Античная наука

Рожанский Иван Дмитриевич

Глава 2. Ранняя греческая наука «о природе»

 

 

Смысл и значение понятия «природа»

Античная традиция послеаристотелевского времени приписывает большинству сочинений греческих мыслителей VI—V вв. до н. э. одно и то же стандартное наименование — «О природе» (Peri physeos). Не следует принимать это наименование за авторское заглавие — ученые той ранней эпохи еще не имели обыкновения как-либо озаглавливать свои сочинения; его следует скорее рассматривать как указание на их основную проблематику.

В связи с этим представляется целесообразным по возможности точнее уяснить смысл греческого понятия «природа», тем более, что этот смысл существенно отличается от того основного значения, которое слово «природа» приобрело в языках нового времени.

В нашу эпоху под природой подразумевается прежде всего окружающая человека естественная среда, в которой он живет, но которая не является делом его рук. Причем в более узком смысле природа отождествляется с совокупностью особенностей почвы, климата, растительного и животного мира и т. д., присущих данному географическому району (стране, климатической воне, материку), а в более широком — под природой может пониматься весь мир, вселенная в целом, воспринимаемая как органически связанное и в каком-то отношении даже одухотворенное единство. В другом значении, говоря не о природе вообще, а о природе какой-либо конкретной вещи, мы имеем в виду главную характеристику этой вещи, ее основное, чаще всего внутреннее, неявное свойство, или сущность.

В древнегреческом языке первое из этих значений (которое мы теперь считаем основным) появляется сравнительно поздно и для VI—V вв. до н. э., когда писались сочинения «о природе», было еще совершенно нехарактерно. Само греческое слово «природа» — «фюсис» (physis) — произошло от глагола phyo, что значит «рождаю», «произвожу», «создаю» (а в формах среднего залога — «возникаю», «происхожу»). Первоначально оно было эквивалентно русским существительным «рождение», «происхождение», «возникновение». Потом из него вычленились две группы значений: с одной стороны, внешний вид, рост, осанка, с другой же — внутренняя структура, состав (в более отвлеченном смысле — сущность) данной вещи или рода, к которому она относится. Первичный смысл «фюсис» при этом полностью не исчезает, а сохраняется «в снятом виде»: как внешний вид, так и внутренняя структура понимаются в качестве конечного итога (результата) процесса возникновения или развития, аналогичного процессу возникновения или развития живого существа. И, наконец, последнее, самое интересное для нас значение — «фюсис» как внутренне присущая данному предмету (или роду предметов) сила или закономерность, которая обусловливает характер его развития, определяя тем самым его внешний облик, структуру, а также его внутренние возможности и поведение (действия). Последнее значение особенно характерно для форм «по природе», «согласно с природой». В этом значении природа начинает противопоставляться в качестве естественной закономерности человеческому (или божескому) установлению (антитеза «фюсис» — «номос», получающая широкое распространение в литературе конца V в. до н. э.).

В заключение приведем сжатое и лаконичное определение понятия природы, которое было дано позднее Аристотелем: «Природою в первом и основном смысле является сущность — именно сущность вещей, имеющих начало движения в самих себе, как таковых».

Появление такого сложного и многоаспектного понятий, некоторым образом отвечавшего синкретичному характеру ранней греческой науки, было весьма симптоматичным фактом. Оно означало замену любых сверхъестественных, божественных и вообще внеположных по отношению к данной вещи факторов естественными причинами, которые надо искать в самой вещи. Правда, эти причины еще не дифференцируются и не анализируются, все они сводятся к одному общему нерасчленимому понятию «природа». Но даже в таком виде новая постановка вопроса о причинах всего происходящего явилась важным шагом в становлении рационального теоретического мышления.

Теперь мы можем дать более точное определение науки «о природе». Это была наука о естественных причинах возникновения, развития и строения мира в делом и входящих в его состав отдельных вещей. Позднее Аристотель назовет эту науку (от слова «фюсис») физикой, а мыслителей, которые ею занимались, физиками или физиологами. Вначале же она вообще не имела никакого наименования.

После этого вступления перейдем к рассмотрению воззрений наиболее выдающихся представителей науки «о природе».

 

Милетская школа

Фалес. Первым корифеем греческой науки, согласно античной традиции, считается милетец Фалес. Он занимался торговлей, много путешествовал - и был вдвоем городе одним из наиболее влиятельных и уважаемых граждан. Время жизни Фалеса устанавливается по сообщениям о том, что он предсказал полное солнечное затмение, случившееся в 585 г. до н. э. (об этом, в частности, писали Ксенофан и Геродот), хотя реальная возможность такого предсказания — даже при допущении знакомства Фалеса с вычислениями вавилонских астрологов — в настоящее время подвергается сомнению. Научных сочинений Фалес, по-видимому, после себя не оставил, и о содержании его учения уже в эпоху Аристотеля имелись лишь самые общие представления.

Основные положения космологической концепции Фалеса сводятся к двум пунктам: 1. Все произошло из воды: 2. Земля плавает на воде, подобно куску дерева. Вполне вероятно, что κ этим положениям Фалес пришел под влиянием восточных космогонических мифов, с которыми он мог познакомиться во время своих поездок в Египет или Месопотамию. Сообщалось также, что Фалес развивал доктрину всеобщей одушевленности вещей (приписывая, в частности, душу магниту, притягивающему железо) и утверждал, что «все полно богов».

В древности Фалесу приписывалось много открытий в области математики и астрономии, однако достоверность этих сведений неясна. Неоплатоник Прокл сообщает, со ссылкой на ученика Аристотеля Евдема, о якобы впервые доказанных Фалесом геометрических теоремах (о равенстве углов при основании равнобедренного треугольника, о том, что диаметр делит круг на две равные части и т. д.). Историки науки по-разному интерпретируют эти сообщения. Так, Ван-дер-Варден считает, что к свидетельствам Бедема надо отнестись вполне серьезно и что именно Фалес, опираясь на достижения египтян и вавилонян, ввел в геометрию доказательства, придав этой науке логическое построение. Другие ученые полагают, что доказательства Фалеса еще не могли иметь строго логического характера и, скорее всего, были основаны на приемах наложения и вращения чертежей. Скептическую позицию занимает О. Нейгебауэр, считающий, что «традиционные рассказы об открытиях, сделанных Фалесом, следует отбросить как совершенно неисторические».

Все же славу Фалеса как математика не удается полностью отнести на счет легенд позднейшего времени, ибо о ней свидетельствуют достаточно ранние источники (укажем на упоминание о Фалесе-математике в «Птицах» Аристофана). Возможно, что, познакомившись в странах Востока с некоторыми геометрическими положениями, применявшимися там для решения практических задач, Фалес впервые проявил к ним теоретический интерес и попытался как-то обосновать их.

Анаксимандр, которого древние считали учеником и преемником Фалеса, жил до 40-х годов VI в. до н. э. Свое учение он изложил в книге, написанной прозой, которую можно рассматривать как первое в истории европейской мысли научное сочинение; к сожалению, до нас от него дошла всего лишь одна фраза, показывающая, что оно было написано образным, возвышенным стилем. Однако косвенные свидетельства об учении Анаксимандра позволяют сравнительно точно реконструировать основные его положения.

В основе этого учения лежала детально разработанная космогоническая концепция. Источником всего сущего у Анаксимандра была уже не ода, а некое вечное и "беспредельное начало", которое, согласно позднейшим источникам, он называл «божественным», утверждая, что оно «всем управляет». По традиции, восходящей к Аристотелю, это начало обычно трактовалось как бескачественное и неопределенное первовещество, однако в ряде новейших работ эта традиционная точка зрения подвергается сомнению.

Возникновение мира Анаксимандр рисовал как борьбу и обособление противоположностей — в первую очередь тепла и холода (причем он, по-видимому, еще не проводил разграничения между понятиями силы, качества и вещества). В недрах беспредельного начала возникает как бы зародыш будущего мира, в котором влажное и холодное ядро оказывается окруженным огненной оболочкой. Под воздействием жара этой оболочки влажное ядро постепенно высыхает, причем выделяющиеся из него пары раздувают оболочку, которая в конце концов лопается, распадаясь на ряд колец (или «колес»). В результате этих процессов в центре мира происходит образование плотной Земли, имеющей Форму цилиндра, высота которого равна ⅓ диаметра основания. Этот цилиндр не имеет опоры пребывает неподвижно в центре, так как у него нет оснований двигаться в какую-либо сторону. Звезды. Луна и Солнце находятся от центра мира на расстояниях, равных соответственно 9.18 и 27 диаметрам земного диска; эти светила представляют собой отверстия в темных воздушных трубках, окружающих вращающиеся вокруг Земли огненные кольца, некогда составляющие часть некой огненной сферы. С помощью такой картины Анаксимандр объясняет ряд астрономических и метеорологических явлений.

Живые существа, по мнению Анаксимандра, зародились во влажном иле, первоначально покрывавшем всю Землю. Когда Земля начала высыхать, влага скопилась в углублениях, образовавших моря, а некоторые животные вышли из воды на сушу. Среди них были рыбообразные существа, в которых зародились люди; когда люди выросли, покрывавшая их чешуйчатая оболочка начала лопаться и отваливаться. Некоторые исследователи усматривали в этой концепции исторически первый намек на идею эволюции животного мира.

Возникновение и развитие мира Анаксимандр считал периодически повторяющимся процессом; через определенные промежутки времени мир снова поглощается беспредельным началом. Но поводу того, признавал ли Анаксимандр одновременное сосуществование многих миров, мнения ученых расходятся; в некоторых изложениях его учения встречается термин «космосы» (kosraoi), но он означал у него не миры, а нечто иное; может быть, это были слои (или сферы) нашего мира, упорядоченные числовыми соотношениями, о которых было сказано выше.

Не исключено, что за изложением космогонии и общей космологии в сочинении Анаксимандра следовала географическая часть, содержавшая описание известной тогда грекам ойкумены (обитаемой территории). Во всяком случае, источники сообщают, что Анаксимандр был первым, начертившим географическую карту Земли, на которой вся ойкумена распадалась на две большие и примерно равные части — Европу и Азию. Ему приписывалось также введение в употребление гномона (солнечных часов).

Заслуга Анаксимандра в истории науки состоит прежде всего в деантропоморфизации и демифологизации картины мироздания. Сама эта картина, набросанная смелыми и яркими мазками, явилась в целом оригинальным созданием Анаксимандра, хотя отдельные ее элементы, возможно, были им взяты из космологических представлений народов Востока (к числу таких заимствований М. Л. Уэст относит образ огненных колец, числовые соотношения, определяющие удаленность от центра мира небесных светил, циклический характер процесса мироздания и даже само понятие вечного и беспредельного начала. Было бы неверно думать, что Анаксимандр полностью игнорировал повседневный человеческий опыт, но данные этого последнего учитывались им лишь при разработке деталей системы мира, а не при составлении ее основной схемы, имевшей чисто спекулятивный характер. Хотя Анаксимандр и не сделал научных открытий, которые могли бы претендовать на общезначимость, тем не менее в его учении были заложены предпосылки для дальнейшего развития греческой науки.

Анаксимен, третий великий представитель милетской школы, жил несколько позже Анаксимандра, однако точных хронологических дат, которые были бы связаны с его жизнью у нас нет. Как и Анаксимандр, он написал одно единственное сочинение, содержание которого нам известно лишь по косвенным свидетельствам. Как сообщают античные источники, оно было написано простой и ясной прозой.

В качестве первоосновы всего сущего Анаксимен принял беспредельный воздух. Вещи образуются из воздуха путем разрежения или сгущения, при этом разрежение сопровождается нагреванием, а сгущение — охлаждением. Воздух находится в непрерывном движении: если бы он был неподвижен, то он, по мнению Анаксимена, не мог бы видоизменяться и порождать многообразные вещи. Имеется свидетельство, принимаемое некоторыми исследователями за искаженную цитату из книги Анаксимена, что отношение воздуха к миру Анаксимен сравнивал с отношением души к телу.

