "разрезанных молекул" не случайно. Ведь в сущности своей это рассказ о трудных путях познания фундаментальных биологических законов.

 

Кое-что об обратном списывании

Научные истины стареют. То, что сегодня кажется незыблемым, завтра может быть изменено, а признание научных положений "бесспорными" всегда опасно. От них всего шаг до догматизма, оперирующего неизменными понятиями без учета новых данных науки.

В молекулярной биологии восторжествовал принцип, который можно выразить формулой: ДНК → РНК → белок. Основной путь передачи наследственных признаков был доказан таким огромным количеством экспериментальных работ, что многим биологам он стал казаться единственно возможным. И тогда произошло событие, которое произвело научную сенсацию.

Мало кому известный вирусолог из университета штата Висконсин Г. Темин выступил с крамольно звучащим сообщением. Он сумел убедить своих недоверчивых коллег, что в живых клетках, зараженных РНК-содержащими онкогенными вирусами, вирусная РНК служит матрицей для синтеза ДНК. В незыблемую, казалось, формулу ДНК → РНК → белок, настаивал Г. Темин, должна быть внесена существенная поправка ДНК РНК → белок. Непосвященным эта короткая стрелка на схеме, нацеленная на ДНК, мало о чем говорила. Но для специалистов-биохимиков она сначала казалась или плодом необузданной фантазии автора или результатом ошибочно поставленного опыта.

Представление о том, что вирусы могут быть причиной раковых заболеваний, родилось сравнительно давно, в начале нашего столетия! Но почему вирус, вызвавший опухоль, нередко в ней не обнаруживается? Почему он исчезает? Или "мавр сделал свое дело, мавр может уйти"?

По мнению выдающегося советского ученого Л. Зильбера, когда опухолеродные вирусы проникают в клетку, их наследственный аппарат сливается с клеточным. Таким образом, раковая клетка сохраняет сведения вирусного наследственного аппарата. И не только сохраняет, но и передает их потомству. Но наследственный аппарат клетки — это огромные молекулы ДНК. Значит, логично допущение: онкогенный вирус передает свою раковую информацию с помощью молекулы ДНК. А если в этом вирусе нет ДНК, то с помощью чего он ухитряется передавать свою информацию?

У онкогенных РНК-содержащих вирусов генетический материал состоит именно из РНК, о чем свидетельствует их название. Ну а если так, то дальше должны произойти следующие события. Генетическая информация, навязанная клетке онкогенным РНК — содержащим вирусом, превращает ее в злокачественную. Более того, злокачественность наследуется и без изменений передается при делении материнской клетки дочерним. Эта показавшаяся сначала явно крамольной идея была высказана Г. Темином в 1964 году.

Прошло всего лишь полгода, и вирусолог Г. Темин из Висконсинского университета, до того на протяжении шести лет работавший в полной безвестности, сумел убедить своих коллег, что в клетках, зараженных онкогенными вирусами, вирусная РНК действительно служит матрицей для синтеза ДНК.

В июне 1969 года другой ученый, С. Спигелмен, выступил на заседании Лондонского королевского общества с горячей речью в поддержку идей Г. Темина. Из упрямого чудака Г. Темин превращался в мудрого провидца.

Нельзя думать, что Г. Темин начинал свою работу на голом месте. Достаточно сказать, что за несколько лет до сообщения этого талантливого ученого группа советских ученых во главе с профессором С. Гершензоном обнаружила перенос генетической информации от РНК к ДНК.

Весной, в мае 1970 года, на X Международном конгрессе в Хьюстоне Г. Темин выступил с новым сообщением.

У вируса саркомы Рауса хранилищем генетической информации служит молекула РНК. Но когда этот вирус проникает в живую клетку, на РНК-матрице синтезируется уже не РНК, а молекула ДНК. Затем молекула ДНК удваивается. В этих реакциях обязательно должен участвовать и фермент, ответственный за сборку молекулы ДНК-полимераза.

Раньше думали, что полимераза отвечает только за сборку молекулы ДНК или молекулы РНК. А согласно Г. Темину сборка молекулы ДНК происходила на матрице РНК. Поэтому и фермент поначалу стали называть довольно-таки сложно: РНК — зависимая ДНК — олимераза. Но название было явно громоздким. Необходимо было попроще. Фермент нарекли именем обратная транскриптаза.

