Наиболее значимыми загрязнителями воздуха в настоящее время признаны следующие вещества: взвешенные частицы; углеводороды и другие летучие органические вещества; угарный газ; оксиды азота; оксиды серы; свинец и другие тяжелые металлы; озон и другие фотохимические окислители; кислоты, в основном серная и азотная; диоксины.
Основное количество загрязнителей антропогенного происхождения поступает в воздух при обычной работе промышленных производств, однако аварии и различные инциденты добавляют заметную долю этих веществ в общем балансе атмосферного загрязнения.
Следует отметить, что многие из этих загрязнителей и ядовитых веществ обладают синергетическим действием, проявляющемся в усилении токсического воздействия на организм при совместном действии. В качестве примера можно привести синергетический эффект взаимодействия частиц пыли и более мелких аэрозолей и оксида серы. Пыли поступают в атмосферу в большом количестве при пожарах, взрывах и горении различных топлив (главным образом, угля, бензина, дизельного топлива). Мелкие взвешенные в воздухе твердые частицы обладают относительно большой удельной поверхностью и способны на ней адсорбировать огромное количество загрязняющих веществ.
Попавшие в атмосферу соединения серы при горении и взрыве топлив окисляются и, реагируя с водяными парами воздуха, образуют мельчайшие капельки серной кислоты — кислотного тумана. Хотя по отдельности и взвешенные частицы и оксиды серы оказывают негативное влияние на здоровье людей, обостряя и осложняя различные респираторные и сердечные заболевания, но совместное их действие поистине смертоносно.
Происшествие такого типа, оцениваемое специалистами как катастрофическая авария, произошла утром 11 декабря 2005 года на нефтяном терминале Бансфилд в районе города Хемел Хемпстед. После трех мощных взрывов в 20-ти емкостях с нефтепродуктами возник сильный пожар, который пожарным не удавалось потушить трое суток. При тушении было задействовано 600 пожарных и несколько десятков агрегатов и механизмов пожарной техники. При тушении пожара было использовано более 15 тысяч тонн воды и около 250 тысяч литров пен и специальных концентратов тушащих реагентов. Погасший было огонь вновь разгорелся 14 декабря в новом очаге возгорания. На этот раз решено было не тушить пожар, дав остаткам топлива выгореть естественным путем еще несколько дней. По оценкам специалистов этот грандиозный пожар, глобально задымивший тропосферный слой атмосферы и уменьшивший ее прозрачность, сказался практически на каждом жителе Великобритании. Его итогом были тысячи заболевших и погибших от ядовитых газов и токсичных дождей.
Эффект совокупно действующих оксида серы и взвешенных частиц является хорошо изученным достоверным фактом; безусловно и некоторые другие комбинации загрязнителей усиливают токсическое воздействие на живые организмы. Одним из компонентов в таких комбинациях может быть табачный дым, в котором обнаружено несколько тысяч химически активных соединений, значительное количество из которых являются ядовитыми.
О большинстве из перечисленных выше загрязнителей атмосферного воздуха, их экологическом значении и влиянии на здоровье, можно узнать в Приложении № 2. В этом разделе книги обсуждаются вопросы возникновения и поступления этих веществ при авариях и близких к ним по эффекту ситуациях.
5.1. Вредные вещества, поступающие в атмосферу при пожарах
Пожар можно определить [169] как неконтролируемое горение, развивающееся во времени и в пространстве. В отличии от горения, понимаемого процессом прогрессивно ускоряющегося выделения тепла и света в результате химических реакций и широко используемого человеком на всех этапах его существования, пожар приносит материальный ущерб и гибель живых организмов. Одной из основных причин гибели людей при пожарах промышленных объектов и современных жилых и административных зданий (более 80 % случаев) является острое отравление газообразными продуктами горения различных строительных материалов и конструкций.
Быстрое отравление организма возможно в результате загрязнения окружающей атмосферы вредными веществами в поражающих организм концентрациях (токсодозах) или количествах, создающих угрозу для жизни и здоровья.
Наиболее токсичны продукты горения синтетических полимерных материалов. Большинство пластмасс при горении выделяют ядовитые вещества — такие как: оксид углерода, циан водорода, хлористый водород, акролеин, окислы азота, различные алифатические и ароматические углеводороды и др. Чрезвычайно опасен в санитарно-гигиеническом отношении поролон, применяемый для изготовления мебели. Этот продукт при горении выделяет ядовитый газ, содержащий цианистые соединения, даже в незначительных количествах являющиеся высокотоксичными и поражающими дыхательную и нервную системы человека.
Возгорание горючих материалов таких, как рубероид, битум, различной кабельной продукции приводит к поступлению в воздух токсичных продуктов деструкции (разрушения) сгоревших полимерных материалов с выделением фосгена, хлористого и цианистого водорода, хлорированных и ароматических углеродов, относящихся к веществам преимущественно удушающего, общеядовитого и нейротропного действия. Концентрации этих веществ при пожарах могут достигать опасных для жизни уровней. Известно, что сгорание всего лишь 1 г различных полимерных материалов приводит к выделению до 144 мг окиси хлористого водорода, до 167 мг окиси углерода, что намного превышает поражающие и смертельные концентрации этих веществ в помещениях среднего объема.
