Глава 3.
Эволюция подходов к анализу науки
Эволюция философии науки в ХХ веке в значительной степени связана с переходом от изучения деятельности учёного к изучению науки как целого, как надличностного образования. Это не значит, что учёный и способы его работы нас перестали интересовать. Ни в коем случае. Речь идёт только о смещении акцентов. Покажем в самых общих чертах, как это происходило.
Карл Поппер и проблема демаркации
Одна из проблем, существенно определивших развитие философии науки в начале нашего века, получила название проблемы демаркации (этот термин был введён Карлом Поппером). Речь идёт об определении границ между наукой и ненаукой. Сам Поппер характеризует свои интересы в этой области следующим образом: «В то время меня интересовал не вопрос о том, „когда теория истинна?“, и не вопрос,»когда теория приемлема?" Я поставил перед собой другую проблему. Я хотел провести различие между наукой и псевдонаукой, прекрасно зная, что наука часто ошибается и что псевдонаука может случайно натолкнуться на истину."
Наиболее распространённый ответ на этот вопрос состоял в том, что наука отличается от псевдонауки или от «метафизики» своей опорой на факты, своим эмпирическим методом. Концепция, которая в это время активно развивалась в рамках так называемого «Венского кружка» и шла от одного из крупнейших философов начала века Л. Витгенштейна, утверждала, что к науке принадлежат только те предложения, которые выводятся из истинных предложений наблюдения или, что то же самое, могут быть верифицированы с помощью этих предложений. Отсюда следовало, что любая теория, претендующая на то, чтобы быть научной, должна быть выводима из опыта.
Поппер с полным основанием не принимает этого тезиса. Наблюдение, с его точки зрения, уже предполагает некоторую теоретическую установку, некоторую исходную гипотезу. Нельзя просто наблюдать, не имея для этого никаких предпосылок. Наблюдение всегда избирательно и целенаправленно: мы исходим из определённой задачи и наблюдаем только то, что нужно для решения этой задачи. Бессмысленность «чистых» наблюдений Поппер иллюстрирует следующим образом. Представьте себе человека, который всю свою жизнь посвятил науке, описывая каждую вещь, попадавшуюся ему на глаза. Все это «бесценное сокровище» наблюдений он завещает Королевскому обществу. Абсурдность ситуации не нуждается в комментариях.
К сказанному можно добавить, что любая развитая теория формулируется не для реальных, а для идеальных объектов. В механике, например, это – материальные точки, абсолютно твёрдые тела, идеальные жидкости и т. д. Знаменитая теория размещения хозяйственной деятельности человека, построенная Тюненом, исходит из представления об изолированном государстве с одним единственным городом на абсолютно однородной равнине. Изотропную плоскую поверхность предполагает и теория центральных мест Кристаллера. Иными словами, теория строится на базе предпосылок, прямо противоречащих опыту. Как же в таком случае она может вытекать из опыта?
Что же предлагает сам Поппер? Его идея очень проста и красива, хотя, как мы увидим чуть ниже, тоже наталкивается на существенные трудности. Суть идеи сводится к следующему: «Критерием научного статуса теории является её фальсифицируемость, опровержимость, или проверяемость». Подтвердить фактами можно любую теорию, если мы специально ищем таких подтверждений, но хорошая теория должна прежде всего давать основания для её опровержения. Любая хорошая теория, считает Поппер, является некоторым запрещением, т. е. запрещает определённые события. Чем больше теория запрещает, тем она лучше, ибо тем больше она рискует быть опровергнутой.
Не трудно видеть, что вся концепция Поппера имеет ярко выраженный нормативный характер. Речь идёт о том, как должен работать учёный, чтобы оставаться в рамках науки, каким требованиям должны удовлетворять те теории, которые он строит.
А что такое наука и чем определяются её границы, кроме критерия самого Поппера, – этот вопрос в данном контексте просто не возникает. «Государство – это Я», – заявил в своё время небезызвестный французский король. «Наука – это Я», – фактически утверждает Поппер и задаёт границы научности.
Но наука живёт своей собственной жизнью, и очень скоро обнаруживается, что критерий Поппера не работает. Это может показаться парадоксальным: мы сами делаем науку, мы, казалось бы, хозяева положения, а критерии научности, нами же установленные, не срабатывают. Может быть, дело в том, что эти критерии не все признают, что они не общеприняты? А если их признать и сделать всеобщим достоянием, тогда что-то изменится? Парадокс в том, что почти ничего. Наука есть нечто большее, чем сумма согласованных человеческих действий.
Но вернёмся к критерию К. Поппера. История показывает, что теории живут, развиваются и даже процветают, невзирая на противоречия с экспериментальными данными. Приведём конкретный пример. В 1788 году великий Лагранж писал об уравнениях Эйлера: «Мы обязаны Эйлеру первыми общими формулами для движения жидкостей. записанными в простой и ясной символике частных производных. Благодаря этому открытию вся механика жидкостей свелась к вопросу анализа, и будь эти уравнения интегрируемыми, можно было бы в любом случае полностью определить движение жидкости под воздействием любых сил.». Надежды Лагранжа не оправдались: в ряде случаев уравнения Эйлера были проинтегрированы, но результаты расчётов резко расходились с наблюдениями. Привело ли это к отказу от уравнений Эйлера? Ни в коем случае.
Вот что пишет по этому поводу известный американский математик и гидродинамик Г. Биркгоф: "В гидродинамике такие несомненные противоречия между экспериментальными данными и заключениями, основанными на правдоподобных рассуждениях, называются парадоксами. Эти парадоксы были предметом многих острот. Так недавно было сказано, что в девятнадцатом веке «гидродинамики разделялись на инженеров-гидравликов, которые наблюдали то, что нельзя было объяснить, и математиков, которые объясняли то, что нельзя было наблюдать». Как мы видим, гидродинамика не только существует, но даже способна шутить. «Теперь обычно заявляют, – продолжает Биркгоф, – что подобные парадоксы возникают из-за отличия реальных жидкостей, имеющих малую, но конечную вязкость, от идеальных жидкостей, имеющих нулевую вязкость.» Итак, все дело опять в идеальных объектах, без которых и нельзя, вероятно, построить теорию.
Концепция исследовательских программ И.Лакатоса
Очевидные недостатки фальсификационизма Поппера пытался преодолеть И. Лакатос в своей концепции исследовательских программ. При достаточной находчивости, полагает он, можно на протяжении длительного времени защищать любую теорию, даже если эта теория ложна. «Природа может крикнуть: „Нет!“, но человеческая изобретательность. всегда способна крикнуть ещё громче». Поэтому следует отказаться от попперовской модели, в которой за выдвижением некоторой гипотезы следует её опровержение. Ни один эксперимент не является решающим и достаточным для опровержения теории.
В чем же суть концепции Лакатоса? «Картина научной игры, – пишет он, – которую предлагает методология исследовательских программ, весьма отлична от подобной картины методологического фальсификационизма. Исходным пунктом здесь является не установление фальсифицируемой. гипотезы, а выдвижение исследовательской программы». Под последней понимается теория, способная защищать себя в ситуациях столкновения с противоречащими ей эмпирическими данными. В исследовательской программе Лакатос выделяет её ядро, т. е. основные принципы или законы, и «защитные пояса», которыми ядро окружает себя в случаях эмпирических затруднений.
Приведём конкретный пример. Допустим, что опираясь на законы Ньютона (в данном случае они образуют ядро исследовательской программы), мы рассчитали орбиты планет Солнечной системы и обнаружили, что это противоречит астрономическим наблюдениям. Неужели мы отбросим законы Ньютона? Разумеется, нет. Мы выдвинем какое-либо дополнительное предположение, для того чтобы объяснить обнаруженные расхождения. Как известно, именно это и имело место в реальной истории: в 1845 году Леверье, занимаясь неправильностями в движении Урана, выдвигает гипотезу о существовании ещё одной планеты Солнечной системы, которая и была открыта И. Галле в сентябре 1846 года. Гипотеза Леверье и выступает в данном случае как защитный пояс. Но допустим, что гипотеза не получила бы подтверждения, и новую планету не удалось обнаружить. Неужели мы в этом случае отбросили бы законы Ньютона? Без всякого сомнения, нет. Была бы построена какая-то новая гипотеза.
Как долго это может продолжаться? Лакатос полагает, что теория никогда не фальсифицируется, а только замещается другой, лучшей теорией. Суть в том, что исследовательская программа может быть либо прогрессирующей, либо регрессирующей. Она прогрессирует, если её теоретический рост предвосхищает рост эмпирический, т. е. если она с успехом предсказывает новые факты. Она регрессирует, если новые факты появляются неожиданно, а программа только даёт им запоздалые объяснения. В этом случае теоретический рост отстаёт от эмпирического роста. Если одна исследовательская программа прогрессивно объясняет больше, чем другая, с ней конкурирующая, то первая вытесняет вторую.
Лакатос признает, что в конкретной ситуации «очень трудно решить. в какой именно момент определённая исследовательская программа безнадёжно регрессировала или одна из двух конкурирующих программ получила решающее преимущество перед другой». Это в значительной степени лишает его концепцию нормативного характера. Лакатос, однако, все же пытается сформулировать некоторый набор правил в форме «кодекса научной честности». Главную роль там играют скромность и сдержанность. «Всегда следует помнить о том, что, даже если ваш оппонент сильно отстал, он ещё может догнать вас. Никакие преимущества одной из сторон нельзя рассматривать как абсолютно решающие. Не существует никакой гарантии триумфа той или иной программы. Не существует также и никакой гарантии её крушения».
Если это и предписания, то довольно странные. По сути, они звучат так: сохраняй сдержанность, ибо на все воля Божья. Иными словами, в концепции Лакатоса из-за деятельности учёного уже явно выступает некий глобальный надличностный процесс. Он ещё не исследуется, его природа не выявлена, но он присутствует, ибо, если мы сами не способны осуществить рациональный выбор, то как же этот «выбор» все же осуществляется в истории науки?
Нормальная наука Т.Куна
Крутой поворот в подходе к изучению науки совершил американский историк физики Томас Кун в своей работе «Структура научных революций», которая появилась в 1962 году. Наука или, точнее, нормальная наука, согласно Куну, – это сообщество учёных, объединённых достаточно жёсткой программой, которую Кун называет парадигмой и которая целиком определяет, с его точки зрения, деятельность каждого учёного. Именно парадигма как некое надличностное образование оказывается у Куна в центре внимания. Именно со сменой парадигм связывает он коренные изменения в развитии науки – научные революции. Но рассмотрим его концепцию более подробно.
Нормальная наука, – пишет Кун, – это «исследование, прочно опирающееся на одно или несколько прошлых достижений – достижений, которые в течение некоторого времени признаются определённым научным сообществом как основа для развития его дальнейшей практической деятельности». Уже из самого определения следует, что речь идёт о традиции, т. е. наука понимается как традиция.
Прошлые достижения, лежащие в основе этой традиции, и выступают в качестве парадигмы. Чаще всего под этим понимается некоторая достаточно общепринятая теоретическая концепция типа системы Коперника, механики Ньютона, кислородной теории Лавуазье и т. п. Со сменой концепций такого рода Кун прежде всего и связывает научные революции. Конкретизируя своё представление о парадигме, он вводит понятие о дисциплинарной матрице, в состав которой включает следующие четыре элемента:
1. Символические обобщения типа второго закона Ньютона, закона Ома, закона Джоуля-Ленца и т. д.
2. Концептуальные модели, примерами которых могут служить общие утверждения такого типа: «Теплота представляет собой кинетическую энергию частей, составляющих тело» или «Все воспринимаемые нами явления существуют благодаря взаимодействию в пустоте качественно однородных атомов».
3. Ценностные установки, принятые в научном сообществе и проявляющие себя при выборе направлений исследования, при оценке полученных результатов и состояния науки в целом.
4. Образцы решений конкретных задач и проблем, с которыми неизбежно сталкивается уже студент в процессе обучения. Этому элементу дисциплинарной матрицы Кун придаёт особое значение, и в следующем параграфе мы остановимся на этом более подробно.
В чем же состоит деятельность учёного в рамках нормальной науки? Кун пишет: «При ближайшем рассмотрении этой деятельности в историческом контексте или в современной лаборатории создаётся впечатление, будто бы природу пытаются втиснуть в парадигму, как в заранее сколоченную и довольно тесную коробку. Цель нормальной науки ни в коей мере не требует предсказания новых видов явлений: явления, которые не вмещаются в эту коробку часто, в сущности, вообще упускаются из виду. Учёные в русле нормальной науки не ставят себе цели создания новых теорий, обычно к тому же они нетерпимы и к созданию таких теорий другими».
Итак, в рамках нормальной науки учёный настолько жёстко запрограммирован, что не только не стремится открыть или создать что-либо принципиально новое, но даже не склонен это новое признавать или замечать. Что же он делает в таком случае? Концепция Куна выглядела бы пустой фантазией, если бы ему не удалось убедительно показать, что нормальная наука способна успешно развиваться. Кун, однако, это показал, показал, что традиция является не тормозом, а, напротив, необходимым условием быстрого накопления знаний.
И действительно, сила традиции как раз в том и состоит, что мы постоянно воспроизводим одни и те же действия, один и тот же способ поведения все снова и снова при разных, вообще говоря, обстоятельствах. Поэтому и признание той или иной теоретической концепции означает постоянные попытки осмыслить с её точки зрения все новые и новые явления, реализуя при этом стандартные способы анализа или объяснения. Это организует научное сообщество, создавая условия для взаимопонимания и сопоставимости результатов, и порождает ту «индустрию» производства знаний, которую мы и наблюдаем в современной науке.
Но речь вовсе не идёт при этом о создании чего-то принципиально нового. По образному выражению Куна, учёные, работающие в нормальной науке, постоянно заняты «наведением порядка», т. е. проверкой и уточнением известных фактов, а также сбором новых фактов, в принципе предсказанных или выделенных теорией. Химик, например, может быть занят определением состава все новых и новых веществ, но само понятие химического состава и способы его определения уже заданы парадигмой. Кроме того, в рамках парадигмы никто уже не сомневается, что любое вещество может быть охарактеризовано с этой точки зрения.
Таким образом, нормальная наука очень быстро развивается, накапливая огромную информацию и опыт решения задач. И развивается она при этом не вопреки традициям, а именно в силу своей традиционности. Пониманием этого факта мы и обязаны Томасу Куну. Его с полным правом можно считать основателем учения о научных традициях. Конечно, на традиционность в работе учёного и раньше обращали внимание, но Кун впервые сделал традиции центральным объектом рассмотрения при анализе науки, придав им значение основного конституирующего фактора в научном развитии.
Но как же в таком случае происходит изменение и развитие самих традиций, как возникают новые парадигмы? «Нормальная наука, – пишет Кун, – не ставит своей целью нахождение нового факта или теории, и успех в нормальном научном исследовании состоит вовсе не в этом. Тем не менее новые явления, о существовании которых никто не подозревал, вновь и вновь открываются научными исследованиями, а радикально новые теории опять и опять изобретаются учёными. История даже наводит на мысль, что научное предприятие создало исключительно мощную технику для того, чтобы преподносить сюрпризы подобного рода». Как же конкретно появляются новые фундаментальные факты и теории? «Они, – отвечает Кун, – создаются непреднамеренно в ходе игры по одному набору правил, но их восприятие требует разработки другого набора правил». Иными словами, учёный и не стремится к получению принципиально новых результатов, однако, действуя по заданным правилам, он непреднамеренно, т. е. случайным и побочным образом, наталкивается на такие факты и явления, которые требуют изменения самих этих правил.
Подведём некоторые итоги. Не трудно видеть, что концепция Куна знаменует уже совсем иное видение науки по сравнению с нормативным подходом Венского кружка или К. Поппера. В центре внимания последних – учёный, принимающий решения и выступающий как определяющая и движущая сила в развитии науки. Наука здесь фактически рассматривается как продукт человеческой деятельности. Поэтому крайне важно ответить на вопрос: какими критериями должен руководствоваться учёный, к чему он должен стремиться? В модели Куна происходит полная смена ролей: здесь уже наука в лице парадигмы диктует учёному свою волю, выступая как некая безликая сила, а учёный – это всего лишь выразитель требований своего времени. Кун вскрывает и природу науки как надличностного явления: речь идёт о традиции.
Можно ли что-либо возразить против этой достаточно простой и принципиальной модели? Два пункта вызывают сомнение. Первый был, вероятно, камнем преткновения и для самого Куна. Как согласовать изменение парадигмы под напором новых фактов с утверждением, что учёный не склонен воспринимать явления, которые в парадигму не укладываются, что эти явления «часто, в сущности, вообще упускаются из виду»? С одной стороны, Кун приводит немало фактов, показывающих, что традиция препятствует ассимиляции нового, с другой, он вынужден такую ассимиляцию признать. Это выглядит как противоречие.
Сомнительность второго пункта менее очевидна. Кун резко противопоставляет работу в рамках нормальной науки, с одной стороны, и изменение парадигмы, с другой. В одном случае, учёный работает в некоторой традиции, в другом, – выходит за её пределы. Конечно, эти два момента противостоят друг другу, но, вероятно, не только в масштабах науки как целого, но и применительно к любым традициям более частного характера. Кун же в основном говорит именно о науке, и это чрезмерно глобализирует наше представление о традиции. Фактически получается, что наука – это чуть ли не одна традиция, а это сильно затрудняет анализ того, что происходит в науке. Попытаемся поэтому несколько обогатить наше представление о научных традициях. Это совершенно необходимо на пути критической оценки и усовершенствования концепции Куна, на пути развития тех, несомненно, важных предпосылок, которые содержатся в его модели науки.
Концепция неявного знания М. Полани и многообразие научных традиций
Нетрудно показать, что в научном познании мы имеем дело не с одной или несколькими, а со сложным многообразием традиций, которые отличаются друг от друга и по содержанию, и по функциям в составе науки, и по способу своего существования. Начнём с последнего.
Достаточно всмотреться более внимательно в дисциплинарную матрицу Куна, чтобы заметить некоторую неоднородность. С одной стороны, он перечисляет такие её компоненты, как символические обобщения и концептуальные модели, а с другой, – ценности и образцы решений конкретных задач. Но первые существуют в виде текстов и образуют содержание учебников и монографий, в то время как никто ещё не написал учебного курса с изложением системы научных ценностей. Ценностные ориентации мы получаем не из учебников, мы усваиваем их примерно так же, как родной язык, т. е. по непосредственным образцам. У каждого учёного, например, есть какие-то представления о том, что такое красивая теория или красивое решение задачи, изящно поставленный эксперимент или тонкое рассуждение, но об этом трудно говорить, это столь же трудно выразить на словах, как и наши представления о красоте природы.
Известный химик и философ М. Полани убедительно показал в конце 50-х годов нашего века, что предпосылки, на которые учёный опирается в своей работе, невозможно полностью вербализовать, т. е. выразить в языке. «То большое количество учебного времени, – писал он, – которое студенты-химики, биологи и медики посвящают практическим занятиям, свидетельствует о важной роли, которую в этих дисциплинах играет передача практических знаний и умений от учителя к ученику. Из сказанного можно сделать вывод, что в самом сердце науки существуют области практического знания, которые через формулировки передать невозможно». Знания такого типа Полани назвал неявными знаниями. Ценностные ориентации можно смело причислить к их числу.
Итак, традиции могут быть как вербализованными, существующими в виде текстов, так и невербализованными, существующими в форме неявного знания. Последние передаются от учителя к ученику или от поколения к поколению на уровне непосредственной демонстрации образцов деятельности или, как иногда говорят, на уровне социальных эстафет. Об этих последних мы ещё поговорим более подробно. А сейчас важно то, что признание неявного знания очень сильно усложняет и обогащает нашу картину традиционности науки. Учитывать надо не только ценности, как это делает Кун, но и многое, многое другое. Что бы ни делал учёный, ставя эксперимент или излагая его результаты, читая лекции или участвуя в научной дискуссии, он, часто сам того не желая, демонстрирует образцы, которые, как невидимый вирус, «заражают» окружающих.
Вводя в рассмотрение неявное знание и соответствующие неявные традиции, мы попадаем в сложный и мало исследованный мир, в мир, где живёт наш язык и научная терминология, где передаются от поколения к поколению логические формы мышления и его базовые категориальные структуры, где удерживаются своими корнями так называемый здравый смысл и научная интуиция. Очевидно, что родной язык мы усваиваем не по словарям и не по грамматикам. В такой же степени можно быть вполне логичным в своих рассуждениях, никогда не открывая учебник логики. А где мы заимствуем наши категориальные представления? Ведь уже ребёнок постоянно задаёт свой знаменитый вопрос «почему?», хотя никто не читал ему специального курса лекций о причинности. Все это – мир неявного знания. Историки и культурологи часто используют термин «менталитет» для обозначения тех слоев духовной культуры, которые не выражены в виде явных знаний и тем не менее существенно определяют лицо той или иной эпохи или народа. Но и любая наука имеет свой менталитет, отличающий её от других областей научного знания и от других сфер культуры, но тесно связанный с менталитетом эпохи.
Противопоставление явных и неявных знаний даёт возможность более точно провести и осознать давно зафиксированное в речи различие научных школ, с одной стороны, и научных направлений, с другой. Развитие научного направления может быть связано с именем того или другого крупного учёного, но оно вовсе не обязательно предполагает постоянные личные контакты людей, работающих в рамках этого направления. Другое дело – научная школа. Здесь эти контакты абсолютно необходимы, ибо огромную роль играет опыт, непосредственно передаваемый на уровне образцов от учителя к ученику, от одного члена сообщества к другому. Именно поэтому научные школы имеют, как правило, определённое географическое положение: Казанская школа химиков, Московская математическая школа и т. п.
А как быть с образцами решений конкретных задач, которым Т. Кун придаёт очень большое значение? С одной стороны, они существуют и транслируются в виде текста, и поэтому могут быть идентифицированы с эксплицитным, т. е. явным знанием. Но, с другой, – перед нами будут именно образцы, а не словесные предписания или правила, если нам важна та информация, которая непосредственно в тексте не выражена. Допустим, например, что в тексте дано доказательство теоремы Пифагора, но нас интересует не эта именно теорема, а то, как вообще следует строить математическое доказательство. Эта последняя информация представлена здесь только в форме примера, т. е. неявным образом. Конечно, ознакомившись с доказательством нескольких теорем, мы приобретём и некоторый опыт, некоторые навыки математического рассуждения вообще, но это опять-таки будет трудно выразить на словах в форме достаточно чёткого предписания.
В свете сказанного можно выделить два типа неявного знания и неявных традиций. Первые связаны с воспроизведением непосредственных образцов деятельности, вторые предполагают текст в качестве посредника. Первые невозможны без личных контактов, для вторых такие контакты необязательны. Все это достаточно очевидно. Гораздо сложнее противопоставить друг другу неявное знание второго типа и знание эксплицитное. Действительно, прочитав или услышав от преподавателя доказательство теоремы Пифагора, мы можем либо повторить это доказательство, либо попробовать перенести полученный опыт на доказательство другой теоремы. Но, строго говоря, в обоих случаях речь идёт о воспроизведении образца, хотя едва ли нужно доказывать, что второй путь гораздо сложнее первого. Разницу можно продемонстрировать на примере изучения иностранного языка. Одно дело, например, заучить и повторить какую-либо фразу, другое – построить аналогичную фразу, используя другие слова. В обоих случаях исходная фраза играет роль образца, но при переходе от первого ко второму происходит существенное расширение возможностей выбора. В то время как простое повторение исходной фразы ограничивает эти возможности особенностями произношения, создание нового предложения предполагает выбор подходящих слов из всего арсенала языка. В дальнейшем мы ещё вернёмся к этому различению.
Итак, введённое М. Полани представление о неявных знаниях позволяет значительно обогатить и дифференцировать общую картину традиционности науки. Сделаем ещё один шаг в этом направлении. Не трудно заметить, что в основе неявных традиций могут лежать как образцы действий, так и образцы продуктов. Это существенно: одно дело, если вам продемонстрировали технологию производства предмета, например, глиняной посуды, другое – показали готовый кувшин и предложили сделать такой же. Во втором случае вам предстоит нелёгкая и далеко не всегда осуществимая работа по реконструкции необходимых производственных операций. В познании, однако, мы постоянно сталкиваемся с проблемами такого рода.
Рассмотрим несколько примеров. Мы привыкли говорить о таких методах познания, как абстракция, классификация, аксиоматический метод. Но, строго говоря, слово «метод» здесь следовало бы взять в кавычки. Можно продемонстрировать на уровне последовательности операций какой-нибудь метод химического анализа или метод решения системы линейных уравнений, но никому пока не удавалось проделать это применительно к классификации или к процессу построения аксиоматической теории. В формировании аксиоматического метода огромную роль сыграли «Начала» Евклида, но это был не образец операций, а образец продукта. Аналогично обстоит дело и с классификацией. Наука знает немало примеров удачных классификаций, масса учёных пытается построить нечто аналогичное в своей области, но никто не владеет рецептом построения удачной классификации.
Нечто подобное можно сказать и о таких методах, как абстракция, обобщение, формализация и т. д. Мы можем легко продемонстрировать соответствующие образцы продуктов, т. е. общие и абстрактные высказывания или понятия, достаточно формализованные теории, но никак не процедуры, не способы действия. Кстати, таковые вовсе не обязательно должны существовать, ибо процессы исторического развития далеко не всегда выразимы в терминах целенаправленных человеческих действий. Мы все владеем своим родным языком, он существует, но это не значит, что можно предложить или реконструировать технологию его создания.
Мы не хотим всем этим сказать, что перечисленные методы и вообще образцы продуктов познания есть нечто иллюзорное, мы отнюдь не собираемся преуменьшать их значение. Они лежат в основе целеполагания, формируют те идеалы, к реализации которых стремится учёный, организуют поиск, определяют форму систематизации накопленного материала. Однако их не следует смешивать с традициями, задающими процедурный арсенал научного познания.
Из всего изложенного напрашивается ещё один вывод: каждая традиция имеет свою сферу распространения, и есть традиции специальнонаучные, не выходящие за пределы той или иной области знания, а есть общенаучные или, если выражаться более осторожно, междисциплинарные. Вообще говоря, это достаточно очевидно и на уровне явных знаний: методы физики или химии широко применяются не только в естественных, но и в общественных науках, выступая тем самым как междисциплинарные методы. Однако изложенное выше позволяет значительно расширить наши представления и в этой области. Аксиоматические построения в геометрии стали в своё время образцом для аналогичных построений в других областях знания. Современные физические теории стали идеалом для других дисциплин, стремящихся к теоретизации и математизации. Возникает мысль, что одна и та же концепция может выступать и в роли куновской парадигмы, и в функции образца для других научных дисциплин. Речь идёт об образцах продукта. Так, например, экология, возникшая в прошлом веке в качестве раздела биологии, вызвала после этого к жизни уже немало своих двойников типа экологии преступности, этнической экологии и т. п. Нужно ли говорить, что все эти дисциплины не имеют никакого прямого отношения не только к биологии, но и к естествознанию вообще.
В этом пункте концепция Т. Куна начинает испытывать серьёзные трудности. Наука в свете его модели выглядит как обособленный организм, живущий в своей парадигме точно в скафандре с автономной системой жизнеобеспечения. И вот оказывается, что никакого скафандра нет и учёный подвержен всем воздействиям окружающей среды. Возникает даже вопрос, который никак не мог возникнуть у Куна: а в каких традициях учёный работает прежде всего – в специальнонаучных или междисциплинарных? И почему биолог, на каждом шагу использующий методы физики или химии и нередко мечтающий о теоретизации и математизации своей области по физическому образцу, почему он все же биолог, а не кто-либо другой? Чем обусловлен такой его Я-образ? Этот вопрос о границах наук вовсе не так прост, как это может показаться на первый взгляд. Найти ответ – это значит выделить особый класс предметообразующих традиций, с которыми наука и связывает свою специфику, своё особое положение в системе знания, свой Я-образ.
Трудности и проблемы
Подведём теперь общий итог и попытаемся сформулировать те основные проблемы, которые нам предстоит решить. Концепция Т.Куна – это первая попытка построить модель науки как надличностного явления. Куна интересует не учёный и методы его работы, а та программа, которая навязывает учёному свою волю, диктуя ему, в частности, и задачи, которые он ставит, и методы, которые он использует. Учёный в рамках этой модели начинает напоминать шахматную фигуру, которая перемещается по определённым правилам, включая и элементарные правила ходов, и принципы шахматной тактики и стратегии.
Что нас не устраивает в этой модели? Придирок может быть много. 1. Кун не вскрыл механизма научных революций, механизма формирования новых программ, не проанализировал соотношение таких явлений, как традиции и новации. Он и не мог этого сделать, ибо его концепция слишком синкретична для решения подобного рода задач. 2. Программы, в которых работает учёный, Кун понимает слишком суммарно и недифференцированно, что создаёт иллюзию большой обособленности различных научных дисциплин. Однако осознание всего многообразия этих программ приводит, как мы видели, к противоположной трудности, к утрате чётких дисциплинарных границ. 3. Учёный у Куна жёстко запрограммирован, и Кун всячески подчёркивает его парадигмальность. Однако, если программ достаточно много, то учёный приобретает свободу выбора, что, вероятно, должно существенно изменить картину. 4. Модель Куна неспецифична и не решает проблему демаркации, ибо очевидно, что парадигмальность присуща не только науке, но и другим сферам культуры и человеческой деятельности вообще. Но решение этой проблемы нужно, вероятно, искать уже не на пути формулировки нормативных требований, предъявляемых к деятельности или её продуктам, а на пути анализа науки как целого, как надличностного образования.
Преодоление всех указанных трудностей предполагает построение более богатой модели науки. Но главное, что следует сделать прежде всего – это показать, модель чего именно мы строим, что собой представляет наука как объект нашего исследования. Можно, например, описывать и систематизировать разнообразные оптические явления, но построение общей теории нуждается в ответе на вопрос, что собой представляет свет, к явлениям какого рода он относится. Один из таких ответов состоял в своё время в том, что свет – это волна. Нам необходимо ответить на аналогичный вопрос: к явлениям какого рода принадлежит наука?
Глава 4.