Существует старинная русская присказка: "Скоро сказка сказывается, да не скоро дело делается". Однако при исследовании обратной транскриптазы и, следовательно, всего процесса обратной транскрипции события развивались иначе. И быстро сказывалась сказка, и быстро делалось дело.

Обратная транскрипция, или, иными словами, процесс "обратного" списывания информации, привлек пристальное внимание ученых. Работа Г. Темина еще не была опубликована, а слухи о его опытах быстро распространились среди ученых и вызвали настоящую волну экспериментальных исследований.

После сенсационного сообщения Г. Темина события разворачивались как в хорошем приключенческом рассказе. Когда молодой ученый вернулся с заседания, ему позвонил Д. Балтимор. Он работал с другим РНК — содержащим опухолеродным вирусом и нашел, что в нем тоже есть фермент, который способен синтезировать молекулы ДНК. Вот об этом своем открытии он и решил сообщить Г. Темину. Тот ответил, что уже знает об этом и, в свою очередь, поинтересовался, откуда все стало известно Д. Балтимору.

И вот тут выяснилось, что оба ученых открыли это независимо друг от друга. Обратите внимание: независимо друг от друга. Это очень характерно для развития науки. Сработала диалектическая закономерность: уровень знаний, накопленные факты и наблюдения обязывали сделать необходимые выводы. И они были сделаны.

Так, в 1970 году в июньском номере солидного научного журнала были одновременно напечатаны две статьи. Одна рассказывала о работах, проведенных Г.Темином совместно с японским исследователем С. Мизутани. Другая была написана Д. Балтимором.

Вскоре на гребне волны оказался другой ученый — С. Спигелмен. В середине июня 1970 года он доложил на собрании Лондонского королевского общества: в нашей лаборатории аналогичный фермент обнаружен в шести онкогенных вирусах.

Поток исследований нарастал. Накал научных страстей достиг наивысшей точки, когда в ноябре 1970 года Р. Галло сообщил: в нашей лаборатории, в Национальном институте рака США, обратная транскриптаза обнаружена в крови трех больных острой формой лейкоза и не найдена в крови здоровых людей.

Возникает вопрос: а за какие практически осуществимые идеи сражались действующие лица?

Если бы удалось доказать, что обратная транскриптаза или любой другой фермент существует только в раковой клетке, появилась бы возможность создать лекарство, которое бы избирательно действовало на этот фермент. Если бы удалось разрушить такой фермент, вероятно, можно было бы убить и раковую клетку.

Некоторые исследователи стали с ожесточением изучать различные производные антибиотика, который носит название рифампицина. Это лекарство активно вмешивалось в процессы транскрипции. Итальянская фармацевтическая фирма, выпускающая рифампицин и заинтересованная в сбыте своего товара, организовала даже научное заседание, посвященное изучению проблемы обратной транскрипции. Но, увы, вскоре началось второе действие биохимической драмы...

События развертывались стремительнее, чем можно было ожидать. Очень скоро один из ученых, Д. Тодаро, доказал: фермент обратная транскриптаза содержится и не в онкогенных вирусах. И уже совсем было грустно слышать всем, кто лелеял радужные мечты о наметившихся путях решения проблемы лечения рака, когда несколько ученых сообщили: обратная транскриптаза обнаружена в здоровых клетках. Затеплившиеся надежды рухнули. Обратная транскриптаза оказалась не характерной ни для онкогенных вирусов, ни для раковых клеток.

Увы, дороги молекулярной биологии не усыпаны только розами. Проблема обратной транскрипции еще далеко не разрешена. Желающим ею заняться можно порекомендовать поразмыслить хотя бы над таким вопросом: что делает обратная транскриптаза в клетках здорового организма?

После сенсационного сообщения Г. Темина прошло шесть лет. Открытие выдержало проверку временем. Нобелевскую премию по физиологии и медицине за 1975 год присудили двум талантливым исследователям — Г. Темину и Д. Балтимору.