Детали космогонической концепции Анаксимена известны плохо. Сообщается, что в результате сгущения воздуха (наглядно сопоставляемого с валянием шерсти) первой возникла плоская («столообразная») Земля, которая висит в воздухе, как бы «оседлав» его. Затем образуются моря, облака и прочие вещи. Небесные светила возникают из земных испарении, которые, поднимаясь вверх и разряжаясь, приобретают огненную природу. Неподвижные звезды вбиты в твердый небосвод подобно гвоздям, другие (планеты?), а также Солнце и Луна плавают в воздухе, подобно огненным листьям. Таким образом, в противоположность Анаксимандру Анаксимен приблизил Солнце и Луну к Земле по сравнению с неподвижными звездами. Скрывшись за горизонтом, небесные светила не опускаются под Землю, а проходят за ее северной приподнятой частью; в связи с этим вращение небесного свода сравнивается Анаксименом с вращением шапочки вокруг головы.

Из сказанного следует, что в умозаключениях Анаксимена большую роль играл метод аналогий. По сравнению с величественной и основанной на строгих математических отношениях картиной мироздания Анаксимандра взгляды Анаксимена могут показаться идейно более бедными и приземленными. Тем не менее в определенных отношениях они являлись существенным шагом вперед. Новым у Анаксимена была трактовка первовещества не только в качестве Источника, но и в качестве субстрата вещей окружающего нас мира, поэтому его воздух был, по сути дела, ближе к первоматерии Аристотеля, чем к физически неопределенному и божественному началу Анаксимандра. Очень важно было также то, что Анаксимен придумал конкретный физический механизм, посредством которого из воздуха образуются всевозможные вещи. Здесь была впервые поставлена проблема: каким образом возможны качественные изменения? Поиски решения этой проблемы послужили одним из стимулов к разработке атомистики. Кроме того, учение Анаксимена в меньшей степени, чем космология Анаксимандра, обнаруживает влияние восточных религиозно-мифологических представлений и скорее лежит в русле греческой «метеорологической» традиции.

 

Пифагорейцы

Когда мы говорим о «милетской школе», то это название имеет условный смысл, сводящийся к тому, что все три представителя этой «школы» были гражданами города Милета. По своим же взглядам они были настолько непохожи один на другого, что в данном случае трудно обнаружить ту преемственность идей, которую обычно предполагает существование научной школы. И хотя Анаксимандр, будучи младшим современником Фалеса, несомненно хорошо его знал, а Анаксимен был бесспорно знаком с сочинением Анаксимандра, тем не менее школы в позднейшем смысле здесь, по-видимому, еще не было.

Во второй половине VI в. до н. э. на противоположном конце тогдашнего Греческого мира возникла другая "научно-философская школа", в большей степени заслуживавшая такого наименования, хотя и обладавшая весьма специфическими чертами. Это была пифагорейская школа или, точнее, пифагорейский союз, названный так по имени его основателя Пифагора. Генезис этой школы восходит в конечном счете к ионийскому культурно-географическому ареалу, ибо сам Пифагор был уроженцем ионийского острова Самос, откуда он уехал, будучи уже зрелым человеком (как сообщают источники,— по причине своего несогласия с деятельностью знаменитого тирана Поликрата). Он много путешествовал и, по-видимому, довольно долго жил в Египте; обосновавшись затем в южно-итальянском городе Кротоне, он учредил там нечто вроде религиозно-этического братства или монашеского ордена, члены которого обязывались вести так называемый «пифагорейский образ жизни», включавший в себя наряду с целой системой аскетических предписаний и табу также определенного рода научные занятия.

В ранний период существования пифагорейской школы религиозно-философское учение Пифагора, в основе которого лежала вера в бессмертие души и в метампсихоз, а равным образом и результаты научных изысканий, проводившихся в школе, имели строго эзотерический характер и не излагались в письменной форме. По этой причине, а также в силу того, что у пифагорейцев существовала традиция возводить все достижения школы к ее основоположнику, представляется практически невозможным отделить вклад, внесенный в науку самим Пифагором и его непосредственными учениками, от результатов, полученных представителями пифагорейской школы в более позднюю эпоху. Мнения исследователей по этому вопросу расходятся самым кардинальным образом. К настоящему времени литература, посвященная «пифагорейскому вопросу», стала поистине необозримой. Можно указать лишь некоторые основные тенденции, определявшие развитие историко-научных исследований в этой области.

Историческая и филологическая наука раннего периода была склонна принимать на веру сочинения Порфирия, Ямвлиха и других авторов поздней античности, в которых наряду со многими чудесными и сверхъестественными деяниями Пифагору приписывался целый ряд важнейших открытий в области математики, астрономии и других наук. В дальнейшем под влиянием критического духа новой эпохи к этим свидетельствам стали относиться как к своего рода мифотворчеству, культивировавшемуся в недрах неопифагорейской и неоплатонической школ. Крупнейший исследователь пифагореизма Август Бек еще пытался, в начале XIX в., опереться на фрагменты Филолая, первого пифагорейца, изложившего свои взгляды в письменной форме, как на единственный надежный источник, дошедший до нас от пифагорейства V в. до н. э.; в дальнейшем, однако, и эти фрагменты были поставлены под сомнение. Высшей точки критическое направление в изучении «пифагорейского вопроса» достигло уже в нашем столетии в работе Э. Франка «Платон и так называемые пифагорейцы» (1923), где была произведена радикальная передатировка научных достижений пифагорейской школы. Пифагорейские открытия в области математики и астрономии были, по мнению Франка, сделаны уже после 400 г. до н. э., т. е. в эпоху Платона, Архитом и его школой, и притом не без существенного влияния атомистики Демокрита; говорить же о существовании какой-то пифагорейской науки до этого времени мы не имеем никаких оснований. К этому же направлению принадлежит недавняя капитальная работа В. Буркерта о пифагорейцах, автор которой на основании детальнейшего анализа всех имеющихся в нашем распоряжении источников, приходит к выводу, что вклад в науку раннего пифагореизма был практически равен нулю, ибо он не считает наукой мистику чисел и спекуляции с парами противоположностей типа «чет—нечет» и «предел — беспредельное», чем в основном занимались пифагорейцы.

Что же касается открытия несоизмеримости и других подлинно научных достижений, которые древняя традиция была склонна возводить к Пифагору и его ученикам, то они, по мнению Буркерта, к пифагорейской школе никакого отношения не имеют.

Наряду с этим критическим направлением в последнее время стала все более укрепляться противоположная тенденция, склонная усматривать в свидетельствах Ямвлиха и других неоплатоников, писавших о Пифагоре, наличие сведений, восходящих к IV и даже V вв. до н. э., т. е. к тому времени, когда еще была жива школа, основанная самим Пифагором. В этих сведениях могла содержаться информация, имевшая реальную историческую подоплеку. В ряде новейших работ были проанализированы данные (вплоть до данных нумизматики), до этого полностью игнорировавшиеся филологами. Оказалось, многое, что ранее считалось относящимся к области легенд, подтверждается этими данными. Это привело к изменению отношения к прежней гиперкритической тенденции и к тому, что ряд крупных специалистов в области истории греческой науки и философии занял теперь более умеренную позицию. В качестве представителя этой компромиссной тенденции можно назвать К. фон Фритца, опубликовавшего несколько фундаментальных работ о ранней пифагорейской науке.

Действительно, с большой степенью вероятности можно утверждать, что интерес к математике наличествовал в пифагорейской школе с самого ее основания и что положение «все есть число» принадлежит самому - Пифагору. Как и в других теориях ранних греческих мыслителей, это положение явилось обобщением очень небольшого числа наблюдений. Не только древние свидетельства, но и ранняя математическая терминология указывают на связь этих наблюдений с музыкой. Решающую роль при этом сыграло открытие, что интервалы музыкальной гаммы могут быть выражены отношениями целых чисел: 1:2, 2:3 и 3:4. Это открытие послужило стимулом к поискам аналогичных соотношений и в других областях, например в геометрии и космологии.

Итак, смысл положения «все есть число» состоял в убеждении, что в каждой вещи каким-то образом скрыты определенные числа или отношения чисел. Задача познания состоит в обнаружении этих отношений (подобно тому, как они были обнаружены в музыке). При этом речь шла в основном о числах, находившихся в пределах первой десятки. Некоторым из этих чисел приписывалась особо важная роль это были тройка (триада), четверка (тетрактида), семерка (гебдомада) и десятка (декада). Единица вообще не считалась числом: она была источником и первоосновой всех чисел и, следовательно, всех вещей. Фундаментальное значение пифагорейцы придавали различию между четными и нечетными числами.

Поиски числовых отношений могли развиваться (и действительно развивались) в двух направлениях: во-первых, в направлении мистики чисел; во-вторых, в направлении нахождения реальных числовых закономерностей. Оба эти направления легко совмещались в пределах одной и той же школы. О первом из них мы вообще говорить не будем, так как его рассмотрение выходит за пределы истории науки. Что же касается математических открытий, которые были сделаны пифагорейцами, то о них речь пойдет ниже, в параграфе, посвященном зарождению математической науки. Здесь же мы приведем лишь один пример, показывающий, что в отдельных случаях поиски числовых отношений могли приводить к чисто научным результатам.

Надо думать, что пифагорейцы очень быстро обратили внимание на то, что из отрезков находящихся друг к другу в отношениях 3 : 4 : 5, образуется прямоугольный треугольник. Это обстоятельство было давно известно в странах Востока; с другой стороны, оно вполне соответствовало духу пифагорейских поисков, поскольку свойства геометрической фигуры определялись здесь отношениями целых чисел. «Дальнейшее изучение вопроса, дозволило обобщить это соотношение и привело к доказательству теоремы, носящей имя Пифагора. Был Пифагор на самом деле автором этой теоремы или она найдена кем-то из пифагорейцев позднее, этого мы уже никогда не узнаем.

Характерной чертой пифагорейского учения было большое значение, которое придавалось в нем роли фундаментальных противоположностей, или оппозиций — таких, как предел и беспредельное, нечет и чет, единое и многое, правое и левое, мужское и женское и некоторые другие. Аристотель перечисляет десять таких пар, но мы не можем быть уверены, что канонизация этих десяти пар произошла уже в эпоху раннего пифагорейства. Как мы указывали в начале первой главы использование аналогичных оппозиций в качестве средства классификации и упорядочения окружающей действительности является отличительной чертой первобытного, донаучного мышления. Правда, пифагорейские противоположности не вполне совпадают со стандартным набором оппозиций, которыми обычно оперирует мифотворческое мышление примитивных народов и где мы не найдем такой пары, как «предел — беспредельное» (а у пифагорейцев она была важнейшей), не говоря уже о паре «квадратное—прямоугольное», отразившей интерес пифагорейцев к геометрии. Но в целом использование такого рода оппозиций пифагорейцами представляет собой архаичный момент в их учении, тем более что во всех десяти оппозициях, приводимых Аристотелем, каждая пара состоит из двух членов, один из которых воспринимается как нечто положительное, доброе, благоприятное, а другой имеет противоположную окраску (табл. 1). Отметим, что и в учениях таких мыслителей, как Анаксагор, Эмпедокл, а позднее. Аристотель, большую роль играют противоположности типа теплое — холодное, сухое — влажное, светлое — темное, но у них оба члена каждой пары аксиологически нейтральны.

Таблица 1. Десять пифагорейских противоположностей

1 предел — беспредельное

2 нечет — чет

3 единое — многое

4 правое — левое

5 мужское — женское

6 покой — движение

7 прямое — кривое

8 свет — тьма

9 доброе — злое

10 квадрат — прямоугольник

Из свидетельств Аристотеля и других древних авторов можно заключить, что у пифагорейцев существовала своя космогоническая концепция, своеобразным образом связанная с основными положениями их учения о числах. О ней известно очень мало, но ее основные идеи сводятся, по-видимому, к следующему.

Исходным состоянием мира, согласно пифагорейцам, было некое беспредельное Начало, которое отождествлялось ими то ли с безграничной пустотой, то ли с воздухом. Следует отметить, что четко осознанного понятия пустого пространства в то время еще не было: пифагорейская пустота — это скорее неоформленная, не имеющая ни границ, ни внутренних членений воздушная бездна.

В этой бездне зародилась огненная Единица, сыгравшая роль семени или зародыша из которого развился космос. Эта Единица росла подобно тому, как растет зародышевая клетка в питательной среде: втягивая (вдыхая!) прилегавшее к ней беспредельное, она ограничивала его и оформляла. Вытягиваясь в длину, а затем в ширину и высоту, она породила двойку, тройку и четверку, которые в геометрической интерпретации эквивалентны линии, плоскости и объемному телу. Все дальнейшее есть не что иное, как процесс последовательного оформления космообразования числами.