Строение науки как традиции
На что похожа наука
Мы не способны иметь дело с уникальными объектами, любое познание в конечном итоге есть снятие уникальности. Представьте себе такую ситуацию: вы просите описать вам человека, о котором слышали, но которого никогда не видели, а вам в ответ говорят, что он совсем не похож на Сократа, не похож на Наполеона и не похож на Тургенева. Естественно, вы спросите: а на кого он похож? Очевидно, что это гораздо более простой и прямой путь к тому, чтобы составить себе представление о незнакомом человеке. Аналогичным образом обстоит дело и с наукой. Мы постоянно пытаемся отличить её от других явлений – от мифа, от религии, от искусства, от философии, от обыденного сознания. Попробуем идти противоположным путём.
Понятие куматоида
Начнём со старой, старой проблемы, которая волновала ещё древних греков. Представьте себе легендарный корабль Тезея, который дряхлеет и который все время приходится подновлять, меняя постепенно одну доску за другой. Наконец, наступает такой момент, когда не осталось уже ни одной старой доски. Спрашивается, перед нами тот же самый корабль или другой?
Отложим решение этой проблемы и покажем вначале, что очень многие явления вокруг нас похожи на корабль Тезея. Например, что такое Московский университет? Это, конечно, студенты, но они полностью меняются с периодичностью в пять лет, а Московский университет остаётся Московским университетом. Это преподаватели, но и они меняются, хотя и не с такой строгой периодичностью. Может, следует указать на конкретное здание и сказать: «Вот Московский университет!» Мы, однако, прекрасно знаем, что университет может переехать в новое здание и остаться тем же самым университетом. Что же такое университет? Мы не способны связать его с каким-то конкретным материалом, с каким-нибудь веществом. Если вдуматься, – это очень загадочное образование.
Однако наука уже давно изучает явления, обладающие похожими загадочными свойствами, – это волны. Уже Леонардо да Винчи обращает внимание на один факт, который, по-видимому, его впечатляет. «Многочисленны случаи, – пишет он, – когда волна бежит от места своего возникновения, а вода не двигается с места, – наподобие волн, образуемых в мае на нивах течением ветров: волны кажутся бегущими по полю, между тем нивы со своего места не сходят». И действительно, представьте себе одиночную волну, бегущую по поверхности водоёма: её нельзя идентифицировать с какой-то частью воды, она захватывает в сферу своего влияния все новые частицы и проходит дальше. Образно выражаясь, волну нельзя зачерпнуть ведром. Ну разве не похожа она этим своим качеством на корабль Тезея или на университет?
В науке уже давно делаются попытки, сознательные или стихийные, обобщить физическое понятие волны, имея в виду указанные её особенности, и рассмотреть с этой точки зрения явления, далеко выходящие за пределы физики. «Живой организм, – писал наш известный биолог В. Н. Беклемишев, – не обладает постоянством материала – форма его подобна форме пламени, образованного потоком быстро несущихся раскалённых частиц; частицы сменяются, форма остаётся». Беклемишев при этом ссылается на Кювье, который писал: «Жизнь есть вихрь, то более быстрый, то более медленный, более сложный или менее сложный, увлекающий в одном и том же направлении одинаковые молекулы. Но каждая отдельная молекула вступает в него и покидает его, и это длится непрерывно, так что форма живого вещества более существенна, чем материал».
Основатель кибернетики Норберт Винер сравнивает живой организм с сигналом, который можно передать по радио или телевидению. «Мы лишь водовороты в вечно текущей реке, – пишет он. – Мы представляем собой не вещество, которое сохраняется, а форму строения, которая увековечивает себя. Форма строения представляет собой сигнал, и она может быть передана в качестве сигнала». Ссылаясь на Винера, наш отечественный, а ныне американский психолог В. А. Лефевр пишет о системах, нарисованных на системах, отношения между которыми он называет отношением «ткань-рисунок». «Но это не рисунок типа рисунка на ковре, – пишет он, – это скорее подвижное изображение на экране». Аналогичный пример – ваша тень, которая двигается вслед за вами, захватывая все новые участки поверхности.
Мы предлагаем называть все явления подобного рода куматоидами (от греческого kuma – волна). Специфическая особенность куматоидов – их относительное безразличие к материалу, их способность как бы «плыть» или «скользить» по материалу подобно волне. Этим куматоиды отличаются от обычных вещей, которые мы привыкли идентифицировать с кусками вещества. Если вернуться к кораблю Тезея и к той проблеме, которая мучила уже древних греков, то можно сказать, что как куматоид корабль остаётся одним и тем же, но как тело, как кусок вещества он меняется и становится другим кораблём.
К числу куматоидов можно отнести огромное количество, вообще говоря, разнородных явлений, от волн на воде до живых организмов. Нас в первую очередь будут интересовать явления социальные, а они все проявляют явные признаки куматоидов. Мы уже видели, что Московский университет, как, впрочем, и любой другой, ничем в этом плане не отличается от корабля Тезея, т. е. тоже представляет собой куматоид. Но ведь наука в свою очередь очень похожа на университет. Действительно, разве её можно связать с каким-то фиксированным материалом? Здесь все меняется: люди, здания институтов, оборудование лабораторий.
Но ведь и любая человеческая деятельность может быть рассмотрена с этой точки зрения. В предыдущей главе мы сравнивали науку с деятельностью столяра. Но что представляет собой эта последняя? Её можно понимать как единичный акт переработки некоторого фиксированного материала в конечный продукт. Но разве это мы имеем в виду, когда говорим о деятельности столяра, плотника, каменщика и т. п.? Нет, конечно. Мы предполагаем, что подобные единичные акты постоянно повторяются и воспроизводятся. А это значит, что деятельность утрачивает свою связь с фиксированным конкретным материалом, ибо все меняется: одно и то же вещество нельзя переработать дважды, одну и ту же операцию нельзя дважды осуществить, инструменты тоже меняются, да и заменяются полностью.
В нашей социальной жизни мы буквально окружены куматоидами, мы представляем собой тот материал, на котором они живут, они выступают от нашего имени, они делают нас людьми. Рассмотрим, например, такой объект, как слово, для простоты какое-нибудь существительное нашего языка: дом, дерево, ананас. Слово можно произнести вслух, можно записать на бумаге, можно вырезать на камне. В каждом из этих случаев возможно, да и практически реализуется в принципе бесконечное количество вариантов. Иначе говоря, материал слова все время меняется. Но непрерывно меняются и те предметы, которые слово обозначает. В городе каждый дом вы можете назвать «домом», в лесу каждое дерево «деревом». Ананас покупают и съедают, но вновь купленный ананас – это тоже «ананас». Конечно, как и волна, куматоид достаточно избирателен и живёт только в определённой среде. Океанские волны не распространяются в глубь континента, слово «ананас» не обозначает дом или горную породу.
Но перейдём к такому явлению, как знание, без которого невозможно понять науку. Когда речь заходит об анализе знания, о выявлении его строения, то прежде всего бросается в глаза некоторая неопределённость в самой постановке задачи. Что, собственно говоря, мы должны исследовать? Знание как объект совсем не похоже на то, с чем мы обычно сталкиваемся, говоря о структуре или строении. Оно не похоже, например, на кристалл или молекулу. Прежде всего бросается в глаза его какая-то неопределённая пространственно-временная локализованность. Действительно, где и как существует данное конкретное знание? Непосредственно оно может быть представлено пятнами типографской краски на бумаге или звуковыми колебаниями, или царапинами на камне. Вряд ли, однако, можно считать, что, повторяя одну и ту же фразу или размножая рукопись большим тиражом, мы тем самым увеличиваем количество знания. Мы что-то увеличиваем, но что? Очевидно, что все экземпляры данного издания курса теоретической физики Ландау и Лифшица содержат одно и то же знание, если там нет типографского брака, не вырваны страницы и т. д. Разве это не странно?
Имея стакан воды, мы можем разлить воду в несколько стаканов, но ни один из них не будет при этом полным. Если количество стаканов сильно увеличить, то каждый в отдельности окажется практически пустым. Со знанием этого не происходит, ибо размножая научную книгу или статью в большом количестве экземпляров, мы в каждой из них получаем одно и то же знание, целиком, а не по частям. Знание в этом плане напоминает сказочный неразменный рубль. И это ещё раз подчёркивает, что говоря о строении знания, мы должны отбросить слишком прямые аналогии со строением вещества.
Все указанные трудности преодолимы, если рассматривать знание как куматоид. Оно в этом случае подобно волне, которая все время представлена в новом материале. Разные экземпляры одной и той же книги, тексты, написанные или произнесённые вслух, все это одно и то же знание, одна и та же «волна». Материал меняется, но «волна» одна и та же. Одну и ту же мысль можно выразить различным образом, можно повторить несколько раз, можно записать на бумаге или на магнитофонной ленте. Разве это не удивительно!
Сделаем теперь ещё один шаг, важный для понимания того, что такое куматоид. Корабль Тезея остаётся тем же самым кораблём при полной замене образующих его деталей только потому, что сохраняется форма этих деталей, их связи и взаимное расположение. Иными словами, куматоид – это не просто поток материала, мы должны ещё показать, что в этом потоке что-то остаётся неизменным, показать наличие некоторых инвариантов. Московский университет, например, меняет своих студентов и преподавателей, может переехать в новое помещение, но он остаётся Московским университетом, пока сохраняются его функции, пока и студенты, и преподаватели, и обслуживающий персонал выполняют предписанные им обязанности, пока живут традиции Московского университета. Можно сказать, что университет – это не здания и не люди, а множество программ, в рамках которых все это функционирует.
Из сказанного следует, что любой куматоид можно рассматривать как некоторое устройство памяти, в которой зафиксированы указанные выше инварианты. Так, например, корабль Тезея будет существовать как куматоид только в том случае, если его перестраивать постепенно. Дело в том, что в условиях, когда мы вынимаем только одну доску, все остальные «помнят» её размеры, форму и положение. Но вынув сразу много досок, мы можем разрушить «память», и куматоид перестанет существовать. Конечно, можно форму и расположение деталей зафиксировать с помощью чертежей, но это просто означает, что мы одно устройство памяти заменили другим.
Социальные куматоиды и социальные эстафеты
Как мы уже видели, мир куматоидов достаточно разнообразен и включает в себя явления, которые иногда во всех других отношениях очень не похожи друг на друга. Поэтому едва ли можно искать какой-то общий механизм их жизни. Что общего между наукой и волной на воде, кроме того, что в обоих случаях мы имеем дело с куматоидом? Вероятно, ничего. Такое бедное по содержанию сходство может, конечно, иметь некоторое методологическое или эвристическое значение, но его явно недостаточно для построения общей теории.
Нас, однако, будут в первую очередь интересовать социальные куматоиды, а в этом случае вопрос о некотором общем механизме их существования уже вполне уместен и правомерен. Вернёмся к нашему примеру с Московским университетом. Если нам не удаётся связать его бытие с определённым материалом, то остаётся только одно – рассматривать его как программу или, точнее, как совокупность программ, в рамках которых организуется и функционирует все время обновляющий себя материал. Об этом уже шла речь выше. Перед нами поток материала, на котором живёт множество взаимосвязанных друг с другом программ. Речь идёт, разумеется, не только об учебных программах, а обо всей совокупности инструкций, установок, правил, традиций, которые определяют работу и поведение студентов, преподавателей, администрации – всех, от вахтёра до ректора.
Но каков механизм жизни этих программ, где и как они существуют? Это могут быть чётко сформулированные и записанные инструкции или неявное знание. Термин «традиция», который мы до сих пор использовали, во-первых, не проводит достаточно ясного различия между этими двумя формами, а во-вторых, что связано с первым, не акцентирует наше внимание на особенностях механизма жизни тех и других. Очевидно, что воспроизведение значительной части сравнительно устойчивых форм нашего поведения и деятельности никак не связано с письменными текстами, а чаще всего не вербализовано вообще. Неявное знание передаётся от человека к человеку или от поколения к поколению на уровне воспроизведения непосредственных образцов. Есть поэтому смысл в том, чтобы выделить и специально рассмотреть этот механизм.
Это важно и потому, что язык, на базе которого строятся более развитые формы передачи опыта, сам, несомненно, передаётся и воспроизводится именно таким образом, т. е. на уровне непосредственных образцов речевой деятельности. Ребёнок, осваивая язык, не пользуется ни словарями, ни грамматиками. Единственное, что имеется в его распоряжении – это образцы живой речи. И вот в одной языковой среде он начинает говорить по-русски, в другой – по-английски. Очевидно, что мы имеем в лице такого воспроизведения некоторый исходный, базовый механизм социальной памяти, фундамент, обеспечивающий в конечном итоге воспроизведение всех элементов Культуры. Можно поэтому пытаться выделить разные виды традиций, как мы делали до сих пор, можно попытаться их классифицировать, а можно вывести все разнообразие форм из одной базовой формы. Мы не будем здесь этого делать, но именно в этом состоит конечная задача теории социальных эстафет.
Под эстафетой, как уже ясно из предыдущего, мы будем понимать передачу опыта от человека к человеку, от поколения к поколению путём воспроизведения непосредственных образцов поведения или деятельности. Приведём конкретный пример, иллюстрирующий мощь этого механизма.
Всем нам с детства знакомы русские волшебные сказки, все знают о Бабе-Яге и избушке на курьих ножках, все помнят, как гуси-лебеди унесли Иванушку, и многое другое. Вообще-то волшебные сказки очень разнообразны и по сюжетам, и по характеру действующих лиц. И вот в 1928 году появляется работа В. Я. Проппа «Морфология сказки», которой было суждено стать классической. Пропп показал, что все волшебные сказки, несмотря на их видимое разнообразие, имеют одну и ту же скрытую структуру. Оказалось, что, как бы ни менялся характер действующих лиц, их функции остаются в основном постоянными. Допустим, например, что в разных сказках нам встретились такие эпизоды: 1) царь посылает Ивана за царевной, и Иван отправляется; 2) сестра посылает брата за лекарством, и брат отправляется; 3) кузнец посылает батрака за коровой, и батрак отправляется. Здесь в качестве инвариантов выступают две функции: отсылка и выход в поиск. Что же касается персонажей, мотивировки отсылки и прочее, то это «величины» переменные. Оказалось, что число функций ограничено (31 функция), а последовательность их всегда одинакова. Чем это объяснить?
На этот вопрос Пропп отвечает в другой своей работе «Исторические корни волшебной сказки». Древней основой сказки, с его точки зрения, является магический обряд инициации, посвящения, широко распространённый в родовых обществах, обряд, в ходе которого юношей и девушек переводили в полноправных членов племени. Мысль Проппа сводится к следующему: первобытный обряд инициации сопровождался рассказом, истолковывающим его содержание; обряд умер, а рассказ продолжает жить до сих пор и передаётся от поколения к поколению. Иными словами, волшебная сказка, которую мы слушаем в детстве и которую сами рассказываем или читаем своим детям, – это некое подобие волны, докатившейся до нас от древних времён магических охотничьих ритуалов.
Перед нами типичная эстафета, ибо сказка веками передавалась именно по образцам, а не строилась в соответствии с каким-либо вербально сформулированным алгоритмом. Фактически такой алгоритм впервые сформулировал как раз Пропп, дав точное описание морфологии сказки. Он и сам пишет, что, используя это описание, можно в изобилии создавать новые сказки.
Другой пример социального куматоида – это такое явление, как образ жизни, понятие о котором прочно вошло как в социологию, так и в географию. Речь идёт о традициях и обычаях, усвоенных как бы с молоком матери и определяющих в рамках того или иного сообщества основные и постоянно повторяющиеся траектории поведения и деятельности людей.
Вот, например, небольшой отрывок из работы известного американского этнографа Маргарет Мид «Взросление на Самоа». Глава называется «День на Самоа». «По всей деревне разносятся ритмичные звуки тамтама, собирающего молодёжь. Она сходится со всех концов деревни, держа в руках палки для вскапывания земли, готовая отправиться в глубь острова, на огороды. Люди повзрослее приступают к своим более уединённым занятиям, и под конической крышей каждой хижины воцаряется обычная утренняя жизнь. Маленькие дети, слишком голодные, чтобы ждать завтрака, выпрашивают ломти холодного таро и жадно грызут их. Женщины несут кипы белья к морю или к ручью на дальнем конце деревни либо отправляются в глубь острова за материалом для плетения. Девочки постарше идут ловить рыбу на риф или усаживаются за плетение новых циновок».
Нет смысла продолжать эту цитату, ибо и так ясно, что речь идёт не о каком-то конкретном дне, а о последовательности событий, которая воспроизводится и повторяется изо дня в день и из года в год. Каждый день слышатся здесь звуки тамтама, каждый день кто-то ловит рыбу или плетёт циновки, каждый день кто-то уходит работать на огороды. В совокупности все это и образует образ жизни. Люди рождаются и умирают, сменяются поколения, а образ жизни может оставаться одним и тем же. И очевидно, что в основе этой устойчивости и повторяемости лежат не словесные инструкции, ибо таковых просто не существует, а механизмы более фундаментальные – социальные эстафеты, т. е. воспроизведение форм поведения и деятельности по непосредственным образцам.
Эстафеты, впрочем, обеспечивают не только стационарность, но и адаптацию к новым условиям жизни. Маргарет Мид выделяет три типа культур в зависимости от того, кто у кого учится, чьи именно образцы доминируют. Постфигуративная культура – это культура, где дети учатся прежде всего у своих предшественников, и прошлое взрослых оказывается будущим для каждого нового поколения. Это возможно в тех условиях, когда изменения происходят крайне медленно. Кофигуративная культура предполагает, что и дети и взрослые учатся не только у старшего поколения, но и у своих сверстников. Кофигурация начинается там, где нужно ассимилировать новый, только ещё формирующийся опыт, например, новые виды техники и т. д. Наконец, префигуративная культура – это культура ещё более интенсивных преобразований, когда родителям приходится учиться у своих детей. Следует подчеркнуть при этом, что речь идёт не о механизмах новаций, а только о способах ассимиляции нового, о том, как эти новации распространяются.
В реальных эмпирических ситуациях далеко не всегда легко отличить «чистую» эстафету от вербализованных форм передачи опыта, так как в процессе обучения, как правило, имеет место языковая коммуникация. Важно признать в принципе существование «чистых» эстафет. В дальнейшем мы будем говорить об эстафетах во всех тех случаях, когда деятельность не может быть воспроизведена без соответствующей демонстрации, независимо от того, сопровождается это речевыми актами или нет. Иными словами, эстафета имеет место везде, где не существует точных описаний, достаточных для воспроизведения деятельности без вмешательства каких-либо демонстраций. При таком понимании подавляющее большинство наших акций, в том числе и в науке, воспроизводится на уровне эстафет.
Отдельно взятая эстафета – это элементарный социальный куматоид. Правда, ниже мы покажем что эстафеты не существуют и не могут существовать изолированно, но с некоторыми оговорками все же можно говорить об отдельных эстафетах и их связях друг с другом, об эстафетах простых и сложных. Очень распространённый вид такой связи состоит в том, что одна эстафета обеспечивает условия реализации для другой. Рассмотрим с этой точки зрения обыкновенный, например, театральный гардероб. Приходя в театр, вы поступаете так же, как и все остальные зрители, т. е. сдаёте пальто в гардероб. Гардеробщик поступает так же, как все остальные гардеробщики, т. е. берет ваше пальто и отдаёт взамен номерок. Перед нами две эстафеты, взаимодействующие друг с другом и друг без друга не существующие. Мы говорим об эстафетах, ибо никто из нас не знакомится с принципиальным функционированием гардероба по каким-либо инструкциям, хотя, конечно, их не трудно написать. Другое дело, – время работы гардероба или вопрос об ответственности за пропавшие вещи. Здесь инструкции существуют. Впрочем, их наличие ещё ни о чем не свидетельствует. Все дело в том, как мы реально действуем, по инструкциям или нет.
Приведём ещё один пример, полезный для дальнейшего изложения. Что собой представляет шахматный турнир? Это множество играющихся партий, где каждый шахматист, соблюдая, конечно, определённые словесно зафиксированные правила, действует все же в основном по образцам, т. е. на основе знания прошлых вариантов, типовых позиций и т. п. Но можно ли свести турнир к этому множеству партий? Нет, ибо не всякое такое множество образует турнир. Турнир предполагает наличие ещё одной «игры», игры в турнирную таблицу, которая суммирует результаты всех партий и дополняет борьбу за доской турнирной борьбой. Эта «игра» в таблицу как раз и делает шахматы спортом, и она, вообще говоря, может превратить в спорт почти любой вид нашей деятельности.
Мы и здесь имеем взаимодействие разных эстафетных программ, но картина в целом оказывается гораздо более сложной: у нас не одна, а множество партий, каждая партия – это реализация не одной, а множества разных программ. Суть в том, что одна программа, т. е. турнирная таблица, суммируя действия множества программ другого типа, создаёт нечто новое – турнирную борьбу. Забегая вперёд, можно сказать, что наука по своей эстафетной структуре очень напоминает шахматный турнир.
В заключение отметим, что эстафетная модель очень удобна для обсуждения разных подходов к описанию социальных феноменов и науки в том числе. Бросается в глаза, что любую эстафету можно и нужно описать по крайней мере с двух сторон: во-первых, в плане указания тех образцов, которые она реализует, во-вторых, с точки зрения её содержания, с точки зрения того, что именно она транслирует. Вообще говоря, можно описать, что делает человек, не указывая, в какой традиции он работает. Можно поступить и противоположным образом, т. е. зафиксировать традицию, не раскрыв её содержания. Перед нами наиболее элементарная модель для иллюстрации соотношения понимания и объяснения при анализе социальных явлений.
Типы и связи научных программ
Итак, наука – это социальный куматоид. Установив это, мы уже получили очень много. Мы теперь знаем, как подходить к анализу, что выделять, что лежит в основе того необозримого многообразия явлений, которое традиционно принято связывать с наукой, что именно объединяет все эти явления в единое целое. Если наука – это куматоид, то её надо рассматривать как множество определённых конкретных программ (традиций, эстафет), реализуемых на человеческом материале, т. е. определяющих действия большого количества постоянно сменяющих друг друга людей. Надо выделить и описать эти программы, определить способ их бытия, выявить характер их функционирования и взаимодействия, построить их типологию. Последние два пункта тесно связаны, ибо одним из оснований для классификации программ может служить их место, их функции в системе науки. Именно с этого мы и начнём.
Наука и социальная память
Но прежде всего обратим внимание на тот достаточно очевидный факт, что наука связана не только с производством знаний, но и с их постоянной систематизацией. Монографии, обзоры, учебные курсы – все это попытки собрать воедино результаты, полученные огромным количеством исследователей в разное время и в разных местах. С этой точки зрения науку можно рассматривать как механизм централизованной социальной памяти, которая аккумулирует практический и теоретический опыт человечества и делает его всеобщим достоянием. Речь идёт уже не об эстафетах, образующих базовые механизмы памяти, а о более сложных образованиях, предполагающих вербализованные знания, письменность, книгопечатание и т. д.
Не вдаваясь пока в детали, проиллюстрируем это на простом примере. Известно, что знаменитый исследователь Африки Давид Ливингстон в 1855 г. открыл водопад Виктория. Но также известно, что этот водопад хорошо знали и до него, и он имел даже своё название – Мосиоатунья! Так называли его местные жители. Что же открыл Ливингстон? Открыл уже открытое? Вопрос может показаться абсурдным, но он хорошо иллюстрирует тот факт, что термин «знать» или «открыть» имеет разный смысл применительно к разным культурам и разным историческим этапам в развитии человечества. Для туземца знание – это нечто передаваемое от отца к сыну или от соседа к соседу, нечто существующее и воспроизводимое в рамках узкого сообщества непосредственно общающихся друг с другом людей. В таких условиях водопад Виктория мог открываться и, вероятно, открывался бесчисленное множество раз. Ливингстон, однако, открыл его для науки, открыл раз и навсегда. Но, может быть, мы просто сталкиваемся здесь с эгоцентризмом европейской культуры? В том-то и дело, что нет. Открыть для науки – это значит открыть для человечества.
В чем же специфика научного открытия? Географы уже давно решили этот вопрос применительно к открытию новых территорий. Открытием называют первое посещение данной территории представителями народов, владеющих письменностью, её описание и нанесение на карту. Обратим внимание на последнее. Все свои наблюдения географ связывает с картой, т. е. с некоторой моделью изучаемой местности, полученной в ходе предшествующего развития познания. «Всякое географическое исследование территории, – пишет Н. Н. Баранский, – если только оно является географическим не по одному названию, а по существу, исходит из карты уже существующей и приводит к дальнейшему дополнению и уточнению карты и всяческому обогащению её содержания». Иными словами, карта и программирует работу географа, и фиксирует результаты этой работы. Карты рисунки небольших районов – появились, вероятно, уже у первобытного человека, но они играли роль ситуативных средств общения, и это вовсе не означало появления науки. Наука появилась тогда, когда все карты свели воедино и они стали функционировать как средство общечеловеческой социальной памяти. Поэтому нанести на карту – это и значит открыть для человечества.
Сказанное применительно к географии вполне можно обобщить на научное познание вообще. Формирование науки – это формирование механизмов глобальной централизованной социальной памяти, т. е. механизмов накопления и систематизации всех знаний, получаемых человечеством. Можно смело сказать, что ни одна наука не имеет оснований считать себя окончательно сформировавшейся, пока не появились соответствующие обзоры или учебные курсы, т. е. пока не заданы традиции организации знания.
К сожалению, на эти традиции часто не обращают достаточного внимания, придавая основное значение методам исследования. Это, однако, не вполне правомерно. Конечно, методы играют очень важную роль. Но формирование новых научных дисциплин нередко связано не столько с методами, сколько с появлением новых программ организации знания. Основателем экологии, например, принято считать Э. Геккеля, который высказал мысль о необходимости науки, изучающей взаимосвязи организмов со средой. Огромное количество сведений о такого рода взаимосвязях было уже накоплено к этому времени в рамках других биологических дисциплин, но именно Геккель дал толчок к тому, чтобы собрать все эти сведения вместе в рамках одного научного предмета.
На фоне общей недооценки программ систематизации знания можно встретить и прямо противоположные точки зрения. "Потребность в знании есть лишь бабушка науки, – писал наш известный литературовед Б.И. Ярхо, – матерью же является «потребность в сообщении знаний». «Действительно, – продолжает он чуть ниже, – никакого научного познания (в отличие от ненаучного) не существует: при открытии наиболее достоверных научных положений интуиция, фантазия, эмоциональный тонус играют огромную роль наряду с интеллектом. Наука же есть рационализированное изложение познанного, логически оформленное описание той части мира, которую нам удалось осознать, т. е. наука – особая форма сообщения (изложения), а не познания».
Б.И. Ярхо, пожалуй, впадает в противоположную крайность. Он выделяет в науке и противопоставляет друг другу процессы познания, т. е. методы, способы получения знаний, с одной стороны, и процессы «изложения», фиксации, оформления знаний, с другой. Это, как нам кажется, верно и подводит к глубокому пониманию сути науки. Но можно ли согласиться со столь явной недооценкой роли научных методов? Действительно ли не существует никаких научных способов получения знаний в отличие от ненаучных? Ответ может быть только отрицательным. Сам факт наличия глобальной социальной памяти уже означает появление новых требований к процедурам получения знаний. Главное из этих требований – стандартизация. Она необходима, ибо в противном случае отдельные результаты будут несопоставимы. Наука требует поэтому описания образцов и формулировки принципов исследования, учёный должен показать, как он пришёл к тому или иному результату и почему он считает его истинным. Поэтому такие явления, как доказательство, обоснование, описание методики работы – это необходимые особенности научного познания, тесно связанные с централизацией социальной памяти.
Географическая карта – это хорошая иллюстрация одного из механизмов социальной памяти. Поэтому вернёмся к ней ещё раз и рассмотрим некоторые из её функций. Несомненно, карта задаёт нам способы фиксации географических наблюдений. Каждую произвольно выделенную область на карте можно рассматривать как ячейку памяти, в которую заносится информация о соответствующем участке земной поверхности. Это может быть информация о рельефе, растительности, почве, о характере дорог и т. п. Районирование – это один из способов выделения таких ячеек. Карта задаёт нам таким образом единые, стандартизированные правила референции, правила отнесения наших сведений к той или иной реальной местности. Но эти отдельные сведения она плюс ко всему организует в единое целое, в систему знаний о поверхности Земли.
В этих своих функциях карта частично напоминает классификацию, которая тоже может быть представлена как набор ячеек памяти и тоже организует знания о некотором множестве объектов. Но если ячейки на карте распределены непрерывно, то классификация представляет собой дискретный набор ячеек. Кроме того очевидно, что способы организации ячеек принципиально отличаются друг от друга. Например, в одной и той же классификационной ячейке мы можем описать объекты, которые никогда территориально не соседствовали друг с другом. На карте в её классическом варианте это сделать невозможно. Но в обоих случаях мы имеем дело с определённым набором правил или образцов, с некоторой программой фиксации и систематизации знаний. Фактически формирование механизмов централизованной социальной памяти – это и есть формирование подобного рода программ.
Централизация памяти и объединение знаний имеют много далеко идущих следствий и, в частности, приводят к столкновению разных точек зрения, т. е. к дискуссии, без чего невозможно развитие науки. Здесь уместно вспомнить изложенные выше эстафетные представления о шахматном турнире и о турнирной таблице, которая порождает турнирную борьбу. В науке, если не идентичную, то все же сходную роль выполняют программы систематизации знаний. Они выявляют противоречия и порождают борьбу идей.
Интересно в данном контексте мнение крупнейшего учёного, одного из основателей эмбриологии Карла Бэра, который связывал формирование науки с возникновением критики. Эта последняя, с его точки зрения, появилась в Александрии в связи с централизацией и концентрацией знаний. «В Александрии, – пишет он, – впервые родилась критика. Уже стечение трёх разных народов: египтян, греков и евреев при разногласии прежних их понятий о предметах наук должно было подать повод к происхождению критики. Но если даже и не приписывать такой важности влиянию египетских жрецов и евреев, которое и действительно обнаружилось несколько позже, то и тогда чрезвычайное накопление книг в Музее естественно должно было вести к вопросу: чьё же мнение основательнее? Соединение под одною кровлею совершенно независимых мужей по разным отраслям наук долженствовало иметь такое же действие».
Исследовательские и коллекторские программы
В свете изложенного рационально выделять в составе науки две группы программ, функционально отличающихся друг от друга. Программы первой группы задают способы получения знаний, т. е. собственно исследовательскую деятельность. Мы будем называть их в дальнейшем исследовательскими программами. Программы второй группы – это программы отбора, организации и систематизации знаний, о которых уже шла речь выше. Для краткости мы будем называть эти программы коллекторскими (от латинского collector – собиратель). Строгое различение выделенных групп иногда может вызвать затруднения, ибо они тесно связаны и не существуют друг без друга.