 

В стеклянной колыбели

Синтезировать ген — эта дерзкая мечта десять лет назад казалась неосуществимой. Но достижения молекулярной биологии скоро позволили вплотную подойти к ее воплощению.

В 1965 году было разгадано строение первой транспортной РНК. Сегодня известны первичные структуры почти всех транспортеров аминокислот, и усилия ученых направлены на разгадку их пространственной конфигурации. Важно понять связь между химическим строением этих молекул и функциями, которые они выполняют в живой клетке.

Р. Холли установил первичную структуру аланиновой транспортной РНК, той, что переносит к месту сборки белковой молекулы аминокислоту аланин. Результаты его исследований вызвали настоящую цепную реакцию и привели к серии других выдающихся достижений. Среди них едва ли не первое место занимает синтез гена в лаборатории X. Кораны. Это о нем один из крупнейших биохимиков нашего времени, А. Корнберг, сказал: "То, что вы сделали, — это атомная бомба 1980 года".

Как развивались события, предшествующие синтезу гена?

Сам X. Корана как-то сказал, что решение синтезировать ген было принято тотчас же, как он узнал от Р. Холли последовательность нуклеотидов в аланиновой транспортной РНК. Успех дела обеспечили ряд обстоятельств. X. Корана в совершенстве овладел химией нуклеотидов и умел целенаправленно создавать связи между нужными нуклеотидами.

Способность нуклеотида вступать в реакции весьма многообразна. Если только так можно выразиться, нуклеотид обладает норовистым характером. Важно заставить это элементарное звено подчиняться желанию экспериментатора и обязать нуклеотид вступать в нужные для химика реакции. В лаборатории X. Кораны сумели полностью обуздать непокорные нуклеотиды.

Программа исследований по синтезу гена делилась на несколько этапов. Прежде всего нужно было синтезировать блоки, состоящие из 4-20 нуклеотидов. Такие блоки химики называют олигонуклеотидами.

Полученные химическим путем блоки нуклеотидов соединялись в две нити, которые были комплементарны. А вот чтобы связать готовые олигонуклеотиды в единую цепь, использовали фермент, который умеет "сшивать" концы этих блоков, лигазу.

Итак, можно взять нуклеотидный блок, состоящий из 20 нуклеотидов. Добавить к нему два других блока, каждый из которых тоже состоит из 20 нуклеотидов. Половина каждого из этих двух блоков должна быть комплементарна половинкам первого нуклеотида. Если теперь смешать в одной колбе растворы всех трех блоков, то произойдет самосборка. В результате образуется фрагмент двухцепочной молекулы ДНК. Но пока в этой новой двухцепочной молекуле каждая из цепочек составлена из отдельных блоков. Если теперь к раствору добавить фермент лигазу, то блоки будут "пришиваться" по концам нуклеиновой кислоты. Таким образом, можно последовательно удлинять "нить жизни". Действуя как опытный дирижер, умело сочетая методы химического и биологического синтеза, X. Корана ?нтезировал ген аланиновой транспортной РНК, ответственной за перенос аминокислоты аланина.

В последнее время в его лаборатории ведутся работы по синтезу гена тирозиновой транспортной РНК, которая транспортирует другую аминокислоту, тирозин, наконец, перед исследователями стоит труднейшая задача: заставить синтетические гены работать.

Однажды X. Корану спросили, какие события в его жизни запомнились ему больше всего. "Были очень волнующие моменты, — ответил ученый. — Например, когда мы впервые в начале 1968 года (это было 9 января, в день моего рождения) применили ДНК-лигазу и видели, что с ее помощью можно сшивать олигонуклеотиды... Дни, подобные этому, редки". В 1968 году Коране совместно с двумя другими выдающимися иохимиками М. Ниренбергом и Р. Холли была присуждена Нобелевская премия по медицине и физиологии за расшифровку генетического кода.

Как работает прославленный биохимик X. Корана? В чем секрет его замечательных достижений?

X. Корана родился в 1922 году в Индии в бедной многодетной семье. Только одному ему посчастливилось получить высшее образование. Сначала он окончил Пенджабский университет, потом учился в Англии и в Швейцарии. X. Корана прошел хорошую химическую подготовку. Достаточно сказать, что в Англии он работал у крупнейшего специалиста по химии нуклеотидов А. Тодда.