Причиной гибели людей может быть высокая температура задымленной среды. Вдыхание продуктов сгорания, нагретых до 6 °C, даже при 0,1 % содержании оксида углерода приводит к летальному исходу.
Опасным задымлением считается такое, при котором видимость не превышает 10 м. Концентрация оксида углерода в воздухе до 0,2 % вызывает смертельные отравления людей при пребывании их в зоне в течение 30–60 минут, а при концентрации 0,5–0,7 % — в течение нескольких минут.
Выход дыма при горении сильно зависит от условий горения. При тлении масса образующегося дыма может увеличиваться во много раз. Так, для дерева при небольших пожарах относительная масса дыма составляет 3–6 % от массы сгораемого вещества, увеличиваясь до 15 % при тлении; при горении нефтепродуктов, пластмасс, резины — от 1 до 15 % и от 5 до 40 % — при тлении; в качестве средней оценки можно принять 4 %.
Лесные пожары вносят хотя и меньший, чем городские, но весьма заметный вклад в задымление земной атмосферы. Приведем оценки выхода дыма при природных пожарах. Запас сухих горючих материалов в наиболее продуктивных лесах средних широт Северного полушария составляет 25–30 кг/м2. Примерно 15–20 % этого материала приходится на легко воспламеняемую, полностью сгорающую часть — мох, опад, подстилку. В малопродуктивных лесах запасы сухого материала невелики — около 1 кг/м2. Средний запас сухой древесины около 15 кг/м2. Доля выгоревшего торфа варьируется в широких пределах. Таким образом, в среднем в лесах сгорает 5 — 10 кг/м2 горючего материала, не считая торфа.
Воспламенение древесины может произойти как от открытого источника огня (пламени или искры), так и от нагретых предметов или горячих газов. При повышении температуры до 125 °C из древесины быстро испаряется влага; после этого она разлагается с выделением горючих летучих веществ. При температуре выше 210 °C и наличии источника открытого огня воспламеняются летучие вещества, температура повышается и процесс переходит в экзотермическую стадию горения с выделением тепла. При температуре 260 °C начинается длительное и устойчивое горение летучих продуктов пиролиза древесины с образованием пламени и дальнейшим повышением температуры. При температуре 450 °C и более пламенное горение древесины переходит в беспламенное горение угля с температурой до 900 °C.
Древесина способна к самовоспламенению при температуре свыше 330 °C. При длительном нагревании температура ее самовоспламенения значительно снижается. Например, самовоспламенение древесины наблюдалось при 166 °C через 20 ч. Это явление необходимо учитывать при размещении деревянных конструкций вблизи нагреваемых предметов (отопительных приборов, труб, дымоходов и т. п.). В данном случае должны быть обеспечены такие условия изоляции от нагревания, чтобы установившаяся, длительно действующая температура не превышала 50 °C.
При горении в атмосферу выбрасываются не только твердые частицы, но и пыли органического и минерального происхождения. В любом топливе есть сернистые соединения (пирит, образованный бактериями), соединения азота (остатки аминокислот) и др. Топливо сгорает, а запас сернистых соединений обращается в оксид серы; азот топлива превращается в оксид азота. Сернистые газы и водяные пары, содержащиеся в воздухе, образуют аэрозоль сернистой и серной кислот. Оксиды азота и вода образуют азотную кислоту.
Попадая в атмосферу с восходящими воздушными потоками, эти соединения способны сформировать токсичные облачные структуры, из которых они проливаются в виде дождей. Общепризнанно, что кислотные дожди являются причиной гибели растительности и животных, а также приводят к другим негативным изменениям окружающей природной среды.
Вокруг промышленных объектов, являющихся источниками кислотных дождей, в радиусе 3–5 км практически уничтожен травяной покров, погибают хвойные деревья. На склонах пересеченного рельефа интенсивно развиваются эрозионные процессы: смывается гумусовый горизонт, сеть глубоких эрозионных промоин и рытвин расчленяет поверхность. Ландшафт вокруг такого объекта становится антропогенной пустыней.
Радиус общего загрязнения атмосферного воздуха крупными промышленными предприятиями оценивается величиной ~ 30 км; радиус зоны максимального загрязнения составляет от 10 Н до 14 Н, где Н — высота заводских труб. Воздух загрязнен пылью, двуокисью азота, фенолом, сажей, свинцом.
Значительным источником загрязнения атмосферы является автотранспорт. Автомобили сжигают миллионы тонн бензина и дизельного топлива, расходуют миллионы тонн кислорода и выбрасывают огромное количество продуктов горения, содержащих угарный газ, оксиды азота, свинец, бензапирен и многие другие токсичные вещества; подсчитано, что среднестатистический автомобиль выбрасывает в год 0,8 т вредных веществ.
5.2. Загрязнения атмосферы при взрывах
Взрывы чаще всего происходят на пожаро— и взрывоопасных объектах, где могут возникнуть условия для образования газопаровоздушных и пылевоздушных смесей, где в больших количествах применяются углеводородные газы (метан, этан, пропан). Возможны взрывы котлов в котельных, газовой аппаратуры, продукции и полуфабрикатов химических заводов, паров бензина и других компонентов, муки на мельницах, пыли на элеваторах, сахарной пудры на сахарных заводах, древесной пыли на деревообрабатывающих предприятиях. Взрывы пылевоздушных смесей в виде аэрозолей представляют одну из основных опасностей химических производств.