Архаичность изложенной концепции не вызывает сомнений: об этом свидетельствует, в частности, ее своеобразный зооморфизм. В то же время на ее примере мы видим, как «работают» основные противоположности пифагорейцев — предел и беспредельное, единое и многое, мужское (Единица) и женское (неоформленная пустота), свет (огненная Единица) и тьма (темный воздух).

 

Гераклит и элеаты

О жизни Гераклита Эфесского (примерно 540—480 гг. до и. э.) позднейшие античные источники сообщают много колоритных подробностей, достоверность которых ничем не может быть доказана. Представляется, однако, правдоподобным, что в течение какого-то периода своей жизни Гераклит находился в Персии, поскольку некоторые аспекты его учения обнаруживают явное влияние зороастрийских верований. Свои воззрения Гераклит изложил в книге, по своей форме очень непохожей на научное сочинение в привычном для нас смысле; до нас она дошла в виде набора изречений, очень ярких по своей образности и подчас темных по смыслу (в силу чего Гераклиту было присвоено в дальнейшем прозвище «Темный»).

С мыслителями милетской школы Гераклита объединяла концепция единой первоосновы, порождениями (или модификациями) которой оказываются все вещи окружающего нас мира. В качестве такой первоосновы Гераклит выбрал огонь: "Этот мировой порядок (kosmos) один и тот же для всех, не создал никто ни из богов, ни из людей, но он всегда был, есть и будет вечно живым огнем, мерами вспыхивающим и мерами погасающим". При выборе огня Гераклит, по-видимому, меньше всего руководствовался физическими соображениями: огонь был для него образом вечного движения и изменения. Никогда не прекращающийся мировой процесс складывается у него из двух путей: пути вниз, когда огонь превращается в воду («море»), а та, по крайней мере частично, переходит в землю, и пути вверх, когда из земли и из воды исходят испарения, к числу которых Гераклит причислял и души живых существ. Испарения имеют различный характер: светлые и чистые — превращаются в огонь и, подымаясь вверх и скапливаясь в круглых вместилищах, или плошках, воспринимаются нами как Солнце, Луна и звезды; темные и влажные испарения являются причиной дождя и сходных метеорологических явлений. Попеременным преобладанием того или иного рода испарений объясняется смена дня и ночи, лета и зимы. Затмения Луны и Солнца, а также фазы Луны, по Гераклиту, происходят потому, что небесные «плошки» частично или целиком поворачиваются к нам своей выпуклой, темной стороной. О форме и положении Земли Гераклит, по-видимому, никак не высказывался.

Все указанные выше изменения происходят согласно «логосу», который в учении Гераклита был многозначным термином, явившимся объектом многочисленных интерпретаций. Представляется, однако, бесспорным, что одно из значений этого термина было связано с количественными закономерностями или отношениями, определяющими взаимопревращения огня.

Позднейшие источники сообщают, что Гераклит придерживался концепции периодического космообразования, согласно которой мир то целиком воспламеняется, то вновь возникает из огня. Впрочем, многие исследователи полагают, что идея воспламенения (ekpyrosis) космоса была лишь позднейшей, стоической интерпретацией некоторых высказываний Гераклита, которые, вообще говоря, допускают и другую трактовку.

Важнейшей идеей философии Гераклита была идея вечного движения, всеобщей изменчивости вещей. Для наглядного выражения этой идеи Гераклит воспользовался образом реки, в которую нельзя войти дважды, ибо «на входящего... набегают все новые и новые воды. В основе изменчивости сущего, по мнению Гераклита, лежит непрекращающаяся борьба и смена противоположностей, которые, однако, не исключают друг друга, а образуют некое высшее единство — гармонию мира. Эти мысли были высоко оценены Гегелем, усмотревшим в них исторически первое выражение диалектического миропонимания. А Энгельс писал, что «первоначальный, наивный, но по сути дела правильный взгляд на мир был присущ древнегреческой философии и впервые ясно выражен Гераклитом: все существует и в то же время не существует, так как все течет, все постоянно изменяется, все находится в постоянном процессе возникновения и исчезновения».

Оценивая учение Гераклита в целом, следует признать, что оно сыграло огромную роль в становлении не столько научного, сколько философского мышления. Его естественнонаучные воззрения были довольно примитивными; математикой он, видимо, вообще не интересовался. Его выпады против «многознания» Пифагора характеризуют его отношение к конкретным научным исследованиям. Космологические пассажи книги Гераклита служили, по-видимому, лишь прелюдией к ее основной части, в большей степени состоявшей из высказываний общефилософского, этического и политического характера. Усилия Гераклита были направлены на отыскание единого закона, управляющего миром; эта основная задача была сформулирована им самим в следующих словах: «Ведь существует единственная мудрость — познать замысел, управляющий всем посредством всего».

Ксенофан. Странствующий поэт Ксенофан, уроженец малоазийского города Колофона, был старше Гераклита, однако, прожив очень долгую жизнь, умер, как считается, позже него. Античная традиция называет его основоположником элейской школы, хотя теперь эта точка зрения подвергается сомнению. Представляется, впрочем, очень вероятным, что некоторые сформулированные Ксенофаном положения повлияли на Парменида при разработке им его философской системы. В своих поэтических произведениях Ксенофан выступил в качестве резкого критика политеизма и антропоморфизма греческой религии. Традиционным представлениям о богах он противопоставил идею единого, неподвижного, шаровидного бога, который «весь видит, весь мыслит, весь слышит». Не исключено, что этот единый бог отождествлялся им с небесной сферой. С другой стороны, имеются указания на то, что Ксенофан представлял себе Землю неограниченно простирающейся вглубь и вширь. Мир вечен, но подвержен периодическим изменениям, когда море то наступает на сушу, то отступает от нее (в подтверждение этой мысли Ксенофан указывал на морские раковины и отпечатки рыб и водорослей, находимые в горах и других удаленных от моря местах). Все, что растет и рождается, состоит из земли и воды. Из этого утверждения следует, что Ксенофан не придерживался идеи милетцев и Гераклита о единой первооснове всего сущего.

Элеаты. Парменид. Школа элеатов получила свое наименование от южноиталийского города Элея, уроженцем и гражданином которой был основатель и величайший представитель школы Парменид. Деятельность Парменида протекала в основном в первой половине V в. до н. э., хотя точные даты его жизни остаются неясными (одни источники относят время его рождения примерно к 540 г. другие — к 515 г. до н. э.). В молодости Парменид был, по-видимому, связан с пифагорейцами. Его взгляды были изложены в единственном сочинении, написанном в стихотворной форме и состоявшем из аллегорического пролога и двух частей. В первой части, от которой до нас дошли значительные отрывки, Парменид изложил свое учение о бытии. Бытие — это то, что есть в отличие от того, что только кажется и составляет область мнения, а не точного знания. Подвергая анализу понятие бытия, Парменид пришел к выводу, что бытие должно быть единым и, следовательно, не имеющим частей и неделимым, а также неподвижным и неизменным. Кроме того, будучи пространственно протяженным (а Парменид еще не мог его мыслить иначе), бытие необходимо ограничено, ибо совершенно и может быть представлено лишь в образе однородного шара, или сферы, «всюду равноотстоящей от центра».

Во второй части поэмы, известной нам значительно хуже, Парменид изложил физическое учение, не претендующее на истину и представляющее собой лишь наиболее вероятное из мнений смертных людей. Здесь в качестве высших начал он принимает две противоположных «формы» (morphai) — свет или эфир (огонь) и тьму или ночь (землю), из которых состоят все чувственно воспринимаемые вещи. Вселенная, согласно этому учению, состоит из ряда концентрических колец, или «венцов», вращающихся вокруг центра; некоторые из них состоят из чистого огня, в других к огню примешивается земля. Имеются указания на то, что Парменид впервые высказал гипотезу о шарообразности Земли. Далее, в этой части поэмы, он рассматривал небесные и атмосферные явления, высказывал соображения о природе чувственных восприятий, о происхождении живых существ, о различии полов и т. д. Точная реконструкция физических взглядов Парменида практически невозможна, и в историю человеческой мысли Парменид вошел прежде всего как автор учения о бытии и тем самым как основоположник философской онтологии. Но и с точки зрения естественнонаучной проблематики парменидовское учение о бытии сыграло положительную роль, что станет ясно ниже, при рассмотрении философско-физических систем мыслителей V в. до н. э.

Зенон. Ученик Парменида Зенон не создал самостоятельного учения; написанное им сочинение имело, по сути дела, полемический характер: в нем Зенон с помощью чисто логических аргументов доказывал, что допущение множественности вещей и возможности движения приводит к выводам, которые исключают друг друга. Научное значение так называемых «апорий» Зенона состояло в том, что в них Зенон натолкнулся на проблему континуума, обнаружив, что непрерывная величина не может трактоваться как совокупность дискретных точек (и, соответственно, движение не состоит из множества положений покоя). В этой связи представляется несущественным, была ли полемика Зенона направлена против числового атомизма пифагорейцев (как полагал, например, английский историк античной философии Дж. Вернет) или же ее смысл состоял исключительно в том, чтобы поддержать учение Парменида (как об этом писал Платон в «Пармениде»). Проблематика аргументов Зенона далеко выходит за пределы конкретной исторической ситуации, обусловившей их появление. Анализу «апорий» Зенона посвящена колоссальная литература: особенно большое внимание им уделялось в последние сто лет, когда математики стали усматривать в них предвосхищение парадоксов современной теории множеств.

Наряду с этим сочинение Зенона служит яркой демонстрацией нового этапа, достигнутого греческим научным мышлением. В нем нет и следа заключений по аналогии, столь типичных для мыслителей милетской школы. Рассуждения Зенона являются исторически первым примером чисто логических доказательств. По этой причине имя Зенона можно обнаружить на первых страницах любого учебника по истории логики.

Мелисс. Третий известный представитель элейской школы — Мелисс Самосский, живший в середине V в. до н. э., не был связан с Италией; тот факт, что он воспринял учение Парменида о бытии, объяснялся резонансом, которое это учение нашло в самых различных концах эллинского мира. Мелисс написал сочинение, имевшее, согласно позднейшим источникам, заглавие «О природе и о бытии»; в нем ионийской прозой были повторены и развиты аргументы Парменида об едином, неделимом, неизменном и неподвижном бытии. Мелисс разошелся с Парменидом лишь в том, что он признал бытие неограниченно протяженным (если бы бытие было ограниченным, рассуждал он, то оно граничило бы с небытием. Но небытия нет; следовательно, бытие не может быть ограниченным). Фактически у Мелисса бытие отождествляется с бесконечным пространством, в котором ничего не происходит. Следует подчеркнуть, что до этого греческая наука не знала идеи бесконечного пространства; в учениях ранних мыслителей ее еще не было (об этом мы еще будем говорить ниже, в связи с атомистикой Левкиппа — Демокрита).

Физических взглядов, подобных парменидовскому учению «о мнении», Мелисс, по-видимому, не развивал.

 

Проблемы после-парменидовской науки. Эмпедокл и Анаксагор

Греческие мыслители V в. до н. э., занимавшиеся конкретными вопросами науки «о природе», находились под большим воздействием учения Парменида о бытии. Однако они не могли просто принять это учение, так как это привело бы их к признанию иллюзорности того мира, который был основным объектом их изучения. С другой стороны, аргументы Парменида о свойствах истинного бытия казались им в большей своей части неопровержимыми. Поэтому «физики», принадлежавшие к следовавшему за Парменидом поколению, согласились в основном с этими аргументами, отойдя от учения элеатов лишь в одном, правда очень важном, пункте: они отказались от принципа единства бытия, признав наличие ряда первооснов, из которых каждая обладает свойствами, присущими истинному бытию Парменида. Эти первоосновы вступают друг с другом в различные, меняющиеся со временем пространственные отношения; бесконечное разнообразие этих отношений обусловливает многообразие вещей окружающего нас мира. Тем самым решаются проблема множественности вещей, а также проблемы их рождения (гибели), изменения и движения. Сделанный этими мыслителями шаг был чреват последствиями капитальной важности: с одной стороны, он привел к идее материальных элементов, из которых построены все вещи, а с другой — стимулировал формулировку принципа, позднее получившего наименование принципа сохранения материн.