В 1960 году X. Корана обосновался в Институте исследования ферментов в американском городе Мадисон. В последнее время ученый перешел работать в один из наиболее известных и богатых высших учебных заведений США — Массачусетский технологический институт.

Все, кто сталкивался со знаменитым ученым, отмечают его удивительную простоту и непринужденность. X. Корана как-то сказал, что в своих сотрудниках прежде всего ценит преданность работе. "Я не люблю, — говорит ученый, — чтобы сотрудники работали на меня, я люблю, чтобы они работали со мной... в одной упряжке. Я не думаю, чтобы мои сотрудники сами стали работать так много, как работаю я, но когда они видят, как я работаю, то они начинают работать все интенсивнее и интенсивнее. Потом они видят, что могут сделать еще немножечко больше, потом еще немножко больше. И это их захватывает, а потом у них возникает чувство свершения..."

X. Корана склонен к философским обобщениям. Он не любит скоропалительных решений. Если ему предстоит обобщить экспериментальный материал и написать большую статью, он берет двухдневный запас бутербродов и удаляется в уединенный домик. "В науке сама единица времени, — как-то сказал ученый, — зависит не от скорости мышления, а от глубины мысли".

Лаборатория, которой руководит X. Корана, необычная. Ее состав постоянно периодически обновляется. Большинство сотрудников — молодые ученые из разных стран мира: американцы, англичане, индийцы, японцы, итальянцы, норвежцы... Работали и работают здесь и ученые из Советского Союза. Пробыв вместе два-четыре года, сотрудники покидают лабораторию и возвращаются к себе на родину. На смену им приезжают новые, желающих учиться у знаменитого исследователя много.

Все сотрудники в коллективе — опытные, квалифицированные специалисты. Поэтому профессор не тратит время на обучение молодых ученых. И еще одна особенность присуща лаборатории X. Кораны. Он любит, чтобы группа исследователей была небольшой. Любопытно, что над синтезом гена аланиновой транспортной РНК работала группа из 13 человек.

В настоящее время лаборатория, которой руководит ученый, сравнительно небольшая, всего около 30 человек. Ее главной производительной силой по-прежнему являются молодые специалисты, недавно получившие степень доктора, эквивалентную нашей степени кандидата наук. Все. они энергичны, эрудированы, все стремятся сделать себе хорошее "научное имя". Следует признать, что их подгоняют и соображения чисто практического порядка. В США все большей популярностью пользуется принцип "омоложения науки". Поэтому следует торопиться и к 30 годам заработать себе хорошие научные рекомендации.

Трудовой день в лаборатории начинается в 8 часов ра и затягивается до ночи. Желающим экспериментировать в любое время суток, в воскресенья и праздники выдается ключ от института.

X. Корана лекций не читает, семинаров не ведет. Все свои силы он отдает научной работе.

Ученый бывал в Советском Союзе. Он хорошо знаком с работами видных советских специалистов в области молекулярной биологии. "А. Спирин, А. Баев, — говорит он, — работают великолепно. Сотрудники Ю. Овчинникова сделали отличные исследования по белку и мембранам клетки".

Больше всего в лаборатории X. Кораны поражает необыкновенное трудолюбие и его самого, и всех его сотрудников. Один из секретов успеха выдающегося биохимика — умение предельно глубоко разрабатывать идеи экспериментальных исследований, точное представление о конечной цели работы.

Однажды кто-то из приехавших специалистов пошутил: мы работаем в лаборатории так много, что можем не заметить, как мимо пройдет жизнь. Ответ, который он услышал, был краток и точен: "Наука — это жизнь". Именно в этом самый главный секрет удивительных научных достижений X. Кораны.

 

Вчера, сегодня и завтра

Вполне вероятно, молодой, энергичный и уверенный в себе исследователь, который будет жить и работать в 2000 году, удивится, узнав, насколько наивными были представления биологов, живших за четверть века до начала третьего тысячелетия. За примерами, как говорится, ходить далеко не надо. До 1960 года наши рассуждения о биосинтезе нуклеиновых кислот были весьма и весьма предположительными.