Могут быть взрывы в жилых помещениях, когда люди забывают выключить газ. Взрывы происходят на газопроводах при плохом контроле за их состоянием и несоблюдении требований техники безопасности при их эксплуатации. К тяжелым последствиям приводят взрывы рудничного газа в шахтах.
В промышленности большое количество технологических процессов связано с взрывоопасными газодисперсными системами: процессы осаждения пылей, пневмотранспортировка, размельчение материалов, сушка, хранение, сжигание, шлифовка поверхностей, механическая обработка горючих материалов, составление порошковых композиций и их прессование. Аварийные ситуации или нарушения технологических режимов могут создать условия для воспламенения газодисперсной системы, процесс горения которой может носить характер взрыва.
Необходимым условием возникновения взрыва является присутствие горючей пыли с концентрацией в пределах воспламенения и источника зажигания. Давление при таком взрыве сопровождается волной сжатия, скорость которой в окружающей среде от нескольких сантиметров до нескольких сотен метров в секунду. Быстрое нарастание давления взрыва является в большинстве случаев достаточным для разрушения или повреждения оборудования. Эта опасность усиливается, если первоначальная вспышка пыли местного характера приводит в состояние аэрозоля значительные количества осажденной пыли с ее воспламенением. В этом случае взрыв может распространяться до тех пор, пока имеется горючая пыль. Эта особенность является наиболее важной для различения взрыва пылей от взрыва горючих газов и паров.
Особенно опасна смесь, в которой находится в диспергированном состоянии горючая пыль, а газообразная фаза содержит горючие пары или газы. Более высокая чувствительность такой смеси к воспламенению легко приводит к разрушительному комбинированному взрыву пыли и газа. Такие взрывы происходят в угольных шахтах.
Часто взрывному превращению промышленных аэрозолей предшествует фаза тления. По данным российских и зарубежных исследователей [156,157] время перехода тления в горение, в том числе в дефлаграционное горение (тепловой взрыв), при благоприятных условиях является очень незначительным (от долей секунды до нескольких секунд), а скорость распространения фронта пламени лежит в пределах от 8 м/с до 1,5 км/с.
Загрязняющие и токсичные вещества в продуктах взрыва практически те же, что и при обычном горении (при пожаре) исходных ингредиентов.
5.3. Поступление в атмосферу токсичных продуктов при испарении проливов
Проливы загрязняющих и токсичных веществ при аварийных ситуациях представляют большую опасность для человека и природных сред, так как возникающие выбросы не имеют вертикальных начальных скоростных импульсов и перемещаются в атмосфере только за счет ветра и архимедова всплытия. Поэтому объемы проливов в виде пара или газа стелются в сравнительно тонком приземном слое, в котором находятся живые организмы, и могут привести к их отравлению.
Наибольшую опасности создают проливы боевых отравляющих веществ, сильнодействующих ядовитых веществ, сжиженных газов и нефтепродуктов. Аварии с ядами обычно рассматриваются гипотетическими; они могут иметь катастрофический глобальный масштаб, и возможность подобных аварий должна быть полностью исключена в практике работы с такими продуктами.
Что касается проливов сжиженных газов и нефтепродуктов, то такие происшествия в нашей стране носят массовый характер. В частности, в процессе эксплуатации нефтяных и газонефтяных скважин на поверхность земли могут вырываться напорные струи в виде фонтанов, которые нередко становятся пожарами. Условно фонтаны подразделяются на газовые (содержащие газа 95-100 %), нефтяные (содержащие нефти более 50 %, а газа меньше 50 %), газонефтяные (содержащие газа более 50 %, нефти меньше 50 %).
Если проливы углеводородного сырья и топлив не отягощены пожарами или взрывами, то в окружающую среду поступают эти продукты в виде пара или газа и рассеиваются в атмосфере под действием ветра и турбулентной диффузии. При горении или взрыве пролива над местом инцидента возникают кратковременные или стационарные выбросы продуктов горения, всплывающие на некоторую высоту. Их дисперсия происходит из приподнятого источника, и концентрации приземных загрязнений будут ниже, чем от обычного пролива.
Горение нефти и нефтепродуктов может происходить в резервуарах, производственной аппаратуре и при их разливах на открытых площадях. При пожаре нефтепродуктов в резервуарах могут происходить взрывы, вскипание горючего вещества и его выброс. Весьма опасны вскипания нефтепродуктов, содержащих воду. При вскипании стремительно возрастает температура продукта до ~ 1,5 тыс.°С, а высота пламени до десятков метров. Для таких пожаров характерно бурное горение вспененной массы горючего вещества.
При взрыве объема с нефтепродуктами или газами наблюдаются выбросы этих продуктов из резервуаров в парожидкой и капельной фракциях. Тонны вещества могут быть выброшены на расстояния более восьми диаметров емкости, а площадь горения может достигать нескольких тысяч квадратных метров. Продолжительность подобных инцидентов может составлять многие часы и зависит от массовых, геометрических и теплофизических характеристик продукта, а также от рельефа местности и метеорологических условий.