Исследовательские программы – это методы и средства получения знания. Сюда относятся вербализованные инструкции, задающие методику проведения исследований, образцы решённых задач, описания экспериментов, приборы и многое другое. Говоря о приборах, мы имеем в виду не просто некоторые вещи сами по себе, но вещи, тесно связанные с определёнными программами их применения в научном познании. Микроскоп можно при необходимости использовать для забивания гвоздя, но очевидно, что это противоречит его существованию в качестве микроскопа. К исследовательским программам следует отнести методы измерения тех или иных параметров, а также методы расчёта, т. е. в том числе и символические выражения типа второго закона Ньютона или закона Кулона. Строго говоря, любые акты получения и обоснования знания, воспроизводимые на уровне эстафет или на уровне описаний, – это исследовательские программы.
Что собой представляют коллекторские программы? Надо сразу сказать, что эта область гораздо меньше изучена, чем первая. Прежде всего сюда следует отнести образцы или вербальные указания, показывающие, что и о чем мы хотим знать, какова наша избирательность по отношению к знаниям. Это могут быть указания на объект изучения, с которыми традиционно связаны попытки определения предмета тех или иных научных дисциплин. Это могут быть образцы задач или вопросов, которые ставит учёный. Методы решения задач – это программа исследовательская. Сами задачи – коллекторская.
Сразу бросается в глаза, что речь идёт не об одной, а о двух программах, хотя на уровне образцов они могут и совпадать. Одно дело указание объекта исследования, другое – перечень задач. Очевидно, что один и тот же объект можно изучать, формулируя разные задачи, а вопросы одного и того же типа можно ставить относительно разных объектов. Указание объекта мы будем называть программой референции, ибо она определяет, к чему именно относится знание, т. е. его референцию. Вопросы или задачи входят в состав программы проблематизации. На уровне интуиции хотелось бы связать перечень вопросов не с коллекторской, а с исследовательской программой, но надо иметь в виду, что наличие вопроса ещё вовсе не означает возможность каких-либо реальных исследовательских процедур. Кроме того, отбор и систематизация знания с необходимостью предполагает фиксацию того, что именно нас интересует.
Вот конкретный пример коллекторской программы, взятый из курса полевой геоботаники. «При описании рек указываются: а) границы участка и длина его, площадь водосбора, основные притоки; б) характер долины и расчленение склонов, ширина, высота и крутизна склонов коренного берега и террас; в) ширина поймы (наибольшая, наименьшая и преобладающая), характер её поверхности (гривы и изрезанность старицами, озёрами, протоками), заболоченность, глубина залегания грунтовых вод, характер угодий, расположенных в пойме, характер почво-грунтов и растительность поймы, а также ширина разлива реки, сроки и глубина затопления во время обычного, наименьшего и исключительно высокого половодья (ширина разливов устанавливается по меткам высоких вод или по опросным данным)ѕ». Аналогичный перечень продолжается и дальше, но и приведённого отрывка вполне достаточно, чтобы понять о чем идёт речь.
Перед нами вербализованная коллекторская программа, представляющая собой список вопросов, на которые мы должны ответить при описании реки. Это своеобразная научная анкета, задающая и класс изучаемых объектов, и соответствующую проблематизацию. Характерно, что нигде, за исключением одного случая, не указано, как именно следует получать требуемые знания: как определить площадь водосбора, крутизну склонов, глубину залегания грунтовых вод Вероятно, предполагается, что специалист владеет соответствующими методами. Только в одном месте, когда речь идёт о ширине разливов, в текст вкраплены элементы исследовательской программы: «ширина разливов устанавливается по меткам высоких вод или по опросным данным».
Но коллекторские программы далеко не всегда вербализуются. Можно сказать, что любое знание как бы побочным образом функционирует и в качестве неявной коллекторской программы, имплицитно задавая образец продукта, к получению которого надо стремиться, а следовательно, и образец референции, и возможную постановку задачи. На последнем стоит специально остановиться. Чем больше мы знаем, чем разнообразнее мир образцов знания, тем больше вопросов мы способны сформулировать. Так, например, знание формы и размеров окружающих нас предметов ещё в глубокой древности породило вопрос о форме и размерах Земли. Знание расстояний между земными ориентирами позволило поставить вопрос о расстоянии до Луны и до звёзд. Аналогичным образом от описания человеческой производственной деятельности человек в своём историческом развитии переходил к проблемам сотворения Мира.
Ну как не вспомнить здесь высказывание В. Гейзенберга о традиционности тех проблем, которые мы ставим и решаем! «Бросая ретроспективный взгляд на историю, – писал он, – мы видим, что наша свобода в выборе проблем, похоже, очень невелика. Мы привязаны к движению нашей истории, наша жизнь есть частица этого движения, а наша свобода выбора ограничена, по-видимому, волей решать, хотим мы или не хотим участвовать в развитии, которое совершается в нашей современности независимо от того, вносим ли мы в него какой-то свой вклад или нет». Здесь подчёркнута не только традиционность решаемых нами проблем, но и объективный, надличностный характер науки в целом.
В одной из работ известного французского лингвиста Гюстава Гийома сформулирован тезис, который может претендовать на роль фундаментального принципа теории познания: «Наука основана на интуитивном понимании того, что видимый мир говорит о скрытых вещах, которые он отражает, но на которые не похож». И действительно, мы ведь почти никогда не удовлетворены уровнем наших знаний, мы постоянно предполагаем, что за тем, что освоено, скрывается ещё что-то. Что же именно?
Можно сказать, что вся история философии, начиная с Платона и Демокрита, пытается ответить на этот вопрос: что представляет собой мир «скрытых вещей», к познанию которого мы стремимся? Для Демокрита за «видимым миром» срываются атомы и пустота, для Платона – мир объективных идей. Иными словами, для того, чтобы объяснить познание в его постоянном стремлении перейти границу уже освоенного, мы и сам познаваемый мир пытаемся представить как некоторую двухэтажную конструкцию, состоящую из непосредственно данных и скрытых вещей. Но можно выбрать и другой путь. «Скрытый мир» Гийома – это мир нашего неявного осознания проблем, это тот же самый мир уже накопленных знаний, но в роли задающего традицию образца. Иными словами, этот «скрытый мир» мы несём в самих себе, это мир наших коллекторских программ, это мы сами или, точнее, это мир нашей Культуры.
Однако коллекторские программы задают не только критерии отбора знаний, но и образцы их систематизации. «Современная форма научных статей, – пишет известный современный физик Г. Бонди, – представляет собой некоторую разновидность смирительной рубашки». Что он имеет в виду? А то, вероятно, что при написании статей учёный вынужден следовать определённым канонам, соблюдать некоторые достаточно жёсткие правила. Но эти правила нигде полностью не записаны, речь может идти только о силе воздействия непосредственных образцов, о неявном знании. Посмотрите и сравните друг с другом рефераты кандидатских или докторских диссертаций. Они различны по содержанию, но написаны по одной и той же схеме. Можно подумать, что они следуют какой-то официальной инструкции, однако такой инструкции не существует.
Все сказанное относится, несомненно, не только к статьям или рефератам, но в такой же степени к лекционным курсам, учебникам, монографиям. Здесь мы тоже встречаем постоянное воспроизведение одних и тех же схем и принципов организации материала иногда на протяжении многих лет. На интересный пример такого рода указывает американский специалист по термодинамике М. Трайбус: «С того времени, когда Рудольф Клаузиус написал свою книгу „Механическая теория теплоты“ѕ почти все учебники по термодинамике для инженеров пишутся по одному образцу. Конечно, за прошедший век интересы изменились и состоят не в изучении паровых машин, однако и сейчас, читая книгу Клаузиуса, нельзя сказать, что она устарела».
Выше мы уже отмечали, что географическую карту или классификацию можно рассматривать как определённым образом организованный набор ячеек памяти. Но нечто аналогичное демонстрирует нам и оглавление любой монографии или учебного курса: отдельные разделы – это тоже ячейки памяти, в которые мы вносим определённую информацию. Способы организации таких ячеек достаточно многообразны, но довольно часто в основе лежит следующий принцип: задаётся некоторая общая картина изучаемой действительности, и ячейки памяти ставятся в соответствие отдельным элементам этой картины.
Не претендуя на полноту, укажем хотя бы некоторые из таких способов организации: 1) Графический способ. Он состоит в том, что строится графическое изображение объекта, и отдельные его элементы становятся ячейками памяти для записи дополнительной информации. Можно, например, начертить план дома или квартиры и проставить затем на чертеже соответствующие размеры. Географическая карта демонстрирует именно такой способ организации; 2) Классификационный способ: множество изучаемых объектов при соблюдении определённых правил разбивается на подмножества, и знания строятся относительно каждого из таких подмножеств. Можно встретить немало солидных сводок или учебных курсов с именно такой организацией ячеек памяти. Перелистайте для примера хотя бы какой-нибудь курс описательной минералогии; 3) Аналитический способ организации. Он состоит в том, что изучаемый объект разделяется на части или подсистемы, и знания группируются соответствующим образом. Так построены, например, курсы анатомии животных или растений. Географическое районирование тоже может лежать в основе аналитического способа организации памяти; 4) Дисциплинарный способ. Он основан на том, что один и тот же объект можно описывать с точки зрения разных научных дисциплин. Например, строя курс океанологии, можно говорить о физике океана, о химических свойствах морской воды, о биологии океана и т. п.; 5) Категориальный способ. При описании любых объектов наши знания можно группировать по категориальному принципу, т. е. как знания о свойствах, о строении, о видах и разновидностях, о происхождении и развитии. В основе лежит некоторое категориальное, т. е. максимально общее представление о действительности.
Приведённый перечень далеко не полон и не претендует на то, чтобы быть классификацией. Перечисленные способы организации знания сплошь и рядом не исключают друг друга, ибо выделены по разным основаниям. Так, например, графический способ чаще всего является и аналитическим. В реальном познании мы, как правило, имеем дело с различными и иногда достаточно сложными комбинациями всех способов такого рода, что, разумеется, не исключает и их изолированного рассмотрения. Любой учебный курс демонстрирует нам набор определённым образом организованных ячеек памяти, что позволяет в большинстве случаев и ставить вопросы, и вписывать в общую систему вновь получаемые знания. При этом, разумеется, необходимы и исследовательские программы.
Традиции, таким образом, управляют не только непосредственным ходом научного исследования. Не в меньшей степени они определяют и характер наших задач и форму фиксации полученных результатов, т. е. принципы организации и систематизации знания. И образцы – это не только образцы постановки эксперимента или решения задач, но и образцы продуктов научной деятельности. Сказав это последнее, мы тем самым зафиксировали ещё одну особенность неявных коллекторских программ по сравнению с исследовательскими. Механизм их жизни иной, ибо они заданы не образцами самой деятельности, а образцами её продуктов. О различиях такого рода мы уже говорили во второй главе.
Эстафетная модель науки
Мы будем рассматривать науку как социальный куматоид, представляющий собой постоянную реализацию двух типов программ: исследовательских и коллекторских. Эти программы частично вербализованы, но в основной своей массе существуют на уровне эстафет. Они тесно связаны и постоянно взаимодействуют друг с другом. В составе коллекторских программ, как было показано выше, можно дополнительно выделить программы референции, проблематизации и программы систематизации знания. Что все это даёт по сравнению с моделью Т.Куна? Прежде всего то, что наука сразу предстаёт перед нами как очень динамичная открытая система, а отдельный учёный – приобретает относительную свободу выбора. Рассмотрим это несколько более подробно.
Представим себе, что мы работаем в некоторой коллекторской программе, определяющей, что мы хотим знать и о чем именно. В этом случае мы свободны в выборе методов и можем заимствовать их из других областей науки. Биолог при этом остаётся биологом, а почвовед почвоведом, хотя они широко используют методы физики или химии. Границы научной дисциплины задают здесь не методы, а коллекторская программа, точнее, программа референции. Поэтому в довольно широких пределах учёный свободен и в выборе задач. Очевидно, что изучая разные объекты, можно ставить сходные задачи, что и открывает возможности заимствования. Например, проблема эволюции активно проникала, начиная с XIX века, во все области науки, отнюдь не разрушая границы научных дисциплин. Иначе говоря, учёный приобретает некоторую свободу и в выборе отдельных элементов коллекторской программы. Это относится не только к вопросам, но и к способам систематизации знания. Границы науки определяются прежде всего тем, о чем именно мы строим знание, т. е. программами референции. Кстати, возможны ситуации, когда коллекторская программа требует систематизации методов исследования, т. е. систематизации исследовательских программ. В этом случае границы научной дисциплины будут определяться характером задач и методами их решения.
Выделение исследовательских и коллекторских программ и признание их многообразия приводит к тому, что куновская парадигма в рамках новой модели как бы растворяется, и учёный вырывается в сферу науки или культуры как целого. Да, он, конечно, запрограммирован и ограничен, но не теоретическими концепциями своей узкой области, а только всем набором образцов той или иной эпохи, к которой он принадлежит. Он может заимствовать методы, характер задач, способы систематизации знания, он может строить теории по образцу уже построенных теорий в других областях науки. Он при этом вовсе не нарушает границ своей компетенции и не нарушает дисциплинарных границ. Просто эти границы становятся прозрачными для заимствований, а результаты, полученные в любой области, оказываются полифункциональными и потенциально значимыми для науки в целом.
В своих научно-популярных лекциях, посвящённых квантовой электродинамике, Р. Фейнман пишет следующее: «Я хотел бы подчеркнуть одно обстоятельство. Теории, посвящённые остальной физике, очень похожи на квантовую электродинамику. Почему все физические теории имеют столь сходную структуру?». Одну из возможных причин Фейнман видит в ограниченности воображения физиков: «встретившись с новым явлением, мы пытаемся вогнать его в уже имеющиеся рамки». Последняя фраза очень напоминает Т.Куна с той только разницей, что речь-то идёт о «рамках», заданных образцами другой дисциплины, другого раздела физики. В свете куновской концепции это невозможно: отдельные дисциплины там вообще не взаимодействуют, а существуют как бы сами по себе. Новая модель, напротив, рассматривает науку в целом и в этом целом ищет источник развития отдельных дисциплин. Эта ориентация на целое и составляет главную особенность новой модели.
Картина выглядит примерно следующим образом. Существует множество программ референции, которые служат как бы «центрами кристаллизации» для всех остальных программ, образуя научные дисциплины. Любой учёный, связавший себя с изучением определённого круга явлений, тем не менее достаточно свободен в выборе проблем, методов исследования и способов систематизации знания. Программы с некоторыми изменениями, обусловленными сменой контекста, свободно «кочуют» из одной области в другую. Поэтому объединение всех этих программ в работе учёного или даже в рамках той или иной отдельной дисциплины достаточно ситуативно и динамично, а каждое изменение той или иной из них в любой области знания, чем бы оно ни было вызвано, может в принципе иметь последствия для любой другой науки.
Аналогичным образом обстоит дело и с продуктами научного исследования, т. е. со знаниями. Они поступают в ведение коллекторских программ, но никогда нельзя точно предсказать, каких именно. Тот факт, например, что турмалин электризуется при нагревании, вошёл в арсенал и физики, и минералогии. Таблицу Менделеева можно встретить не только в курсе химии, но и физики. Каждая коллекторская программа вправе отбирать все, что соответствует её критериям, независимо от того, в рамках какой дисциплины были получены интересующие её знания. При этом происходят и некоторые преобразования самих знаний, что, однако, ничего не меняет по существу. Важно, что знания, полученные в рамках некоторой дисциплины, вовсе не становятся её «собственностью» и могут, в принципе, оказаться существенными для совсем других разделов науки.
Продолжая развивать тему «На что похожа наука?», можно сравнить отдельную научную дисциплину и газету. Представьте себе множество газет разного профиля: политическую, экономическую, спортивную. Каждая имеет редактора, который является носителем некоторой коллекторской программы и отбирает нужную информацию. Эта информация, однако, может поступать не только от собственных корреспондентов газеты, но из самых различных источников, включая перепечатку материалов из других газет. Каждый корреспондент владеет определёнными методами получения информации, но может и заимствовать методы у других корреспондентов. Редактор тоже способен совершенствовать свою программу под влиянием других газет. А чем газета отличается от науки? Она однодневка. Но возьмите подшивки за много лет и попытайтесь систематизировать информацию в свете некоторой коллекторской программы. Вы вполне можете получить историческое описание, основанное на газетных источниках.
Предложенная модель содержит в себе большой потенциал выявления различных возможных вариантов и комбинаций и приводит к целому ряду следствий, некоторые из которых мы рассмотрим как в этой, так и в следующих главах. Мы постараемся также несколько уточнить и обогатить эту модель. Но один вывод напрашивается уже сейчас: нельзя понять развитие науки, прослеживая историю какой-либо одной дисциплины. А между тем именно так пишется у нас история науки. Нет истории физики или истории географии, существует история науки как целого.
Пути формирования науки
Противопоставление исследовательских и коллекторских программ позволяет выделить два разных пути в развитии отдельных научных дисциплин в зависимости от того, какие именно программы доминируют на самых первых этапах их формирования. Ниже мы приведём несколько фактов, которые, с одной стороны, могут служить хорошей иллюстрацией предложенной выше модели, а, с другой, дают возможность глубже понять те исходные различия, которые иногда надолго определяют специфику той или иной научной области.
В развитии дисциплин экспериментальных, как правило, доминируют исследовательские программы. Рассмотрим с этой точки зрения первые шаги формирования учения об электричестве. Мы при этом умышленно упростим и огрубим картину, отбросив многочисленные теоретические построения этого периода, но это ничего не меняет по существу. Формирование учения об электричестве выглядит как цепочка связанных друг с другом экспериментальных открытий, обусловленных не столько теоретическим предвидением, сколько фиксацией побочных результатов эксперимента. Основные вехи здесь следующие: 1) Открытие и исследование электризации трением; 2) Открытие проводимости; 3) Открытие явления электрического отталкивания; 4) Обнаружение такого явления, как разряд конденсатора.
Тот факт, что янтарь, если его потереть мехом, начинает притягивать волоски или небольшие кусочки других материалов, было замечено очень давно и, вероятно, случайно. Во всяком случае, об этом уже упоминает Платон. В средневековье, вероятно, столь же случайно было обнаружено, что аналогичными свойствами обладают и некоторые другие вещества. Систематически и целенаправленно это явление начинает исследовать английский врач Уильям Гильберт (15441603), и именно у него эксперимент с электризацией трением превращается в исследовательскую программу. Его начинают воспроизводить с разными телами и в разных вариантах, и вот в 1729 году Стефен Грей обнаруживает, что при натирании мехом стеклянной трубки электризуется и вставленная в трубку пробка. Появляется новая исследовательская программа, связанная теперь с воспроизведением не электризации, а проводимости. Эта программа как бы отпочковывается от предыдущей, происходит как бы ветвление исследовательских программ. Следующая точка такого ветвления связана прежде всего с именем французского учёного Шарля Франсуа Дюфе. В 1733 году он продолжил эксперименты Грея и вдруг заметил, что кусочки металла после соприкосновения с наэлектризованной стеклянной трубкой отталкиваются друг от друга. Воспроизведение этих явлений, т. е. уже третья исследовательская программа, приводит к идее существования двух родов электричества. И вот в 1745 году нидерландский физик Мушенбрук пытается зарядить налитую в стеклянный сосуд воду через проводник и неожиданно получает сильный удар. «Я думал, что пришёл конец», – пишет он Реомюру в 1746 году. Получена лейденская банка, породившая ещё одну исследовательскую программу и сыгравшая значительную роль в развитии учения об электричестве.
Что нам важно во всей этой истории? Бросается в глаза, что уже первые шаги в формировании учения об электричестве связаны с последовательным возникновением все новых и новых исследовательских программ. В любой истории физики этот этап описывается как некоторая цепочка открытий. При этом очевидно, что эксперимент Мушенбрука не мог быть поставлен до открытия проводимости, что опыты Грея уже предполагают исследования Гильберта, обнаружившего, что стекло тоже электризуется, как и янтарь. Перед нами ветвящийся куст исследовательских программ, и именно он подобно каркасу скрепляет и объединяет все получаемые знания.
Перейдём теперь к примерам другого рода. Одним из основателей ботаники считается крупнейший античный мыслитель, сотрудник и последователь Аристотеля Феофраст (372287 гг. до н. э.) Приведём несколько коротких отрывков из его знаменитого труда «Исследование о растениях». 1."Плотники говорят, что ядро есть в каждом дереве; виднее же всего оно у пихты: оно состоит у неё из круговых слоев, наподобие коры". 2. «Жители Иды, говорят, различают между соснами и одну сосну называют „идейской“, другую „приморской“. Из идейской, по их словам, смолы получается больше». 3."Некоторые говорят, что Аравия богаче ладаном, но лучше он на соседних с ней островах, которыми правят арабы".
Отрывков подобного рода можно привести очень много, ибо в тексте Феофраста они встречаются повсеместно. О чем это говорит? О том прежде всего, что «Исследование о растениях» – это систематизация огромного опыта, связанного с растениями, который уже был накоплен в античном мире. Но накапливали его отнюдь не исследователи, а практики. Феофраст ссылается на плотников, на купцов, торгующих ладаном или древесиной, просто на жителей той или иной области, которые сталкиваются с местными растениями в своей повседневной жизни. Но никто из тех, на кого он ссылается, не реализовывал исследовательских программ и не ставил перед собой познавательных задач. Ситуация может показаться парадоксальной: исследовательской деятельности не было, а появляется фундаментальный труд. Но никакого парадокса здесь нет, просто в данном случае доминируют не исследовательские, а коллекторские программы.
Приведём ещё два очень сходных примера. Вот что пишет академик Н. С. Шатский о возникновении региональной геологии: «Региональная геология родилась вместе с геологической картой; правда, и до начала геологического картирования, в XVII и XVIII вв. и даже раньше в литературе встречались региональные описания геологического характера, например, в географических очерках, путешествиях и т. д., но они не были систематическими и чаще касались лишь предметов и явлений, почему-либо заинтересовавших авторов. С введением государственного геологического картирования окончательно выработался тип региональных геологических описаний, представляющих в огромном большинстве случаев как бы объяснительные записки к геологическим картам».
Аналогичные мысли о формировании науки явно проглядывают в работе И. С. Мелехова «Очерк развития науки о лесе в России». Формирование лесоведения автор связывает с нуждами кораблестроения: «Потребность в лесоматериалах для кораблестроения и их быстрое истощение в районах первоначальных заготовок определяли необходимость описания лесов». Эту идею повторяет П. С. Погребняк: «Отечественное лесоведение зародилось в начале XVIII столетия как детище нужды в корабельном лесе».
Может показаться, что речь идёт о довольно тривиальной вещи, о роли практических запросов в формировании науки. Но это не так. В работе И. С. Мелехова хорошо показано, что лес в жизни русского народа всегда играл огромную роль и практические знания о лесе начали формироваться очень давно. Роль кораблестроителя как централизованного и социально значимого потребителя этих знаний состояла прежде всего в том, что появилась государственная потребность в систематическом описании лесов, в организации всех накопленных сведений, в составлении лесных карт. Иными словами, появилась коллекторская программа.
Факты показывают, что в основе формирования науки, по крайней мере в рассмотренных случаях, лежит процесс систематизации знаний, которые, вообще говоря, уже могут существовать, но разбросаны и никак не организованы. Но кто управляет этим процессом систематизации, кто задаёт соответствующую программу? И Шатский, и Мелехов единодушно указывают на роль социально значимого потребителя знаний. Наличие такого потребителя или заказчика сильно упрощает задачу экспликации той программы, которая может здесь иметь место. Почти очевидно, что потребитель в рассмотренных ситуациях задаёт прежде всего два параметра знания: он говорит, что именно он хочет знать и о чем. Эти два класса характеристик и лежат, вероятно, в основе первичной систематизации знания. С одной стороны, они определяют референцию знания, которое нас интересует: о чем оно, о лесе или о горных породах. С другой, – тип содержания или репрезентации: что мы хотим знать о горных породах, их физические свойства или химический состав. Напрашивается, конечно, ещё и третий вопрос: Как? Как мы можем получить требуемые знания? Но этот вопрос интересует уже не потребителя, а производителя.
Очевидно, что фигура потребителя вовсе не обязательна, если у нас уже есть образцы систем знания. Продолжая приведённый выше отрывок, Н. С. Шатский пишет: «Обычный, наиболее часто встречающийся тип региональных описаний заключает изложение стратиграфии и тектоники описываемого района, характеристику магматических образований и полезных ископаемых. Этим чисто геологическим частям обыкновенно предшествует характеристика рельефа и обзор литературных данных о строении района. Весьма обычны также главы, в которых излагается геологическая история...» Нетрудно видеть, что перед нами некоторая принципиальная инструкция по построению геологического описания, т. е. коллекторская программа. Но она, скорее всего, только эксплицирует ту неявную программу, которая без всяких инструкций как раз и порождает типовые тексты, следующие по своей структуре одним и тем же образцам.
Конфликт программ и понятие модели
Существуют ситуации конфликта исследовательских и коллекторских программ. Одним из продуктов такого конфликта является широко распространённое представление об идеальных моделях. Рассмотрим это на материале рассуждений, приведённых в книге Э. Квейда «Анализ сложных систем»
Автор иллюстрирует метод моделирования на таком примере. Представьте себе, что марсиане проводят исследования, связанные с изготовлением и засылкой на землю летающих тарелок. Когда тарелка находится в процессе изготовления, для специалиста по определению стоимости она представляет собой лишь два числа: её порядковый номер и количество марсианских человеко-часов, затраченных на её производство. Но вот тарелка построена, и её перевозят на склад. На этом этапе её можно характеризовать другим набором чисел: линейными размерами и весом, а также классификацией груза по нормам перевозок. Наконец, тарелка запущена и находится в полете. Здесь мы можем представить её как материальную точку в пространстве, обладающую определённой скоростью. Далее тарелка входит в атмосферу Земли, и её описание снова меняется, ибо теперь мы должны учесть её форму, коэффициент сопротивления и скорость.
Почему мы все приведённые описания называем моделями? Прежде всего, вероятно, по причине их неполноты. Мы ведь в каждом случае знаем гораздо больше, но отбираем только то, что нужно для решения задачи, т. е. для реализации нашей исследовательской программы. «Какую именно модель мы построим, – пишет автор, – зависит от тех вопросов, на которые мы хотим получить ответ при помощи модели, и от тех решений, которые нам предстоит принять, руководствуясь моделью». Иными словами, исследовательская программа очень прагма-тична при отборе исходных данных, она отбирает только то, что необходимо для получения удовлетворительного решения.
Но ведь наряду с исследовательскими программами существуют ещё и коллекторские, которые требуют согласования и систематизации знания. И вот оказывается, что представления об объекте, вполне оправданные с прагматической точки зрения в рамках реализации исследовательских программ, не вписываются в общую систему наших представлений о мире. Говоря, например, об изображении летающей тарелки в виде материальной точки, автор продолжает: «Любой конкретно мыслящий человек мог бы возразить, что такой подход совершенно нереалистичен; что мы пренебрегаем размерами, формой, материалом; что диаметр тарелки 30 метров, что она выкрашена в ярко-красный цвет и что на ней находится экипаж из трёх марсиан». И вот в целях согласования столь разных представлений и появляются такие понятия, как «идеальная модель», «абстракция», «идеальный объект», которые фиксируют то, что прагматически оправдано, но не укладывается в нашу картину мира.
Коллекторская программа требует согласованности, когерентности знания, её задача – всеобщий синтез и построение единой картины мира. Конечно, в основном она строит эту картину по частям, т. е. в пределах отдельных научных дисциплин, но наряду с этим мы постоянно наблюдаем попытки найти место каждой науки в системе знаний о мире в целом. Программа исследовательская, как мы уже отмечали, напротив, сугубо прагматична и оправдывает те или иные представления успехом в решении конкретных задач. И вот прагматическая установка неизбежно приходит в противоречие с требованием когерентности. Хороший пример приводит Галилео Галилей в одной из своих работ. Строители повсеместно возводят стены домов по отвесу, полагая, что два отвеса параллельны. Но мы-то знаем, что они пересекаются в центре Земли! Конечно, знаем, но какое это может иметь значение для практики строителей? Очевидно, что никакого.
Представление о реальной картине мира, с одной стороны, и об идеальных моделях или идеальных объектах, с другой, возникают как результат столкновения прагматизма и установки на когерентность знания. Эти представления можно рассматривать как своего рода защитный пояс прагматизма в его столкновении с требованием когерентности.
Глава 5.
Новации и их механизмы
Типы новаций в развитии науки
Как же выглядит динамика науки в свете изложенных представлений? Если учёный работает в традициях, если он запрограммирован, то как возникает новое? Ответ на этот вопрос надо искать прежде всего в многообразии традиций, в возможности их взаимодействия. Однако предварительно полезно уточнить, что именно мы понимаем под новациями в развитии науки, каков их характер, какие можно выделить типы новации и как эти типы связаны друг с другом.
Разнообразие новаций и их относительный характер
Наука – это очень сложное и многослойное образование, и она постоянно переживает множество разнообразных изменений. Нас, однако, не будут интересовать социально-организационные аспекты науки, её положение в обществе и т. д. Хотя, разумеется, организация академий или научных институтов – это тоже новации, но в рамках других подходов к исследованию научного познания. Философию науки в первую очередь интересует знание, его строение, способы его получения и организации. О новациях именно в этой области и пойдёт речь.
Надо сказать, что и при таких ограничениях мы имеем перед собой трудно обозримый по своему разнообразию объект исследования. Это и создание новых теорий, и возникновение новых научных дисциплин. Иногда эти две акции почти совпадают, как в случае квантовой механики, но можно назвать немало областей знания, которые не имеют своих собственных теорий. Новации могут состоять в построении новой классификации или периодизации, в постановке новых проблем, в разработке новых экспериментальных методов исследования или новых способов изображения. Очень часто, говоря о новациях, имеют в виду обнаружение новых явлений, но в этот класс с равным правом входят как сенсационные открытия типа открытия высокотемпературной сверхпроводимости, так и достаточно рядовые описания новых видов растений или насекомых.