Одним из высших достижений научного мастерства всегда является способность осуществить синтез природного соединения на лабораторном столе. Уметь делать так, как природа, или даже лучше ее, разве это не заманчиво? В конце концов, синтез двойной спирали ДНК — носительницы наследственности живой клетки — венчал бы собой многолетние попытки биохимиков воссоздать на лабораторном столе гигантские молекулы биологически активных соединений.

Лауреат Нобелевской премии А. Корнберг как-то сказал, что внеклеточным синтезом нуклеиновых кислот он стал заниматься в 1954 году, спустя год после того, как Д. Уотсон и Ф. Крик предложили двуспиральную модель ДНК. А. Корнберг и его помощники добились своей цели уже через год, но полный успех пришел к ним значительно позже.

Отправной точкой этих выдающихся исследований послужила необычная одноцепочечная ДНК. Она была найдена у одного из вирусов бактерий — фага X 174. А. Корнбергу удалось воспроизвести синтез одноцепочечных копий фаговой ДНК. Потом, как вспоминает сам автор, научились получать синтетические двойные спирали. Таким образом, был открыт путь к синтезу ДНК и у других организмов. "В конечном итоге, — пишет А. Корнберг, — можно будет приступить к синтезу ДНК позвоночных животных, в том числе млекопитающих".

Не надо забывать, что это сказано 10 лет назад. Сегодня молекулярная биология ушла далеко вперед.

А как с биосинтезом РНК?

В период с 1957 по 1959 год появился ряд научных сообщений о существовании реакций, обеспечивающих включение нуклеотидов в молекулу РНК. И наконец, в 1959 году С. Вейсс и Л. Гладстон сообщили, что выделили из печени крыс фермент, который отвечает за включение нуклеотидов в РНК, назвали его РНК-полимеразой.

Работы А. Корнберга и его сотрудников вызвали в свое время настоящую научную сенсацию. Они, безусловно, также принадлежат к числу тех исследований, которые революционизировали естествознание и являются украшением молекулярной биологии. Что молекулы ферментов трехмерны, по-видимому, знают многие. Но вот о том, что молекулы ферментов "шевелятся" во время работы, известно, конечно, немногим. И уж совсем мало людей слышали, что ферменты "ползают".

Вот один из примеров. Мы знаем, что информация, содержащаяся в ДНК, переписывается на РНК с помощью фермента РНК-полимеразы. Фермент этот образует химическую связь между концом синтезированной РНК и нуклеотидом, расположенным на ДНК-матрице. Затем перемещается вдоль цепи ДНК на одно звено нуклеотида и начинает свою работу снова. Предполагают, что, когда реакция присоединения одного нуклеотида прошла только наполовину, начинается присоединение следующего. Действие фермента чем-то напоминает работу обычного двухцилиндрового двигателя внутреннего сгорания. Расширение газов в одном цилиндре сопровождается сжатием в другом.

Помимо всего прочего, фермент неутомимо "ползет" доль цепи ДНК. Иными словами, молекула полимеразы перемещается вдоль нуклеотидной цепочки молекулы-матрицы.

"Что же дальше?" — задал однажды вопрос Д. Кендрью, адресуя его ко всей молекулярной биологии. Что ожидает молекулярную биологию в обозримом будущем, спросит читатель. Прогнозов много. Расскажем об одном.

В журнале "Химия и жизнь" была напечатана короткая заметка под интригующим названием: "Что нам готовит грядущий день?" Научные прогнозы начинались 1978 годом и оканчивались 2060-м. Они касались практически всех областей знаний. Один прогноз был увлекательнее другого. Многие из них имели прямое отношение к биологии.

Специалисты утверждают, что, например, к 1985 году будут найдены лекарства для предупреждения или лечения рака, к 1988 году станет возможным централизованное хранение человеческих органов для пересадки. К 1990-му — синтезируют лекарства для лечения душевнобольных. К 2000 году предполагается решить проблему улучшения памяти человека химическим путем, научиться регулировать процессы старения, наследственность. Наконец, где-то около 2015 года предполагается создание примитивных форм искусственной жизни. Но если попытаться проанализировать эти прогнозы, то приходишь к неизбежному выводу — многие достижения биологии и медицины будут связаны с успехами молекулярной биологии.