На скорость выгорания проливов влияют не только специфические химические реакции, но и неконтролируемый приток окислителя из окружающей среды. Значения скорости выгорания продукта в проливе зависят также от его плотности и вида. Эти данные представлены в таблице 5.1. (При наличии сертификата, содержащего данные о плотности продукта, его значение принимается по сертификату. В случае отсутствия таких данных принимается среднее значение этого параметра, указанное в таблице в скобках).
При пожарах на открытом пространстве, возникающих в результате аварий на нефтебазах, нефтехимических производствах, трубопроводах или продуктопроводах, на железнодорожном или автомобильном транспорте, реализуется неконтролируемое горение.
Таблица 5.1.
Скорость выгорания и плотность нефтепродуктов
Если в процесс горения вовлечены большие массы продукта, то над очагом пожара возникает конвективная колонка — струя нагретых продуктов сгорания, которые забрасываются восходящим мощным потоком в пограничный и тропосферные слои атмосферы. Высота конвективной колонки прямо пропорциональна количеству тепла, выделяяющемуся при горении. Очаг пожара имеет сложную структуру и включает в себя зону пиролиза углеводородного топлива, зону догорания газообразных и конденсированных продуктов пиролиза. Горение происходит при постоянном давлении и имеет диффузионный характер, т. е. лимитируется поступлением кислорода благодаря подсосу воздуха из окружающей среды.
Таблица 5.2.
Класс опасности и ПДК загрязняющих веществ при горении проливов нефти и нефтепродуктов
В таблице № 5.2, заимствованной из [168], приведены данные о выбросах загрязняющих веществ при горении нефти и нефтепродуктов.
В таблице № 5.3, взятой из того же источника, приводятся характеристики выбросов основных загрязнителей при сгорании проливов различных топлив. Под удельными выбросами приняты выбросы, отнесенные к единице массы сгоревших нефти и/или нефтепродуктов. Даны численные значения для диоксида азота, оксида и диоксида углерода, сажи, углеводородов, бенз(а)пирена в кг/кг или т/т и.
Таблица 5.3.
Удельные выбросы загрязняющих веществ, отнесенные к единице массы сгоревших нефтепродуктов
В заключение этого раздела отметим, что как для мгновенных, так и для непрерывных выбросов из проливов размеры зон опасности будут больше и по длине и по ширине, когда выбрасывается большее количество вещества. Особенно важны размеры площади испарения, когда пар или газ, кипя или просто испаряясь, попадают в атмосферу из лужи разлития. Из небольшой лужи будет испаряться небольшое количество вещества — из больших луж будет более высокий уровень выброса, а следовательно, они будут приводить к более высокой токсической опасности.
5.4. Опасность сжигания бытового мусора
Неупорядоченное сжигание бытового мусора носит повсеместный характер и не считается несущим в себе угрозу большой угрозы здоровью, что является большим заблуждением. Рассмотрим основные угрозы, которые таят в себе подобные неорганизованные ликвидации отходов.
В таблице 5.4. представлены данные о содержании химических элементов в продуктах сжигания твердых бытовых отходов [161]. Приведенные в ней «коэффициенты концентрации», это величины, показывающие насколько данного вещества в выбросах больше, чем в обычном воздухе (фактически относительно «фонового» значения). Следует заметить, что за прошедшие 15 лет со дня получения этих данных в выбросах, возросло содержание свинца, ртути и кадмия, то есть наиболее токсичных металлов.
Уже из данных этой таблицы видно, что в дымах бытовых отходов опасных металлов в некоторых случаях в тысячи раз больше, чем в «обычном» воздухе. Токсичные металлы выбрасываются в форме солей или окислов, то есть в устойчивом виде и могут находиться в природных средах неопределенное число лет, накапливаясь постепенно и с пылью попадая в организм человека. Опасность токсичных металлов именно в том, что они (кроме ртути, которая активно мигрирует) могут накапливаться. Поэтому нормы ПДК могут оказаться не применимыми к таким выбросам.
Таблица 5.4.
Содержание химических элементов в продуктах сжигания твердых бытовых отходов
Что касается ртути, то она попадает в атмосферу в форме паров (7 %) и в форме хлоридов (70 %). И те и другие весьма токсичны и являются потенциальными нейротоксинами.
Мигрируя по пищевым цепям, ртуть накапливается в морских и речных организмах. По таким же цепочкам аккумулируется ртуть и на суше, ее конечным владельцем становятся хищники. Считается, что из-за ртути в Швеции исчезла пустельга, а поголовье соколов-сапсанов и ястребов сильно уменьшилось.
Крупными источниками ртути являются мусоросжигательные заводы (МСЗ). Так в США в Массачусетте МСЗ выбрасывает 19 тонн ртути в год, в Эвергладсе (Флорида) высокие уровни ртути в рыбе были прямо связаны с выбросами МСЗ [Н. Cole, R. Collins «Mercury Rising», Clean Water Action, January 1990].