К числу новаций следует причислить также введение новых понятий и новых терминов. Последний момент часто упускают из виду, явно его недооценивая. Однако нередко именно новый термин закрепляет в сознании научного сообщества принципиальную новизну тех явлений, которые до этого просто описывались, но не получали специальных обозначений. Вот что пишет по этому поводу революционер в области геоморфологии В. М. Дэвис: «Я хочу подчеркнуть тот факт, что „идея пенеплена“ принадлежит не мне. Я предложил только название, но, как часто бывает, введение определённого названия для явления, о котором до этого говорили только в общих выражениях, способствовало его признанию; свидетельством тому служит история термина „антецедентные“, обозначающего реки, которые сохраняют своё направление, прорезая поднимающиеся горные цепи. Идея антецедентных рек возникла у нескольких исследователей, которые не дали ей никакого названия, а безымённая, она не завоевала общего признания. Эта идея стала популярной только тогда, когда Поуэлл дал ей собственное имя».
В свете введённой выше модели можно попытаться разбить все новации на несколько групп в зависимости от того, с изменением каких наукообразующих программ они связаны. Можно говорить, например, об изменении исследовательских программ, включая сюда создание новых методов и средств исследования, и об изменении программ коллекторских, т. е. о постановке новых вопросов, об открытии или выделении новых явлений (новых объектов референции), о появлении новых способов систематизации знания. Но надо иметь в виду, что мы при этом упускаем из поля зрения основную массу новаций, которые, образно выражаясь, образуют повседневность науки. Это те новации, которые осуществляются в рамках существующих программ, ничего в них не меняя по существу, это, в частности, повседневное накопление знаний. Может быть, эту «повседневность» и не стоит специально рассматривать? Дело, однако, в том, что из таких повседневных актов и складывается развитие науки, включая и изменение научных программ. Более того, никогда нельзя заранее предсказать, к чему приведёт та или иная, казалось бы, вполне традиционная акция.
В этом последнем пункте мы сталкиваемся с явлением относительности новаций. Они относительны к последующему развитию науки. Впрочем, это касается не только научных новаций, но и новаций вообще. Говорят, что Колумб открыл Америку, но так ли это? Он искал западный путь в Индию, был, уверен, что таковой существует, и умер в сознании, что открыл то, что искал. Открытие Америки – это уже последующая интерпретация его деятельности. Или другой пример: вот растёт и развивается ребёнок, можно ли составить полный список тех изменений, которые при этом происходят? Перед нами непрерывный поток полностью невоспроизводимых событий, каждый день, каждый час и похож и не похож на предыдущие. Вероятно, надо попытаться выделить самое существенное, но критерием при этом является последующее развитие, которое будет вносить в наш выбор все новые и новые коррективы. Только потом, обнаружив у взрослого человека те или иные уже ярко выраженные качества, мы начинаем осознавать значение отдельных событий его детства.
Так и в науке: новации и здесь часто осознаются задним числом, осознаются тогда, когда мы ищем в прошлом истоки современных идей. Приведённые выше рассуждения В. М. Дэвиса дают тому прекрасный пример. Можно ли считать новацией описание антецедентных рек до того, как был введён соответствующий термин? Ведь научное сообщество не реагировало на это как на нечто новое. Но, когда термин введён и принят, мы понимаем, что идеи были уже высказаны до этого, что они были новыми и значимыми. Иными словами, выделение новаций – это дело Суда Истории. Люди действуют в традициях, История делает их новаторами. Но и Суд Истории способен изменить своё мнение.
Новые методы и новые миры
Рассмотрим два типа новаций, один из которых связан с развитием исследовательских, а другой – коллекторских программ. Первый – это появление новых методов, второй – открытие новых миров, новых объектов исследования. Оба типа новаций могут приводить к существенным сдвигам в развитии науки и воспринимаются в этом случае как революции. Факты свидетельствуют, что эти новации тесно связаны друг с другом, что иллюстрирует и связь исследовательских и коллекторских программ.
Новые методы, как отмечают сами учёные, часто приводят к далеко идущим последствиям – и к смене проблем, и к смене стандартов научной работы, и к появлению новых областей знания. Укажем хотя бы очевидные примеры: появление микроскопа в биологии, оптического телескопа и радиотелескопа в астрономии, методов «воздушной археологии»ѕ
Изобретение микроскопа и распространение его в ХVII веке с самого начала будоражило воображение современников. Хотя приборы были очень несовершенны, это было окно для наблюдения живой природы, которое позволило первым великим микроскопистам – Гуку, Грю, Левенгуку, Мальпиги – сделать их бессмертные открытия. Оглядываясь на ХVII век, известный историк биологии В. В. Лункевич назвал его эпохой «завоеваний микроскопа». Он даёт выразительный портрет психологического состояния Роберта Гука, охваченного ажиотажем новых исследований:"Нужно только представить себе человека умного, образованного, любознательного и темпераментного во всеоружии первого микроскопа, т. е. инструмента, которым почти никто до него не пользовался и который даёт возможность открыть совершенно новый, никем до того не виданный и никому не ведомый мир; нужно только перевоплотиться в такого человека, чтобы не только представить себе ясно, но и почувствовать и настроение Гука, и торопливую пестроту его наблюдений. Он бросался на все, что можно поместить на столик, под объектив микроскопа; пусть это будет кончик тоненькой иглы или острие бритвы, шерстяная, льняная или шёлковая нить, крошечные стеклянные шарики, радугой играющие под линзой микроскопа, частички тонкого песка, осадок в моче, зола растений или кристаллики различных минералов – не важно: все это ново, интересно, полно неожиданностей, чревато возможностью засыпать мир тысячью маленьких открытий" На все это можно посмотреть и в более широком, принципиальном плане: разве нельзя всю историю биологии разбить на два этапа, разделённые появлением и внедрением микроскопа? Без микроскопа не было бы целых больших и фундаментальных разделов биологии (микробиологии, цитологии, гистологии), во всяком случае в том виде, как они сейчас существуют. Очевидно, что появление микроскопа привело и к открытию новых миров.
Нечто аналогичное происходило и в геологии. Во второй половине Х1Х столетия применение микроскопа для исследования горных пород приводит к революционным изменениям в петрографии. Вот как этот решительный сдвиг описывает выдающийся русский петрограф Ф. Ю. Левинсон-Лессинг в 1916 г.:"В зависимости от введения новых методов исследования или усовершенствования прежних и от успехов сопредельных областей знания, все отрасли естествознания XIX столетия эволюционировали и продолжают эволюционировать. Вместе с приёмами исследования расширяются и те проблемы, которые ставит себе данная наука, или появляются новые перспективы, возникают новые задачи, – и физиономия науки постепенно видоизменяется: то, что недавно ещё было новым, оказывается уже устаревшим и заменяется новыми воззрениями, которых ожидает та же судьба. Этот процесс развития совершается в общем постепенно, но бывают моменты быстрого движения вперёд, как бы скачки, аналогично явлению сальтации в общем процессе медленной эволюции органического мира. Таким значительным скачком в петрографии явилось введение микроскопического метода исследования. Быть может, нет другой науки, в которой можно было бы указать такой резкий перелом, как тот, который совершился в начале шестидесятых годов прошлого столетия в петрографии". Нетрудно видеть, что речь идёт не только о революции в петрографии, которую Левинсон-Лессинг оценивает как столь резкий перелом, что ему нет равных в других науках, – вопрос ставится шире: всю эволюцию естествознания XIX столетия автор ставит в зависимости от развития и усовершенствования методов исследования.
Во второй половине XX столетия начинается бурный подъём астрономии, связанный с появлением радиотелескопа. Для астрофизиков ситуация обновления очевидна. «Революция в астрономии началась примерно в 1950 году и с тех пор её триумфальное шествие не прекращается», – считает американский астрофизик П. Ходж. Аналогичная оценка – у академика В. Л. Гинзбурга: «Астрономия после второй мировой войны вступила в период особенно блистательного развития, в период „второй астрономической революции“ (первая такая революция связывается с именем Галилея, начавшего использовать телескопы)ѕ Содержание второй астрономической революции можно видеть в процессе превращения астрономии из оптической во всеволновую». И здесь, как видите, периодизация связана с методами эмпирического исследования: первая революция – оптический телескоп, вторая – радиотелескоп.
Перейдём к археологии. Один из самых смелых шагов был сделан ею во время первой мировой войны: шаг, который позволил археологу, как говорится, стать птицей – благодаря аэроплану и аэрофотосъёмке, что привело к целому ряду необычных открытий и важных обобщений. С высоты открылись такие следы прошлого, наблюдать которые не могли и мечтать самые прозорливые наземные исследователи. Известный английский археолог и востоковед Лео Дойель пишет: «Воздушная археология революционизировала науку изучения древностей, может быть, даже в большей степени, чем открытие радиоуглеродного метода датировки. По словам одного из её основателей вклад, внесённый воздушной разведкой в археологические изыскания, можно сравнить с изобретением телескопа в астрономии». Здесь опять подчёркивается революционизирущая роль новых методов: радиоуглеродный метод датировки, методы аэрофотосъёмки.
У нас нет возможности увеличивать количество примеров, но очевидно, что речь должна идти не только о методах наблюдения или эксперимента, но обо всем арсенале методических средств вообще. Не меньшее значение, например, могут иметь методы обработки и систематизации эмпирических данных – вспомним хотя бы роль картографии для наук о Земле или роль статистических методов в социальных исследованиях. Огромное революционизирующее значение имеет и развитие чисто теоретических методов – например, перевод естествознания на язык математического анализа. Здесь надо вспомнить не только труды Ньютона, но и кропотливую работу Эйлера, Лагранжа, Гамильтона и др. Без этой двухвековой подготовки невозможна была бы и эйнштейновская научная революция. Вообще проникновение математических методов в новые области науки всегда приводит к их революционной перестройке, к изменению стандартов работы, характера проблем и самого стиля мышления.
Но главное, что бросается в глаза и что хотелось бы подчеркнуть, – если в нарисованной Т. Куном глобальной картине узловыми точками являются новые теоретические концепции, то в такой же степени можно организовать весь материал истории науки, включая и естествознание, и науки об обществе, вокруг принципиальных скачков в развитии методов. Качественная перестройка методического арсенала – это своеобразная координатная сетка, не менее удобная, чем перечень куновских парадигм.
Перейдём теперь к фактам другого типа. Обычно, характеризуя ту или иную науку, мы прежде всего интересуемся тем, что именно она изучает. Это не случайно. Выделение границ изучаемой области или, иными словами, задание объекта исследования – это, как мы уже отмечали, достаточно существенный наукообразующий параметр. Не удивительно, что возникновение новых дисциплин очень часто связано как раз с обнаружением каких-то ранее неизвестных сфер или аспектов действительности. Не вызывает сомнений, что это тоже своеобразные научные революции, которые мы и будем называть открытием новых миров. Перед исследователем в силу тех или иных обстоятельств открывается новая область непознанного, мир новых объектов и явлений, у которых нет ещё даже имени. Далее в ход идёт весь арсенал уже имеющихся средств, методов, теоретических представлений, исследовательских программ. Новой является сама область познания.
Простейший пример – Великие Географические открытия, когда перед изумлёнными путешественниками представали новые земли, акватории, ландшафты, неведомые культуры. Нельзя недооценивать роль этих открытий в истории европейской науки. Но не менее, а, может быть, и более значимо появление в сфере научного изучения таких объектов, как мир микроорганизмов и вирусов, мир атомов и молекул, мир электромагнитных явлений, мир элементарных частиц. Список такого рода можно расширить и сделать более детальным. Открытие явления гравитации, открытие других галактик, открытие мира кристаллов, открытие радиоактивности. Все это принципиальные шаги в расширении наших представлений о мире, которые сопровождались и соответствующими изменениями в дисциплинарной организации науки. И в такой же степени, как новые методы, новые миры тоже образуют своеобразную координатную сетку, позволяющую упорядочить и организовать огромный материал истории науки.
Следует подчеркнуть, что открытие нового мира и определение его границ, – это не одноактное событие. Понимание того, что в поле зрения появились не отдельные интересные явления, а именно новый мир, занимает иногда целые годы. Ещё Т. Кун отмечал, что научные революции растянуты во времени. Колумб, например, пытаясь указать, где побывали его корабли, наносил новые земли на карту Азии. Заслуга осознания и доказательства того, что открыт целый новый континент, принадлежит уже не ему, а последующим мореплавателям. И отнюдь не пытаясь преуменьшить величие Колумба, мы должны все же признать, что он, увы, никакой Америки не открыл, хотя и положил начало процессу этого открытия.
Другой пример – появление в науке такого нового мира, как вирусы. В 1892 г. Д. И. Ивановский обнаруживает удивительное явление: способность возбудителя мозаичной болезни табака проходить сквозь фарфоровый фильтр, задерживающий бактерии. Метод фильтрования совершенно традиционен; исследователя отличает только исключительная тщательность в работе. Позднее в 1899 г. результаты Ивановского подтверждает М. Бейеринк, который и предложил для обозначения фильтрующегося инфекционного начала термин «вирус» (лат. virus яд). Осознание того, что вирусы – это новый мир, дающий основания для выделения особого свода знаний – вирусологии, пришло ещё позднее в связи с трудами Ф. Туорта (1915 г.) и Ф. д'Эррела (1917 г.). Иными словами, лишь через несколько десятилетий научного труда выяснилось, что перед нами целое семейство неклеточных форм жизни, насчитывающее сегодня в общей сложности около 800 видов.
Открытие новых миров – это вовсе не прерогатива естественных наук, аналогичный вклад сюда вносят и науки об обществе. На это, к сожалению, обращают обычно гораздо меньшее внимание, хотя революционизирующее общекультурное значение таких открытий не вызывает сомнений. Думается, например, что уже появление «эйдосов» Платона – это открытие нового мира, новой реальности, способ бытия которой вызывает обсуждения до сих пор. Был обнаружен, в частности, фундаментальный факт: наряду с реальными геометрическими фигурами, которые могут быть нарисованы на песке, существуют ещё какие-то другие, применительно к которым мы и формулируем свои теоремы. Нужна, вероятно, целая книга, чтобы проследить увлекательные перипетии дальнейшего развития этой мысли.
Но главное в развитии наук об обществе – это открытие «прошлого» человечества, открытие «прошлого» как особого мира и объекта познания. Огромное общекультурное значение имела расшифровка Шампольоном египетской письменности. «Исследования Шампольона, – подчёркивает известный историк И. Г. Лившиц, комментируя труд последнего „О египетских иероглифах“, – заложили основу новой науки, расширившей нашу историческую перспективу на целые тысячелетия и раскрывшей перед нами новый, почти совершенно неизвестный дотоле мир». Нельзя не вспомнить в связи с этим слова Пушкина о Карамзине, сказанные в связи с созданием «Истории государства российского»: «Древняя Россия, казалось, найдена Карамзиным, как Америка – Коломбом». Сравнение удачно схватывает изоморфизм познавательных ситуаций: открытие прошлого вполне сопоставимо с открытием новых земель, культур и народов.
Революционным шагом вперёд было и открытие Льюисом Морганом доисторического прошлого человечества. Сам Морган в предисловии к своему труду «Древнее общество» (1877 г.) писал: «Глубокая древность существования человечества на земле окончательно установлена. Кажется странным, что доказательства этого были найдены только в последние тридцать лет и что современное поколение – первое, которое признало столь важный факт». Современному человеку уже трудно оценить степень революционности этих открытий, трудно понять их кардинальное воздействие на все мировосприятие учёных прошлого века. Не случайно некоторые события из истории палеоантропологии сейчас воспринимаются как курьёзные. Вот один из таких курьёзов, связанный с находкой черепа «неандертальского человека». Случай этот как весьма поучительный приводит в своей книге известный американский палеоантрополог Д. Джохансон.
Найденный в 1856 г. в долине Неандера череп был гораздо толще, длиннее и уже, чем у современного человека, с массивными надбровными дугами. Находку начали энергично изучать немецкие анатомы. «Этот череп принадлежал пожилому голландцу,» – сказал д-р Вагнер из Геттингена. «Нет, – заявил д-р Майер из Бонна, – это череп русского казака, который в погоне за отступающей армией Наполеона отбился от своих, забрёл в пещеру и умер там.» Французский учёный Прюнер-Бей придерживался иного мнения: «Череп принадлежал кельту, несколько напоминающего современного голландца, с мощной физической, но низкой умственной организацией.» Окончательный приговор произнёс знаменитый Рудольф Вирхов. Он заявил, что все странные особенности неандертальца связаны не с его примитивностью, а с патологическими деформациями скелета, возникшими в результате перенесённого в детстве рахита, старческого артрита и нескольких хороших ударов по голове. Оставался ещё вопрос о древности находки. Учёные пришли к единодушному мнению, что неандерталец, возможно, ходил по земле во времена Наполеона. В основе данного курьёза лежало, конечно, отсутствие надёжного метода датировки ископаемых остатков. Но поучительно и то, с каким трудом человеческое сознание осваивает само представление о глубине прошлого, в которое ему предстоит проникнуть.
Незнание и неведение
В целях дальнейшего изложения удобно разделить все новации на два класса: новации преднамеренные и непреднамеренные. Первые возникают как результат целенаправленных акций, вторые – только побочным образом. Первые, согласно Куну, происходят в рамках парадигмы, вторые – ведут к её изменению. Предложенное деление можно значительно уточнить, если противопоставить друг другу незнание и неведение.
Будем называть незнанием то, что может быть выражено в виде вопроса или эквивалентного утверждения типа: «Я не знаю того-то». «Что-то» в данном случае – это какие-то вполне определённые объекты и их характеристики. Мы можем не знать химического состава какого-либо вещества, расстояния между какими-либо городами, даты рождения или смерти политического деятеля далёкого прошлого, причины каких-либо явлений. Во всех этих случаях можно поставить и вполне конкретный вопрос или сформулировать задачу выяснения того, чего мы не знаем. Эварист Галуа писал: «Наиболее ценной книгой наилучшего учёного является та, в которой он сознается во всем, чего не знает». Это и понятно: незнание – элемент коллекторской программы науки, существенно определяющий потенциал её развития.
Нас в данном контексте интересуют не границы эрудиции отдельного человека, а границы познания, заданные определённым уровнем развития науки и культуры. На этом уровне мы способны сформулировать некоторое множество вопросов, задач, проблем, что и образует сферу незнания. Все, что в принципе не может быть выражено подобным образом, для нас просто не существует как нечто определённое. Это сфера неведения. Образно выражаясь, неведение – это то, что определено для Бога, но не для нас. Демокрит, например, не знал точных размеров своих атомов, но мог в принципе поставить соответствующий вопрос. Однако он не ведал о спине электрона или о принципе Паули.
Легко показать, что незнание имеет иерархическую структуру. Например, вы можете попросить своего сослуживца перечислить его знакомых, их пол, возраст, место рождения, род занятий и т. д. Это зафиксирует первый уровень вашего незнания, ибо перечисленные вопросы могут быть заданы без каких-либо дополнительных предположений, кроме того, что все люди имеют пол, возраст и прочие указанные выше характеристики. Но среди знакомых вашего сослуживца вполне может оказаться боксёр, писатель, лётчик-испытатель. Поэтому возможны вопросы более специального характера, предполагающие введение некоторых дополнительных гипотез. Например, вопрос можно поставить так: «Если среди ваших знакомых есть писатель, то какие произведения он написал?»
Очевидно, что действуя аналогичным образом применительно к науке, мы получим достаточно развёрнутую программу, нацеленную на получение и фиксацию нового знания, выявим некоторую перспективу развития данной науки в той её части, которая зависит от уже накопленных знаний. Иными словами, незнание – это область нашего целеполагания, область планирования нашей познавательной деятельности. Строго говоря, – это явная или неявная традиция, использующая уже накопленные знания в функции образцов.
Но перейдём к неведению. Как уже отмечалось, в отличие от незнания оно не может быть зафиксировано в форме конкретных утверждений типа: «Я не знаю того-то». Это «что-то» мы не можем в данном случае заменить какими-то конкретными характеристиками. Мы получаем поэтому тавтологию: «Я не знаю того, чего не знаю». Тавтология такого типа – это и есть признак неведения.
Означает ли сказанное, что мы не можем поставить задачу поиска новых, ещё неизвестных явлений, новых минералов, новых видов животных и растений? Такая задача или, точнее, желание, конечно же, существует, но следует обратить внимание на следующее. Ставя вопрос, фиксирующий незнание, мы хорошо представляем, что именно нам надо искать, что исследовать, и это позволяет, в принципе, найти соответствующий метод, т. е. построить исследовательскую программу. В случае поиска неизвестного такого особого метода вообще быть не может, ибо нет никаких оснований для его спецификации.
Иными словами, невозможен целенаправленный поиск неизвестных или, точнее, неведомых явлений. Мы должны просто продолжать делать то, что делали до сих пор, ибо неведение открывается только побочным образом. Так, например, можно поставить задачу поиска таких видов животных или растений, которые не предусмотрены существующей систематикой. Вероятно, они существуют. Но что должен делать биолог для их поиска? То, что он делал до сих пор, т. е. пользоваться существующей систематикой при описании флоры и фауны тех или иных районов. Поэтому задачи или вопросы, направленные на фиксацию неведения, мы будем называть праздными в отличие от деловых вопросов или задач, фиксирующих незнание. Праздные задачи не детерминируют никакой научной программы, не задают никакой конкретной исследовательской деятельности.
Противопоставление незнания и неведения в конкретных ситуациях истории науки требует достаточно детального анализа. После открытия Австралии вполне правомерно было поставить вопрос о животных, которые её населяют, об образе их жизни, способах размножения и т. д. Это составляло сферу незнания. Но невозможно было поставить вопрос о том, в течение какого времени кенгуру носит в сумке своего детёныша, ибо никто ещё не знал о существовании сумчатых. Это было в сфере неведения. Нельзя, однако, сказать нечто подобное об «открытии» Галле планеты Нептун. Казалось бы, оба случая идентичны: биологи открыли новый вид, Галле обнаружил новую планету. Но это только на первый взгляд. Никакие данные биологии не давали оснований для предположения о существовании сумчатых животных. А планета Нептун была теоретически предсказана Леверье на основании возмущений Урана. Обнаружение этих последних – это тоже не из сферы неведения, ибо существовали теоретические расчёты движения планет, и вопрос об их эмпирической проверке был вполне деловым вопросом.
Что такое открытие?
В свете сказанного можно уточнить часто используемое понятие «открытие» и противопоставить ему такие термины, как «выяснение» или «обнаружение». Мы можем выяснить род занятий нашего знакомого, можем обнаружить, что он лётчик. Это из сферы ликвидации незнания. Галле не открыл, а обнаружил планету Нептун. Но наука открыла сумчатых животных, открыла явление электризации трением, открыла радиоактивность и многое другое.
Открытия подобного рода часто знаменуют собой переворот в науке, но на них нельзя выйти путём целенаправленного поиска; из знания в неведение нет рационального, целенаправленного пути. С этой точки зрения, так называемые географические открытия нередко представляют собой, скорее, выяснение или обнаружение, ибо в условиях наличия географической карты и системы координат вполне возможен деловой вопрос о наличии или отсутствии островов в определённом районе океана или водопадов на той или иной ещё неисследованной реке. Точнее сказать поэтому, например, что Ливингстон не открыл, а обнаружил или впервые описал водопад Виктория.
Итак, открытие – это соприкосновение с неведением. Специфической особенностью открытий является то, что на них нельзя выйти путём постановки соответствующих деловых вопросов, ибо существующий уровень развития культуры не даёт для этого оснований. Принципиальную невозможность постановки того или иного вопроса следует при этом отличать от его нетрадиционности в рамках той или иной научной области. Легче всего ставить традиционные вопросы, которые, так сказать, у всех на губах, труднее – нетрадиционные. Абсолютное неведение находится вообще за пределами нашего целеполагания. Но есть смысл говорить о неведении относительном, имея в виду отсутствие в границах той или иной специальной дисциплины соответствующих традиций. Надо сказать, что практически такого рода относительное неведение часто ничем не отличается от абсолютного и преодолевается тоже побочным образом.
Все приведённые выше примеры относились в основном к сфере эмпирического исследования. Это вовсе не означает, что на уровне теории мы не открываем новых явлений. Достаточно вспомнить теоретическое открытие позитрона Дираком. Об открытиях такого рода можно говорить тогда, когда построенная теоретическая модель оказывается гораздо богаче, чем мы предполагали, и из неё следуют неожиданные выводы.
Традиции и новации
Как же возникает новое в ходе функционирования науки и какую роль при этом играет взаимодействие традиций? Очевидно, что огромная масса новых научных знаний получается в рамках вполне традиционной работы. Но как сочетать эту традиционность с принципиальными сдвигами, которые сами участники процесса нередко воспринимают как революции? Постараемся показать, что и здесь традиции играют немаловажную роль.
Концепция «пришельцев»
Наиболее простая концепция, претендующая на объяснение коренных новаций в развитии науки, – это концепция «пришельцев». Нередко она напрашивается сама собой. Вот что пишет известный австралийский геолог и историк науки У. Кэри об основателе учения о дрейфе континентов Альфреде Вегенере: «Вегенер изучал астрономию и получил докторскую степень, но затем он перенёс главное внимание на метеорологию и женился на дочери известного метеоролога В.П. Кеппена. Я подозреваю, что будь он по образованию геологом, ему никогда бы не осилить концепцию перемещения материков. Такие экзотические „прыжки“ чаще всего совершаются перебежчиками из чуждых наук, не связанными ортодоксальной догмой».
Концепция «пришельцев» в простейшем случае выглядит так: в данную науку приходит человек из другой области, человек, не связанный традициями этой науки, и делает то, что никак не могли сделать другие. Недостаток этой концепции бросается в глаза. «Пришелец» здесь – это просто свобода от каких-либо традиций, он определён чисто отрицательно, тем, что не связан никакой догмой. Рассуждая так, мы не развиваем Куна, а делаем шаг назад, ибо начинаем воспринимать традицию только как тормоз: отпустите тормоза и сам собой начинается спонтанный процесс творчества. Но Кун убедительно доказал, что успешно работать можно только в рамках некоторой программы.
Другое дело, если «пришелец» принёс с собой в новую область исследований какие-то методы или подходы, которые в ней отсутствовали, но помогают по-новому поставить или решить проблемы. Здесь на первое место выступает не столько свобода от традиций, сколько, напротив, приверженность им в новой обстановке, а «пришелец» – это, скорее, прилежный законопослушник, чем анархист.
Вот что пишет академик В. И. Вернадский о Пастере, имея в виду его работы по проблеме самозарождения: «Пастер выступал как химик, владевший экспериментальным методом, вошедший в новую для него область знания с новыми методами и приёмами работы и увидевший в ней то, чего не видели в ней ранее её изучавшие натуралисты-наблюдатели». Все очень похоже на высказывание У. Кэри о Вегенере с той только разницей, что Вернадский подчёркивает не свободу Пастера от биологических догм, а его приверженность точным экспериментальным методам.
Этот второй вариант концепции «пришельцев», несомненно, представляет большой интерес. Но если в первом случае для нас важна личность учёного, освободившегося от догм и способного к творчеству, то во втором – решающее значение приобретают те методы, которыми он владеет, те традиции работы, которые он с собой принёс, сочетаемость, совместимость этих методов и традиций с атмосферой той области знания, куда они перенесены.
Вернёмся к Пастеру. Сам он о своей работе по проблеме самозарождения писал следующее:"ѕ Я не ввожу новых методов исследования, я ограничиваюсь только тем, что стараюсь производить опыт хорошо, в том случае, когда он был сделан плохо, и избегаю тех ошибок, вследствие которых опыты моих предшественников были сомнительными и противоречивыми". И действительно, Пастер сплошь и рядом повторяет те эксперименты, которые ставились и до него, но делает это более тщательно, на более высоком уровне экспериментальной техники. Он, например, не просто кипятит ту или иную питательную среду, но точно при этом фиксирует время и температуру кипения. Но это значит, что перед нами некоторый «монтаж»: биологический эксперимент «монтируется» с занесёнными из другой области точными количественными методами. Правда, в основе этого монтажа лежит не просто перебор различных возможных вариантов, а «миграция»самого учёного, его переход в другую область.
А можно ли аналогичным образом объяснить успех Вегенера? Какие традиции он внёс в геологию? Начнём с того, что сама идея перемещения материков принадлежит вовсе не ему, ибо высказывалась много раз и многими авторами, начиная с XVII века. Сам У. Кэри приводит длинный список имён и работ. Итак, в этом пункте Вегенер вполне традиционен. Бросается, однако, в глаза следующее, едва ли случайное совпадение. Как мы уже видели, Вегенер – это астроном, перешедший в метеорологию, к этому можно добавить, что он известный полярный исследователь. Иными словами, он своего рода научный «полиглот», не привыкший связывать себя границами той или иной дисциплины. И именно эту полипредметность, т. е. комплексность, Вегенер вносит в обсуждение проблемы перемещения материков, используя данные палеонтологии, стратиграфии, палеоклиматологии, тектоники и т. д.
Интересно в этом плане обратить внимание на то, с какими идеями в первую очередь борется Вегенер, где он видит своих противников. Показательна уже первая фраза его предисловия к четвёртому изданию книги «Происхождение континентов и океанов», написанного в 1928 году: «До сих пор ещё не все исследователи в полной мере осознали тот факт, что для раскрытия тайны былого облика нашей планеты должны внести свой вклад все науки о Земле и что истина может быть установлена только путём объединения данных всех отраслей знания».
Таким образом, в геологию пришёл не человек, свободный от геологических традиций, а универсал, умеющий работать в разных традициях и эти традиции комбинировать. Можно сказать, что Вегенер внёс в геологию метод монтажа.
Явление монтажа
Но явление монтажа возможно и в чистом виде, т. е. без каких– либо миграционных процессов, без перехода исследователя из одной области науки в другую. Как правило, в поле зрения учёного имеется большое количество методов, большое количество образцов исследовательской деятельности, и он имеет возможность их выбирать и различным образом комбинировать. Большинство реально используемых методик несут на себе следы такой монтажной работы. Можно показать, что они представляют собой комбинацию из более элементарных методов, которые встречаются повсеместно и в самых разнообразных ситуациях.