Выдающимися представителями этого направления в греческой науке были Эмпедокл, Анаксагор и основатель атомистики Левкипп. Сначала мы рассмотрим по отдельности учения Эмпедокла и Анаксагора, что же касается Левкиппа, то его взгляды будут изложены в следующем разделе вместе со взглядами его великого ученика Демокрита, так как их размежевание представляется практически неосуществимым.

Эмпедокл из Агригента (Сицилия) жил предположительно в 490—430 гг. до н. э. Он был яркой и многосторонней личностью, сочетавшей в себе аспекты философа, поэта, ученого-естествоиспытателя, врача, политического деятеля и религиозного проповедника. Его учение носит на себе следы влияния, с одной стороны, пифагореизма, а с другой — Парменида, в подражание которому он изложил свои взгляды в стихотворной форме (в поэмах «О природе» и «Очищения»).

В основе физического учения Эмпедокла лежит концепция четырех элементов — огня, воздуха (который у него именуется эфиром), воды и земли; он называет их «корнями всех вещей». Эти «корни» у Эмпедокла вечны, неизменны и не могут ни возникать из чего-либо другого, ни переходить друг в друга. Все прочие вещи получаются в результате соединения этих элементов в определенных количественных пропорциях; в некоторых случаях Эмпедокл указывает эти пропорции, найденные им, по-видимому, на основе умозрительных спекуляций, с учетом, однако, чувственно воспринимаемых свойств соответствующих вещей. Кроме четырех элементов, Эмпедокл постулировал существование двух сил — Любви (Philia) и Вражды (Neikos), которые он мыслил пространственно протяженными; из них первая соединяет (перемешивает) разнородные элементы, вторая же разделяет их; попеременным преобладанием этих сил обусловлен циклический ход мирового процесса, В период господства Любви все четыре элемента смешаны самым совершенным образом, образуя огромный однородный шар — пребывающий в покое Сфэрос (Sphairos). При этом Вражда оказывается вытесненной за пределы Сфэроса и занимает периферийные области мира. В дальнейшем Вражда проникает в Сфэрос, разделяя элементы и оттесняя Любовь к центру мира. В силу того что огонь скапливается по преимуществу в одной половине мира, а воздух (эфир) — в другой, происходит нарушение равновесия, приводящее к вращению мира — сначала медленному, но постепенно ускоряющемуся; этим вращением объясняется, в частности, смена дня и ночи. В период господства Вражды и полного разъединения элементов, располагающихся концентрическими слоями друг над другом, вращение приобретает максимальную скорость; оно начинает замедляться по мере того, как зажатая в центре мира Любовь начинает брать верх и снова смешивает разъединенные элементы.

Детали причудливой космогонии Эмпедокла остаются во многом неясными, и изложенную нами схему следует рассматривать лишь как наиболее вероятную ее реконструкцию. Существуют, однако, и другие реконструкции — среди них мы упомянем предложенную французским исследователем Боллаком, в которой вообще отрицается наличие у Эмпедокла цикличности мирового процесса в описанной нами форме.

Идея бесконечного пространства у Эмпедокла еще отсутствует. Источники сообщают, что Эмпедокл приписывал миру (космосу) не строго шарообразную, но яйцевидную форму. Оболочка космоса состоит из отвердевшего эфира. Звезды имеют огненную природу; неподвижные звезды прикреплены к небесному своду, планеты же свободно парят в пространстве. Солнце, подобно огромному зеркалу, отражает свет, испускаемый огненной полусферой космоса. Луна находится на одной трети расстояния от Земли до небесного свода; она образовалась от сгущения облачной земной атмосферы и имеет плоскую форму, получая свой свет от Солнца. Солнечные затмения происходят, когда Луна загораживает от нас, полностью или частично, солнечный диск. Неясно, какой представлял себе Эмпедокл форму Земли. Воды морей, по его мнению, первоначально находились в глубинах Земли; в результате космического круговращения они были выжаты из нее, как из губки. В одном месте Эмпедокл называет море «потом Земли».

Большой интерес представляет развитая Эмпедоклом теория происхождения растений и животных, в которой многие находят предвосхищение дарвиновской идеи естественного отбора. А именно, живые существа могут возникать лишь в промежуточные стадии перехода от господства Любви к господству Вражды, или наоборот. В первом случае сначала образуются синтетические «цельноприродные» формы, которые затем распадаются на противоположные по полу существа. Во втором случае имеет место обратный процесс: во влажном, теплом иле возникают отдельные члены и органы, которые беспорядочно носятся в пространстве и, случайным образом соединившись друг с другом, образуют самые разнообразные, большей частью уродливые существа; лишь немногие из них оказываются жизнеспособными и выживают.

Будучи врачом и, по преданию, основателем сицилийской школы медиков, Эмпедокл большое внимание уделял вопросам анатомии и физиологии. В основу своих представлений о строении организма он кладет учение о четырех элементах, объясняя различия свойств органических тканей пропорциями, в которых элементы входят в состав этих тканей. Любопытные соображения Эмпедокл высказывает по поводу наследственности, различия полов и развития зародыша. Унаследованные свойства детеныша определяются соотношением отцовского и материнского семени, из которого образовался зародыш. Пол зародыша зависит от тепла матки, в которой он развивается: более теплая матка приводит к образованию особей мужского пола, более холодная — женского. Мужской зародыш формируется быстрее, чем женский, а правая сторона быстрее, чем левая. Механизм дыхания объясняется Эмпедоклом приливом и отливом крови по отношению к поверхности тела; этот механизм иллюстрировался им опытами с клепсидрой (водяными часами). Причина сна — охлаждение крови; смерть наступает, когда тепло полностью уходит из организма.

Детально разработанная теория ощущений основывалась у Эмпедокла на принципе «подобное познается подобным». Так, например, он считал, что внутренность глаза состоит из всех четырех элементов, причем каждый из них заполняет особые, для него предназначенные поры; при встрече данного элемента с соответствующему ему истечениями от внешнего объекта возникает зрительное ощущение. Объясняя слуховые ощущения, Эмпедокл опирался на полученные им данные о строении уха (в частности, ему приписывалось открытие ушного лабиринта). Приятные ощущения Эмпедокл объяснял действием подобного на подобное, неприятные — встречей противоположных агентов.

В видимом противоречии с естественнонаучными воззрениями Эмпедокла находится его поэма «Очищения» («Katharmoi»), в которой он развивает религиозно-этическое учение, носящее на себе явные следы пифагорейской доктрины; это учение основано на идеях бессмертия души, метапсихоза и нравственного очищения. Ученые пытались по-разному объяснить это противоречие, в частности путем отнесения обеих поэм к различным периодам творческой эволюции Эмпедокла. Возможно, однако, что сам он не усматривал между ними никакого противоречия, полагая, что они рассматривают принципиально различные области, никак не перекрещивающиеся друг с другом.

Эмпедокл сумел предугадать ряд важнейших идей позднейшего естествознания. Т. Гомперц подчеркивал три таких идеи — те, которые впоследствии легли в основу химической науки: «гипотеза множественности и притом ограниченной множественности основных элементов; идея соединений, в которую вступают между собой эти элементы; наконец, признание многочисленных количественных различий или изменчивости пропорций в этих соединениях».

Анаксагор из Клазомен (500—428 гг. до н. э.) был прямым продолжателем мыслителей милетской школы, влияние которой (особенно Анаксимена) явно ощущается в его космологических концепциях. В то же время он испытал воздействие Парменида и, возможно, ранней атомистики. Уже в зрелом возрасте Анаксагор переехал в Афины, где прожил около 30 лет. Достижения ионийской науки он перенес на аттическую почву, явившись, таким образом, основоположником афинской философской школы. В конце жизни Анаксагор подвергся судебному преследованию за распространение взглядов, противоречивших общепринятой религии, и вынужден был бежать из Афин. Умер он в Лампсаке (на берегу Геллеспонта).

В основе физического учения Анаксагора лежит представление о «существующих вещах» (eonta chremata), которые не могут ни возникать, ни уничтожаться и из соединения которых образуются все чувственно воспринимаемые объекты окружающего нас мира. В число таких «вещей» он включал бесчисленное множество качественно определенных веществ (к каковым относились ткани животных и растительных организмов, металлы, однородные минералы), позднее обозначенных Аристотелем термином «гомеомерии» (т. е. «подобочастные»), а также несколько пар «противоположностей» (тоже позднейший термин) — теплого и холодного, светлого и темного, сухого и влажного, разреженного и плотного.

Оригинальной чертой анаксагоровской теории материи был принцип «все во всем» или «во всем есть часть всего», означавший, что в любой вещи — как бы мала она ни была — содержатся все гомеомерии и все противоположности; воспринимаемые же нами свойства данной вещи определяются теми ее компонентами, которые в ней преобладают. Прямым следствием этого принципа было признание беспредельной делимости вещества. Роль противоположностей в системе Анаксагора и их соотношение с гомеомериями принадлежит к числу наиболее запутанных проблем ранней греческой науки. Наиболее вероятным представляется предположение, что в результате преобладания тех или иных противоположностей образуются эфир, воздух и прочие «стихии», которые у Анаксагора отнюдь не имели элементарного характера.

Отказавшись от идеи цикличности мирового процесса, которая была характерна для учений Анаксимандра (а может быть, и Анаксимена), Гераклита и Эмпедокла, Анаксагор развил эволюционную космогонию, согласно которой космос рождается однажды из некоего первичного состояния, а затем необратимо развивается в одном направлении. Первичное состояние (panta homoy — «все вместе») характеризуется смешением всех «вещей», когда мир представлял собой качественно неопределенную неподвижную массу. Под действием активного агента, который у Анаксагора именуется «нусом», т. е. Разумом (noys — ум, разум), в каком-то участке первичной смеси внезапно возникает мощное круговращательное движение (perich5resis), которое затем распространяется вширь и захватывает все новые массы первичной смеси. Быстрое вращение обусловливает разделение этих масс на составляющие их компоненты, в первую очередь — на эфир (огонь) и воздух, которые занимают соответственно периферийную и внутреннюю области космического вихря.

В каждой из этих стихий содержатся всевозможные «семена», т. е. ничтожно малые частицы разнообразных веществ, отличающиеся друг от друга формами, цветами, вкусами и запахами. В дальнейшем из воздуха выделяются более плотные и темные компоненты — облака, вода, земля, камни. Согласно принципу «подобное стремится к подобному», происходит соединение сходных семян, образующих массы, воспринимаемые нашими органами чувств как однородные вещества. Этот принцип, вместе с разделяющим действием космического круговращения, оказывается достаточным для образования космоса. При этом не нужно упускать из виду, что весь ход космообразования и, следовательно, организация космоса в целом были как бы «запрограммированы» первичным толчком, осуществляемым Разумом. Если бы подобный толчок произошел где-то в другом месте первичной смеси, то и там возник бы мир, во всех отношениях подобный нашему. Вопрос о том, действительно ли возникают многие миры или же процесс космообразования осуществляется один-единственный раз, остается, строго говоря, открытым. Правда, античные источники причисляли Анаксагора к сторонникам второй альтернативы.

Космическое круговращение, по мысли Анаксагора, никогда не остановится, но оно будет все больше замедляться по мере вовлечения в него все новых и новых масс окружающей смеси и по мере происходящего при этом расширения космоса. В настоящее время это круговращение воспринимается нами в форме суточного вращения небесного свода. Земля, образовавшаяся из наиболее плотных и тяжелых веществ, замедлялась быстрее и в настоящее время пребывает неподвижной (или почти неподвижной?) в центре космоса. Она имеет плоскую форму и не падает вниз, будучи поддерживаемая находящимся под ней воздухом. Небесные светила были оторваны от земного диска силой вращающегося эфира и затем раскалились под его действием. Солнце — огромная пылающая глыба величиной с Пелопоннес. Звезды — раскаленные камни, которые иногда низвергаются вниз; именно таким образом Анаксагор объяснил поразившее греков падение большого метеорита в устье реки Эгоспотамы (468/67 г. до н. э.). Луна имеет более холодную природу; на ней имеются возвышенности и впадины и, возможно, она обитаема. Анаксагору принадлежит заслуга правильного объяснения не только солнечных, но и лунных затмений. Он сформулировал также ряд гипотез для объяснения многих других астрономических и метеорологических явлений, к каковым относятся кометы и Млечный Путь, «повороты» Солнца и Луны, наклон небесной оси, молния, гром, дождь, снег, град, радуга и т. д. Несмотря на наивность большинства этих гипотез, они отражают характерное для Анаксагора (и, добавим, весьма прогрессивное для того времени) стремление объяснить все явления с помощью причин одного и того же рода. Никаких граней между Небом и Землей, между космологией и метеорологией Анаксагор не проводил. Его космос имел единую природу; это был земной космос, в нем не было ничего божественного и сверхъестественного. Именно в этом смысле надо понимать слова Маркса, что «Анаксагор... первый физически объяснил небо и таким образом — в другом смысле, чем Сократ — приблизил его к земле...».