Большую опасность представляют неорганизованные сжигания мусора, так как при них отходы фактически не горят, а тлеют. Список продуктов неполного сгорания (ПНС) насчитывает свыше ста идентифицированных опасных веществ. Среди них углеводороды и ароматические углеводороды, их хлорированные производные, токсичные фенолы и хлорфенолы, бром— и азотзамещенные вещества и, наконец, полихлорированные дибензодиоксины (ПХДД), — фураны (ПХДФ) и — бифенилы (ПХБ). К ПНС относят, несколько условно, все выбросы, содержащие кислые газы: хлористоводородную кислоту (НС1), сернистый газ (S02) и окислы азота (NOx).
Первый из них НС1 вызывает большие проблемы из-за своей крайней химической активности. Основным источником выбросов НС1 является горение поливинилхлоридных пластмасс, находящихся в мусоре. Сернистый газ всегда образуется при горении отходов, так как органические остатки содержат серу (отсюда и тлетворный запах разложения).
Продукты неполного сгорания включают и трудноуловимые газы, такие как угарный газ (СО), который может образовываться в больших количествах при недостатке воздуха и температуре ниже БОО С. Этот газ нейтральный и потому очень трудно улавливается. Даже небольшие концентрации угарного газа в дыме выбросов вызывают блокаду гемоглобина и обусловленное этим кислородное голодание тканей, к которому наиболее чувствительна центральная нервная система организма.
Наличие во вдыхаемом воздухе высоких концентраций СО вызывает раньше всего изменение функционального состояния коры головного мозга, что в большей или меньшей степени отражается на состоянии внутренних органов реципиента.
В шлаках и дыме горящего мусора присутствуют в относительно ничтожных количествах так называемые микрозагрязнители. Пристальное внимание к микрозагрязнителям связано с тем, что в их число входят вещества крайне токсичные и весьма опасные для здоровья. Эти вещества, ПХДД, ПХДФ, ПХБ и полиароматические углеводороды (ПАУ), проявляют свои токсические свойства уже при столь малых концентрациях, что микроколичества их в газах продуктов горения мусора являются очень опасными. Если «обычные» токсиканты опасны при концентрациях мг на литр, то ПАУ опасны при концентрации мкг на кубометр, а диоксины при долях нанограмм в кубометре.
Особое место среди твердых отходов занимают пластмассы и синтетические материалы, так как они не подвергаются процессам биологического разрушения и могут длительное время (десятки, а возможно и сотни лет) находиться в объектах окружающей среды. Как уже ранее указывалось, при неорганизованном сжигании пластмасс и синтетических материалов выделяются многочисленные токсиканты, в том числе полихлорбефенилы (диоксины), фтористые соединения, кадмий и др. Общепризнано, что утилизация отходов из полиэтилена, поливинилхлорида, полипропилена и его сополимеров может быть осуществлена только в результате их термической переработки. При этом должен быть использован комплексный подход, включающий в себя сбор, сортировку и подготовку изделий к переработке, включая их дробление, очистку, измельчение с последующей переработкой в высокотемпературном плавильном агрегате (рецикл).
Однако, как и прежде, повсеместно в России горят костры с бытовым мусором и в них тлеют, отравляя все живое, огромные массы изделий из пластмасс. Во многих европейских странах уже налажены промышленные процессы рецикла отходов пластмасс.
ПАУ являются самыми опасными из продуктов открытого горения (1 класс опасности) и обладают наибольшей по сравнению с другими родственными веществами канцерогенностью. В таблице № 5.5. приводятся значения относительных канцерогенностей различных ПАУ.
Таблица 5.5.
Относительная канцерогенность различных полиароматических углеводородов
Условные обозначения таблицы:? — неопределенно, 0 — неактивно, от + до +++Н— активный с разной степенью активности, СС — соканцерогенен с бенз[а]пиреном. TP, TI — соединения, способные вызывать опухоли разного характера, С — полный канцероген.
Таблица заимствована из Handbook of Polycyclic Aromatic Hydrocarbons. Inc. N.Y.Basel, 1983, которая приведена в работе: Б.А.Руденко, Э.Б.Шлихтер «Полициклические ароматические углеводороды и их влияние на окружающую среду» ЦНИИТЭнеф-техим. Серия Охрана окружающей среды. Вып. 5. Москва, 1994.
Особенно много ПАУ остается в шлаках и золе на месте сжигания отходов. Поэтому не рекомендуется золу из неорганизованных мест сжигания мусора использовать для удобрений садовых насаждений.
Большое количество ПАУ содержится в продуктах сжигания твердых отходов мусоросжигательных заводов (МСЗ). Эти данные для МСЗ некоторых стран представлены в таблице № 5.6.
Таблица 5.6. составлена R.T. Williams in «Waste Incineration and the Environment». Ed. R.E.Hester and R.M.Harrison. The Royal Society of Chemistry, Thomas Graham House, Science Park, Cambridge CB4 4WF. по данным A. Buekens, J. Schoeters, «Thermal Methods in Waste Disposal» EEC, Brussels, 1984. I. W.Davies et all. Environ. Sci. Technol. 1976, 10, 451. K. Olie et all. In «Chlorinated Dioxin and Related Compounds: Impact on the Environment» Ed. 0. Hutzinger et all. Pergamon Press, Oxford, 1982, p. 227.