Проиллюстрируем это на примере двух экспериментов, взятых из разных областей знания. Первый описан в широко известном курсе общей физики Р. В. Поля. Допустим, что мы поставили килограммовую гирю на толстый дубовый стол, нас интересует, деформируется стол при этом или нет. Р. В. Поль предлагает следующий экспериментальный метод. На столе установлены два зеркала, на одно из которых направляется световой пучок. Пробегая между зеркалами, он отбрасывается на стену и даёт на ней изображение источника света. На стене нанесены деления, чтобы следить за перемещением светового указателя. Всякий прогиб крышки стола наклоняет зеркала, что вызывает смещение указателя относительно шкалы. Благодаря большой длине «светового рычага» (около 20 метров) чувствительность установки очень велика.
Сравним этот эксперимент с другим, который предлагает К. А. Тимирязев для наблюдения за ростом растений. Говоря точнее, Тимирязева интересует влияние света на скорость роста. Через блок перекинута шелковинка, на одном конце которой привязана гирька, а на другом – маленький крючок из тонкой проволоки. Крючком подхватывают верхушку стебля, а на блоке устанавливают зеркальце. Пучок света, падая на зеркальце, отбрасывается на стену, на которой нанесена шкала. Если стебель растёт, зеркальце поворачивается вместе с блоком, и световой указатель смещается относительно шкалы.
Не трудно видеть, что эти эксперименты похожи друг на друга, хотя и реализованы в разных конкретных ситуациях, при изучении разных явлений. Если отвлечься от специфики изучаемого материала, то они отличаются друг от друга только несущественными техническими деталями. Но технические детали нас вообще не должны здесь интересовать. Покажем, что оба эксперимента смонтированы из деталей, которые, вообще говоря, независимы друг от друга и встречаются в совсем иных комбинациях.
Во-первых, в обоих случаях речь идёт о зависимости явлений. Нас интересует, вызывает ли гиря, положенная на стол, его деформацию или влияет ли освещение на рост растения. Это обуславливает общую схему обоих экспериментов, состоящую в том, что мы, изменяя одни компоненты ситуации, фиксируем состояние других: растение либо освещается, либо нет; гиря либо кладётся на стол, либо с него снимается. Это настолько часто встречающийся приём, что на него даже легко не обратить внимание. Второй компонент – «световой рычаг». Он вовсе не обязательно связан с первым. Можно, например, исследовать не зависимость роста от освещения, а поставить задачу измерить скорость роста. К. А. Тимирязев показывает, что эксперимент может быть смонтирован и иначе. Можно, например, заменить световой указатель длинной лёгкой стрелкой. Прибор будет, разумеется, менее чувствительным, но в принципе он пригоден для решения тех же задач.
Но в приведённых экспериментах есть и ещё один элемент, который очень часто присутствует в различных научных исследованиях. Этот элемент – постановка меток. Нам необходимо пометить положение светового указателя на стене, ибо в противном случае мы можем не заметить никаких изменений. В данном случае метка позволяет идентифицировать место, но с аналогичной целью можно метить и другие объекты. При этом будет меняться техника реализации метода, но не сам метод. Вот несколько примеров метода меток из разных областей знания: кольцевание птиц с целью наблюдения за их перелётом, мечение муравьёв в муравейнике с целью проследить судьбу отдельного муравья, бутылки с записками в океане для составления карты морских течений, ионизация объёма газа в трубе с целью измерения скорости потока, широко известный метод меченых атомов. Не следует, вероятно, думать, что все эти методы построены по образцу друг друга, но все они имеют один общий корень в истории Культуры: уже первобытный охотник, заламывая ветку, чтобы отметить свой путь, пользовался этим методом.
Традиции и побочные результаты исследования
Как уже отмечалось, в сферу неведения мы проникаем непреднамеренно, т. е. побочным образом. Это значит, что, желая одного, исследователь получает нечто другое, чего он никак не мог ожидать. А всегда ли мы замечаем такие побочные результаты наших действий, всегда ли мы способны их выделить и зафиксировать? Какие факторы при этом играют решающую роль?
Вот как Луиджи Гальвани описывает своё открытие, сыгравшее огромную роль в развитии учения об электричестве: «Я разрезал и препарировал лягушку и, имея в виду совершенно другое, поместил её на стол, на котором находилась электрическая машина, при полном разобщении от кондуктора последней и на довольно большом расстоянии от него. Когда один из моих помощников остриём скальпеля случайно очень легко коснулся внутренних бедренных нервов этой лягушки, то немедленно все мышцы конечностей начали так сокращаться, что казались впавшими в сильнейшие тонические судороги. Другой же из них, который помогал нам в опытах по электричеству, заметил, как ему казалось, что это удаётся тогда, когда из кондуктора машины извлекается искра. Удивлённый новым явлением, он тотчас же обратил на него моё внимание, хотя я замышлял совсем другое и был поглощён своими мыслями. Тогда я зажёгся невероятным усердием и страстным желанием исследовать это явление и вынести на свет то, что было в нем скрытого».
Вильгельм Оствальд в своей «Истории электрохимии» комментирует это описание следующим образом: "Перед нами здесь типичная история случайного открытия. Исследователь занят совсем другими вещами, но среди условий его работы оказывается налицо, между прочим, такие условия, которые вызывают новые явления. Случайности этого рода встречаются гораздо чаще, чем об этом может поведать нам история, ибо в большинстве случаев такие явления или вовсе не замечаются, или если и замечаются, то не подвергаются научному исследованию. Поэтому, кроме случайности здесь существенно важно ещё «до невероятности страстное желание» исследовать новый факт. Вот такое-то желание очень часто отсутствует, потому ли, что первоначальная задача, поставленная себе исследователем, поглощает весь его интерес, так что все новое служит лишь помехой, с устранением коей все дело и кончается, или потому, что исследователь создаёт себе временное «объяснение», удовлетворяющее до известной степени его пытливость".
В этом комментарии обращают на себя внимание следующие два обстоятельства: во-первых, Оствальд склонен сводить успех в подобных условиях к чисто психологическим особенностям учёного, к его «до невероятности страстному желанию» исследовать новый факт, во-вторых, с его точки зрения, это желание исчезает, если новое явление удаётся сравнительно легко объяснить. А если не удаётся? Этого вопроса Оствальд специально не ставит, но фактически на него отвечает в своём последующем анализе.
«Самое интересное во всей этой истории, – пишет он, – то, что у Гальвани не было вовсе основания приходить в столь большое волнение. Что электрические разряды вызывают сокращения мышц, было известно уже и раньше. В такой же мере было известно, что электрический разряд вызывает близ себя электрические процессы и в таких проводниках, которые с первичной цепью вовсе не связаны; явление это называлось „обратным ударом“ разряда. Если бы Гальвани обладал всеми научными познаниями своего времени, ему не трудно было бы создать себе целую теорию по поводу наблюдаемого им явления, так что пытливость его могла бы быть вполне удовлетворена».
Может показаться, что мы приходим к довольно тривиальному результату: исследователь обращает внимание на те явления, которые он не может пока объяснить. А зачем обращать внимание на то, что давно понятно? Но, во-первых, уже это означает, что случайные открытия существенно обусловлены не только теми традициями, в рамках которых имел место неожиданный эффект, но и всей совокупностью традиций эпохи или по крайней мере данной науки. А, во-вторых, дело не просто в трудностях объяснения. Явление должно обратить на себя внимание, оно должно потребовать объяснения, а для этого оно должно не укладываться в существующие представления, должно противоречить им. Одно дело, просто встретить незнакомого человека (мало ли мы их встречаем!), другое, – встретить его там, где мы ожидали только близких друзей.
В целом возникает следующая картина. В рамках некоторой достаточно традиционной работы типа препарирования лягушки, мы отмечаем новый и неожиданный эффект. Дело не в том, что эффектов подобного рода не было до сих пор, и не в том, что наряду с отмеченным, не было каких-то других эффектов. Короче, дело не в характере объективной ситуации. Все определяется всеми другими традициями, той нормативной средой, в которой мы работаем. Именно эта среда выделяет случайный эффект, не принимая его в качестве чего-то обычного.
Нельзя не сказать в этой связи несколько слов о «невежестве» Гальвани, которое отмечает Оствальд. «К счастью для науки, – пишет он, продолжая уже приведённые выше рассуждения, – познания его не были столь широки» Но ведь Гальвани не был физиком, он был биологом и практикующим врачом, в Болонском университете он занимал первоначально кафедру практической анатомии, а позднее – кафедру гинекологии и акушерства. В свете этого Гальвани можно считать своеобразным «пришельцем», но в физику он приносит не новые программы, а способность удивляться тому, что физиков уже не удивляет.
Примером аналогичной фиксации побочного результата может служить открытие Д. И. Ивановского. Изучая мозаичную болезнь табака и используя традиционный для того времени метод фильтрования, Ивановский получает совершенно неожиданный результат: метод не срабатывает, тщательно отфильтрованный сок больного растения сохраняет свои заразные свойства. Этого нельзя не заметить, ибо это противоречит традиции. «Случай свободного прохождения заразного начала через бактериальные фильтры – пишет Ивановский, представлялся совершенно исключительным в микробиологии». Ивановский настолько поражён, что предполагает первоначально, что фильтруется не сам возбудитель, а яд, растворенный в соке больного растения. Перед нами типичный случай побочного эффекта. Однако выделение и закрепление этого эффекта происходит в той же традиции, видоизменяя, разумеется, её функции: метод фильтрования становится теперь методом обнаружения «фильтрующихся вирусов».
Движение с пересадками
Предыдущий пример показывает, что выделение и осознание случайных побочных результатов существенно связано с наличием традиций, которым эти результаты противоречат. Традиции как бы отвергают эти результаты, они не способны их ассимилировать, и именно поэтому случайные феномены оказываются вдруг в центре внимания. Грубо говоря, мы не можем не заметить стену, если она перегородила нам путь.
Существует, однако, и другая возможность выделения побочных результатов, противоположная первой. Она состоит в том, что результат, непреднамеренно полученный в рамках одной из традиций, оказывается существенным для другой. Другая традиция как бы «стоит на страже», чтобы подхватить побочный результат. Развитие исследования начинает напоминать движение с пересадками: с одних традиций, которые двигали нас вперёд, мы как бы пересаживаемся на другие.
Рассмотрим в качестве иллюстрации историю открытия закона Кулона, известного каждому со школьной скамьи. Интересно и поучительно при этом обратить внимание на то, насколько различны и противоречивы те картины, которые предлагают нам по этому поводу историки физики.
Известный специалист по теории упругости и сопротивлению материалов С.П. Тимошенко пишет о Кулоне следующее: «Он изобрёл для измерения малых электрических и магнитных сил весьма чувствительные крутильные весы, а в связи с этим исследовал прочность проволоки на кручение.» Получается так, что Кулон с самого начала исходил из задачи измерения сил взаимодействия электрических зарядов и в поисках решения каким-то чудом изобрёл новый прибор. Что касается его работ по теории упругости, то они представляют собой нечто вторичное и целиком вытекают из идеи построения крутильных весов. Перед нами пример непостижимого для окружающих гениального озарения. Ни о каких программах здесь не может быть и речи.
Но так ли это? Обратимся к некоторым фактам биографии Кулона. По образованию он инженер. Поступив на военную службу, он попадает на остров Мартинику, где на протяжении девяти лет принимает участие в строительных работах. Свой опыт инженера он обобщает в трактате, представленном в 1773 г. во Французскую Академию наук. Трактат посвящён строительной механике и изучению механических свойств материалов. Вернувшись во Францию, Кулон и здесь работает в качестве инженера и продолжает свои научные изыскания в той же области. Уже в 1777 г. он публикует исследования об измерении кручения волос и шёлковых нитей, а позднее, в 1784 г. присоединяет к ним мемуар о кручении металлических проволок. Две последние даты очень важны, если учесть, что первая работа Кулона, посвящённая его знаменитому закону, появилась только в 1785 г., т. е. через восемь лет после того, как он занялся кручением нитей.
О чем все это говорит? Прежде всего о том, что исследования Кулона по теории упругости носили совершенно самостоятельный характер и никак не вытекали из идеи измерения электрических или магнитных взаимодействий. Кулон – инженер и по интересам, и по роду работы, а его исследования целиком укладываются в рамки традиции или, если угодно, парадигмы строительной механики и теории упругости. Здесь, кстати, все, что он делает, вполне естественно и понятно и никак не нуждается в предположении гениального озарения. Итак, по крайней мере одна научная программа в работах Кулона налицо.
Как же осуществляется переход к исследованиям в области электричества? В «Истории физики» Б.И. Спасского читаем следующее: «Для определения силы взаимодействия между электрическими зарядами Кулон построил специальный прибор – крутильные весы. Конструируя этот прибор, Кулон применил ранее открытый им закон пропорциональности между углом закручивания упругой нити и моментом силы». Спасский, в отличие от Тимошенко, не считает, что исследования Кулона по теории упругости носили вторичный характер и вытекали из задачи построения крутильных весов. Создавая эти весы, Кулон просто использовал уже открытый им ранее закон закручивания проволоки. Спасский, однако, как и Тимошенко, настаивает, что весы построены специально для электрических измерений.
Но так ли это? Парадокс заключается в том, что крутильные весы Кулону вовсе не надо было специально строить, они у него уже были задолго до того, как он приступил к определению силы взаимодействия между зарядами. Весы уже были, их надо было только увидеть. Действительно, та установка, которую Кулон использовал при изучении кручения нитей – это и есть крутильные весы. Её нужно было только переосмыслить. В общем плане это выглядит так: изучив влияние явления X на явление Y, мы получаем возможность использовать Y как прибор при изучении X. Но Кулон мог и не опираться на этот общий принцип, ибо у него был конкретный образец аналогичного функционального переосмысления экспериментальной установки в работах основателя теории упругости Роберта Гука. Исследуя деформацию спиральных и винтовых пружин, Гук тут же осознает свои результаты как изобретение особых «философских весов», необходимых для того, «чтобы определять вес любого тела без применения гирь». Иными словами, и здесь Кулон работал в рамках определённой традиции.
Итак, крутильные весы не нужно было специально ни изобретать, ни строить. Кулону требовалось только понять, что решая одну задачу, он, сам того не желая, решил и вторую. Определяя, как угол закручивания нити зависит от действующей силы, он получил тем самым и метод измерения сил. Но тут мы как раз и подходим к самому интересному. До сих пор Кулон работал, как мы уже отмечали, в традиции теории упругости и сопротивления материалов. Однако переосмыслить свою экспериментальную установку и осознать её как весы, он может только благодаря другой традиции, традиции измерения. Эта последняя определяет совершенно новую точку зрения на происходящее, она только и ждёт, чтобы подхватить побочный результат предыдущей работы.
Но переосмыслив свою экспериментальную установку как весы, Кулон точно вступает на широкую столбовую дорогу, на которой можно встретить людей с очень разными приборами и разными задачами. Среди того, что их объединяет, нам важно следующее: методы измерения в широких пределах безразличны к конкретному содержанию тех дисциплин, где они применяются. Не удивительно поэтому, что традиция измерения сразу же уводит Кулона за пределы его первоначальной сравнительно узкой области.
«Кулон, по-видимому, интересовался не столько электричеством, сколько приборами, – пишет Г. Липсон. – Он придумал чрезвычайно чувствительный прибор для измерения силы и искал возможности его применения». Как мы уже видели, Кулону ничего не надо было «придумывать», но в остальном с Липсоном можно согласиться. Получив в свои руки метод измерения малых сил, Кулон сразу становится как бы «космополитом» и начинает путешествовать из одной сферы экспериментального исследования в другую. Правда, и теперь он не сразу приступает к проблемам теории электричества, но начинает с исследования трения между жидкостями и твёрдыми телами. Это ещё раз подчёркивает, что измерение силы взаимодействия между зарядами никогда не было его исходной задачей – ни при изучении кручения нитей, ни при «построении» крутильных весов. Не метод строился здесь под задачу, а наоборот, наличие метода требовало поиска соответствующих задач.
Подведём некоторые итоги. Мы пытались показать, что Кулона вовсе не посещало гениальное озарение. Скорей наоборот, он все время движется как бы по проторённым дорогам. Мы при этом отнюдь не хотели как-то принизить его достижения в области сопротивления материалов и теории упругости. Он прочно вошёл в историю этих дисциплин как талантливый исследователь. Но он здесь продолжатель уже существующих традиций, которые были заложены ещё Галилео Галилеем и Робертом Гуком. Может быть, в развитии учения об электричестве он стоит совершенно обособленно? Оказывается, что и это не так. К формулировкам, близким к закону Кулона, чисто теоретически подходили Эпинус (1759 г.), Пристли (1771 г.), Кавендиш (1773 г.). Иногда этот закон даже называют законом Кулона-Кавендиша. И в то же время очевидно, что Кулон не помещается полностью ни в одной из этих традиций, и это выдвигает его фигуру на совершенно особое место. Закон Кулона не мог быть вскрыт в рамках парадигмы теории упругости, крутильные весы не могли появиться в рамках учения об электричестве. Своеобразие Кулона в том и состоит, что он оказался в точке взаимодействия указанных традиций, соединив их в себе неповторимым образом.
Путь Кулона – это как бы движение по проторённым дорогам, но с пересадками. Раньше эта дорога сопротивления материалов и теории упругости, затем традиция измерения сил. «Пересадка» возможна благодаря появлению особого объекта (в данном случае – это экспериментальная установка при исследовании кручения), который может быть осмыслен и использован в рамках как одной, так и другой традиции работы. Но не так ли и железнодорожная станция, лежащая на пересечении нескольких дорог?
Крайне любопытна дальнейшая судьба закона Кулона. Его открытие, как подчёркивает Я.Г. Дорфман, «не внесло на первых порах никаких новых результатов в развитие учения об электричестве. Плоды этого важного открытия обозначились лишь примерно через 25 лет, когда Пуассон с помощью этого закона решил математическую задачу о распределении заряда на различных проводниках и системах проводников (1811 г.)». Что же произошло? Дело в том, что закон Кулона по своей математической форме совпадает с законом всемирного тяготения Ньютона. Именно на это и обратил внимание Пуассон, после чего в электростатику хлынули математические методы теоретической механики, которые разрабатывались до этого в трудах Эйлера, Лагранжа и Лапласа. Это методы математической теории потенциала. Пуассон в своей работе 1811 г. как раз и осуществляет распространение математического понятия потенциала на электрическое и магнитное поля. «Весь этот быстрый прогресс теории электричества, – пишет Марио Льоцци, – был бы невозможен без предварительного развития идей и аналитических методов теоретической механики».
И здесь, следовательно, мы имеем дело с взаимодействием различных традиций, и Пуассон как бы осуществляет «пересадку» с одного поезда на другой. Пример показывает, что недостаточно просто получить какой-то результат, недостаточно сделать открытие, важно, чтобы сделанное было подхвачено какой-либо достаточно мощной традицией.
Примеров подобного рода можно привести много и без особого труда, что показывает, что мы имеем дело с устойчивой закономерностью. Вот описание первых шагов в развитии радиоастрономии: "Радиоастрономия зародилась в 19311932 гг., когда в процессе экспериментов по исследованию высокочастотных радиопомех в атмосфере (высокочастотных для обычного радиовещания, но низкочастотных с точки зрения радиоастрономии) Янский из лаборатории телефонной компании «Белл» обнаружил, что «Полученные данныеѕ указывают на присутствие трёх отдельных групп шумов: группа 1 – шумы от местных гроз; 2 – шумы от далёких гроз и группа 3 – постоянный свистящий шум неизвестного происхождения». Позднее Янский выяснил, что неизвестные радиоволны приходят от центра Млечного Пути.
Для того, чтобы стать открытием, новый метод должен был проникнуть в астрономию, но астрономы не обратили на работы Янского почти никакого внимания. Успеха добивается его последователь радиоинженер Рибер, который строит около своего дома первый параболический радиотелескоп, изучает астрофизику и вступает в личные контакты с астрономами. Только публикация в 1940 г. первых результатов Рибера послужила толчком к объединению усилий астрономов и радиоинженеров.
С аналогичной ситуацией мы сталкиваемся у истоков воздушной археологии. Один из пионеров этого метода Кроуфорд считает датой его рождения 1922 г. Решающий эпизод состоял в следующем: Кроуфорда попросили посмотреть несколько аэрофотоснимков, сделанных офицерами британских ВВС; военным показалось, что на снимках есть «что-то археологическое». Это «археологическое» было прежде всего древними межевыми валами, исследованием которых Кроуфорд тщетно пытался заниматься ещё в юности. «Я хорошо помню, – пишет он, – как все произошло. Кларк-Холл показал мне свои снимки. Они были покрыты прямоугольными белыми фигурами, которые сразу же напомнили мне то, что я тщетно пытался нанести на карту около десяти лет назад. Здесь, на этих нескольких фотографиях, был ответ на мучивший меня вопрос».
Трудно заподозрить военных в недостаточной традиционности. Очевидно, что они вовсе не собирались заниматься археологией. Археологические данные появляются на аэрофотоснимках столь же неожиданно, как космические источники радиоволн в исследованиях радиоинженера Янского. Традиционен и Кроуфорд, когда узнает на фотоснимках давно знакомые ему в принципе объекты. Все традиционны, и тем не менее происходит революция. Все полностью соответствует уже рассмотренной нами схеме: побочные результаты, полученные в рамках одной традиции, подхватываются другой, которая точно стоит на страже.
Метафорические программы и взаимодействие наук
Нередко новации в развитии науки бывают обусловлены переносом образцов из одной области знания в другую в форме своеобразных метафор.
Поясним это раньше на простом бытовом примере. Представьте себе добросовестного канцелярского служаку, который на каждого посетителя заполняет карточку с указанием фамилии, года и места рождения, национальности, родителей... Его работа стандартна и традиционна, хотя каждый раз он имеет дело с новым человеком и никого не опрашивает дважды. И вот неожиданно его переводят из канцелярии в библиотеку и предлагают составить каталог с описанием имеющихся книг. Предположим, что наш герой абсолютно не знаком с библиотечным делом и не получил никаких инструкций. Может ли он и на новом месте следовать прежним образцам? Может, если перейдёт к их метафорическому истолкованию. Книга – это аналог человека, и она тоже имеет «фамилию», т. е. название, год и место «рождения», т. е. издания, «национальность», т. е. язык, на котором она написана, «родителей», т. е. автора.
Но разве не то же самое происходит тогда, когда по образцу одной научной дисциплины или одной теории строятся науки или теории-близнецы? Вспомним пример с экологией, которая, возникнув как биологическая дисциплина, уже породила немало таких близнецов: экология преступности, экология народонаселения, культурная экология. Разве выражение «экология преступности» не напоминает метафоры типа «дыхание эпохи» или « бег времени»?
Проанализируем ещё один, несколько более сложный пример. В развитии геоморфологии, науки о формах рельефа, огромную роль сыграла теория эрозионных циклов В.М. Дэвиса. Согласно этой теории, все разнообразные формы рельефа образуются под воздействием двух основных факторов – тектонических поднятий суши и обратно направленных процессов эрозии. Не вызывает сомнения тот факт, что Дэвис работал в определённых традициях. В каких именно? На этот вопрос уверенно и однозначно отвечает известный географ и историк географии К. Грегори. «Образцом здесь, – пишет он, – служила концепция Дарвина о развитии коралловых островов, выдвинутая в 1842 г.». Итак, одна теория строится по образцу другой.
И действительно, есть явное сходство между дарвиновской теорией коралловых рифов и концепцией эрозионных циклов Дэвиса. У Дарвина все определяется соотношением двух процессов: медленного опускания морского дна, с одной стороны, и роста кораллов, с другой. У Дэвиса – поднятие суши, с одной стороны, и процесс эрозионного воздействия текучих вод на возвышенный участок, с другой. В обоих случаях два фактора, как бы противоборствуя друг другу, определяют тем самым различные стадии развития объекта. У Дарвина вследствие опускания суши на поверхности океана остаётся только одна коралловая постройка – атолл; у Дэвиса вследствие эрозии – почти плоская равнина – пенеплен. Перед нами один и тот же принцип построения модели, использованный при изучении очень разных явлений. Одна теория – это метафорическое истолкование другой.
Стоит задать вопрос: а как возникла теория образования коралловых островов Дарвина? Обратимся к его собственным воспоминаниям. «Ни один другой мой труд, – пишет Дарвин, – не был начат в таком чисто дедуктивном плане, как этот, ибо вся теория была придумана мною, когда я находился на западном берегу Южной Америки, до того, как я увидел хотя бы один настоящий коралловый риф. Правда, нужно заметить, что в течение двух предшествующих лет я имел возможность непрерывно наблюдать то действие, которое оказывали на берега Южной Америки перемежающееся поднятие суши совместно с процессами денудации и образования осадочных отложений. Это с необходимостью привело меня к длительным размышлениям о результатах процесса опускания [суши], и было уже нетрудно мысленно заместить непрерывное образование осадочных отложений ростом кораллов, направленным вверх».
Обратите внимание, Дарвин при построении своей теории идёт тем же самым путём, каким впоследствии пойдёт Дэвис. Опять две сходные теоретические концепции: опускание суши и накопление осадков в одном случае, и опускание дна океана и рост кораллов в другом. Первая из этих концепций принадлежит не Дарвину. Путешествуя на «Бигле», он в качестве настольной книги возил с собой «Принципы геологии» Лайеля, где даже на обложку было вынесено вошедшее потом во все учебники изображение колонн храма Юпитера-Сераписа со следами поднятий и погружений.
Проблема стационарности социальных эстафет
Предыдущее изложение строилось в рамках резкого противопоставления новаций и традиций. А как возможны сами традиции? Этот вопрос пока не возникал, а между тем он не только правомерен, но приводит к более глубокому пониманию процессов развития познания и науки. В основе любых традиций, как мы уже отмечали, лежит механизм социальных эстафет, т. е. механизм воспроизведения непосредственных образцов поведения и деятельности. В чем суть этого механизма? Нас здесь не будут интересовать вопросы физиологии или психологии подражания, они к делу не относятся. Главное, как мы покажем, – это проблемы социокультурного плана.
С конца прошлого века и до сравнительно недавнего времени считалось, что ребёнок овладевает речью путём подражания. Это представлялось почти очевидным фактом и не вызывало никаких возражений. Однако где-то за последние два десятка лет ситуация резко изменилась, и в литературе по психолингвистике стали звучать все более и более резкие голоса, доказывающие, что подражание, или имитация, ничего не объясняет и что ребёнок вообще не способен подражать. Чем это было вызвано? Считается, что гипотеза имитации не может объяснить таких фактов, как появление в детской речи неологизмов, фразовых структур и грамматических форм, которые ребёнок никогда не мог слышать от взрослых, т. е. явлений, отсутствующих в языке-образце. Многие исследователи считают одной из важных специфических особенностей детской речи её многозначность или, точнее, диффузность. Так, например, ребёнок может назвать одним словом кошку и все меховые предметы, часы и плоские круги, куклу и все, чем можно играть. Нередко это интерпретируют в том смысле, что главное место при овладении речью занимает не имитация, а генерализация.
Рассмотрим эти возражения, ибо они крайне важны для понимания механизма воспроизведения образцов. В свете того, что мы уже говорили об эстафетах и о социальных куматоидах вообще, противопоставление имитации и генерализации лишено смысла. Воспроизведение образцов деятельности, как правило, предполагает смену материала: один и тот же гвоздь не забивается дважды, один и тот же дом дважды не строится. Поэтому воспроизведение образца, или его имитация, всегда представляют собой и генерализацию. Другое дело, что генерализация, осуществляемая ребёнком, не совпадает с тем, что ждут от него взрослые. Ребёнку показывают на кошку и говорят: «это – кошка», желая, чтобы он делал нечто подобное применительно к других кошкам, а он почему-то начинает называть кошкой меховую шапку. Вот тут мы, действительно, сталкиваемся с интересным явлением, заслуживающим анализа.
Казалось бы, все просто: мы указали ребёнку образец наименования, он должен этот образец воспроизводить, т. е. обозначать словом «кошка» только кошек. А если он называет так шапку, то какая же это имитация? Концепция социальных эстафет не выдерживает критики. Но стоит вдуматься в ситуацию и становится ясно, что ребёнок поступает вполне правильно, точнее, единственно возможным способом. Мы требуем от него, чтобы он называл словом «кошка» все предметы, похожие на тот, который был указан. А разве меховая шапка не похожа на кошку? Вообще говоря, на кошку похоже решительно все. В мире вообще нет двух предметов, между которыми нельзя было бы установить сходства. Отсюда следует очень важный вывод: отдельно взятый образец не задаёт никакого чёткого множества возможных реализаций. Но тогда какой же это образец? Да, отдельно взятый «образец» просто не является образцом, ибо его реализация есть нечто неопределённое.
Впервые это понял Людвиг Витгенштейн. Воспользуемся его примером. Допустим, мы хотим задать образец употребления слова «два» и произносим это слово, указывая на группу из двух орехов. В чем должно состоять подражание? "Ведь тот, кому предъявляют эту дефиницию, – пишет Л. Витгенштейн, – вовсе не знает, что именно хотят обозначить словом «два»; он предположит, что ты называешь словом «два» эту группу орехов! Он может это предположить; но, возможно, он этого и не предположит. С таким же успехом он мог бы, услышав, как я даю указательное определение собственному имени, понять его как цветообозначение, как название расы или даже как название некоторой стороны света".
И все же мы постоянно пользуемся такими указательными (остенсивными) определениями и пользуемся вполне успешно. В свете всего сказанного это тоже нуждается в объяснении. Секрет, вероятно, в том, что образцы никогда не демонстрируются изолированно, но всегда в определённом конкретном контексте, куда входит и предметное окружение, и множество других образцов. Если поэтому в присутствии незнакомых людей вы указываете на себя и называете своё имя, то очень много шансов, что вас поймут правильно. Никто, например, не будет воспринимать это как обозначение цвета вашей рубашки или страны света хотя бы потому, что образцы соответствующих обозначений уже есть у присутствующих.
Вот что пишет по этому поводу автор известного курса теоретической лингвистики Джон Лайонз: "Ребёнок, овладевающий английским языком, не может овладеть сначала референцией слова green, а затем, поочерёдно, референцией слова blue или yellow так, чтобы в конкретный момент времени можно было бы сказать, что он знает референцию одного слова, но не знает референции другого... Следует предположить, что на протяжении определённого периода времени ребёнок постепенно узнает позицию слова green относительно слова blue и yellow, а слова yellow относительно слов green и orange и т. д. до тех пор, пока он не узнает позиции каждого цветообозначения относительно его соседа в данной лексической системе и приблизительного прохождения границ той области в континууме данного поля, которая покрывается каждым словом". Итак, отдельное цветообозначение просто не имеет определённой референции, оно приобретает её только в единстве с совокупностью других цветообозначений. Обобщая это, мы получаем ещё один принципиальный тезис: содержание эстафет, их относительная стационарность, сам факт их существования – все это эффект социокультурной целостности или, что то же самое, эффект контекста.