К числу прочих особенностей физики Анаксагора надо еще отнести: релятивизм большого и малого, отрицание пустоты (о чем пишет Аристотель в «Физике»), идея бесконечно малых величин (по сути дела близкая к идее бесконечно малых величин в математике Нового времени — с той лишь разницей, что у Анаксагора речь идет не о математических, а о физических величинах) и, наконец, попытки качественно сформулировать некоторые закономерности механики («скорость порождает силу»). Все эти особенности придают учению Анаксагора своеобразие, выделяющее его среди других учений досократиков.

Биологии Анаксагор уделял меньше внимания, чем Эмпедокл, однако отдельные его идеи представляют интерес. Так, он учил, что живые существа развились из зародышей, образовавшихся во влажной среде в результате соединения семян, увлеченных каплями дождя, с семенами, находившимися в земле. Растения принципиально не отличаются от животных: они способны ощущать, печалиться и радоваться. Человек — самое разумное из всех животных потому, что он имеет руки. Ощущения возникают вследствие действия подобного на неподобное: контрастностью этого действия определяется интенсивность ощущения; в силу этого ощущения всегда относительны и не могут сами по себе быть источником истинного знания. Но и без них знание невозможно, «ибо явления суть зрение невидимого». Эти высказывания Анаксагора подготавливали почву для теории познания Демокрита.

Имеются сведения, что Анаксагор занимался и математикой, в частности проблемой квадратуры круга и теорией перспективы. Однако детальной информации о его достижениях в этой области у нас нет.

Основное сочинение Анаксагора было написано прозой. В первой его части формулировались общие принципы и излагалась космогоническая концепция; в последующих частях рассматривались конкретные естественнонаучные вопросы. В конце V — начале IV вв. до н. э. знакомство с этим сочинением считалось обязательным для всякого образованного афинянина. До нас дошло около двадцати фрагментов, относящихся в подавляющем большинстве к первой части сочинения.

 

Атомистика Левкиппа — Демокрита

Создание и разработка атомистического учения в Древней Греции были заслугой Левкиппа и его ученика Демокрита.

О личности Левкиппа источники не сообщают практически ничего: мы не знаем ни места его рождения, ни имени его отца, и у нас отсутствуют какие бы то ни было сведения о его жизни и научной деятельности. По этой причине как в древности, так и в недавнее время высказывалось мнение, что никакого философа Левкиппа вообще не было и что это имя служило для обозначения некоего вымышленного персонажа или же было литературным псевдонимом Демокрита. Такой точки зрения придерживаются теперь лишь немногие ученые; самым существенным возражением против нее служит то, что наиболее древние и авторитетные источники, включая Аристотеля, не сомневались в существовании Левкиппа и, по-видимому, были знакомы с его сочинениями, которые они отличали от сочинений Демокрита.

О Демокрите мы имеем больше сведений. Он родился в городе Абдеры (на северном побережье Эгейского моря) приблизительно в 470—460 гг. до н. э.; как и Анаксагор, целиком посвятил себя науке, но в отличие от того много путешествовал. Сообщается о его пребывании в Египте, Персии и Вавилоне, где он познакомился с научными достижениями египетских жрецов, магов и халдеев. В качестве единственного учителя Демокрита предание называет Левкиппа. Умер Демокрит в первой половине IV в. до н. э.

Очень трудно отделить вклад, внесенный в науку Левкиппом, от более поздних достижений Демокрита. По вопросам общего характера, включая учение об атомах, между Левкиппом и Демокритом расхождений, (видимо, не было с большой долей вероятности можно предположить, что система Левкиппа включала основные положения атомистики и общую теорию мира (космогонию и космологию). Демокрит развил учение Левкиппа, превратив его во всеобъемлющую научную систему, заключавшую в себе наряду с учением о бытии и космосе также теорию познания, логику, этику, педагогику, математику, биологию, психологию и т. д. Энциклопедизм Демокрита и его литературная плодовитость, позволявшая по объему научной продукции сравнивать его с Платоном и Аристотелем, несомненно содействовали его славе в древности и были причиной того, что он затмил собой фигуру своего учителя Левкиппа. К сожалению, от сочинений Демокрита до нас дошло лишь некоторое количество коротких в большинстве своем незначительных фрагментов; по этой причине его учение приходится восстанавливать главным образом на основе косвенных и не всегда надежных свидетельств.

По свидетельству Аристотеля, Левкипп пришел к атомистической концепции, пытаясь согласовать данные чувственных восприятий с аргументами Парменида о том, что истинное бытие не может ни возникать, ни уничтожаться, ни изменяться. В противовес элеатам он постулировал, что небытие существует нисколько не менее чем бытие, и это небытие есть пустота; сущее же в собственном смысле есть «полное» бытие, причем оно не едино; таких сущих бесконечное множество, и они невидимы вследствие малости своих объемов. Они отличаются друг от друга лишь величиной, формой и положением; они носятся в пустоте и, соединяясь друг с другом, порождают всевозможные вещи. Эти единицы бытия неизменны, неделимы и абсолютно полны — во всем этом они подобны истинному бытию Парменида. Свойство неделимости побудило назвать их «атомами» (atomoi, что в буквальном переводе означает «нерассекаемые»).

Итак, согласно Левкиппу и Демокриту, в мире существуют лишь два начала — пустота и атомы. Пустота безгранична (Левкипп называл ее великой пустотой»); в ней нет ни верха, ни низа, ни центра, ни периферии. По-видимому, именно осознание идеи пустоты привело атомистов к идее бесконечного пространства, в столь четкой форме не осознававшийся ни более ранними мыслителями, ни Эмпедоклом, ни Анаксагором. В этом пространстве во всех направлениях беспорядочно носятся атомы; наглядным образом, позволяющим представить себе движение атомов в пустоте, были для Демокрита пылинки, пляшущие в солнечном луче. Атомы обладают выпуклостями, углублениями и крючкообразными зацепками, благодаря которым они могут при столкновениях сцепляться, образуя более или менее устойчивые соединения. Сцепление большого числа атомов вызывает возникновение огромных вихрей, которые в конечном счете приводят к образованию миров. При возникновении космического вихря прежде всего образуется внешняя оболочка, подобная пленке или скорлупе, отгораживающей мир от внешнего пустого пространства. Эта пленка препятствует атомам, находящимся внутри вихря, вылетать наружу и, таким образом, обеспечивает стабильность образующегося космоса. Внутри же этой оболочки происходит обособление различных видов атомов: подобные из них соединяются с подобными, причем более крупные атомы оказываются в центре космоса, образуя Землю, а более мелкие устремляются к периферии. Тяжесть не является первичным свойством атомов, а возникает как вторичный эффект в процессе космообразования. Земля имеет форму барабана (тимпана) с вогнутыми основаниями; в начале она была невелика и вращалась вокруг своей оси, но потом, став плотнее и тяжелее, перешла в неподвижное состояние.

Не совсем ясно, как представляли себе атомисты происхождение небесных светил. По-видимому, они полагали, что Солнце, Луна и звезды первоначально находились вне нашего мира и лишь впоследствии были захвачены вихревым движением, войдя в состав космоса. Здесь обнаруживается конкретное расхождение между взглядами Левкиппа и Демокрита. А именно, Левкипп полагал, что ближе всего к Земле находится Луна, дальше всего — Солнце, а в промежутке расположены прочие небесные тела (ср. последовательности космических кругов, или «колес», у Анаксимандра). У Демокрита этот порядок исправлен и неподвижные звезды отодвинуты к периферии космоса, причем между Луной и Солнцем он поместил еще планету Венеру (нет ли здесь влияния вавилонян, уделявших, как мы знаем, очень большое внимание Венере?). Прочие планеты у него не специфицируются.

При описании конкретных астрономических и метеорологических явлений Демокрит во многом следовал Анаксагору. В то же время от Анаксагора (и Эмпедокла) его отличает концепция множественности миров, которые могут сильно отличаться от нашего. Некоторые миры оказываются лишенными Солнца и Луны, в других Солнце и Луна больше наших или же имеются в большем числе; могут возникать и такие миры, которые не имеют животных и растений и вовсе лишены влаги. Миры образуются на разных расстояниях друг от друга и в разное время; одни только еще зародились, другие (как, например, наш мир) находятся в расцвете, а третьи разрушаются. Причиной гибели миров могут быть их столкновения друг с другом.

В основе этой величественной и не имевшей себе прецедентов в истории греческой мысли картины мироздания лежали определенные методологические предпосылки. Одной из них была идея необходимости, определявшей все происходящее в мире. В единственном дошедшем до нас отрывке, приписываемом Левкиппу, мы читаем: «Ни одна из вещей не возникает попусту, но все совершается по закону и в силу необходимости. Эту необходимость, однако, не следует понимать в духе механистического детерминизма Нового времени. Совершающимся по необходимости греки называли то, что происходит как под влиянием внешних воздействий, так и в. силу внутренних причин, присущих самому процессу (т. е. «по природе»), но только не в результате чьего-либо ведения или решения, все равно — божеского или человеческого. Большую роль в сочинениях Демокрита играла также идея причинности, об интересе Демокрита к исследованию причин свидетельствует ряд заглавий его сочинений («Причины небесных явлений», «Причины, относящиеся к животным», «Причины смешанного рода» и т. д.). Для историка физики представляет интерес, что Демокрит пытался обосновать атомистику с помощью аргументов, основанных на наблюдениях над реальными процессами (например, над сжимаемостью тел).

Интересна демокритовская концепция происхождения живых существ. Первоначально Земля была влажной, илоподобной; в этом иле под влиянием теплоты возникло брожение или гниение, порождавшее пузыри, в которых зародились первые живые существа. Как и Эмпедокл, Демокрит полагал, что первоначально наряду с существующими теперь видами образовались уроды и чудовища, но они оказались неприспособленными к жизни и к размножению и потому вымерли. Те же, которые выжили, стали в дальнейшем размножаться путем совокупления. В зависимости от различия атомов, образующих тела этих существ, одни из них стали летать, другие плавать в воде, третьи жить на суше. На долю человека пришлось больше тепла и мелких, круглых атомов, чем на долю других организмов, поэтому человек ходит прямо и касается земли только двумя ступнями.

Душа, по Демокриту, состоит из мелких шарообразных совершенно гладких и очень подвижных атомов, тождественных атомам огня. Душа имеется не только у человека и животных, но также у растений. Она не сосредоточена в какой-то одной части организма, но распределена по всему телу, причем между каждыми двумя атомами души находятся атомы других веществ. Благодаря душе организм способен двигаться, ощущать, испытывать эмоции и мыслить. Мыслительная функция осуществляется частью души, находящейся в головном мозге, прочие функции — атомами души, разлитыми по другим органам. Душа сохраняется в теле и увеличивается благодаря дыханию, но она умирает вместе со смертью тела, рассеиваясь в пространстве. Атомы души носятся в воздухе повсюду; соединяясь вместе, они образуют пламя, попадая же в тело, они включаются в состав души данного живого существа.

В основе демокритовской теории ощущений лежит представление об «образах» (cidola). Развивая взгляды Эмпедокла, Демокрит полагал, что от каждого тела во все стороны исходят истечения, представляющие собой тончайшие слои атомов, отделяющихся от поверхности тела и несущихся в пустоте с величайшей скоростью. Эти-то истечения Демокрит и называл «образами»; они попадают в глаза и другие органы чувств и оказывают действие на подобные им атомы, находящиеся в нашем теле (по принципу «подобное действует па подобное»); это действие передается затем атомам души. Все ощущения и восприятия являются результатом взаимодействия атомов, из которых составлены образы, с атомами соответствующих органов чувств. Так, ощущение белого цвета вызывают в нашем глазу гладкие атомы, черного — шероховатые. Но если те же гладкие атомы, которые в глазу вызывали ощущение белого цвета, попадут на язык, они вызовут ощущение сладости, а попав в нос — ощущение благовония.