Таблица 5.6.
Содержание ПАУ при сжигании твердых отходов МСЗ (мкг/г)
И, наконец, самыми опасными из продуктов неполного сгорания (ПНС) являются «диоксины»: смесь полихлордибензо-парадиоксинов (ПХДД) и полихлор-дибензофуранов (ПХДФ). Это короли токсичности и бесспорные разрушители природы; диоксинами пропитаны все среды в окрестности места сжигания.
Японские ученые исследовали волосы рабочих МСЗ и контрольной группы людей. Данные выражены в токсических эквивалентах TEQ, которые учитывают также и токсичные соединения ПХБ, как и диоксины, содержащиеся в выбросах МСЗ. Оказалось, что токсичность волос рабочих МСЗ в 3,7 раза выше контроля [Н. Miyata et al. Organohalogen Compounds, 30, p. 154, 1996.]. Аналогичный результат был получен и при анализе крови у рабочих МСЗ в США. В крови рабочих МСЗ содержание диоксинов в токсических эквивалентах TEQ было на 30 % выше, чем у контрольной группы: 16,6:21,9 пкг/г липидов [A.J. Schecter, et al. Med.Sci. Res. 1991, pp.331–332.].
Сжигания бытовых отходов и органического мусора, а также горение торфяников вносят довольно весомую лепту в состояние приземного слоя атмосферы, определяемого как смог (см. последний раздел главы 1). При фотохимических смогах оксиды азота и углеводороды, содержащиеся в выхлопных газах автомашин, под влиянием солнечной радиации образуют оксиданты, из которых наиболее распространен озон. Продолжительность смогов обычно от одного до нескольких дней, но интенсивность загрязнения атмосферы при этом бывает настолько велика, что смоги вызывают тяжелые последствия, нередко сопровождающиеся жертвами. В последнее время с развитием автотранспорта фотохимические смоги значительной интенсивности возникают во многих городах разных континентов.
Высокие концентрации озона, которые иногда используют в качестве одного из показателей фотохимического смога, наблюдаются не только в местах его образования, но и на значительных расстояниях от них в результате переноса воздушных масс.
Кроме того, что смог снижает видимость, усиливает коррозию металлов и сооружений, он оказывает отрицательное воздействие на здоровье человека. Интенсивный и длительный смог может явиться причиной повышения заболеваемости и смертности. Возникают гипокапния, затруднение диссоциации оксигемоглобина, ферментные нарушения тканевого дыхания; при острых отравлениях — головная боль, головокружение, тошнота, рвота, слабость, одышка, учащенный пульс; возможны быстрая потеря сознания, судороги, кома (с последующим двигательным возбуждением), нарушения кровообращения и дыхания, поражение зрительного нерва и т. д.; на 2-3-е сутки может развиться токсическая пневмония. Смог не является для России чем то экзотическим; он наблюдается в основном летом в городах с рельефом «котлованного» типа. Например, в городах Челябинск и Тольятти.
В Тольятти обычное явление, когда под действием солнечной радиации химические вещества, находящиеся в атмосфере, вступают в реакцию между собой. Этому явлению способствует высокая запыленность города, а также повышенное содержание фтористого водорода в воздухе от выбросов с химических предприятий. Выхлопные газы от автомобилей, пыль, химические выбросы сливаются в одно облако. Даже если содержание каждого химического вещества в отдельности находится в пределах допустимой нормы, совместно они оказывают пагубное воздействие на здоровье горожан. Особенно вредно влияние смога для сердечно-сосудистой и бронхо-легочных систем. Такой пылегазовоздушный «коктейль» вызывает аллергическую реакцию: слезотечение, покраснение и воспаление глаз.
В заключение этого раздела кратко остановимся на опасности сжигания травы и листвы. Такие сжигания в виде костров обычно устраиваются после листопада. Известно, что при сжигании органических веществ таких как трава и листья при относительно высокой температуре и наличии достаточного количества кислорода образуются углекислый газ, водяной пар и в небольших количествах окислы азота. Концентрации СО и N0 настолько незначительны при этом, что они не представляют какой-либо опасности для живых организмов.
Совсем иная картина наблюдается при неполном сгорании органики, когда либо слишком мало кислорода, либо недостаточно высокая температура в очаге горения. Костер при этом не горит, а тлеет, выделяя много аэрозольных и газообразных токсикантов. Если трава и листва влажные, то горит только часть кучи, непосредственно контактирующая с воздухом, а нижняя части кучи тлеет, выделяя большое количество дыма. По оценкам специалистов, при сгорании одной тонны растительных остатков образуется около 9 кг микрочастиц дыма. В их состав входят пыль, окислы азота, угарный газ и множество канцерогенных органических соединений. В тлеющих без доступа воздуха листьях выделяется бензоперен — вещество, вызывающее у человека раковые заболевания. В дыму костров из опавшей листвы также имеются соединения свинца, ртути и других тяжелых металлов, а также диоксины. Так как основным по массе компонентом дыма является химически активный угарный газ в концентрациях многократно превышающих уровень ПДК, то пребывание в дыму органики даже непродолжительное время может привести к отравлению.