Нетрудно проиллюстрировать решающую роль контекста при понимании не только отдельных слов, но и целых предложений. Допустим, вы произносите фразу: «Сейчас восемь часов утра». Как её воспримет ваш собеседник? В одной ситуации он может вскочить и воскликнуть, что он опаздывает на работу, в другой – зевнуть и сказать, что ещё можно поспать. Но это, можете вы сказать, не сама фраза, а выводы из неё, а фраза имеет один и тот же устойчивый смысл: стрелка часов остановилась на указанном делении циферблата. Это так, если у вас стрелочные часы, а если они цифровые? А не приобретает ли эта фраза несколько иной смысл в ситуации, когда вы слышите сигнал проверки времени? Надо учесть и тот факт, что само наличие современных часов – это тоже элемент контекста. А как аналогичную фразу воспринимали в эпоху песочных или водяных часов?
Было бы в высшей степени неверно воспринимать все сказанное в свете привычных и достаточно тривиальных представлений: да, все зависит от обстоятельств, от окружения, любой предмет меняется под воздействием внешних условий. Нет, дело не в этом. Мы сталкиваемся здесь с принципиально новой ситуацией. Отдельное слово, отдельная фраза просто не существуют вне контекста, контекст их не изменяет, а порождает. Иными словами, мы должны перестать мыслить в рамках идеологии элементаризма, согласно которой целое состоит из частей. Человек живёт и действует в некотором универсуме эстафет, но если мы попытаемся разобрать это множество на отдельные элементы, нас постигнет неудача, ибо элементы при этом теряют свою определённость. Ситуация несколько парадоксальная: целое существует как нечто достаточно определённое во всех своих частях, но эти части при попытке их выделения фактически перестают существовать.
С этой странной, с точки зрения здравого смысла, ситуацией прежде всего столкнулись гуманитарии, потом физики. Где-то в начале двадцатых годов в «Экспериментальной лаборатории» известного кинорежиссёра Л. В. Кулешова был поставлен такой эксперимент. Взяв из старого фильма крупный план актёра Мозжухина (притом весьма невыразительный), Кулешов смонтировал его с кадрами, на которых были изображены тарелка супа, гроб и ребёнок. Когда смонтированные таким образом три сцены были показаны непосвящённым и ничего не подозревающим зрителям, они были поражены, с каким искусством Мозжухин последовательно передаёт чувство голода, глубокой печали и отцовского умиления.
На основании аналогичных экспериментов крупный психолог начала ХХ в. Макс Вертгеймер писал в 1924 г.: «Долгое время казалось само собой разумеющимся, что наука может строиться только следующим образом: если я имею что-то, что должно быть исследовано научно, тогда сначала я должен понять это как составное, как какой-то комплекс, который необходимо расчленить на составляющие элементы, изучить закономерные отношения, существующие между ними, и лишь затем я прихожу к решению проблемы: путём составления имеющихся элементов я восстанавливаю комплекс.» Не трудно видеть, что речь идёт о единстве анализа и синтеза в научном мышлении. И именно от этого традиционного подхода мы, с точки зрения Вертгеймера, должны отказаться. Все дело в том, пишет он, что «существуют связи, при которых то, что происходит в целом, не выводится из элементов, существующих якобы в виде отдельных кусков, связываемых потом вместе, а, напротив, то, что проявляется в отдельной части этого целого, определяется внутренним структурным законом всего этого целого».
А вот как та же идея звучит в современном курсе квантовой механики: «Квантовая механика в принципе отрицает возможность описания мира путём деления его на части с полным описанием каждой отдельной части – именно эту процедуру часто считают неотъемлемой характеристикой научного прогресса».
Но вернёмся к нашей основной теме. Социальные эстафеты – это порождение социокультурной целостности. Они, как уже показано, не существуют сами по себе, но только в определённом контексте. Поэтому смена контекста всегда вызывает и изменение содержания образцов. Но, с другой стороны, такая смена неизбежна, она постоянно имеет место. Строго говоря, каждый акт реализации существующих образцов порождает новые образцы, а следовательно, и смену контекста. В объяснении нуждается не столько постоянное появление нового, сколько удивительная стационарность некоторых эстафет типа эстафет, задающих грамматические структуры языка, или эстафет фольклора.
Надо сказать, что для ХХ в. вообще характерна такая переориентация с поиска причин изменения и развития на анализ устойчивости, стационарности и самоорганизации. В значительной степени это коснулось и философии науки. Приведём высказывание известного специалиста в этой области Ст. Тулмина: «Почти во всей интеллектуальной истории устойчивость и универсальность наших фундаментальных форм мышления считалась надлежащей и естественной; тем феноменом, который нужно или доказать, или оправдать, были интеллектуальные изменения. Наша нынешняя позиция меняет ситуацию. Интеллектуальный поток, а не интеллектуальная неизменность – вот то, чего следует ожидать теперь; любые постоянные, устойчивые или универсальные черты, которые можно обнаружить в действительно существующих моделях мышления, становятся теперь теми „явлениями“, которые требуют объяснения».
В свете изложенного можно построить общую и принципиальную модель развития науки и культуры. Представьте себе, что имеется некоторый исходный набор образцов, в рамках которых осуществляется деятельность. Каждый акт их реализации, как уже отмечалось, есть порождение новых образцов, в чем-то отличных от предыдущих. Эти последние, однако, теперь тоже воспринимаются в новом контексте и приобретают новое содержание. Образно выражаясь, можно сказать, что «генофонд» культуры потенциально бесконечен.
Приведём конкретный пример такого преобразования старых образцов. _В работах Эйнштейна несколько раз встречается аналогия между специальной теорией относительности и термодинамикой. «Общий принцип специальной теории относительности, – пишет он, – содержится в постулате: законы физики инвариантны относительно преобразований Лоренца (дающих переход от одной инерциальной системы к любой другой инерциальной системе). Это и есть ограничительный принцип для законов природы, который можно сравнить с лежащим в основе термодинамики ограничительным принципом несуществования вечного двигателя». Это показывает, что Эйнштейн при понимании характера и места своей теории опирался на образцы классической физики.
А теперь посмотрим, как воспринимается теория относительности в свете квантовой механики. "Положив в основу нового способа описания, – пишет В.А.Фок, – результаты взаимодействия микрообъекта с прибором, мы тем самым вводим важное понятие относительности к средствам наблюдения, обобщающее давно известное понятие относительности к системе отсчёта". Теперь уже теория относительности в свою очередь выступает в функции образца, но теперь уже при понимании и интерпретации физики неклассической. Следует вспомнить здесь, что с этой интерпретацией сам Эйнштейн так и не согласился.
Вот что пишет И. Р. Пригожин по этому поводу: «Сам Эйнштейн полагал, что невозможность передачи информации со скоростью выше скорости света позволила ему сделать утверждение, аналогичное содержащемуся в принципах термодинамики. Однако современники и в ещё большей степени послеэйнштейновское поколение физиков извлекли из успеха относительности совсем другой урок. Для них относительность означала невозможность описания природы извне: физика делается людьми и для людей. Таков, например, урок, который Гейзенберг перенёс на квантовую механику... Если мы вспомним глубокое убеждение Эйнштейна, что „физика – это попытка постичь реальность такой, какая она есть, безотносительно к тому факту, что её наблюдают“, мы уже можем понять и триумф Эйнштейна, и коллизии в интерпретациях, которые за ним последовали».
Приведённый пример не следует воспринимать как движение с пересадками, хотя такие ассоциации здесь и могут возникнуть. Квантовая механика вовсе не строилась по образцу специальной теории относительности. Но уже будучи созданной, она вкладывает в последнюю новое содержание, с которым никогда не соглашался сам Эйнштейн, но которое становится тем не менее достоянием культуры.
Тот факт, что содержание образцов определяется контекстом, порождает трудности исторической реконструкции и соответственно – основные методологические проблемы историко-научного и вообще исторического исследования. Как возможно понимание науки или культуры прошлых эпох, если мы неизбежно воспринимаем их в нашем современном контексте?
Глава 6.
Традиции и феномен знания
Знание – это то, к чему мы все настолько привыкли, что очень редко задаём себе знаменитый фаустовский вопрос: Что значит знать? А между тем, привычка – это вовсе не знание. Скорей даже наоборот, ибо, как отмечал И. С. Тургенев: «Ничего мы не знаем так мало, как именно то, что у нас беспрестанно перед глазами». В значительной степени это относится и к самому знанию. Иными словами, мы очень плохо знаем, что такое знание.
«Третий мир» Карла Поппера
Карл Поппер предложил в 1967 году различать следующие три «мира»: во-первых, мир физических объектов или физических состояний; во-вторых, мир состояний сознания, мыслительных (ментальных) состояний, в-третьих, мир объективного содержания мышления, мир научных идей, проблем, поэтических мыслей и произведений искусства. Этот «третий мир» вполне объективен и осязаем. Это мир книг, библиотек, географических карт, мир произведений живописи. Книга, согласно Попперу, содержит объективное знание независимо от того, прочитает её кто-нибудь или не прочитает. Важно только то, что она потенциально может быть прочитана и понята. Это примерно так же как осиное гнездо является осиным гнездом, даже если оно покинуто, и осы там не живут.
Концепция Поппера подчёркивает своеобразие и загадочность знания как объекта исследования: для того, чтобы найти ему место в цепи явлений, понадобилось выделить особый «третий мир». Настаивая на самостоятельном и независимом существовании этого мира, Поппер предлагает следующий мысленный эксперимент. Представьте себе, что уничтожены все наши машины и орудия труда, а также все субъективные знания и навыки, позволявшие пользоваться ими. Восстановится ли цивилизация? Да, отвечает Поппер, если при этом сохранятся библиотеки и наша способность читать и понимать книги. В противном случае для восстановления цивилизации потребуются тысячи лет.
Нам представляется, что рассуждения Поппера несколько противоречивы. Допустим, что в условиях предложенного эксперимента мы открываем учебник физики и наталкиваемся на так называемое правило буравчика, задающее направление линий напряжённости магнитного поля прямого тока: «если поступательное движение буравчика сопоставить направлению тока, то направление вращения его рукоятки даёт направление магнитных линий напряжённости». Сумеем ли мы понять это правило в рамках попперовского мысленного эксперимента? Будет ли оно нести для нас какую-то информацию? Не забудьте, что Поппер предложил уничтожить и орудия труда, и навыки их использования. Короче, мы не знаем, что такое буравчик, никогда его не видели, и никто нам не демонстрировал, как им пользоваться.
Поппер, конечно, мог бы возразить и сказать, что буравчик описан в курсе механики, что в литературе можно найти указания, как нарезать резьбу и т. д. и т. п. Но значит ли это, что весь наш практический опыт зафиксирован в виде текстов? Эксперимент Поппера фактически это предполагает. Но ведь уже ребёнок, не читая никаких текстов, умеет резать, пилить, завинчивать, связывать, склеивать, зажигать, сворачивать, катить, рубить, перемешивать. И все эти действия, список которых, как ясно каждому, можно продолжать и продолжать, существуют и воспроизводятся в конкретном орудийном контексте, в контексте искусственно созданных вещей, окружающих ребёнка с самых первых его дней. У нас поэтому нет никакой необходимости фиксировать в текстах элементарные трудовые навыки, даже если бы это было возможно. Но это и невозможно, ибо сам язык уже предполагает их наличие. Поэтому, уничтожив все орудия и соответствующие им навыки, мы уничтожили и цивилизацию. Книги нам не помогут.
И все же Поппер, как нам представляется, прав, выделяя мир знания в качестве особого третьего мира. Но этот особый мир – это не мир книг и библиотек, а мир социальных эстафет, включая и эстафеты речевой деятельности, и эстафеты элементарных трудовых операций. Выше мы уже отмечали, что знание – это куматоид. Конечно, современное научное знание не существует без книг, но книги – это только материал, только среда, на которой живут эстафеты понимания и интерпретации текстов, включающие в свою очередь в действие другие эстафеты, уже непосредственно образующие содержание знания.
Книга в чем-то подобна магнитофонной ленте, на которой записана симфония Бетховена. Сама лента – это ещё не музыка. Нам необходимо вдобавок считывающее устройство и устройство, преобразующее электромагнитные колебания в звук. Что же такое знание, если пользоваться приведённой аналогией? Это и не лента, и не музыка сами по себе, это то устройство, которое позволяет перейти от одного к другому. Знание прежде всего – это некоторое особое устройство памяти.
Знание как механизм социальной памяти
Вероятно, в истории человечества был период, когда вся деятельность людей воспроизводилась исключительно на уровне непосредственно данных образцов. Однако было бы абсурдным пытаться представить таким образом современную культуру. Здесь появляется особое устройство памяти, появляется знание. Что же это такое в свете изложенных выше представлений? Не вдаваясь в детали этой проблемы, мы ограничимся построением крайне упрощённой, хотя и принципиальной модели.
Знание, разумеется, не отрицает эстафет и не существует без них. Но эстафетный механизм очень ограничен в своих возможностях, он ограничен, образно выражаясь, нашим индивидуальным полем зрения. Каждый человек может воспроизводить только то, что он непосредственно наблюдал, он владеет только той совокупностью образцов, которая была ему продемонстрирована. Что же делать, если мы попадаем в ситуацию, в которой наши образцы не срабатывают? Как мобилизовать весь социальный опыт? Конечно, нас выручает язык. Владея языком, мы можем спросить совета. При этом приглашённый нами консультант может поступить двояким образом: а) он может просто показать нам, как надо действовать в ситуации, в которую мы попали; б) он может объяснить на словах, как надо действовать, т. е. описать способ действия. Первое более просто, но предполагает, что консультант включён с нами в одну и ту же ситуацию. Совет второго типа можно дать заочно, но для этого требуется, чтобы мы были способны описать ситуацию, которая нас интересует. Кроме того консультант в этом случае должен уметь разложить сложное действие на более простые элементы, доступные тому, кого он консультирует.
Однако и непосредственная речевая коммуникация имеет свои границы. Она предполагает, что необходимые консультанты всегда имеются под рукой. Поскольку это далеко не всегда так, может возникнуть традиция их организации. Один из таких случаев описан у Геродота. «Есть у вавилонян, – пишет он, – ѕ весьма разумный обычай. Страдающих каким-нибудь недугом они выносят на рынок (у них ведь нет врачей). Прохожие дают больному советы [о его болезни] (если кто-нибудь из них или сам страдал подобным недугом, или видел его у другого). Затем прохожие советуют больному и объясняют, как сами они исцелились от подобного недуга или видели исцеление других. Молча проходить мимо больного человека у них запрещено: каждый должен спрашивать, в чем его недуг». Будем называть явления подобного рода информационным рынком. По сути дела, и в наше время имеет место нечто подобное: мы собираем медицинские консилиумы, экспертные комиссии, научные симпозиумы... При всем различии этих явлений их объединяет одна общая особенность: происходит организация не знаний, не опыта самого по себе, а его носителей.
Как же возникает знание и что это такое? Начнём с простой аналогии. Н. И. Зибер, ссылаясь на Коцебу, описывает следующий способ ведения торговли между чукчами и чибуками в Северной Америке: «Чужеземец является, кладёт на берег известные товары и потом удаляется; тогда является чибук, рассматривает вещи, кладёт столько кож рядом, сколько считает нужным дать, и уходит в свою очередь. После этого чужеземец опять приближается и рассматривает предложенное ему; если он удовлетворён этим, он берет шкуры и оставляет вместо них товары, если же нет, то он оставляет все вещи на месте, удаляется вторично и ожидает придачи от покупателя. Так идёт вся торговля, глухо и молчаливо...».
Перед нами не только акт товарообмена, но и акт коммуникации, ибо стороны некоторое время ведут переговоры, задавая молчаливые вопросы и получая соответствующие ответы. Дождёмся конца их диалога и сохраним разложенные товары. То, что мы получили, вполне можно рассматривать как прейскурант, т. е. как знание о ценах товаров. При этом происходит следующее: достигнутое в ходе торговли соглашение мы начинаем рассматривать как образец для дальнейшего воспроизведения. Нечто подобное возможно, однако, не только на товарном, но и на информационном рынке. Здесь тоже одна сторона задаёт вопросы, другая даёт ответ. Возьмём эту ситуацию в качестве образца для воспроизведения и получим знание уже в полном смысле слова. Представим себе, например, что в ситуации, описанной Геродотом, один из участников описывает свою болезнь, а другой – способ лечения. Закрепив этот акт коммуникации в качестве образца путём устного воспроизведения или письменно, мы получим знание типа: болезнь с такими-то симптомами лечится таким-то путём. Первые дошедшие до нас системы знаний как раз и представляют собой списки рецептов такого рода. Это либо медицинские рецепты, записанные на глиняных табличках или папирусах, либо списки математических задач с решениями.
Если принять предложенную модель, то знание выглядит как особая эстафета, в рамках которой закрепляются и транслируются акты коммуникации, акты общения «консультанта» с «пациентом». В самом исходном таком акте элементы будущего знания распределены между разными участниками: один формулирует задачу, другой указывает способ решения. Эстафеты, формирующие знание, закрепляют единство этих элементов, и мы получаем чисто вербальную форму фиксации опыта, защищённую от ситуативности коммуникационных актов.
Строение знания и его содержание
Представим себе наивного новичка в минералогическом музее. Его внимание привлекает кристалл, под которым лежит табличка с надписью: «Мусковит, Родопы». Мы, конечно, предполагаем, что наш герой умеет читать и способен сообразить, что табличка относится именно к данному кристаллу, а не к тому, который расположен справа или на другой витрине. В принципе это не очевидно, и свидетельствует, что герой работает в некоторой традиции и не первый раз сталкивается с подобного рода табличками. Может быть, к примеру, он бывал в зоопарке и помнит, что там были аналогичные таблички на клетках с животными.
Если это так, то воспринятый текст, куда, кстати, входит в данном случае не только табличка, но и кристалл, включает для нашего героя в действие по крайней мере две социальные эстафеты, потенциальным участником которых он был. Во-первых, вспомнив про зоопарк, он правильно соотносит табличку с кристаллом, во-вторых, понимает, что речь идёт о названии, что минерал называется «мусковит». Образцы использования имён у него, конечно, есть.
Допустим что наш герой не знает, что такое Родопы. Тогда он может предположить, что минерал имеет не одно, а два названия. Однако, увидев на другой витрине надпись «Гранат, форт Врангеля, Аляска», он поймёт, что «Родопы» – это, скорее всего, не название минерала, а указание местонахождения. Это значит, что он начинает осваивать"синтаксис" нашего текста и понимать, что на первом месте расположен объект знания, на втором – имя, на третьем – имя географического места. Термин «Родопы», как мы уже отмечали, не вызывает у него никаких ассоциаций, но термин «Аляска» подключает ещё одну эстафету: Аляску, например, он может найти на географической карте.
Итак, прежде всего наш герой должен правильно прочитать текст, разобравшись в его «синтаксической» структуре. Текст должен быть прочитан примерно так: «Данный минерал называется „мусковит“ и найден в Родопах». Мы не предполагаем, что герой должен обязательно произнести приведённую фразу, нам важно только то, что он соотнёс текст с имеющимися у него образцами и выделил в нем функциональные элементы: кристалл – это функционально то же самое, что бегемот в зоопарке; «мусковит» – это то же самое, что имя «бегемот»; «Родопы» – это то же самое, что «форт Врангеля, Аляска». Будем условно называть эти социальные эстафеты синтаксическими.
Но что нового получил наш герой, правильно прочитав текст, каково содержание представленного ему знания? Здесь возможны несколько вариантов. Рассмотрим их по порядку. 1. Предположим для начала, что герой ничего никогда не слышал о мусковите и о Родопах. В этом случае он получает, только образцы использования имён и ничего больше. Можно сказать, что он правильно ориентируется в строении знания, но не овладел его содержанием. 2. Предположим теперь, что новичок все же кое-что читал о минералах и о мусковите в том числе. В этом случае он получает возможность применить свои знания, впервые соотнеся их с конкретным предметом. Аналогичным образом, если он читал о Родопах, то способен теперь найти на карте место, где имеет смысл искать подобные кристаллы.
О чем говорит приведённый пример? Во-первых, он показывает, что знание – это некоторая эстафетная структура, и все включённые в неё эстафеты можно разбить на две группы: одни (синтаксические эстафеты) образуют как бы устройство ячейки памяти, другие – её содержание. При этом ясно, что содержание одной и той же ячейки может быть различным. В нашем примере все зависело от предшествующего опыта героя, но можно рассматривать не индивидуальный, а социальный опыт в его историческом развитии. Хорошо, в частности, видно, что, чем богаче опыт, тем богаче и содержание знания. Во-вторых, пример показывает, что содержание знания состоит в соотнесении предшествующего опыта с новым объектом или ситуацией. Знание «перебрасывает» опыт в новую ситуацию, в рамках которой он ещё не использовался. Поскольку опыт в простейшем случае – это эстафеты, то знания, как мы уже отмечали, – это своеобразные «волноводы».
Согласно сказанному, в самом содержании знания можно также вычленить два элемента: во-первых, это указание средствами языка или с помощью образцов, как в приведённом примере, тех объектов или ситуаций, куда переносится предшествующий опыт, во-вторых, сам этот опыт. Указанные таким образом объекты или ситуации – это референты знания. Переносимый опыт, который существует чаще всего в форме эстафет, мы будем называть репрезентатором. Построение знания, с этой точки зрения, – это поиск репрезентаторов для тех или иных объектов или ситуаций.
Понятие репрезентатора
Что же такое репрезентатор? Попробуем теперь подойти к этой теме как бы с другого конца, отталкиваясь от общего вопроса о природе познания. Что значит познать какое-нибудь явление? Самый общий ответ такой: познание – это сведение неизвестного к известному. Но что в конечном итоге считать известным? Может быть, это то, что мы многократно наблюдали, много раз видели? Но многократно наблюдаемое ещё не есть познанное. Люди тысячи лет наблюдали грозовые явления, однако, первый существенный шаг в их познании совершил только Вениамин Франклин, показав, что молния – это та же самая электрическая искра, которую мы можем получить от лейденской банки. А лейденская банка отличается одним существенным качеством: она есть продукт нашей деятельности. Естественно, возникает мысль, что в качестве того, что известно, фигурирует в познании именно деятельность и её элементы. Познать – значит прямо или косвенно, но как-то соотнести изучаемое явление с человеческой деятельностью, воспроизводимой в конечном итоге в рамках определённых социальных эстафет.
Совсем иным путём мы снова приходим к понятию репрезентатора. Говоря при этом о деятельности, вовсе не обязательно иметь в виду материальное производство и потребление. В качестве репрезентаторов могут выступать способы решения познавательных задач, например, экспериментальные или теоретические методы, включая методы математического моделирования и расчёта. Первые дошедшие до нас системы знаний – это списки решённых математических задач или медицинских рецептов.
Картину можно конкретизировать, если рассмотреть некоторые эксперименты, связанные с развитием детской речи. Возьмите ребёнка около 5 лет и задавайте ему однотипные вопросы относительно хорошо знакомых ему окружающих предметов: Что такое нож? Что такое хлеб? Важно при этом, чтобы ребёнок не слышал предварительно каких-либо определений, даваемых взрослыми, и не мог их копировать. Ответы будут носить примерно такой характер: «Что такое нож?» – «Резать.» – «Что такое хлеб?» – «Его едят.» – «Что такое стул?» – «Сидеть.» Короче говоря, ребёнок чаще всего связывает окружающие предметы прежде всего с действием. Именно действие, характер использования предмета составляет содержание того или иного понятия.
Указанные эксперименты описаны в работе Рыбникова «Язык ребёнка», 1926 года издания. Вот несколько сокращённый перечень ответов детей разного возраста на вопрос «что такое нож?», взятый из этой книги.
5 лет. Резать хлеб.
6 лет. Режут хлеб им. Из железа не весь.
7 лет. Резать хлеб, ветчину, мясо. Он из железа.
8 лет. Им все режут. Из железа, у него приделана ручка деревянная.
9 лет. Нож из железа и стали, с насаженной стальной и деревянной ручкой.
Обратите внимание, первоначально доминируют характеристики такого типа: «нож – это то, чем режут»; но постепенно появляются и развиваются определения, казалось бы, совсем иного характера: «нож сделан из железа и насажен на рукоятку». Можно ли первые принципиально и категорически противопоставить вторым? В рамках нашего обсуждения, вероятно, нет. В одном случае указывается, как нож используется, как он функционирует в качестве средства человеческой практической деятельности, в другом – как он создаётся, производится, т. е. как он может быть получен в качестве продукта. Иными словами, в обоих случаях речь идёт об указании операций, способов действия с предметами, об указании его места в человеческой производственной практике.
Но тут перед нами возникает принципиальный вопрос: действительно ли все содержание наших понятий может быть сведено к указанию практических операций, практических действий с предметами? Представьте себе, что вы знаете, как пользоваться ножом, знаете, например, что им можно резать хлеб. Но вот перед вами хлеб и ещё несколько предметов, вам известно, что среди предметов есть нож, казалось бы, чего проще, но Каким образом вы найдёте нож, как вы его узнаете среди других предметов? Указание типа «это то, чем режут» в данном случае не помогает, ибо пока никто ничего не режет. Не помогает и знание способов изготовления ножа. Заострённая полоса металла, насаженная на рукоятку, – это и пила, и стамеска, и коса, и многое другое. Оказывается, что нам мало указания, тех операций, которые возможны с предметом. Нам надо уметь ещё до подключения практических действий непосредственно распознать предмет. А для этого мы должны иметь какой-то его образец, нам должны его продемонстрировать. Иными словами, речь идёт уже о репрезентаторах какого-то другого типа.
Все это можно проиллюстрировать не только на примерах детской речи, но и на истории развития науки. Особенно интересна в этом плане история русского почвоведения. Основной объект изучения, т. е. почва, понимается здесь первоначально чисто функционально, а именно – как то, что пашут, как пахотный слой. Разумеется, любой крестьянин умеет как-то выделять почву и по внешнему виду. Ведь он не пашет чистый песок. Но для науки нужны чётко заданные морфологические характеристики, а они первоначально отсутствуют. Это продолжается вплоть до конца XIX века. Функциональный подход приводит к большому количеству трудностей. Так, например, агроном и лесовод выделяют в качестве почвы разные объекты, хотя, казалось бы, руководствуются одним определением. «Пахотный слой» у них разный, ибо корни интересующих их растений распространяются на разную глубину. Только В. В. Докучаев, которого как раз и считают основателем научного почвоведения, находит выход из затруднения. Каким образом? Он определяет почву морфологически, введя представление о почвенном горизонте и дав его описание. Эта характеристика совершенно не зависит от того, какие мы осуществляем практические мероприятия. Просто делается разрез на определённую глубину и описывается характер слоев, их цвет, структура, химический состав. Такие почвенные срезы хранятся сейчас в музеях в качестве образцов.
Будем говорить в дальнейшем о репрезентаторах функциональных и морфологических. Как их противопоставить друг другу? На материале приведённых примеров может возникнуть мысль, что первые – это образцы действий с предметами, а вторые – образцы самих предметов. Действительно, наука не может существовать без музеев, без эталонов, без постоянной демонстрации образцов минералов, горных пород, биологических видов. Уничтожить все это – значит уничтожить и знание. Но, строго говоря, при таком определении между двумя выделенными типами репрезентаторов трудно провести достаточно чёткую границу. Во-первых, действия всегда связаны с какими-то предметами и не существуют без них: мы режем ножом, рубим топором и т. д. Во-вторых, демонстрация предмета самого по себе, т. е. вне деятельности, ничего не даёт, ибо не позволяет выделить существенные признаки. Просто показав человеку гирю, мы не добьёмся понимания того, что речь идёт об эталоне веса. В-третьих, наконец, сами действия тоже имеют некоторую морфологию и не только реализуются, но и распознаются в соответствии с имеющимися образцами. Будем поэтому считать, что в качестве репрезентаторов всегда выступают целостные акты деятельности. Но в множестве этих актов можно выделить достаточно специфические акты распознавания и именно с ними связать морфологическую репрезентацию. Она предполагает, что предмет или операция заданы в составе специализированной деятельности сравнения с другими как-то обозначенными и постоянно воспроизводимыми предметами или операциями. Только в рамках этой деятельности последние однозначно выделяются в специфической роли эталонов или образцов.
Описания и предписания
Традиционно принято различать и противопоставлять друг другу знания-описания и знания-предписания. Первые фиксируют какие-то признаки изучаемых явлений, якобы, безотносительно к деятельности; вторые, напротив, задают конкретную рецептуру действия. Попробуем показать, что между одними и другими нет непроходимой границы.
Начнём с конкретного примера, который, как может показаться, ярко иллюстрирует операциональный характер знания. Откроем книгу «Синтезы фторорганических соединений». Перелистывая эту работу, мы почти на каждой странице находим описания синтеза, имеющие вид конкретных рецептов. Вот в качестве иллюстрации небольшой отрывок текста, представляющий собой описание синтеза пентафторбензилового спирта: «В круглодонную двугорлую колбу ёмкостью 0,5 л, снабжённую трубками для ввода азота и вывода паров формальдегида и азота, помещают 8090 г сухого -полиоксиметилена и нагревают на бане из сплава Вуда при 180190 C с одновременным пропусканием тока сухого азота». Продолжать нет смысла, ибо уже ясно с текстом какого типа мы здесь имеем дело.
Но предписание перед нами или описание? Если вглядеться внимательно, то приведённый отрывок – это вовсе не предписание, а скорее, описание. Действительно, утверждается, что для получения определённого вещества делают то-то и то-то, скажем, помещают в колбу такие-то вещества. Обратите внимание: не «делайте», а «делают» , не «надо поместить», а «помещают». Перед нами описание того, что делают химики. Почему же почти каждый чаще всего воспринимает этот отрывок как предписание? Ответ даёт концепция социальных эстафет. Все дело в том, что речь идёт об описании деятельности, а описание деятельности воспринимается как образец для воспроизведения, т. е. как предписание. Иными словами, будучи описанием по своей грамматической форме, текст функционирует как предписание.