Она может гордиться своим главным достижением: понятие "ген" сегодня отождествляется с реальной химической структурой — конкретным участком молекулы ДНК, а для простейших организмов, некоторых вирусов и фагов, с определенными участками РНК. Причем все разнообразие генетической информации определяется только вариациями последовательности нуклеотидов в нуклеиновых кислотах.

В науке нет "маленьких" научных проблем. При решении чисто практических вопросов всегда необходима высокая теория. Наша промышленность выпускает хорошее лекарство — энтобактерин, который отлично защищает сельскохозяйственные растения от вредителей. Препарат этот нужный, очень эффективный и, что весьма важно, совершенно безвредный для человека. Но, увы, энтобактерин пока вещь дефицитная. И выпускают его в количествах, которые не удовлетворяют запросы нашего сельского хозяйства. В чем же дело? Главная трудность пока в налаживании производства. Препарат выделяют из бактерий. Выращивают их в больших реакторах. Но вот беда: на них нападают вирусы, и тогда бактерии массами гибнут прямо в реакторах. Вся работа идет впустую. Чтобы избежать этого, надо изучить тонкое строение молекул ДНК и бактерий и нападающих на них вирусов. Необходимо исследовать самые интимные механизмы размножения этих микроорганизмов. И наконец, вывести новый штамм бактерий, устойчивых к агрессивному вирусу. Воистину "нет ничего более практичного, чем хорошая теория".

Не так давно Ф. Хэндлер — президент Национальной Академии наук США — выступил с острой, полемичной статьей "Зачем нам нужна наука". Эта интересная статья была посвящена проблеме отношения общества к научно-техническому прогрессу. "Элегантная простота структуры дезоксирибонуклеиновой кислоты, — пишет автор, — позволяет ей копировать себя и управлять многочисленными функциями живой клетки". Но иногда "элегантная простота" ДНК может сыграть с организмом злую шутку. Речь идет о наследственных болезнях.

Наследственные — значит врожденные, связанные с передачей признаков от родителей к детям, иными словами, закодированные в ДНК. К счастью для человека, этих заболеваний по сравнению со всеми другими не так уж много. Но все наследственные заболевания — это тяжелые недуги, нередко заканчивающиеся смертью.

Описан ряд серьезных заболеваний, связанных с нарушением обмена аминокислот, например, обменом фенилаланина. В тканях таких больных накапливается необычно большое количество аминокислоты и продуктов ее распада. Это вызывает тяжелые расстройства деятельности центральной нервной системы.

Теперь врачи-клиницисты и биохимики знают, что болезнь связана с отсутствием в тканях человека фермента, который ответствен за превращение фенилаланина в тирозин. Но за образование любого фермента в организме отвечает совершенно определенный ген, или, иными словами, определенный участок ДНК. Следовавтельно, чтобы лечить таких больных, необходимо найти ген, отвечающий за синтез фермента, выяснить, в чем заключается его дефектность, а затем "починить" неисправный участок ДНК или заменить его новым.

Существует наследственная болезнь крови — серпо-видноклеточная анемия. Это для нее впервые был применен термин "молекулярная болезнь". У таких больных эритроциты принимают серповидную форму. В первые месяцы жизни больного ребенка наблюдаются закупорки мелких кровеносных сосудов, кровоизлияния, инфаркты. Болезнь протекает тяжело.

И вот ученые обнаружили, что причина заболевания — незначительное изменение последовательности аминокислот в белковой части гемоглобина. Всего в молекуле гемоглобина около 600 остатков аминокислот, расположенных в строгой последовательности. В гемоглобине больных в шестом положении белковой цепи вместо глютаминовой аминокислоты всегда обнаруживали аминокислоту валин. Исследователи были поражены: замена только одной аминокислоты на другую вызывала тяжелое заболевание.