Если трава и листва собраны вблизи автомагистралей, в городе с интенсивным автомобильным движением или с крупными промышленными производствами, то в продуктах их сжигания будет присутствовать весь «букет» выше описанных токсикантов, адсорбированных и накопленных растениями в период роста.
5.5. Опасные воздействия и вредные вещества в быту
Когда речь идет о повседневной жизни человека, то априори предполагаются комфортные условия. Однако реально жизнь многих людей по экологическим опасностям весьма далека от идеала, а зачастую по негативным воздействиям близка к аварийной ситуации. К таким воздействиям могут быть отнесены в первую очередь чрезмерные электромагнитные, шумовые, вибрационные и тепловые потоки, загрязненная вода и воздух. Кроме того, имеются биологические воздействия микроорганизмов.
Воздушная среда, безусловно, является наиболее важным компонентом в жизни живых существ; посредством дыхания загрязняющие и токсичные вещества практически беспрепятственно могут в кратчайшие сроки нанести здоровью организма невосполнимый урон. Причем зачастую опасности угрожают человеку не только в процессе его трудовой деятельности на предприятиях, но и в быту.
Загрязнение воздуха внутри жилых помещений обусловлено влиянием многих внешних антропогенных источников, а также с внутренних источников, связанных с многообразной деятельностью и обустройством жилья. Сюда можно отнести многое из процесса приготовления пищи и заканчивая мебелью, коврами и одеждой, изготовленными из химически активных материалов. Исследования состава воздуха в жилых помещениях выявили [165] более 80 веществ, негативно воздействующих на человека.
Чаще всего загрязнения поступают в помещения извне с атмосферным воздухом, насыщенным выбросами автотранспорта, котельных и промышленных предприятий. Однако и внутренние источники привносят свою весомую долю в этот процесс. Основными внутренними источниками, загрязняющими воздух жилых помещений, являются: токсические химические вещества, использующиеся для бытовых нужд, вредные продукты в составе строительных и отделочных материалов поверхностей помещения, полимерные материалы в элементах убранства жилья, продукты сгорания бытового газа.
Важным источником экологического загрязнения нашего жилья является «химизация» строительных материалов и бесконтрольное использование добавок в них различных смесей вредных веществ и промышленных отходов. Наиболее часто применяются гальваношламы, золошлаковые отходы, осадки промышленных сточных вод. Губительное воздействие «добавок» проявляется не сразу — иногда через несколько лет. Но они выделяют высокотоксичные, в том числе канцерогенные, вещества. В таблице № 5.7. приводятся наиболее распространенные токсиканты, поступающие в воздух жилья из строительных материалов.
Еще одной опасностью негативного воздействия на живые организмы является газ радон, высвобождающийся из земной коры. Радон -222 это газ без цвета и запаха — один из естественных источников радиации, представляет собой продукт радиоактивного превращения урана, тория, радия. Радон и продукты его распада ответственны за основную часть облучения, получаемого населением от земных источников радиации.
Таблица 5.7.
Химические вещества, выделяющиеся в воздушную среду помещений из строительных и отделочных материалов.
Избыточное содержание радона в воздухе вызывает у человека негативную реакцию, проявляющуюся в появлении состояния тревоги, бессонницы, одышки, мигрени и аритмии.
Кроме того, сам человек и домашние животные в процессе жизнедеятельности постоянно «портят воздух», выделяя несколько сот веществ [165].
Часть из них крайне токсична; это так называемые антропотоксины.
Гигиенисты установили, что воздушная среда невентилируемого помещения ухудшается прямо пропорционально количеству людей и времени пребывания в нем. Пребывание в многолюдном помещении более 2–4 часов снижает работоспособность (в том числе умственную) и приводит к недомоганию и плохому самочувствию. В таблице № 5.8. приводятся данные о антропотоксинам, обнаруженным в жилых помещениях [165].
Многие вещества, такие как ацетон, ацетальдегид, этанол, толуол, этилбензол, диметилэтилбензол обнаруживаются только в жилых помещениях, хотя их концентрация в наружном воздухе в десятки раз ниже, либо вообще близка к нулю.
По данным журнала «New Scientist» наш организм — это целая фабрика по производству микробов.
Таблица 5.8.
Опасные химические вещества, концентрации которых в жилых помещениях превышают уровни ПДК
Ежедневно тело человека выделяет от 1011 до 1014 бактерий, большинство из которых болезнетворные. На каждом квадратном сантиметре кожи человека находится до 10 миллионов микроорганизмов и паразитов типа фолликулярного клеща, питающегося омертвевшими клетками кожи. Этот миниатюрный «зоопарк» попадает в жилище, витает в воздухе, оседает на поверхностях и в буквальном смысле отравляет нашу жизнь. Кроме того, наша одежда, постель, мягкая мебель и ковры «кишат» мельчайшими клещевыми паразитами, попадающими в легкие с движущимся воздухом.
Особую опасность в жилых помещениях представляет пыль разной дисперсности и состава. Около трети взвешенных веществ в виде пылевых частиц поступает внутрь помещения из наружного воздуха, остальные возникают при работе и в процессах жизнедеятельности человека. Наиболее запыленными оказываются квартиры нижних этажей и помещения, окна которых выходят на улицы и транспортные магистрали города.