Но только ли в грамматической форме здесь дело? Нет ли и более глубоких различий? Несомненно, есть. Рассматривая приведённый отрывок как описание деятельности, мы как бы выдвигаем на первое место морфологическую репрезентацию, мы воспринимаем текст как результат распознавания тех предметов, с которыми оперируют химики, тех действий, которые они осуществляют. Но если описанный акт деятельности становится образцом для воспроизведения, то на первое место выдвигается уже функциональная репрезентация. Но и то и другое фактически одновременно присутствуют в приведённом тексте, все зависит от нашей точки зрения, от контекста понимания.
Уже на примере детей мы видели, что описания вещей представляют собой завуалированные описания деятельности. Так, например, описание того, как устроен нож, – это фактически описание способа его производства. Нечто подобное мы встречаем и в науке. Вот как описывает Д. И. Менделеев приборную установку Лавуазье для анализа воды: «Прибор, устроенный ими, состоял из стеклянной реторты с водою, конечно, очищенною; вес её был предварительно определён. Горло реторты вставлено в фарфоровую трубку, помещённую внутри печи и накалённую до-красна посредством углей. Внутри этой трубки были положены железные стружки, которые, при накаливании, разлагают водяные пары. Конец трубки соединён с змеевиком, предназначенным для сгущения части воды, проходящей без разложения чрез трубку. Эта сгустившаяся вода стекала в особую стклянку. Образовавшийся чрез разложение газ собирался в водяной ванне под колокол». Не трудно видеть, что все это очень напоминает описание ножа как полоски металла, которая насажена на рукоятку. Менделеев детально показывает, как сделана установка или, что то же самое, как её можно сделать. Описание и предписание и здесь легко преобразуются друг в друга.
Сказанное позволяет обобщить в конечном итоге идею операциональности знания и на описания природных объектов. Дело в том, что мы начинаем и природу описывать по образцам описания деятельности, рассматривая природные объекты в качестве субъектов действий. Приведём в качестве примера описание реки Меза, взятое из работ крупнейшего геоморфолога В. М. Дэвиса: «Узкий бассейн Меза расположен между широко раскинувшимися притоками Сены на западе и Мозелем на востоке. Стройный ствол русла Меза, с обеих сторон почти совсем лишённый притоков, похож на один из тех высоких, коротко остриженных тополей, которые путешественник часто встречает вдоль магистральных дорог Франции, – и это сравнение вполне законно, так как есть серьёзные основания думать, что у Меза действительно некоторые притоки были отсечены и присоединены к бассейнам его более мощных соседей. Бассейн Меза подобен остаткам владений маленького принца, расположенных между двумя могущественными королевствами, покушающимися на его права. Правильность такого сравнения станет очевидной, когда мы рассмотрим все особенности трёх названных рек». Нужно ли специально доказывать, что репрезентация и здесь носит операциональный характер? Речь идёт об описании «деятельности» трёх рек, две из которых «отобрали» притоки у третьей. Все строится по схеме: было сделано то-то и получено то-то. И это описание легко преобразовать в рецепт, хотя и трудно реализуемый, если его адресовать человеку.
Репрезентация в художественном мышлении
В дневниках М.М. Пришвина есть очень интересное рассуждение, сближающее научное и художественное мышление. Приведём это рассуждение целиком, ибо оно вполне того заслуживает.
"Fodis. Этот инструмент для измерения расстояния от предмета не сходя с места и без метра устроен так, что смотришь в щёлку на предмет и видишь два изображения его, повёртываешь колесцо таким образом, чтобы эти два изображения слились в одно, и когда они сливаются – конечно! смотришь на деление, и чёрточка на движущемся круге указывает число метров от себя до предмета.
Я работаю в литературе совершенно так же, как Fodis: у меня два круга, один видимый и другой в себе самом, но, видя все вокруг себя, я ничего не нахожу ценного для изображения словом, и точно так же, бродя постоянно где-то в себе, я тоже ничего не могу извлечь оттуда и сказать с уверенностью, что раньше меня никто не говорил об этом, притом ещё и много значительней. Но случается, когда я брожу где-то в себе, происходит встреча этого моего личного круга или пятна с видимым кругом, часто совершенно ничтожным предметом. И вот, когда эти два круга сходятся в один, то видимый предмет как бы вспыхивает внутри «душой» и волшебно просвечивает. Весь этот сложный процесс можно выразить простыми словами: я обратил на предмет жизни родственное внимание".
То, о чем говорит Пришвин, – это тоже своеобразное явление репрезентации. Суть репрезентации вообще как раз и состоит в том, что мы в одном усматриваем другое. Наука в явлениях усматривает деятельность, она технологична по своей природе. Пришвин в явлениях видит себя, свои переживания. Он далеко не одинок в своём понимании творчества. Вот что пишет Марк Твен в небольшой заметке «Как писать автобиографию»: «И ещё: пусть этот рассказ будет одновременно дневником и автобиографией. Тогда ты сумеешь столкнуть животрепещущую современность с воспоминаниями о чем-то, что было сходно с нею, но случилось в далёком прошлом; в этих контрастах скрыто неповторимое очарование. Не нужно никакого таланта, чтобы придать интерес рассказу, который будет одновременно дневником и автобиографией». И здесь та же идея: в одном увидеть другое, свести прошлое к настоящему или настоящее к прошлому.
Глава 7.
Наука как система с рефлексией
Понятие рефлексирующей системы
Что такое научная рефлексия?
Термин «рефлексия» в той или иной степени знаком каждому. Под рефлексией понимают самопознание, способность человека осознавать самого себя, свою деятельность, своё поведение. Применение этого термина к науке может вызвать некоторое недоумение и поэтому нуждается в разъяснении. Действительно, разве наука познает себя, разве в этом её задача? Очевидно, что по крайней мере естествознание нацелено не на изучение науки, а на изучение природных явлений. Но, строго говоря, самих себя не изучают и гуманитарные дисциплины. Науковедение, например, строит знания не о себе, а о физике, химии, биологии... Короче, наука познает внешние по отношению к ней явления, но никак не себя самое.
Все это так, и тем не менее наука не существует без описания экспериментов и методов исследования, без формулировки своих задач, без обсуждения предмета отдельных дисциплин... Более того, при ближайшем рассмотрении довольно легко придти к выводу, что фактически почти все в науке сводится к рефлексии. Кое-что, разумеется, надо отбросить с самого начала. Рассмотрим это более подробно. Стоит хотя бы бегло просмотреть с десяток учебных курсов или монографий из разных областей знания, и мы найдём уйму сведений и об истории этих областей, и о закономерностях их развития. Выше уже приводилось немало цитат подобного рода. Нет никаких оснований относить все это к научной рефлексии. Просто любой учёный, будучи химиком или биологом, может в то же время интересоваться и живописью, и историей своей науки, и теорией познания. Живописью или историей в данном случае интересуется физик, а не физика, учёный, а не наука.
Но, даже отбросив все эти привходящие компоненты научных текстов и сосредоточив своё внимание на науке как таковой, мы не избавимся от представления, что наука – это и есть рефлексия. Действительно, можно ли провести резкую границу между описанием объекта и описанием деятельности с объектом, между знанием о мире и знанием возможностей и границ человеческой деятельности? Здесь уместно напомнить то, что уже обсуждалось в главе о знании – тезис об операциональной природе репрезентаторов. Вернёмся к химии, где мы уже встречали тексты такого вида: вещество Х чаще всего получают путём. Далее следует описание того, как именно получают Х. Следует ли рассматривать этот отрывок как описание деятельности химика, т. е. как продукт его рефлексии, или перед нами характеристика вещества Х? Очевидно, что имеет место и первое, и второе одновременно и, более того, едва ли можно названные аспекты полностью отделить и противопоставить друг другу. Любые знания о мире связаны в конечном итоге с человеческой практикой, с человеческой деятельностью, без этой связи они, вероятно, просто не существуют. Но что же в таком случае в науке не является рефлексией?
Очевидно, что для ответа на этот вопрос надо придать термину «рефлексия» более узкое и специфическое звучание. Будем исходить из уже предложенной нами модели науки. Известный специалист по термодинамике М. Трайбус пишет: «Смысл науки не только в самом процессе познания, но и в передаче и распространении полученных знаний». Фактически речь идёт об одновременном функционировании исследовательских и коллекторских программ. Именно последние, как нам представляется, и делают рефлексию органичным и необходимым компонентом науки. Учёный, с одной стороны, работает с опорой на непосредственные образцы, являясь участником соответствующих социальных эстафет, но с другой, – он вынужден вербализовать свой опыт, вербализовать те образцы, в которых он работает, т. е. сделать все это достоянием централизованной социальной памяти.
В свете сказанного под рефлексией рационально понимать переход от непосредственных образцов к вербальным описаниям, т. е. процесс вербализации образцов. Представьте себе эстафету, участники которой, не имея возможности постоянно демонстрировать друг другу акты своей деятельности, в рамках которой могут иметь место разного рода «мутации», начинают эти акты описывать. К каким последствиям это приведёт, как для самих участников, так и для внешнего наблюдателя? Во-первых, перед каждым из участников встанет проблема выбора: действовать по образцам или по описаниям? Во-вторых, наряду с непосредственными эстафетами появятся эстафеты частично или полностью вербально опосредованные. В-третьих, возникнет естественный вопрос: насколько адекватны и однозначны получаемые описания и что сулит переход к опосредованным эстафетам? Наконец, в-четвёртых, у наблюдателя, желающего описать происходящее, появляются методологические трудности, связанные с тем, что система сама себя описывает. Сказав все это, мы фактически построили простейшую модель рефлексирующей системы и наметили вопросы, которые надо обсудить.
Рефлексирующие системы – это не только наука. В общем плане это – любые системы, которые способны описывать своё поведение и использовать полученные описания в качестве правил, принципов, алгоритмов и т. п. в ходе дальнейших действий. Важно, что помимо этих описаний, системы имеют и другие, базовые механизмы, определяющие их поведение. К числу таких систем можно отнести материальное производство, систему воспроизводства языка и речи, общество в цело. В каждом из этих случаев рефлексия и её результаты выступают как существенные компоненты функционирования и развития соответствующих систем. Производство предполагает технологическое описание производственных процессов; язык закрепляет свои нормативы в словарях и грамматических справочниках. Вербальные правила никогда полностью не заменяют непосредственных эстафет, но способны коренным образом преобразовывать картину в целом. Мы, например, чаще всего говорим на родном языке, не пользуясь никакими правилами, опираясь только на непосредственные образцы, однако правила, если таковые сформулированы, несомненно, могут оказывать на речевую практику существенное влияние. Что касается науки, то можно смело сказать, что её просто не было бы без рефлексии, без вербализации образцов.
Сократический диалог и рефлексия
В «Воспоминаниях» Ксенофонта до нас дошёл следующий разговор Сократа с Евфидемом. Сократ спрашивает, куда отнести ложь, к делам справедливым или несправедливым. Евфидем относит её в разряд несправедливых дел. В этот же разряд попадают у него обман, воровство и похищение людей для продажи в рабство. Сократ переспрашивает его, можно ли что-нибудь из перечисленного считать справедливым, но Евфидем отвечает решительным отрицанием. Тогда Сократ задаёт вопрос такого рода: справедливы ли обман неприятеля, грабёж жителей неприятельского города и продажа их в рабство? И все эти поступки Евфидем признает справедливыми.
В контексте нашего обсуждения разговор интересен тем, что демонстрирует достаточно простой и ясный пример рефлексирующей системы. Действительно, Сократ фактически требует от Евфидема рефлексивного осознания того, что тот понимает под несправедливостью, требует осознания или вербализации образцов словоупотребления. Евфидем формулирует несколько «правил», утверждая, что несправедливыми следует считать ложь, грабёж, продажу в рабство. Важно подчеркнуть, что любая попытка уточнения или определения такого рода понятий, которые до этого использовались только в рамках непосредственных эстафет словоупотребления, представляет собой типичный акт рефлексии.
Но вернёмся к беседе Сократа, ибо мы далеко не исчерпали её содержания. Евфидем не только рефлексирует, он почему-то тут же отказывается от результатов своей рефлексии. Что же заставляет его неожиданно отказаться от им же сформулированных правил? Ведь, казалось бы, на последующие вопросы Сократа он должен отвечать примерно так: «Но я же уже сказал, Сократ, что ложь несправедлива!» Но Евфидем этого не делает, он сразу сдаётся перед лицом некоторой невидимой для нас силы. Впрочем, сила эта, как мы понимаем, – те образцы словоупотребления, которые находятся в поле зрения Евфидема. Эти образцы оказываются сильнее сформулированных в рефлексии правил.
Все это интересно в том плане, что демонстрирует две возможных стратегии поведения рефлексирующей системы. Первая стратегия состоит в том, чтобы в ситуациях, когда рефлексивные предписания противоречат непосредственным образцам, отдавать предпочтение последним. Именно так и поступает Евфидем. Стратегии подобного рода достаточно распространены в науке. Речь при этом идёт не только о продуктах рефлексии в буквальном смысле слова, но и о вербальных программах вообще. Приведём пример из истории геологии, хорошо это иллюстрирующий.
Академик Н. М. Страхов в своей работе, посвящённой истории развития отечественной литологии, отмечает, что ещё в 1923 г. Я. В. Самойловым была сформулирована программа работ по изучению осадков и осадочных пород. Эту программу Н. М. Страхов оценивает очень высоко. Статья Я. В. Самойлова, – пишет он, – «сознательно ставила задачу создания литологии именно как науки и в соответствии с этим разработала глубоко продуманную программу исследований...». И тут же Н. М. Страхов пишет: «К сожалению, эта статья давно и глубоко забыта». И как забыта! Оказывается, что она не упоминается ни в солидных исторических обзорах, ни в юбилейных статьях, посвящённых литологии, ни в одном из учебников и, наконец, она даже не фигурировала в дискуссии по литологическим проблемам, где центральное место занимали вопросы методологии. Что же произошло? Как могла быть забыта такая интересная и значимая работа? Отвечая на этот вопрос, Н. М. Страхов формулирует следующее общее положение: "Судьбы программных статей вообще, – пишет он, – за редчайшим исключением, одинаковы: если эту программу не реализует сам автор её (вместе с коллективом) или же кто-либо из учеников, действительно проникнувшийся идеями учителя, то она быстро забывается, а реальная научная работа идёт совсем по другому руслу".
В работе Н. М. Страхова содержится любопытное совпадение, на которое нельзя не обратить внимания. Раньше он пишет, что ещё при жизни Я. В. Самойлова им и его сотрудниками «проводится изучение и освоение методов механического анализа осадков и выбор из них наилучшего, налаживается методика химического и особенно спектроскопического анализа осадков и пород. Перед Бюро Международного геологического конгресса им ставится вопрос о необходимости „единства механической характеристики осадочных пород“, т. е. о выборе единой шкалы размерных фракций зёрен и их номенклатуры». А страницей позже, говоря об учениках Я. В. Самойлова, Н. М. Страхов отмечает, что в их исследованиях получили развитие лишь некоторые идеи учителя, "касающиеся технических приёмов работы (механический анализ, его стандартизация), но вовсе утрачена основная идейная установка". Но ведь «технические приёмы работы» – это как раз то, что было начато ещё при жизни Я. В. Самойлова, то, что он оставил своим ученикам на уровне непосредственных образцов. Именно это они и взяли, утратив общую цель, которую Я. В. Самойлов мог указать только в форме словесного предписания.
Возможна и вторая стратегия. Как уже отмечалось, Евфидем мог занять такую позицию: «Я же уже сказал, Сократ, что ложь несправедлива». Определяющим при этом становится рефлексия, рефлексивные предписания заглушают непосредственные образцы. Такая позиция – это позиция теоретика. При последовательном её проведении она с необходимостью порождает различного рода идеализации в качестве защитных поясов. Попробуем продолжить беседу при условии, что Евфидем занимает именно такую позицию. Сократ, допустим, указывает, что на войне, если мы не обманем противника, то можем погибнуть сами, а если не дадим обманом лекарство больному сыну, то он может умереть. А справедливо ли это? Как быть Евфидему? Один из возможных путей состоит в следующем: «Ты спрашиваешь меня, что такое справедливость, Сократ, я отвечаю. А можно ли быть справедливым в этом мире – это другой вопрос.» Такой ответ и равносилен появлению идеализации: справедливость определяется для некоторого идеального мира.
Две стратегии рефлексии часто дают о себе знать при обсуждении вопросов терминологии. В одном случае большое значение придаётся исходному смыслу слов, в другом – они просто игнорируются. В математике и физике доминирует вторая стратегия: цвет кварков не имеет ничего общего с цветом в обычном смысле слова, алгебраическое кольцо – с кольцом обручальным. В гуманитарных науках, напротив, превалирует первая стратегия.
В завершение нам хотелось бы сказать несколько слов о роли Сократа в рамках приведённой беседы. Он задаёт вопросы, а это прерогатива коллекторской программы. Он требует согласовать все ответы, т. е. привести их в систему, а это тоже функция коллектора. В этом плане пример хорошо иллюстрирует роль коллекторских программ в порождении спора и критики, о чем писал в своё время К. Бэр (См. гл. 4).
Аналогии с естествознанием
Системы с рефлексией – это довольно необычный объект исследования, с которым никогда не сталкивались естественные науки. И все же полезно попытаться провести некоторые аналогии. С одной стороны, это подчёркивает парадоксальность ситуации, в которой работают представители гуманитарного знания, а с другой, несмотря на всю специфику рефлектирующих систем, позволяет включить их рассмотрение в некоторые общенаучные категориальные рамки. Мы начнём с откровенно фантастического примера.
Известно, что поведение газа в сосуде, как и поведение многих других систем, можно описывать с двух разных точек зрения. Первый путь – феноменологическое описание. В случае газа он может привести нас к таким, например, законам, как закон Бойля-Мариотта или Гей-Люссака. Второй путь – описание внутренних механизмов, которые обуславливают феноменологические эффекты. На этом пути мы можем построить кинетическую теорию газов. Представим теперь себе совершенно фантастическую ситуацию: будем считать, что газ способен усвоить результаты феноменологических описаний и взять их на вооружение при определении характера своего поведения. Разумеется, это означало бы коренное изменение механизмов этого поведения. Если раньше, например, давление газа при изменении объёма определялось беспорядочным движением молекул и их столкновениями друг с другом и со стенками сосуда, то теперь все будет подчиняться строгой и рациональной дисциплине, ибо газ, вооружившись измерительными приборами, карандашом и бумагой, может просто вычислять необходимое давление по закону Бойля-Мариотта или уравнению Клапейрона.
Перед нами фантастика очень далёкая от науки. Но она становится реальностью, если речь идёт о феноменологическом описании человеческой деятельности. Такое описание человек, действительно, может заимствовать и использовать, меняя тем самым и механизм последующего воспроизведения того, что он делал. Мы сталкиваемся здесь с принципиально новой ситуацией, с которой никогда не имело дело естествознание. Строго говоря, для нас при этом несущественно, сам ли человек описывает свою деятельность, своё поведение или это делает кто-то другой. Важно только то, что полученное описание может быть заимствовано и может стать механизмом управления при осуществлении последующих актов.
Вспомним для начала работу В. Я. Проппа по морфологии волшебной сказки. Проанализировав большое количество существующих сказок, Пропп выделяет единую композиционную схему, лежащую в их основе. Можно ли считать, что сказители пользовались этой схемой, создавая свои сказки? Разумеется, нет. В их распоряжении не было ни того эмпирического материала, которым владел Пропп, ни его абстрактной схемы. Существуют, значит, какие-то другие механизмы жизни сказки. Но как только пропповская схема создана, она может лечь в основу нового механизма. «Исходя из схемы, – пишет В.Я. Пропп, – можно самому сочинять бесконечное количество сказок, которые все будут строиться по тем же законам, что и народная». Это так, но будут ли это народные сказки? Нет, ибо изменился механизм их порождения, изменились законы жизни.
Что конкретно следует из проведённых аналогий? Первое, как мы уже сказали, – это парадоксальность рефлексирующих систем с традиционной естественнонаучной точки зрения. Но есть и второе: бросается в глаза некоторый изоморфизм ситуаций в естествознании и в гуманитарных науках. Дело в том, что во всех случаях речь идёт о противопоставлении феноменологии поведения и определяющих его механизмов. Это проходит и для газа, и для систем с рефлексией. Вывод следующий: рефлексия по содержанию представляет собой феноменологическое описание поведения участников эстафет. Иными словами, исследуя науку как традицию, мы строим нечто, напоминающее кинетическую теорию газов или генетику; описывая её как деятельность, – получаем феноменологическую картину поведения учёного.
Парадоксы рефлексии и проблемаисследовательской позиции
Перейдём теперь к главному вопросу: как нам изучать такие системы, которые сами себя описывают? А нужно ли их вообще изучать, если они изучают себя сами? Может быть наша задача в том, чтобы просто систематизировать данные рефлексии? Все эти вопросы можно суммировать в форме одной принципиальной проблемы: какую позицию должен занимать исследователь по отношению к рефлектирующей системе? Две возможные позиции мы уже выделили: первая из них связана с описанием традиций, с описанием эстафет, вторая – с описанием содержания образцов. Вторая – это позиция рефлексии. Попробуем оценить возможности каждой из них.
Допустим для простоты, что речь идёт о значении какого-нибудь слова, например, слова «город». Возможности первой позиции при описании объектов такого рода фактически уже были продемонстрированы. Мы можем сказать, что значение слова определяется соответствующими эстафетами словоупотребления, можем поставить вопрос о стационарности этих эстафет и о роли контекста... При более конкретном и детальном анализе можно попытаться проследить исторические корни слова. Но сразу бросается в глаза, что мы при этом ничего не говорим о том, что же такое город, каково содержание этого понятия, как следует его употреблять. Иными словами, мы не задаём никаких нормативов словоупотребления.
Именно в этом пункте первая позиция коренным образом отличается от второй, главная задача которой как раз в задании нормативов. Анализируя понятие «город» с рефлексивной позиции, мы, как уже было показано, должны суммировать опыт словоупотребления и попытаться сформулировать общее правило. Это, однако, при последовательном проведении приводит к парадоксам: оказывается, что определение значений не может быть задачей науки о языке, ибо это задача познания в целом.
Вот что пишет по этому поводу известный лингвист Л. Блумфилд: «Ситуации, которые побуждают человека говорить, охватывают все предметы и события во вселенной. Чтобы дать научно точные определения значения для каждой формы языка, мы должны были бы иметь точные научные сведения обо всем, что окружает говорящего. Однако реальный объем человеческих знаний чрезвычайно мал». Именно этот факт приводит Блумфилда к мысли, что «определение значений является уязвимым звеном в науке о языке и останется таковым до тех пор, пока человеческие познания не сделают огромного шага вперёд по сравнению с современным их состоянием».
Получается так, что описывая язык, описывая наши понятия, мы одновременно описываем и мир; выделив для изучения, казалось бы, очень локальный объект – значение, мы, сами того не желая, взвалили на свои плечи непосильную задачу развивать человеческие знания о Вселенной. Разве это не парадокс! В чем же дело? А в том, что встав на рефлексивную позицию, мы тем самым стали и участниками процесса развития языка, стали элементом рефлектирующей системы. Но язык эволюционирует только в составе Культуры в целом. Поэтому, начав с изучения языка, мы и попадаем неминуемо в мир познания вообще.
Но действительно ли это так? Давайте попробуем не пойти по этому пути. Нас не интересует ни мир атомов и молекул, ни мир галактик и звёздных скоплений, нас интересует человеческий язык, человеческие понятия. Есть, например, такое понятие «соль», которым мы постоянно пользуемся в быту. Описывая в связи с этим феноменологию человеческого поведения, мы обнаружим, что слово «соль» используется для обозначения класса ситуаций, в которых так или иначе присутствует некоторое вещество, обладающее определёнными специфическими признаками. Но, стоп, сказав это, мы уже снова попали на путь описания совсем не тех объектов, с которых начинали: мы начали с языка, а кончили веществами и их признаками. Идя дальше в этом направлении, мы обнаруживаем, что слово «соль» обозначает NaCl. Это нам подсказывает химия. А если бы химия этого ещё не знала? Неужели задача лингвиста или логика может состоять в том, чтобы самостоятельно разрабатывать соответствующие представления?
Нечто аналогичное имеет место и при попытках рефлексивного описания исторического развития наук. Приведём конкретный пример, показывающий реальность этой проблемы. Допустим, что историк математики пытается описать способы работы Евклида. Он обнаруживает, что в своих доказательствах Евклид интуитивно опирается на некоторые предпосылки, которые им самим явно не сформулированы. Казалось бы, описание того, что делал и как рассуждал Евклид, предполагает точную формулировку указанных предпосылок. Посмотрим, однако, к чему приведёт такого рода экспликация. Мы получим, вероятно, нечто похожее на аксиоматику Гильберта, т. е. не только переведём труд, созданный примерно за триста лет до нашей эры, на математический язык конца XIX века, но и сильно двинем геометрию вперёд. Парадоксальный результат: историк хочет описать развитие науки, а оказывается её творцом.
В чем же дело? Очевидно, что Евклид не мыслил в рамках аксиоматики Гильберта. Он просто опирался на современные ему образцы геометрических рассуждений. Утверждая это, мы, однако, фиксируем только некоторый механизм его деятельности, но ничего не говорим о её содержании. Хотелось бы, разумеется, что-то сказать и о содержании, но это неизбежно приводит к фиксации феноменологии соответствующей деятельности, т. е. к её характеристике с рефлексивных позиций. Эксплицируя неявные аксиомы Евклида, историк как раз и получает такого рода характеристику. То, что это делает не сам Евклид, не имеет в данном случае никакого значения. Перед нами рефлексия, которую осуществляет историк над деятельностью Евклида.
Как же быть? Исследователь, с нашей точки зрения, должен выбирать не первую и не вторую позицию. Его задача прежде всего – анализ их взаимоотношения. Иными словами, объектом изучения должна стать сама рефлектируюшая система как целое, закономерности её жизни и функционирования.
Рефлексия и деятельность
Остаётся ещё показать, что проблема рефлексии тесно связана с двумя уже выделенными подходами к описанию науки. Мы можем описывать её как традицию, или, точнее, как множество традиций, а можем – как деятельность. Но последнее описание есть не что иное, как вербализация образцов, т. е. рефлексия. Действительно, мы можем без особого труда обнаружить, что формы поведения людей постоянно повторяются, напоминая в этом плане распорядок дня на Самоа, о котором шла речь в третьей главе. Это даст нам основания предположить, что существуют какие-то механизмы стандартизации поведения типа социальных эстафет. Мы тут же обнаружим, что участники этих эстафет сами описывают то, что они делают, создавая тем самым ещё один механизм социальной памяти. Но они описывают не устройство памяти, а её содержание, ибо устройство, вообще говоря, их не очень интересует. Описание механизма эстафет и описание деятельности очень отличаются друг от друга. В первом случае, сегодняшние действия участников выводятся и объясняются из прошлого, во втором, – они обосновываются спецификой ситуации и поставленной целью.
Деятельность всегда целенаправлена, но это целеполагание в наши действия как раз и вносит рефлексия. Описывая образцы поведения, она представляет их как деятельность. При этом легко видеть, что одну и ту же наблюдаемую картину можно в рефлексии представить различным образом. Вот что пишут по этому поводу известные социологи науки Гилберт и Малкей: «Наблюдаемые физические действия, производимые при выполнении эксперимента, не дают ответа на вопрос, выполняется ли этот эксперимент с целью опровержения некой гипотезы, или в поисках нового способа измерения известной переменной, или для обычной проверки экспериментального прибора и т. д. Установить, какое из этих или других действий мы наблюдаем, в любом конкретном случае можно, лишь обратившись к письменным или устным свидетельствам участников». Но буквально на следующей странице авторы признают, что «действующие лица постоянно заново интерпретируют одни и те же действия». Иными словами, рефлексия не столько описывает деятельность, сколько её конструирует.
Мы сталкиваемся здесь с крайне принципиальным положением. Эстафеты, в которых работает учёный, – это некоторая объективная реальность, в определённых пределах не зависящая от его сознания. А вот деятельность – это артефакт, это порождение рефлексии. Именно поэтому посторонний наблюдатель, находясь в лаборатории, не может однозначно установить, что именно вокруг него делается. И вовсе не потому, что он не является специалистом.
Рассмотрим возникающие здесь трудности на более простом примере. Представьте себе этнографа, который, наблюдая за действиями аборигена в каком-нибудь ещё не затронутом цивилизацией уголке Земли, пытается понять, что именно тот делает. Непосредственно можно зафиксировать, что абориген бьёт камень о камень. Это, однако, ничего не говорит о его целевых установках. Может быть, он хочет получить острый осколок камня; может, – искру для разжигания костра; не исключено, что он подаёт звуковой сигнал... Каким должен быть ход мысли этнографа?
Первое, что напрашивается, – проследить дальнейшие действия аборигена. Если, к примеру, он начинает раздувать затлевшийся мох, то есть основания предполагать, что именно этого он и хотел. Другое дело, если он собирает затем разлетевшиеся осколки камня. Не исключено, однако, что в обоих случаях абориген воспользовался побочными результатами своих действий, которые не были им заранее предусмотрены. В нашем распоряжении, однако, есть ещё один способ рассуждения. Мы можем опираться в своей интерпретации на характер не последующих, а предшествующих действий, на характер тех образцов, которые наличествуют в культуре аборигена. И если, согласно нашим предыдущим наблюдениям, его соплеменники в аналогичных ситуациях всегда собирают острые осколки, а огонь добывают трением, то это следует приписать и нашему персонажу.
Может показаться, что этнограф решил теперь задачу однозначной интерпретации наблюдаемых действий. Но как быть, если действия полифункциональны и на уровне образцов, т. е. если в практике постоянно бытует и обработка камня и получение искры? Как определить, на какой именно из возможных вариантов ориентируется абориген в этом случае?
Кстати, наличие образцов усложняет картину ещё в одном отношении. Не исключено ведь, что абориген вовсе не стремится достигнуть конкретного практического результата, а только показывает, как это можно сделать. Тот факт, что он на наших глазах разжёг костёр или сделал каменный нож, вовсе не опровергает это предположение. Иначе говоря, мы должны выделять у каждого акта, с одной стороны, его непосредственные практические результаты, а с другой, – его нормативную функцию, функцию образца. Что является главным, а что побочным? Наш этнограф и здесь оказывается на развилке дорог.