И при лечении этой болезни возможно идти заманчивым путем: научиться исправлять дефекты в генах. Ведь, в конце концов, генетическая информация определяется последовательностью оснований в молекуле ДНК. В принципе уже доказана возможность пересаживать ген от одного организма к другому. Однако следует признать, что это именно тот случай, когда принципиальная возможность и ее практическое воплощение пока еще разделены огромным расстоянием.

Рак — грозное заболевание. Многие стороны механизма возникновения этой болезни неясны. Действительно, почему клетки иногда выходят из-под контроля организма. Почему их размножение становится безудержным? Вот одна из возможностей подхода к решению этих вопросов. Некоторые вирусы способны вызывать рак у животных. При этом события разворачиваются на молекулярном уровне. "Начинка" вируса — его собственная ДНК — проникает в здоровую клетку и соединяется с хромосомой клетки хозяина. Все гены клетки хозяина продолжают функционировать, но один из них уже "заменен" на ген вируса. Вот он-то и является виновником возникновения рака.

Если генов много, найти среди них вызвавший раковое перерождение, конечно, трудно. Но оказалось, что среди вирусов есть и такие, которые содержат всего 5-10 генов. Например, вирус, вызывающий полному мышей. Здесь отыскать виновника заболевания, конечно, легче. Теперь перед исследователем открывается заманчивая перспектива: изучить все этапы размножения этого вируса, понять функцию каждого гена и исследовать биохимические процессы, которые ответственны за перерождение здоровой клетки в раковую. Тогда можно будет уяснить, почему безудержно делятся раковые клетки, иными словами — почему они непрерывно синтезируют ДНК, в то время когда здоровые клетки этого не делают. По мнению Д. Уотсона, это реальный и перспективный подход к проблеме лечения рака.

Можно ли увеличить биологические пределы человеческой жизни? Может ли осуществиться мечта человека жить 100 и даже 150 лет активной жизнью? Эти вопросы давно волнуют человечество.

Ответы на них ищет геронтология — наука о долголетии. Само название этой области естествознания раскрывает ее сущность. Оно составлено из двух греческих слов: геронтос — "старость" и логос — "учение". Первая в мире научная конференция по проблемам геронтологии была проведена в Советском Союзе в 1938 году. Она называлась кратко и выразительно: "Старость". Ее организатором был выдающийся ученый, основатель школы советских геронтологов академик А. Богомолец. Сравнительно недавно, в июле 1972 года, в Киеве состоялся IX Международный конгресс геронтологов. Он подвел итоги развития этой науки.

На конгрессе кто-то из ученых подсчитал, что существует около 200 гипотез старения организма. Когда много гипотез, это всегда свидетельствует о недостаточности наших знаний. Но множественность гипотез также говорит о больших усилиях, которые предпринимаются учеными во многих лабораториях. Действительно, почему стареет все живое? Старость — это закономерность или случайность?

— Профессор, что такое старость? — спросили недавно Ф. Антонини, директора Института геронтологии при Флорентийском университете в Италии.

— Если в двух словах, — сказал ученый, — то отвечу: не знаю.

Это, конечно, горькая шутка, потому что потом Ф. Антонини уже развивал свою собственную гипотезу старения организма.

Пожалуй, наиболее перспективны гипотезы, которые пытаются найти "единый механизм старения". Согласно одной из них старость запрограммирована в генетическом аппарате клетки, в самих молекулах ДНК. Возрастные изменения в генетическом материале могут проявляться, например, в изменении первичной, вторичной и третичной структур ДНК, РНК, белков ядра клетки, ферментов, "обслуживающих" генетический аппарат, и гормонов, связанных с его деятельностью.

Близко к этой гипотезе примыкает представление о старости, как процессе накопления "ошибок". При этом в молекулах ДНК в силу разных обстоятельств, например после вирусного заболевания организма, накапливаются "ошибки". В результате этого ДНК с "ошибками", как испорченная матрица в типографии, начинает печатать искаженный текст. Таким "текстом" может оказаться синтезируемый белок.