Будучи сыном своего времени, Демокрит не отрицал существования богов. Боги, как и все прочие вещи, состоят из атомов и потому не бессмертны, но это — очень устойчивые сцепления атомов, недоступные нашим органам чувств. Однако при желании боги дают о себе знать образами, которые чаще всего воспринимаются нами во сне. Эти образы могут приносить нам вред или пользу, иногда они разговаривают с нами и предсказывают будущее. Таким образом, даже мантику и другие подобные предрассудки Демокрит обосновывал с помощью атомистического учения.

В своей теории познания Демокрит также исходил из атомистики. Поскольку мир и все находящиеся в нем вещи состоят в конечном счете из атомов и пустоты, то чувственно воспринимаемые качества — сладкое и горькое, теплое и холодное, белое и черное и т. д.— существуют только во мнении людей, но не в реальной действительности; в этом смысле ощущения ложны и не дают истинного представления об окружающем нас мире; истина же может быть получена лишь с помощью размышления. С другой стороны, единственным материалом для размышления оказываются все те же ощущения, т, е. данная в опыте видимость вещей. Поэтому ощущения не бесполезны, а служат исходным этапом на пути к истинному познанию: этот исходный этап Демокрит называл «темным» познанием, противопоставляя его «истинному» познанию, к которому может привести только разум.

Демокриту приписывается ряд сочинений по математике («О числах», «О касании круга и шара», «О геометрии», «Об иррациональных отрезках» и т. д.). Древние считали, что он открыл,— правда, не дав доказательств,— формулы для объема конуса и пирамиды (возможно, впрочем, что эти формулы принадлежали к числу сведений, приобретенных им в странах Востока). Геометрия строилась Демокритом, по-видимому, на основе идеи об атомистической структуре пространства: линии, поверхности, объемы считались им состоящими из большого числа конечных, но далее неделимых элементов. Идя этим путем, Демокрит пытался обойти парадоксы Зенона и построить непротиворечивую систему математики. Большой вклад в реконструкцию атомистической математики Демокрита был внесен профессором С. Я. Лурье; соображения, высказываемые им по этому вопросу, крайне интересны и остроумны, хотя и не всегда могут считаться бесспорными.

Дальнейшее развитие греческой математики пошло не по пути Демокрита, а по пути исследования непрерывных, т. е. безгранично делимых величин. Атомистика, будучи чрезвычайно плодотворной в качестве физической гипотезы, не могла послужить основой для построения рациональной математики. Атомистическую математику можно было считать продуктивной лишь в качестве зародыша, из которого впоследствии развились методы интегрального исчисления.

Мы оставляем в стороне этические, политические и педагогические воззрения Демокрита, не имеющие прямого отношения к науке в собственном смысле слова. Но и изложенного достаточно, чтобы оценить грандиозность подвига Демокрита, сумевшего создать всеобъемлющую систему на основе единого естественнонаучного принципа.

 

Отдельные научные дисциплины в VI—V вв. до н. э.

Наряду с универсальными построениями, характерными для ранней греческой науки «о природе», в VI—V вв. до н. э. возникли и некоторые более частные дисциплине, либо с самого начала развивавшиеся самостоятельно, либо постепенно отделившиеся от основного физико-космологического направления.

Историко-географические описания. Особой ветвью ионийской науки, возникшей почти одновременно с наукой «о природе», были историко-географические описания, материалом для которых служили мифы, народные предания, собственные наблюдения, рассказы и записи путешественников. Авторы этих описаний получили позднее общее наименование логографов. В числе наиболее ранних логографов традиция называет двух милетцев — Кадма и Гекатея. О первом мы не знаем ничего, кроме имени, что же касается Гекатея, жившего во второй половине VI в. до н. э., то он написал два больших сочинения: «Генеалогия» и «Обозрение Земли», от которых до нас дошел ряд отрывков. Уже сами их заглавия показывают, что одно из них имело по преимуществу исторический характер, а второе, интересующее нас в первую очередь, содержало описание известной к тому времени ойкумены (обитаемой области Земли). Оно состояло из двух частей, посвященных соответственно Европе и Азии, Следуя почину Анаксимандра. Гекатей приложил к нему географическую карту, на которой поверхность Земли была представлена в виде диска, омываемого со всех сторон Океаном. Центр диска оказался где-то в районе Эгейского моря. В больший реки — Дунай, Нил, Фасис (Рион) — Гекатей считал вытекающими из Океана (рис. 1). Геометрический схематизм Гекатея был подвергнут критике позднейшими географами, но для целей первой ориентировки он представлял известные удобства.

Рис.1. Карта мира по Гекатею

В V в. до н. э. во многих областях Эллады имелись логографы, описывавшие предания, обычаи и события соответствующего народа или государства. Из них наиболее известны имена Акусилая из Аргоса и Гелланика с острова Лесбос. Общую характеристику литературы этого рода дает Дионисий Галикарнасский (конец I в. до н. э.— начало I в. н. э.). Он сообщает, в частности, что в его время сочинения логографов еще не были утеряны и охотно читались. Причина их популярности заключалась, очевидно, в присущей им занимательности; многие из этих сочинений были, по-видимому, чем-то вроде сборников новелл, сравнительно слабо связанных друг с другом. Критикуя своих предшественников, историк Пелопоннесской войны Фукидид (конец V в. до н. э.) указывает, что они в своих сочинениях стремились скорее к тому, чтобы вызвать интерес у слушателей, чем к истине. Из этих слов, в частности, следует, что логографы имели обыкновение читать свои произведения перед более или менее многолюдной аудиторией, подобно тому

как рапсоды читали эпические поэмы.

Высшей точкой развития жанра историко-географической литературы явились знаменитые девять книг Геродота из Галикарнасса (ок. 480—425 гг. до н. э.). Геродот часто именуется «отцом истории», и, действительно, его монументальный труд стал первым классическим памятником исторической, науки. Однако наряду с чисто историческим материалом в его книгах содержатся описания многих стран, которые в большей или меньшей степени были известны грекам того времени. В этих описаниях мы находим массу ценной информации о природе этих стран, о населявших их народах, включая их образ жизни, обычаи, религиозные верования и т. д. В целом по книгам Геродота можно составить достаточно полное представление о географическом кругозоре греков середины V в. до н. э.

Геродот хорошо знал страны, непосредственно прилегавшие к Средиземному и Черному морям, но обо всем, что лежало за пределами этой области, он имел лишь весьма смутное представление. Например, ему было известно о существовании на востоке Индии, которая, согласно его описаниям, была полна диковин и изобиловала эолитом; за Индией же, по его словам, простираются пески и пустыня. Если о скифах Геродот сообщает достаточно полную и точную информацию, то сведения о странах и народах, находившихся к северу от Скифии (под которой подразумевалось северное Причерноморье между Дунаем и Доном), у него путаны и неправдоподобны. Почти все, что Геродот сообщает об Аравии, относится к области сказочных небылиц. С другой стороны, его описания Персии и Египта основаны па собственных наблюдениях и на информации, полученной им непосредственно на местах, поэтому долгое время они были важнейшим источником сведений об этих странах. Африканскую территорию к западу от Египта (Ливию) Геродот делил на две зоны: страну, населенную дикими зверями, а затем — бесплодную пустыню, о размерах которой у него не было определенного мнения.

После Геродота происходит обособление исторической науки и географии. Фукидид, Эфор и Феопомп (конец V—IV вв. до н. э.) выступают в качестве чистых историков. Что же касается дальнейшего развития географии, то о ней речь пойдет ниже.

Медицина. Медицину в силу ее сугубо прикладной направленности мы не можем считать наукой в собственном смысле слова. В древности она относилась скорее к разряду ремесел и была одной из самых старых профессий, первоначально сливавшейся с магией и колдовством. В рассматриваемую нами эпоху греческая медицина приняла уже вполне рациональный характер и, будучи тесно связана с опытом и наблюдением, оказала громадное влияние на развитие научных методов исследования.

Наиболее ранние сведения из области греческой медицины мы находим в поэмах Гомера. В «Илиаде» речь идет преимущественно о военной медицине, отличавшейся сравнительно высоким уровнем анатомических знаний и требовавшей, с одной стороны, хирургического искусства, а с другой — умения изготавливать и применять лекарственные снадобья (главным образом растительного происхождения), служившие как для облегчения болей, так и для заживления ран. Наряду с этим у Гомера (главным образом в «Одиссее») имеются места, свидетельствующие о наличии в ранней греческой медицине элементов первобытной магии, а также о ее связях с египетской медициной. Отметим, что термин «фюсис», рассмотренный в начале этой главы, впервые встречается также у Гомера («Одиссея», X, 103), причем, по всей видимости, он уже в то время имел отношение к медицинской терминологии...

В VI—V вв. до н. э. В Греции существовало несколько медицинских школ, пользовавшихся известностью. Представителем кротонской (италийской) школы был придворный врач персидского царя Демокед упоминаемый Геродотом; к ней же принадлежал и Алкмеон, о котором будет сказано ниже. Основателем сицилийской школы считался философ Эмпедокл; для нее была характерна тесная связь с религиозно-этнической доктриной пифагорийцев. Знаменитая книдская школа продолжала эмпирические египетских и вавилонских врачей детально описывая отдельные комплексы болезненных симптомов и для каждой болезни разрабатывая свою терапию, включавшую сложные рецепты, диетические предписания и широкое применение местных средств, на пример прижиганий. Сочинения врачей книдской школы до нас не дошли, но их отдельные фрагменты, по-видимому, вошли в состав некоторых трактатов свода Гиппократа. В источниках упоминаются также родосская и киренская школы, но о них мы практически ничего не знаем.

Особое место в истории ранней греческой науки занимает кротонский врач и философ Алкмеон (конец VI — начало V вв. до н. э.). Он был близок к пифагорейцам и развивал взгляды, лежавшие в русле физико-космологической традиции науки «о природе». Однако его значение состоит в другом, а именно в том, что он может в какой-то степени считаться предшественником экспериментальной физиологии и анатомии. По имеющимся сведениям, именно он был первым, кто начал практиковать вскрытие трупов животных в целях изучения строения в функций отдельных органов. Признав мозг важнейшим органом и местопребыванием души, Алкмеон дал исторически наиболее раннее учение об ощущениях, дошедшее до нас в изложении Феофраста. Ему приписывается также открытие нервов, ведущих от органов чувств к головному мозгу.

Большое влияние на медицинские концепции последующего времени оказало учение Алкмеона о здоровье, в основе которого лежала идея равновесия противоположных «сил» — теплого и холодного, сухого и влажного, сладкого и горького и т. д. Заболевание организма, по мнению Алкмеона, вызывается нарушением этого равновесия.

Наибольшую славу уже в древности приобрела косская медицинская школа, неразрывно связанная с именем Гиппократа, уроженца острова Кос, жившего во второй половине V в. до н. э. Гиппократу приписывалось свыше 70 медицинских книг, в своей совокупности составивших так называемый «Свод Гиппократа» («Corpus Hippocraticum»). Книги эти крайне разнородны, и ныне считают, что сам Гиппократ мог быть автором лишь некоторых из них, остальные же написаны в разное время его учениками и последователями. В целом Свод дает весьма полную картину, медицинской теории и практики рассматриваемой эпохи.

Основная черта гиппократовой медицины — строгий рационализм, выступающий здесь в качестве сознательно проводимой тенденции. В этой связи очень характерно сочинение «О священной болезни», в котором опровергается традиционное мнение об эпилепсии как особой болезни, имеющей божественное происхождение. По мнению автора этого трактата, все болезни — и эпилепсия в этом отношении не представляет исключения — вызываются естественными причинами, которые необходимо выяснить и исследовать, чтобы выработать правильные и эффективные методы лечения. В трактате содержится резкая полемика с теми, кто пользуется для излечения болезней заклинаниями и методами религиозно-мистического очищения. По мнению большинства исследователей, эта полемика направлена в первую очередь против врачей сицилийской школы, о которой было упомянуто выше.