Пример показывает, что рефлексия ограничена существующим набором эстафет, ограничена некоторой эстафетной структурой, в рамках которой работает абориген. Но в рамках этой структуры, которая, кстати, до поры, до времени остаётся инвариантной относительно изменения рефлексивной позиции, рефлексия может перебирать все возможные варианты. И чем сложнее и разнообразнее наше эстафетное окружение, тем богаче возможности рефлексии.
Рефлексивная симметрия и связи научных дисциплин
Эпизод в становлении палеогеографии
Начнём с анализа небольшого эпизода, сыгравшего, однако, основополагающую роль в становлении палеогеографии. Этот эпизод – появление в геологии понятия о фациях. Термин этот в его почти современном понимании был введён швейцарским геологом А. Грессли в конце 30-х годов прошлого века. Занимаясь изучением Юрских гор в Швейцарии, Грессли обнаружил, что в отложениях каждого стратиграфического горизонта, если его прослеживать от места к месту, наблюдается изменение как петрографического состава слагающих этот горизонт пород, так и находящихся в них органических остатков. Это противоречило существовавшим в то время представлениям, согласно которым одновозрастные отложения должны везде иметь одинаковый петрографический состав и органические остатки. Заинтересованный новым для того времени явлением, Грессли уже не мог ограничиться описанием только вертикальных разрезов, но прослеживал каждый стратиграфический горизонт как можно дальше в горизонтальном направлении. Участки, образованные отложениями одного возраста, но отличающиеся друг от друга и петрографическим составом, и палеонтологическими остатками, он назвал фациями.
Пытаясь объяснить обнаруженное им явление, Грессли связывает происхождение фаций с различиями в условиях образования пород. «Модификации, как петрографические, так и палеонтологические, обнаруживаемые стратиграфическим горизонтом на площадь его распространения, – пишет он, – вызваны различиями местных условий и другими причинами, которые в наши дни оказывают такое сильное влияние на распределение живых существ на морском дне».
Но как все это связано с формированием новой научной дисциплины палеогеографии? А. Грессли – геолог, и его интересует стратиграфия, но никак не география. И работает он, разумеется, в традициях, характерных для геологии того времени, отнюдь не помышляя об их видоизменении или о построении новой научной области. Иными словами, было бы крайней ошибкой интерпретировать поведение Грессли как рациональную акцию, направленную на построение палеогеографии. И тем не менее именно представление о фациях, как подчёркивает Ю. Я. Соловьёв, «по существу, предопределило развитие палеогеографии в дальнейшем».
Впрочем, мы полагаем, что читателю уже давно ясен ответ на сформулированный нами вопрос, и он даже несколько недоумевает по поводу его постановки. Ну, разумеется, объясняя происхождение тех или иных фаций условиями, в которых происходило образование пород, А. Грессли тем самым реконструирует физико-географические условия далёкого прошлого. Опираясь на метод актуализма и на знание современных закономерностей, он полагает, например, что одни фации формировались на мелководных участках юрского моря, а другие – на более глубоководных. В рассуждениях подобного рода нет ничего принципиально нового, ибо попытки реконструкции обстановки прошлых эпох на основе палеонтологических остатков встречались задолго до Грессли. Иными словами, он и здесь достаточно традиционен.
Нас, однако, интересует одна деталь, которая может представляться совершенно тривиальной и несущественной, но, как мы постараемся показать, таит в себе возможности широких обобщений, являясь проявлением достаточно принципиальных закономерностей. Итак, объясняя существование фаций различиями в условиях образования пород, А. Грессли, как мы уже сказали, реконструирует тем самым и физико-географическую картину прошлого. А что в данном случае означает выражение «тем самым»? Грессли ведь интересуется не географией, а стратиграфией, и строит он знание о фациях, а не о границах юрского моря. А это значит, что совокупность утверждений типа: «Петрографические и палеонтологическиео собенности данных отложений объясняются тем, что они формировались в условиях прибрежного мелководья» надо ещё преобразовать в утверждения: «Зона прибрежного мелководья охватывала район таких-то отложений, о чем свидетельствует их петрографические и палеонтологические особенности». Если в первом случае объектом исследования или референтом приведённых утверждений являются фации, а описание физико-географических условий – это средство объяснения, то во втором – исследуются именно физико-географические условия, а фации выступают в функции исторического источника. Именно преобразования такого типа и позволяют в рамках геологических традиций зародиться новому научному направлению. Необходимо поэтому изучить особенности такого рода преобразований.
Могут возразить, что все это достаточно тривиально и что преобразования такого типа мы постоянно осуществляем, даже этого не замечая. Это, конечно, так, но это не аргумент, ибо с таким же успехом можно отрицать и логику, ссылаясь на то, что мы постоянно осуществляем рассуждения, не замечая этого и не отдавая себе в этом никакого отчёта. Итак, что же представляют собой преобразования указанного типа?
Рефлексивная симметрия
Мы сталкиваемся здесь с очень общей закономерностью, которую можно назвать явлением рефлексивной симметрии. Рефлексивно симметричными мы будем называть такие два акта деятельности, которые отличаются друг от друга только осознанием результата и взаимно друг в друга преобразуются путём изменения нашей рефлексивной позиции. Допустим, осуществляя некоторые действия, мы рассматриваем результат "А" как основной, а результат "Б" как побочный. Смена рефлексивной позиции будет заключаться в том, что "А" и "Б" меняются местами, т. е. "Б" становится основным продуктом, ради которого осуществляются действия, а "А" переходит в разряд побочных результатов. Очевидно, что физическая природа наших действий при этом не претерпевает никаких изменений, т. е. остаётся инвариантной.
Очевидная сфера проявления рефлексивной симметрии в процессе познания – это основные и побочные результаты эксперимента. Вот как описывает ситуацию рефлексивного переключения Вильсон в своей нобелевской речи: «Чудесные оптические явления, возникающие, когда Солнце освещает облака, возбудили во мне большой интерес и навели меня на мысль воссоздать их искусственно в лаборатории. В начале 1895 года я проделал для этой цели несколько экспериментов, получая облака путём расширения влажного воздуха. Почти сейчас же я встретился с некоторыми явлениями, которые обещали быть более интересными, чем те оптические явления, которые я намеревался исследовать». Речь идёт, разумеется о треках, к изучению которых Вильсон и переходит. Таким образом, исходная цель сменяется новой целью, и мы получаем два рефлексивно симметричных эксперимента. Конечно, в ходе дальнейшего исследования такая симметрия нарушается.
Но сам эксперимент сплошь и рядом можно рассматривать как нечто рефлексивно-симметричное практической деятельности. Химик в лаборатории, с одной стороны, получает нужное ему вещество, с другой, – описывает процесс получения. Все зависит от того, что мы при этом считаем его основным продуктом, полученное им вещество или знание. Можно продолжить обобщение и сказать, что любая практическая деятельность рефлексивно симметрична соответствующей познавательной, ибо любая практическая деятельность одновременно является и накоплением опыта, который закрепляется и фиксируется в той или иной форме.
В целях дальнейшего изложения рационально выделить несколько видов рефлексивной симметрии. Обратим внимание на тот факт, что любой акт деятельности, помимо прочих своих результатов, может выступать и выступает в качестве образца для воспроизведения. Что бы мы ни делали, мы с необходимостью опираемся на имеющиеся у нас социальные образцы, а также заново их воспроизводим и демонстрируем для окружающих. Быть образцом для воспроизведения – это тоже один из результатов акта деятельности. Каждый акт в этом смысле, с одной стороны, обеспечивает производство чего-то, а с другой, воспроизводство самого себя. Симметрию, связанную с производством, мы будем называть предметной. Симметрию актов производства и воспроизводства – программно-предметной. Рассматривая, например, в качестве основного продукта работы химика либо полученное вещество, либо описание деятельности его получения, мы осуществляем программно-предметное рефлексивное переключение.
И, наконец, предметная рефлексивная симметрия представлена двумя различными вариантами. Любой акт деятельности предполагает, как правило, наряду с продуктом наличие и таких элементов, как объект и средства. Иными словами, то, с чем мы оперируем с целью получения определённого результата, как бы поляризуется на объект (на него направлены действия) и на средства, необходимые для изменения объекта или получения знаний о нем. Изменение рефлексивной установки может оставлять эту поляризацию инвариантной, а может менять её на противоположную. Так, например, действуя напильником, мы получаем, с одной стороны, обработанную поверхность, а с другой, – металлические стружки. Но в обоих случаях напильник выступает как средство, а обрабатываемый кусок металла – как объект. Однако в ходе работы стачивается и сам напильник. Рассматривая именно это в качестве основного результата, мы тем самым меняем местами средство и объект, ибо в качестве последнего начинает выступать напильник. Первый тип предметной симметрии мы будем называть предметно-предметной, а второй – объектно-инструментальной.
В качестве примера объектно-инструментальной симметрии продолжим приведённую выше историю камеры Вильсона. Обнаружив треки или нечто им подобное, Вильсон должен был прежде всего их объяснить. Объектом изучения при этом являются треки, а в качестве средств привлекаются представления о конденсации пара на ионах газа и, в конечном итоге, об ионизирующем излучении. Для того, чтобы получить камеру Вильсона в её современной функции, мы должны осуществить смену рефлексивной установки: то, что было объектом, т. е. треки, должно стать средством и наоборот. С рефлексивной симметрией такого рода мы сталкиваемся в процессе формирования многих приборов с древнейших времён до наших дней. Так, к примеру, колебания ртути в трубке Торричелли раньше получили своё объяснение в виде указания на атмосферное давление, а затем стали средством измерения этого давления.
Рефлексивная симметрия и симметрия знания
А теперь рассмотрим следующую ситуацию. Представьте себе, что перед вами несколько занумерованных ящиков с шарами разного веса. Вы должны взвесить шары и записать полученный результат. Разумеется, у вас есть весы и вы умеете ими пользоваться, но какой должна быть форма записи? Если вас интересуют ящики и их содержимое, то запись должна быть такой: «В ящике за номером К лежат шары такого-то веса.» Если же в первую очередь вас интересуют шары, а не ящики, то и форма записи должна измениться: «Шары такого-то веса лежат в ящике за номером К.» В одном случае, расположив записи в определённом порядке, вы легко узнаете, какие шары находятся в интересующем вас ящике. В другом – вы легко найдёте шар нужного вам веса.
Суть, однако, в том, что каждый акт взвешивания одновременно даёт вам информацию и о содержимом ящика, и о местонахождении шаров. Но записать это вы можете либо одним, либо другим способом, получая два разных результата и два рефлексивно симметричных познавательных акта. Важно, что рефлексивная симметрия связана здесь и с соответствующей симметрией знания. Не трудно заметить, что одна запись легко преобразуется в другую за счёт операции смены референции без какого-либо изменения содержания. В одном случае, референтом является ящик, в другом – шар. Симметрию знания такого типа мы будем называть предметно-предметной.
Возможна и программно-предметная симметрия знания, связанная с программно-предметной рефлексивной симметрией. Вернёмся к нашему примеру взвешивания шаров. Строго говоря, любое научное знание предполагает определённое обоснование, которое может, в частности, состоять в указании способа, каким оно было получено. Нам поэтому мало указать вес того или иного шара, необходимо описать и способ взвешивания. Это существенно определяет и отношение к результату: одно дело, если мы взвешивали на аналитических весах, другое – на обыкновенном безмене. Но если так, то мы опять попадаем в ситуацию выбора. Что нас в первую очередь интересует – метод получения данного результата или сам результат? В первом случае мы можем записать результат примерно так: «То, что вес данного шара равен Q, было получено таким-то образом.» Вторая запись будет иной:"Вес данного шара, определённый таким-то образом, равен Q". Мы не будем здесь останавливаться на характере преобразования одного знания в другое, но такое преобразование существует.
Рассмотрим в заключение ещё один случай, предполагающий объектно-инструментальное рефлексивное переключение. Представьте себе, что любитель детективного жанра возвращается с работы и не находит на диване детектив, чтение которого он прервал на самом интересном месте. Обыскав всю квартиру, он приходит к выводу, что жена, которая с ним постоянно конкурирует, вернулась раньше и захватила детектив. Все теперь опять-таки зависит от его рефлексивной ценностной установки: интересует его в первую очередь жена или детектив? В первом случае запись будет иметь, вероятно, такой вид: «Жена вернулась с работы раньше меня и куда-то ушла, что доказывает исчезновение детектива.» Знание того факта, что детектив исчез с дивана, выступает здесь только как средство, как инструмент, позволяющий что-то узнать о жене. Вторая запись поставит на первое место не жену, а детектив: «Детектив исчез, но это можно объяснить тем, что жена пришла раньше и куда-то ушла.» Здесь уже знание о жене выступает как средство или инструмент, как средство объяснения факта пропажи детектива. Иными словами, и здесь рефлексивной симметрии соответствует определённая симметрия знания.
От простых примеров можно перейти к более сложным. Не трудно видеть, например, что рассмотренный выше эпизод в становлении палеогеографии очень напоминает ситуацию с детективом. А. Грессли – геолог по своим целевым установкам, и построенные им знания носят геологический характер. Поэтому главное для него – это отложения и их свойства, а соображения палеогеографического характера – это только средство, или инструмент объяснения. Но, используя этот инструмент, Грессли, сам того не желая, и, может быть, не подозревая, начинает закладывать фундамент новой дисциплины. Для перехода к палеогеографии нам надо теперь изменить свою рефлексивную позицию, т. е. переформулировать задачи и соответствующим образом перестроить знания. Все очень напоминает историю камеры Вильсона. Не нужно при этом думать, что такой переход к новым целевым установкам – это кратковременная акция. В развитии науки она может растянуться на десятки лет. Но на этом мы остановимся несколько позже.
А сейчас поставим такой вопрос: не означает ли сказанное, что геология и палеогеография формируются как рефлексивно симметричные дисциплины, что в основе их взаимоотношений лежит рефлексивная симметрия? До сих пор мы говорили о рефлексивно симметричных актах деятельности, но нельзя ли перенести эти понятия и на научные дисциплины? Постараемся показать, что можно.
Предмет-предметные и программно-предметные дисциплинарные комплексы
Как соотносятся друг с другом биология и биогеография? Вот как рассматривает этот вопрос видный специалист по географии растительности И. Шмитхюзен: «Несмотря на то, что обе науки как биология, так и география, занимаются вопросами распространения жизни на Земле и проблемами, связанными с распространением жизни (биохорологией), исходные позиции и конечные цели у этих наук различны. Биология исследует жизнь, формы её проявления, процессы и законы её развития, помимо прочего, также и с точки зрения их распределения в пространстве. Предметом географии является геосфера и её деление на страны и ландшафты, для характеристики которых наряду с другими явлениями немаловажное значение имеет и их растительный и животный мир».
Разве не напоминает сказанное предметно-предметную симметрию и наш пример с ящиками и шарами? Одна «наука», описывая ящики, указывает в том числе и их содержимое. Другая, описывая содержимое, характеризует и его местонахождение, т. е. ящик. «Геоботаника, – пишет И. Шмитхюзен, – изучает систематические единицы растительного мира и растительные сообщества с точки зрения их распространения и зависимости от условий существования.» «Предметом географии растительности являются не отдельные растения и даже не их сообщества, а страны и ландшафты и их заполнение растительностью».
Но по аналогии с биологией и биогеографией можно рассмотреть и такие научные дисциплины, как почвоведение и география почв, климатология и география климатов, демография и география населения, вулканология и география вулканов, экономика и экономическая география, культурология и география культуры. Список можно продолжить, ибо любая область знания, изучающая какие-либо явления, распределённые по поверхности Земли, может породить и порождает соответствующий рефлексивно симметричный раздел географии. Все эти дисциплины, т. е. география, взятая в единстве всех её разделов, и совокупность её предметно-предметных отображений, образуют предметно-предметный комплекс научных дисциплин.
Учёные, работающие в рамках такого предметно-предметного комплекса, могут ставить перед собой очень разные задачи, реализовывать разные программы, быть представителями разных парадигм, но результаты в одной области будут рано или поздно трансформироваться и попадать в другую рефлексивно симметричную область. Так, например, революция, осуществлённая В. В. Докучаевым в почвоведении, революционизировала и географию почв. Вообще любые принципиальные изменения в классификации климатов или вулканов, почв или типов культуры, человеческих рас или форм хозяйственной деятельности рано или поздно перестраивают и соответствующие географические разделы, меняя схемы районирования, легенды карт и т. п.
Перейдём к программно-предметной симметрии. Академик Л. И. Мандельштам, обсуждая вопрос о предмете теории колебаний, пишет: «Каковы же те признаки, по которым выделяется учение о колебаниях? Присмотревшись, мы видим, что они принципиально отличны от тех, по которым делят физику на оптику, акустику и т. д. Это последнее деление производится, очевидно, по признаку физических явлений, которые мы одинаково воспринимаем. С электричеством и магнетизмом дело обстоит несколько сложнее (у нас нет непосредственного восприятия этих явлений), но я не буду на этом задерживаться. С колебаниями дело обстоит принципиально иначе: мы выделяем их не по физическому содержанию нашего восприятия, а по общности метода или подхода к изучению...».
Мандельштам чётко выявляет два способа обособления научных дисциплин. Одни из них – такие, как оптика или акустика, мы будем называть дисциплинами конкретно-предметной ориентации, другие, как теория колебаний, – дисциплинами программно-методической ориентации. Первые строят знания о тех или иных явлениях природы, вторые – разрабатывают методы или подходы, необходимые для получения этих знаний. Вот ещё один аналогичный пример: «И термодинамика и статистическая физика не имеют чётко ограниченной области изучаемых физических явлений в противоположность оптике, механике, электродинамике и другим разделам физики, а представляют собой скорее методы изучения любых макроскопических систем».
Очевидно, однако, что дисциплины выделенных видов не существуют и не могут существовать друг без друга. Трудно представить себе теорию колебаний без механики, акустики, оптики и т. д. Они неразрывно связаны в своём историческом развитии, более того, они представляют собой очевидный пример программно-предметной симметрии. Эта симметрия, конечно, нарушается в ходе обособления названных дисциплин, но её следы всегда присутствуют в соответствующих системах знания. Акустика или оптика не обходятся без методов теории колебаний, а последняя – без примеров из оптики или акустики.
Дисциплины конкретно-предметной и программно-методической ориентации образуют сложные объединения, которые мы будем называть программно-предметными комплексами. При этом надо иметь в виду, что свою чёткую ориентацию они как раз и получают только в составе таких комплексов, и одна и та же дисциплина в составе разных комплексов может иметь разную ориентацию. Например, география, используя методы физики, химии, биологии выступает как предметно ориентированная. Но та же география нередко функционирует как носитель метода или подхода и входит в программно-предметный комплекс уже совсем в другой роли.
Выше, рассматривая соотношение географии и биологии, мы опирались на точку зрения И. Шмитхюзена. Но возможна и совсем другая позиция. Например, по мнению Э. Мартонна, география прежде всего является носителем определённого метода, существенный компонент которого – принцип пространственности. Мартонн пишет: «Ботаника изучает органы какого-либо растения, его условия жизни, его положение в систематике; если же он пытается определить его область распространения, он говорит, что дело идёт о „ботанической географии“. Геолог анализирует механику вулканического явления самого по себе; когда же он пытается установить распределение вулканов по земной поверхности, то он приходит к заключению, что это – область физической географии». Кто же прав – Мартонн или Шмитхюзен? Скорей всего, правы оба. Речь идёт просто о разных симметричных преобразованиях, которые в одном случае делают географию элементом предметно-предметного комплекса, а в другом – программно-предметного. В рамках последнего география выступает, вероятно, прежде всего как картография. Не случайно Э. Мартонн пишет: «Не утверждая, что география и картография являются синонимами, все же следует отметить, что всякое исследование приобретает географический отпечаток, когда пытаются выразить результаты его картографически».
Подавляющее большинство бросающихся в глаза связей между науками обусловлено нарушением программно-предметной симметрии. И если открытия в области физики означают нередко переворот и в химии, и в геологии, и даже в археологии, если химия воздействует на биологию, то все это представляет собой взаимодействие традиций в рамках программно-предметного комплекса, но не идеализированного, реального, т. е. с нарушенной симметрией. И не только науки программно-методической ориентации влияют на предметно ориентированные дисциплины, но и наоборот. Нельзя представить себе развитие физики без геологии и минералогии, т. е. без янтаря и турмалина, без кристаллов, без естественного магнетизма, без астрономии с её теорией Солнечной системы, без сверхпроводящей керамики и многого другого.
Объектно-инструментальные дисциплинарные комплексы
Известному британскому географу Маккиндеру принадлежат слова: «География представляет науку о настоящем, объясняемым прошлым, геология – науку о прошлом, объясняемом при помощи современного». Эту мысль повторяет известный революционер в области геоморфологии В. М. Дэвис: «Геология изучает изменения, имевшие место в прошлом, ради них самих, поскольку эта наука исследует историю Земли. География изучает прошлое лишь постольку, поскольку она освещает настоящее, ибо география в основном изучает Землю такой, какой она представляется в настоящем». Аналогичные утверждения можно встретить и у современных исследователей: «Биогеографию можно рассматривать либо как объяснение распространения организмов путём применения биологических и геологических теорий, либо как исследование истории Земли. Последнее преследовалось гипотезой сухопутных мостов, позднее – вегенеровской гипотезой дрейфа континентов».
Итак, география, изучая настоящее, использует геологические концепции в качестве средства, инструмента объяснения этого настоящего. В свою очередь геология, изучая прошлое, может реконструировать его только на основе настоящего и использует географию в качестве средства для таких реконструкций. Перед нами объектно-инструментальная симметрия, но не актов деятельности, а научных дисциплин. Изучение прошлого для геологии – это основная задача, а для географии – средство. Напротив, изучение настоящего – это средство для геологии, но основная задача для географа. Будем называть такого рода образования объектно-инструментальными дисциплинарными комплексами. Не трудно видеть, что в идеальном случае речь идёт об одних и тех же исследовательских процедурах, но в рамках разных коллекторских программ.
Рассмотрим на конкретном примере, как осуществляется взаимодействие различных традиций работы в рамках объектно-инструментального комплекса. Вот небольшой отрывок из «Основ тектоники» Ж. Гогеля: «Ничто не отделяет современную эпоху от прошедшего геологического времени, и тектонические движения могут, следовательно, развиваться и в настоящее время, по крайней мере в некоторых районах. Если эти движения протекают слишком медленно, чтобы быть ощутимыми, можно все же попытаться их установить, сравнивая рельеф местности с тем, который должен был бы возникнуть под воздействием только эрозионных процессов, определяющихся хорошо известными в настоящее время закономерностями». Отрывок содержит краткую формулировку геоморфологического метода обнаружения тектонических движений. Но как это произошло, что геоморфология вмешалась в дела геологов?
Все начинается в конце ХIХ века, когда американский географ В.М. Дэвис разработал теорию географических циклов, т. е. циклов эрозии, объясняющую формирование и развитие форм рельефа. Модель, предложенная Дэвисом, предполагает исходное тектоническое поднятие и дальнейшее действие эрозии и денудации в условиях отсутствия тектонических движений. Дэвис чётко осознавал, что речь идёт о некотором идеальном цикле, который сравнительно редко фактически реализуется. Отклонения эмпирической картины от идеальной модели Дэвис объяснил рядом факторов, в том числе тем, что тектонические движения продолжаются и в ходе цикла эрозии.
Таким образом, Дэвис строит теорию развития рельефа, а ссылка на тектонические движения, которые сильно усложняют эмпирическую картину и вызывают отклонения от предсказаний теории в рамках его коллекторской программы – это своего рода защитный пояс, т. е. средство, позволяющее теории выстоять. Геолог, однако, интересуется именно тектоникой, и факты отклонения геоморфологической теории от эмпирии становятся в рамках его программы средством обнаружения тектонических движений. Иными словами, геоморфолог и специалист в области тектоники работают в разных традициях и преследуют разные цели, но результаты, полученные в одной области, получают своё симметричное отображение в другой.
Приведём ещё несколько примеров объектно-инструментальных комплексов. Выше мы противопоставляли геологию географии, но строго говоря, речь должна идти об исторической геологии, а не о геологии в целом. Геология фактически сама представляет собой объектно-инструментальный комплекс, ибо изучая, к примеру, современные обнажения, геолог постоянно делает выводы о далёком прошлом и наоборот. Другой пример – история и источниковедение, которое рассматривают обычно как вспомогательную историческую дисциплину. Исторический источник – это нечто существующее в настоящем и доступное непосредственному исследованию. Историк изучает прошлое, опираясь на источники. Источниковед – настоящее, опираясь на прошлое.
История науки и кумулятивизм
Очень часто, читая труды по истории науки, можно представить дело так, точно огромное количество учёных дружно идёт к одной и той же заранее намеченной цели, спотыкаясь и падая, делая ошибки, но в конечном итоге достигая истины, т. е. того уровня знаний, на котором находится сам историк. Это и понятно, ибо автор как раз и хотел показать, как все участники процесса, начиная с древних времён, дружно несли крупицы знания в его сегодняшнюю «копилку», выделив с благодарностью тех, чьи результаты были весомей и неожиданней, и вспомнив тех, кто незаслуженно забыт. А то, что все пришли к тому, к чему пришли, определяется самим объектом, самой природой, т. е. опять-таки тем уровнем знаний, на котором находится сам историк.
Изложенные представления – это так называемая кумулятивистская модель развития науки, в рамках которой до сих пор, несомненно, мыслят многие учёные и историки. Первый удар по этой модели нанёс Т. Кун своей теорией научных революций. В чем конкретно его концепция противоречит кумулятивистской модели? Да в том, что кумулятивизм, строго говоря, предполагает одну парадигму, одну программу, в которой работают все, начиная с первых шагов познания. Он предполагает, явно или неявно, что все мыслят и познают одинаково, что существует единая общечеловеческая рациональность, единый суд разума. А в рамках концепции Куна, в истории происходит революционная смена фундаментальных программ познания, и на место единого для всех эпох разума приходят разные исторические типы рациональности.
Сокрушив кумулятивизм, Кун, однако, породил новую и достаточно фундаментальную проблему, проблему новаций. Действительно, если учёный жёстко запрограммирован в своей работе, то как происходит смена самих этих программ? Можем ли мы, работая в некоторой парадигме, изменить эту парадигму? Не напоминает ли это барона Мюнхаузена, который вытащил сам себя за волосы из болота? Но, породив проблему, Кун одновременно и заложил основу для её преодоления. Парадигма не одна, их много, они исторически сменяют друг друга, они разные в разных областях знания. Множественность парадигм подаёт надежду, ибо у нас появляется возможность их взаимодействия. Именно на взаимодействии разных парадигм, разных программ и построена предложенная выше модель науки. При этом механизм взаимодействия связан с рефлексивной симметрией научных дисциплин.
Эта модель коренным образом противоречит идее кумулятивистского развития науки. Кумулятивизм предполагает некоторую единую нормативную программу, а в рамках нашей модели мы имеем много замкнутых с точки зрения рациональности программ. Замкнутых в том смысле слова, что ни одна из них не задаёт рационального акта выхода в другую программу. Это не исключает взаимодействия и даже очень тесного, но оно лежит за пределами рациональности, хотя и обусловлено, как мы старались показать, фундаментальной структурой науки. У Грессли в ходе его занятий стратиграфией не было никаких оснований ставить задачу реконструкции географических условий далёкого прошлого. В рамках стратиграфической коллекторской программы просто не было и не могло появиться таких задач. Полученный Грессли «палеогеографический результат» мог быть подхвачен только совсем другой программой. Можно сказать, что и для географии и для геологии это был непреднамеренный результат. Аналогичным образом Дэвис, строя свою теорию рельефа, не собирался развивать тектонику, да и не мог, не имел оснований ставить перед собой такую цель.
Итак, кумулятивизм не выдерживает критики. И тем не менее, будучи разбит, он вновь и вновь возрождается в работах по истории науки. Он исключительно живуч. Мы полагаем, что это можно рассматривать как одно из проявлений действия коллекторских программ. Очевидно, что любая коллекторская программа осуществляет работу аккумуляции знаний, собирая их везде, где только можно, и преобразуя их в соответствии со своими требованиями. В этом и состоит её предназначение. Иногда, как мы уже отмечали, развитие науки начинается не с исследования, а именно с работы коллектора, который отбирает и систематизирует практический опыт, рефлексивно преобразуя тем самым задним числом практическую деятельность в познавательную.
Носитель коллекторской программы не может не быть кумулятивистом. И это не является его недостатком, это его роль, или амплуа. Другое дело, если речь идёт об историке науки. У него совсем другая роль. Его задача не в том, чтобы систематизировать знания прошлого, а в том, чтобы проследить их развитие. И вот тут вдруг обнаруживается, что поставив перед собой задачу написать историю какой-либо области знания, например, палеогеографии, историк почти неминуемо попадает в плен соответствующей коллекторской программы. А как иначе, ведь именно она оказывается для него путеводной нитью на необозримых просторах прошлого. Что и как искать на этих «просторах»? Ведь границы и признаки «палеогеографичности» задаёт именно коллекторская программа. Иными словами, в подавляющем количестве случаев историк начинает работать следующим образом: стоя на позициях соответствующей и, разумеется, современной коллекторской программы, он начинает искать в прошлом те тексты и тех авторов, которых он мог бы ассимилировать.
Практически сказанное означает, что читая труды прошлых эпох, историк, не замечая этого, сам постоянно осуществляет симметричные преобразования, усматривая в этих трудах отдельные сведения, относящиеся к палеогеографии. В этом плане не только А. Грессли может оказаться палеогеографом, но и многие, многие авторы, жившие задолго до него. Ведь это так очевидно, что, объяснив находки ископаемых раковин перемещанием моря, мы тем самым сказали что-то и о море. Это так очевидно, что, казалось бы, и не требует особого анализа. Не ясно только, почему палеогеография появилась все же как особая дисциплина только в XIX в., а экология – только после Э. Геккеля, сформулировавшего новую коллекторскую программу. Следствия у такой очевидности по крайней мере два. Первое – это полная неспособность видеть в развитии науки такой феномен, как формирование и развитие коллекторских программ. Они скрыты от историка, ибо заслонены его собственной личностью. Он сам и есть эта коллекторская программа. Второе неизбежное следствие – это «линеаризация» исторического процесса в духе кумулятивизма.
Представление о рефлексивной симметрии, помимо всего прочего, важно для историка науки как предостережение: не осуществляйте сами рефлексивно симметричных преобразований, предоставьте это делать самим участникам исторического процесса. Нам представляется, что реализация этого предостережения может неожиданно очень сильно обогатить и усложнить картину развития знания.