В молодом организме есть ферментные системы восстановления, которые исправляют "ошибки" в ДНК. Гипотеза предполагает, что с возрастом способность к восстановлению повреждений в молекуле ДНК утрачивается. Некоторые исследователи связывают процессы старения с накоплением "ошибок" не в любом участке молекулы — ДНК, а только в генах-регуляторах, иными словами, участках ДНК, которые ответственны за "включение" или "выключение" из работы других генов. В какой-то мере ген-регулятор напоминает кнопку на пульте управления, с помощью которой включают и выключают другие механизмы.

Увы, эликсир вечной молодости еще не найден, но механизм действия заведенных "биологических часов", безусловно, связан с генетическим аппаратом клетки. В ближайшие годы усилия геронтологов, биохимиков будут направлены на поиски "печати возраста" в молекуле ДНК: иными словами, конкретных химических изменений в "стареющей" молекуле. Не исключено, что найдут и "ген старости". В обоих случаях появится обнадеживающая перспектива направленно влиять на них, говоря житейским языком, их реставрировать и в конечном итоге значительно продлевать активную деятельность человека.

А теперь несколько слов о пересадке генов.

Существует в природе сахар, который называется молочным. В его состав входит галактоза. Чтобы организм человека или, например, бактерии был способен перерабатывать галактозу, необходим фермент. Существуют в природе и бактерии, которые носят название кишечной палочки. Среди них есть такие, которые содержат фермент, перерабатывающий галактозу, и такие, ?которые его не содержат.

Можно заразить оба штамма кишечной палочки вирусом. Вирус проникнет в бактерии и начнет в них размножаться. Его новые поколения в своем наследственном материале, или, иными словами, в молекулах ДНК, будут содержать наследственный материал кишечной палочки. Те бактерии, которые не имели фермента, перерабатывающего галактозу, информации вирусу не передадут. А те, у которых фермент есть, передадут. Это первая часть повествования о пересадке генов.

Вторая часть — рассказ о тяжелой наследственной болезни человека. Она называется галактоземией — заболеванием, при котором человеческий организм потерял способность перерабатывать галактозу. В этом случае галактоза — безвреднейший продукт — становится ядом для человека. Чтобы бороться с заболеванием, человека держат на искусственной диете, исключая из пищи галактозу. Что и говорить, такой способ лечения далек от совершенства.

И наконец, завершающая часть повествования. Ученые взяли у больного соединительную ткань, а точнее говоря, клетки зтдй ткани — фибробласты. Они имеют одну характерную особенность — могут расти вне человеческого организма. Итак, ученые работали с культурой ткани, которая способна жить и размножаться на лабораторном столе. Эти фибробласты, которые "не умели" перерабатывать галактозу, экспериментаторы заразили вирусом, содержащим ген, способный нарабатывать соответствующий фермент. Ген вирус, в свою очередь, получил "в наследство" от кишечной палочки.

И совершилось маленькое чудо. Фибробласты приобрели новое свойство. Они стали способны перерабатывать углевод галактозу. А это значит, что в них появился фермент, за наработку которого был ответствен совершенно определенный ген. Иными словами, сначала ген перенесли из бактерий в вирус, а из вируса в ДНК человеческой клетки!

Авторами этой остроумной работы были американские ученые К. Меррил, М. Гейер и Д. Патрициани. Ее результаты были опубликованы в конце 1971 года.

Трудно даже вообразить, что сулит человечеству умение пересаживать гены, несущре тот или иной полезный признак! Несколько лет назад английские ученые Р. Диксон и Д. Постгэйт сообщили о пересадке гена, ответственного за ассимиляцию бактериями атмосферного азота. Обмен генами состоялся между двумя видами родственных бактерий. А если бы удалось выделить из бактерий ген, ответственный за фиксацию атмосферного азота, а затем пересадить его в наследственный аппарат какой-нибудь полезной сельскохозяйственной культуры? Тогда растения могли сами себя подкармливать за счет атмосферного азота.

А можно ли "собрать" из подходящих генов микроорганизм, способный жить и размножаться на Марсе, генерируя при этом кислород из марсианских пород?.. Известный ученый Д. Даниэлли — руководитель Центра теоретической биологии университета штата Нью-Йорк в Буффало — считает, что лет за десять такой микроорганизм "синтезировать" вполне возможно.