Вторая особенность гиппократовой медицины состоит в требовании индивидуального подхода в каждом конкретном случае, определяемого особенностями как самого пациента, так и той естественной среды, в которой он находится. При этом гиппократики широко пользовались понятием «природы» (фюсис), которое у них приобретает поистине универсальное значение. Прежде всего в применении к пациенту «природа» означает совокупность особенностей его телесной и духовной конституции, обусловленных происхождением, наследственностью и действием окружающей среды. Чтобы вылечить больного, врач должен уяснить его «природу» и применить такие методы лечения и такие лекарства, которые не противоречат этой «природе», а согласуются с нею. При этом нужно учитывать «природу» не только организма в целом, но и отдельных его органов. Далее, у каждой болезни также есть своя «природа», которую врач должен знать, чтобы умело направить течение недуга в благоприятную для пациента сторону. Наконец, необходимо использовать «природу» естественной среды, в которой находится больной: особенности климата, характер ветров, свойства воды и т. д. В трактате «О воздухах, водах и местностях», считающимся одной из самых ранних книг Гиппократова свода, излагается влияние этих естественных факторов на «природу» местных жителей и на характер болезней, которым те подвержены. Основной совет, который дается в этой книге странствующему врачу (а таким был, по-видимому, и сам Гиппократ),— по прибытии на новое место первым делом изучить именно эти естественные факторы, чтобы знать их вредное влияние и уметь использовать их целительную силу.

Понятно, что в эпоху Гиппократа медицина еще не имела под собой твердой основы - научной физиологии. Представления гиппократиков о функционировании человеческого организма были весьма наивными и путанными. В то же время в отдельных книгах Свода обнаруживается тенденция нащупать более надежный фундамент, на который могла бы опереться врачебная практика. Так, автор трактата «О древней медицине» возражает против вторжения в медицину современных ему философских концепций (например, учения о четырех элементах Эмпедокла), противопоставляя им гуморальную патологию, которой будто бы придерживались древние врачи и которая объясняет заболевания нарушением равновесного состояния между «соками» (chymoi), определяющими жизнедеятельность организма. Однако по поводу числа и характера этих соков у гиппократиков не было единого мнения: в одних книгах такими соками признаются слизь в желчь, в других — кровь, слизь, вода и желчь, в третьих — кровь, слизь, желтая и черная желчь (точка зрения, которая в дальнейшем стала господствующей и легла в основу учения о четырех темпераментах). Наконец, в трактате «О ветрах» в качестве основного агента, определяющего состояние организма, называется пневма (т. е. воздух). В целом же для гиппократовой медицины характерно отрицание беспочвенного теоретизирования и выдвижение на первый план эмпирических методов исследования, основанных на наблюдении и опыте. И это — третья важнейшая особенность гиппократовой медицины, оказавшаяся особенно плодотворной для развития методов научного естествознания.

Описание конкретных клинических случаев, приводимое в некоторых трактатах Свода, поражает своей точностью и объективностью. В качестве примера приведем два описания, содержащиеся в III книге «Эпидемий» (каждое из них заканчивается лаконичным диагнозом):

«Женщина, жившая у Аристиона, была поражена ангиной. У нее она началась с языка; голос нечистый; язык красный, высыхал. 1-й день — мелкая дрожь, сопровождаемая жаром; на 3-й день — озноб, острая лихорадка; опухоль твердая и красного цвета распространилась на шею и на грудь с двух сторон; конечности холодные, сине-багровые; дыханье поверхностное; питье выливалось через ноздри; больная не могла глотать; стул и моча прекратились. На 4-й день все обострялось; на 5-й день она умерла. Ангина».

«Молодой человек, который жил на площади Лжецов, был охвачен сильной лихорадкой после усталости, тяжелого труда и непривычного бега. 1-й день: расстроенный желудок; выделения желчные, тонкие, обильные; моча тонкая, черноватая; не спал; жажда. На 2-й день все обострилось: стул более обильный, несвоевременный; совсем не спал; расстройство сознания; небольшой пот. На 3-й день тягостное состояние; жажда, тошнота; сильное беспокойство, тоска; галлюцинировал; конечности синие и холодные; напряжение подреберий с двух сторон, без большого вздутия. На 4-й день совсем нет сна; состояние больного ухудшилось. На 7-й день умер; ему было около двадцати лет. Острое заболевание».

Ничего подобного этим описаниям мы не находим в европейской медицинской литературе вплоть до XVI в. Каждое описание — сухой, бесстрастный перечень симптомов; лишь в редких случаях сообщается предписанное лечение. Характерно, что из 42 случаев, описанных в двух книгах «Эпидемий», 25 (т. е. около 60%) окончились смертью; таким образом, автор отнюдь не ставит целью рекламировать свое искусство.

В других книгах Свода сообщаются детальные лечебные предписания. В этом отношении интересен трактат «О внутренних страданиях» (написанный, как считают, под большим влиянием книдской медицинской школы). Каждая глава трактата содержит краткое описание причин и симптомов данной болезни, после чего следуют указания по ее лечению. Подробно описываются рекомендуемые лекарства, включая способы их приготовления и дозировки; даются предписания по доводу диеты и режима больного; в конце указывается прогноз.

Но особой славой как в древности, так и в Новое время пользовался трактат «О переломах», приписываемый большинством исследователей самому Гиппократу. Как и в других трактатах Свода, автор полемизирует против невежества и шарлатанства многих современных ему лекарей, а затем рассматривает различные виды костных переломов и вывихов, в каждом случае, приводя детальное описание приемов лечения. В изложении чувствуется громадный личный опыт автора. Теоретические спекуляции в этом трактате полностью отсутствуют.

Изучение отдельных сочинений Свода Гиппократа показывает, что анатомические знания в Греции поднялись к этому времени на более высокий уровень по сравнению со странами Древнего Востока или с эпохой Гомера. Особенно хорошо был изучен скелет. Основные внутренние органы также были известны, хотя о детальном их строении знали мало, что объясняется существовавшим в Древней Греции запрещением вскрывать трупы умерших. В отношении функций мозга в различных книгах Свода высказываются противоречивые мнения. В одних случаях мозг рассматривается как железа, освобождающая организм от излишней жидкости, в других как орган, вырабатывающий семя, и только в одном из трактатов («О священной болезни») содержится догадка о связи с мозгом не только мышления, ощущений, эмоций, сновидений (эта мысль высказывалась еще Алкмеоном Кротонским), но и психических заболеваний.

Об эмбриологических представлениях гиппократиков мы внаем по книге «О семени и природе ребенка». Принципиальные положения, выдвигаемые автором, не подымаются выше того, что писали по этому поводу досократики, в частности Демокрит: семя происходит из всех частей как отцовского, так и материнского тела; от «силы» и количественного преобладания мужского или женского семени зависит, будет ли ребенок мальчиком или девочкой, а также, на кого из родителей он будет больше похож. Наряду с этим в трактате содержатся интересные наблюдения над развитием раннего человеческого зародыша и проводятся аналогии между развитием человека, с одной стороны, растений и животных (цыпленка) — с другой.

В заключение укажем, что Гиппократу приписывается формулировка основных положений врачебной этики. Так называемая. «Клятва Гиппократа» в большей своей части. сохраняет значение и в наше время.

Математика V — начале IV до н. э. К моменту зарождения науки «о природе» греки, несомненно, уже обладали определенным запасом математических знании, в значительной мере заимствованных у египтян и вавилонян. Но эти знания имели чисто прикладной характер, были случайны, разрознены и потому не составляли науки. Они имели скорее ремесленный характер, ибо сводились к искусству счета, к умению более или менее точно определять площади, находить объемы и, может быть, решать еще какие-то задачи, с которыми грекам доводилось встречаться в их практической деятельности.

Согласно преданию, дошедшему до ученика Аристотеля Евдема, Фалес был первым, проявившим теоретический интерес к некоторым простейшим геометрическим соотношениям. Но даже если это было и так, Фалес, по-видимому, не имел в этом деле прямых продолжателей: ни о ком из последующих мыслителей-ионийцев не сообщается, что они сколько-нибудь серьезно занимались математикой. Следует поэтому согласиться с мнением древних авторов, утверждавших, что заслуга создания математики как теоретической дедуктивной дисциплины принадлежит в основном пифагорейской школе.

Разумеется, это произошло не сразу и не было делом одного лишь Пифагора, как бы он ни был гениален. На ранних этапах существования пифагорейской школы интерес к числу носил религиозно-мистическую окраску. Числам — особенно числам, находившимся в пределах первой десятки,— приписывались особые, сверхъестественные свойства. Эти числа были не просто числа: они составляли сущность окружающего мира, ибо все многообразие вещей и явлений сводилось в конечном счете к числовым соотношениям. Такое отношение к числу было чревато последствиями колоссальной важности. Числа, ранее принадлежавшие к сфере ремесла и практической деятельности, приобрели у пифагорейцев высший онтологический статус. Пифагорейцы начали изучать числа не потому, что это было им нужно для чего-то другого, а потому, что ничего более достойного изучения они не знали.

Рис. 2. Схемы получения рядов треугольных, квадратных и пятиугольных чисел

Отсутствие письменных документов не позволяет сколько-нибудь надежно восстановить последовательность открытий, которые делались в пифагорейской школе. Прежде всего они ввели противопоставления: единица — множество и чет—нечет. Разделению чисел на четные и нечетные придавалось у них особое значение. В связи с этим была тщательно изучена проблема делимости на два (соответствующая теория была воспроизведена Евклидом в IX книге «Начал»). Затем было обращено внимание на то, что некоторые числа (простые) делятся только на самих себя, другие же могут быть представлены в виде произведения двух или большего числа сомножителей. Простые числа пифагорейцы называли «линейными», числа, являвшиеся произведениями двух или трех простых сомножителей, соответственно с — «плоскими» или «телесными».

Далее из натурального ряда были выделены ряды из «треугольных», «квадратных», «пятиугольных» и т. д. чисел. Смысл этих обозначений становится ясным из рис. 2. на котором приведены геометрические построения, дающие получать соответствующие ряды.

Путем аналогичных пространственных построений пифагорейцы получали также «пирамидальные» и т. п. числа.

Дальнейшая разработка делимости целых чисел привела пифагорейцев к идее рациональной дроби. В V в. до н. э. греки научились оперировать, с дробями типа m/n, производя с ними все четыре действия,— с тем ограничением, что вычитать можно было лишь из большего меньшее число (заметим, что египтяне умели производить действия с дробями, но только выражая их в виде дробей типа 1/n). Историки математики предполагают, что к концу V в. до н. э. в Греции уже была построена общая теория делимости, содержавшая в качестве частного случая теорию делимости на 2. Позднее эта теория вошла в состав VII книги Евклида.

Параллельно с арифметикой развивалась также геометрия. Но здесь информация, которой мы располагаем, носит еще более скудный характер. Пифагорейцев прежде всего привлекали свойства фигур (треугольников, квадратов и т. д.), которые могут быть выражены числовыми отношениями. Нетрудно понять, что особый, интерес у них вызвало соотношение между сторонами прямоугольного треугольника, получившее наименование - теоремы Пифагора. Правда, мы не знаем, каким образом и когда было получено доказательство этой теоремы; то доказательство, которое приводится в «Началах» Евклида несомненно имеет более позднее происхождение.

Примерно около середины V в. до н. э. было обнаружено существование несоизмеримых отрезков, т. е. таких, отношение которых друг к другу не может быть выражено не только целым числом, но и любым отношением целых чисел. К их числу принадлежат, например, сторона квадрата и его диагональ. Имеются основания предполагать, что автором открытия был пифагореец Гиппас из Метапонта; с его именем связаны легенды, на которых мы не будем останавливаться. Мы не знаем, каким путем Гиппас пришел к своему открытию; по этому поводу исследователями античной математики выдвигались различные гипотезы.

Открытие несоизмеримости явилось поворотным пунктом в истории греческой математики; по своему значению для того времени оно может быть сопоставлено с открытием неевклидовых геометрий в XIX в. Оно означало крах ранних пифагорейских представлений о том, что соотношения любых величин могут быть выражены через отношения целых чисел. О том резонансе, который вызвало это открытие в образованных кругах греческого общества, свидетельствует ряд мест в сочинениях Платона и Аристотеля, где обсуждаются вопросы несоизмеримости. Вслед за простейшими случаями несоизмеримостей начали изучаться более сложные. Пифагореец Феодор из Кирены (вторая половина V в. до н. э.) показал, что стороны квадратов с площадями 3, 5, 6, 7,..., 17 несоизмеримы со стороной единичного квадрата. А ученик Феодора Теэтет, бывший современником и другом Платона, дал первое общее учение об иррациональных величинах (невыразимых как говорили греки).• Прежде всего он показал, что если площадь квадрата выражается целым числом Ν, которое не является второй степенью другого целого числа, то его сторона всегда будет несоизмерима со стороной единичного квадрата. Далее Теэтет распространил доказательство иррациональности на числа типа 3√N(где N не есть третья степень другого целого числа) √N+√M и M+√N (так называемые «биноминали»), √N-√M и √N-M («апотомы») и √√N√M («медиаль»). Изложение результатов Теэтета содержится в X книге «Начал» Евклида.