От размеров и состава пыли зависит способность их проникновения в организм и токсичность. Наиболее опасны частицы размером менее 2–3 мкм., так как они практически беспрепятственно проникают в легкие. Некоторые пыли, накапливаясь в легких, имеют канцерогенное воздействие на организм. Вред пыли в промышленных и жилых помещениях заключается, кроме того, в поглощении ими света и нарушении внутреннего режима инсоляции.
Эффективным средством борьбы с подобными опасностями является применение естественной и искусственной вентиляций, способных обеспечить необходимый воздухообмен и удаление пыли, токсичных веществ и микроорганизмов. В таблице № 5.9., заимствованной из работы [165], приводятся минимальные нормы и характеристики воздухообмена в жилых помещениях.
Таблица 5.9.
Минимальные нормы параметров воздухообмена для жилых помещений
Рассмотрим теперь, как влияет здание на распределение загрязнений снаружи и внутри него. Как указывалось выше, поступление наружного воздуха является определяющим в установлении теплового и воздушного режима в многоэтажных зданиях, имеющих специфические особенности. В таких зданиях наблюдается заметное перемещение воздушных масс в горизонтальном и вертикальном направлениях. Такие режимы обусловлены сложной картиной внутриэтажного и межэтажного перетекания загрязненного воздуха отдельных помещений и квартир нижнего этажа — в верхние и с наветренной стороны — в подветренные.
Рассмотрим вначале поле течений воздуха снаружи здания. На рисунке 5.1. показано влияние ветрового потока на характер распределения концентраций загрязняющих веществ внутри восходящего потока, инициируемого «теплым» зданием.
Рис. 5.1. Высотные распределения концентраций загрязняющих веществ внутри конвективных потоков, создаваемых строением в случае штиля (а) и при ветре (б).
Рис. 5.2. Распределение концентраций загрязнений в различных вертикальных значениях здания: 1 — границы конвективного восходящего потока; 2 — здание; 3 — ветер; «1», «2», «3» — контрольные сечения.
В отсутствии ветра конвективный поток, насыщенный загрязняющими веществами, поднимается вертикально вверх, концентрация загрязнений при этом возрастает до значения высотной координаты Z = Z3д., где Zзд — высота здания. При Z > Zзд из-за вовлечения окружающей среды концентрация примесей в потоке резко уменьшается.
При наличии ветра конвективный поток лишь частично омывает здание, и высотные загрязнения в нем имеют выраженный куполообразный вид.
Рисунок 5.2. иллюстрирует характер загрязнений внутри здания, температура которого Т превышает температуру окружающего воздуха Те. Как известно, в этом случае над зданием возникает конвективный струйный поток восходящего типа. Концентрация загрязняющих веществ в различных частях здания зависит как от высотной координаты Z, так и от скорости сносящего ветрового потока Ve.
Для одного и того же значения скорости Ve концентрация загрязнений отдельных объемов здания в пределах границ конвективного потока возрастает с увеличением высоты Z.
Отметим, что в холодных погодных условиях, когда возрастает дефект температурного перепада ΔТ = Т — Те, наблюдается увеличение архимедовой силы всплытия конвективного потока и рост высотных координат его верхней и нижней границ. При этом большая часть здания оказывается внутри области течения загрязненного потока. Особенно это сказывается на верхних этажах здания, концентрация загрязнений в которых заметно возрастает с ростом ΔТ.
По данным работы [165] от 86 % до 100 % загрязнений поступает в жилые помещения с наружным воздухом. Из атмосферного воздуха в дома поступают сернистый газ, окись углерода, пыль, окиси тяжелых металлов и многие другие токсиканты.
Рисунок 5.3. иллюстрирует баланс загрязнений внутри здания от различных источников в условиях городской застройки. Как следует из этого рисунка суммарное загрязнение в помещении складывается от действия высоких (заводские трубы, котельные, градирни и т. п.) источников, низких (в первую очередь автотранспорт), фоновых и внутренних выбросов. Числовые загрязнения суммарных концентраций загрязняющих веществ в каждой конкретной части здания определяются как суперпозиция концентраций от указанных источников. Причем несмотря на различный вклад этих источников в суммарную концентрацию загрязнений внутри здания можно отметить возрастающий характер токсикации воздушной среды с уменьшением высотной координаты Z. Самый чистый воздух будет на верхних этажах здания, а наиболее загрязненный — на нижних.
Рис. 5.3. Характер рассеивания в атмосфере и высотные распределения концентраций загрязняющих веществ в городе: 1 — фон; 2 — от низких источников; 3 — от инфраструктуры; 4 — от высоких источников; 5 — суммарное значение; 6 — ветер.
Такой же характер распределения ядовитых веществ наблюдается и в наружном воздухе (при условии, что дом находится на достаточном удалении от постоянно действующего высокого источника загрязнений).
Подводя итог проведенному выше сравнению, можно сделать вывод, что наибольшему риску токсического воздействия подвергаются жители нижних этажей домов, на улицах — дети и домашние животные.