Обнаружение несоизмеримых отрезков и тем самым открытие иррациональных («невыразимых») величин поставило греческих математиков перед проблемой первостепенной важности. Каков мог быть выход из трудного положения, в котором оказалась математика в результате этого открытия? Одним из возможных был путь, по которому пошла математика Нового времени,— путь обобщения понятия числа и включения в него более широкого класса математических величин — как рациональных, так и иррациональных. При этом греки могли бы начать разработку чисто аналитических методов решения математических задач. Но они к этому еще не были подготовлены (заметим, кстати, что в греческой математике того времени отсутствовало как понятие нуля, так и понятие отрицательных величин). Поэтому греки избрали другой путь — путь геометризации математики. В результате возникла геометрическая алгебра, позволявшая на основе использования наглядных геометрических образов решать чисто алгебраические задачи; о ее характере мы можем судить по II книге Евклида и по произведениям Архимеда и Аполлония. Эта дисциплина, бывшая типичным детищем эллинского духа, начала закладываться во второй половине V в. до н. э.; она основывалась на античной планиметрии, представлявшей собой геометрию циркуля и линейки, и была приспособлена для решения квадратных уравнений и некоторых других классов алгебраических задач. Но ее возможности были ограничены, и в дальнейшем греческая геометрическая алгебра оказалась тормозом, препятствовавшим свободному развитию математической мысли в древности.

В процессе создания геометрической алгебры греческие математики разработали теорию пропорций, - приспособив ее для оперирования с несоизмеримыми отрезками. При этом было сформулировано новое определение пропорциональности, которое оказалось в равной степени применимым как для рациональных, так и для иррациональных величин. Теорией пропорций занимались Гиппас Meтапонтский, Гиппократ Хиосский, Архит Тарентский и другие математики V и начала IV вв. до н. э. Свое завершение теория пропорций нашла в общей теории отношений, разработанной величайшим математиком IV вв. до н. э. Евдоксом Книдским, о котором речь в следующей главе.

Что касается чистой геометрии, то к началу IV в. до н. э. было в основном завершено, логическое построение планиметрии, включавшей в себя теорию параллельных, определение сумм углов треугольника и площадей многоугольников, теорему Пифагора, теорию, дуг и хорд в круге построения правильных многоугольников и вычисление площади круга. Первое систематическое изложение геометрии было дано Гиппократом Хиосским. Из достижений самого Гиппократа широкую известность получила так называемая «теорема о луночках», изложение которой можно найти в любом курсе истории математики.

Наряду с планиметрией в V и до н. э. начала развиваться и стереометрия. Если ранним пифагорейцам были известны только три правильных многогранника — тетраэдр, куб и додекаэдр, то в дальнейшем к ним прибавились еще два — октаэдр и икосаэдр. А в IV в. до н. э. Теэтет уже дал общую теорию правильных многогранников. Выше уже было сказано о том, что Демокриту приписывалось открытие формул для объемов конуса и пирамиды. Следует также отметить, что в связи с развитием театральной техники возникла потребность в разработке теории перспективы. Автором первого сочинения (может быть, просто инструкции?) по этому вопросу источники называют художника Агафарха, вслед за которым о теории перспективы будто бы писали Анаксагор и Демокрит.

Большую популярность в V в. до н. э. приобрели три геометрические задачи, которые оказались неразрешимы средствами геометрии циркуля и линейки: 1) удвоение куба; 2) трисекция угла; 3) квадратура круга. Задачей об удвоение куба, получившей наименование «делосской задачи», занимались крупнейшие математики того времени — Гиппократ Хиосский и Архит Тарептский; в дальнейшем она явилась толчком к изучению конических сечений. Для решения задачи трисекции угла известный философ-софист Гиппий из Элиды изобрел кривую, впоследствии названную «квадратрисой». Третья задача — квадратура крута — была настолько популярна, что упоминание о ней содержится даже в «Птицах» Аристофана. По преданию, ею занимался в афинской тюрьме Анаксагор. Особый интерес в связи с этой задачей представляют рассуждения софиста Антифона, трактовавшего круг как многоугольник с очень большим числом сторон.

Подводя итоги развитию математики в рассматриваемый• период, мы не можем не поражаться тому гигантскому скачку, который был сделан этой наукой за какие-нибудь полтора столетия. В конце VI в. до н. э. основные математические понятия еще оставались объектом эзотерических спекуляций в пифагорейской школе, а о том, велись ли какие-либо исследования по математике, вне рамок этой школы, мы не имеем никаких сведений. К началу IV в. до н. э. превращается строгую и самостоятельную дисциплину; отвечающую всем критериям подлинной научности. При этом следует подчеркнуть два обстоятельства, сопутствовавших этому прогрессу.

Первое. Примерно в середине V в. до н. э. занятия математикой перестают быть прерогативой одних лишь пифагорейцев, становясь предметом профессиональной деятельности ученых, не примыкавших ни к какому философскому направлению. Бели Феодора из Кирены и Архита из Тарента еще называют пифагорейцами, то Гиппократ Хиосский был, по-видимому, уже чистым математиком-профессионалом. С другой стороны, теоретическая математика начинает привлекать внимание философов, не имеющих отношения к пифагорейской школе; об этом говорят сообщения о занятиях математикой Анаксагора, Гиппия, Антифона и о математических сочинениях Демокрита. Математика становится особой, выделенной наукой, наукой по преимуществу, и в качестве таковой она вскоре начнет рассматриваться как образец для всех прочих наук.

Вторым колоссальной важности обстоятельством следует считать создание дедуктивного математического метода. У нас нет возможности проследить историю возникновения этого метода. Был ли он выработан еще ранними пифагорейцами? Или, как считают некоторые, его рождение было стимулировано логическими рассуждениями Зенона? Или же, наконец, он оформился лишь в процессе творческой деятельности великих математиков конца V в. до н. э.— Гиппократа и Архита? Мы не знаем; нам известно только то, что в книге Гиппократа по геометрии весь материал излагался уже строго дедуктивно — путем логического вывода следствий из небольшого числа исходных положений. Таким образом, мы не сделаем, по-видимому, большой ошибки, приурочив рождение математической науки к моменту появления этой книги.

Астрономия, В отличие от математики греческая астрономия V в. до н. э. не может похвалиться столь же большими, успехами. Прежде всего обращает внимание скудость астрономических знаний у большинства философов-досократиков (вплоть до Демокрита). Их космологические спекуляции не обосновывались ни наблюдениями, ни расчетами; о планетах у них были еще очень смутные представления; даже объяснение солнечных и лунных затмений, данное Анаксагором, было лишь гениальной догадкой, не вытекавшей из космологических концепций самого клазоменца.

И здесь, согласно античным источникам, основные достижения принадлежат пифагорейской школе. Имеются основания предполагать, что гипотеза о шарообразности Земли была сформулирована впервые пифагорейцами (и уже от них заимствована Парменидом). Возможно, не без восточных влияний пифагорейцы научились различать пять планет, и начали наблюдать за их перемещениями. Имеется сообщение, что Алкмеон, который по своим научным воззрениям был близок к пифагорейцам, говорил о движении планет с запада на восток, противоположном движению неподвижных звезд. В дальнейшем в пифагорейской школе оформилась классическая модель космоса, в которой небесные светила располагались на семи кругах, или сферах, в следующем порядке (по мере удаления от Земли): Луна. Солнце. Меркурий. Венера Марс, Юпитер и Сатурн. Расстояния между этими сферами уподоблялись пифагорейцами интервалам музыкальной гаммы, причем они предполагали, что при своем вращении сферы издают соответствующие тона, в совокупности образующие «небесную» гармонию, или музыку сфер, которая не воспринимается нами, потому что наши уши к ней привыкли.

О космологической системе пифагорейцев в том виде, в каком она сложилась к первой половине IV в. до н. э., можно составить представление по «Тимею» Платона. Однако к модели космоса, изложенной в «Тимее», пифагорейская наука пришла, по-видимому, не прямым путем. Наиболее интересное уклонение представляла собой система Филолая из Тарента — пифагорейца, жившего в конце V в. до н. э. Филолай отказался от традиционного представления о центральном положении Земли и поместил в центр мира огненный «очаг» (Гестию), вокруг которого движутся в порядке удаления от него — невидимая для нас «Противоземля», затем Земля, Луна, Солнце, пять планет и внешняя звездная сфера (рис. 3). Солнце, по Филолаю есть прозрачный шар, заимствующий свои свет и тепло, во-первых, от центрального «очага», а во-вторых, от огня, расположенного за пределами внешней сферы. Введение Противоземли было нужно Филолаю предположительно для того, чтобы сделать число небесных кругов равным десяти. Возможно, впрочем, что у него были и другие соображения, тем более что некоторые досократики (Анаксимен, Анаксагор) также допускали существование невидимых (темных) небесных тел, находящихся ниже Луны.

В источниках сообщаются имена и других ученых той эпохи, которые, не будучи философами, занимались астрономией. Первым из них называют Клеострата Тенедосского, жившего во второй половине VI в. до н. э. и который будто бы оборудовал наблюдательный пункт на горе Иде, откуда следил за движениями небесных светил. Он, вероятно, имел какие-то контакты с вавилонскими астрономами; в частности, ему приписывают установление наименований созвездий зодиака, хорошо известных вавилонянам. Клеострат написал поэму в стихах, называвшуюся «Астрология», от которой до нас дошел один коротенький фрагмент.

Деятельность греческих астрономов в VI—V вв. по н, а. в значительной степени имела практическую направленность, ее важной задачей было уточнение календаря, частности согласование лунного календаря (с которым было связано большинство религиозных ритуалов) с фактической длительностью солнечного года. Эта задача решалась путем установления многолетних циклов, между которыми требовалось вставлять дополнительные месяцы. В качестве первого такого цикла называют «октаэтериду» («восьмилетие»), введенную то ли Клеостратом, то ли его учеником Гарпалом; последнему приписывается также уточнение длительности солнечного года. Между прочим, имеется любопытное указание, что Гарпал был именно тем греком, который помог Ксерксу навести мосты через Геллеспонт.

Рис. 3. Система мира по Филолаю: ЦО — центральный огонь, ПЗ — противоземля, 3 — Земля, Л — Луна, С — Солнце, Пл — пять планет (последовательность которых источниками не засвидетельствована)

Более определенные сведения имеются о двух афинских астрономах второй половины V в. до н. э,— Метоне и Евктемоне. Свои наблюдения они проводили в разных местах — в Афинах, на Кикладах, в Македонии и Фракии. Оба они упоминаются в связи с полным солнечным затмением, имевшим место 27 июня 432 г. до н. э. Метой (кстати сказать, осмеянный Аристофаном в «Птицах») установил 19-ти летний лунно-солнечный цикл, состоявший из 235 месяцев, семь из которых были дополнительными; 110 месяцев этого цикла имели до 29 дней, 125 — по 30 дней. Солнечный год, по Метону содержал 365 5/19 (365,263) дней, что всего лишь на полчаса отличается от точного значения. Что касается Евктемоиа, то ему и присваивается обнаружение неодинаковой длительности времен года; согласно его наблюдениям, астрономические времена года равны соответственно 90, 90, 92 и 93 дням.

Примерно в гаже время жил Энопид Хиосский, который, как считают, был первым астрономом, измерившим наклон эклиптики по отношению к экватору. Он также предложил свой лунно-солнечный цикл, который равнялся 59 годам. Длительность солнечного года Энопид оценил в 365 22/59 дней.

Из всего сказанного явствует, что по сравнению с бурным взлетом математики достижения греческих астрономов в рассматриваемый период были более чем скромными. И все же было бы несправедливо недооценивать значение кропотливой работы, проводившейся такими людьми, как Энопид, Метон и Евктемон. Эта работа подготавливала фундамент, на котором впоследствии было воздвигнуто здание античной теоретической астрономии Евдокса—Гиппарха—Птолемея.