В 1857 году одна проблема занимала практически все свободное время Максвелла.

И она же интриговала астрономов в течение более 200 лет: речь идет о кольцах газового гиганта Сатурна. Его система колец интересовала научное сообщество настолько, что за выяснение их природы была обещана премия Адамса.

В 1848 году несколько сотрудников Колледжа Святого Иоанна в Кембридже учредили премию Адамса в честь молодого математика, который предсказал — одновременно с французом Урбеном Леверье (1811-1877) — существование планеты за орбитой Урана. Обе работы доказывали истинность законов небесной механики: дело в том, что реальная орбита Урана отличалась от рассчитанной. Наиболее рациональным объяснением этого факта было существование планеты, расположенной дальше, которая притягивает Уран к себе и влияет на его орбиту.

Нептун официально открыли в 1846 году, когда астроном в Берлинской обсерватории обратил внимание на письмо, присланное ему Леверье, в котором тот просил его направить телескоп в указанную им точку. Так и был найден Нептун. В то же время в середине сентября 1845 года молодой и блестящий математик по имени Джон Куч Адамс (1819-1892), который окончил университет двумя годами ранее, завершил свои расчеты с целью определить, где может находиться таинственная планета. Честь открытия была отдана французскому астроному, а ученый из Кембриджа остался ни с чем, и это было несправедливо. Более того, в 1846 году самая престижная награда Королевского общества (и первая научная почесть в мире), медаль Копли, была присуждена исключительно Леверье за «доказательство существования и предсказание местоположения новой планеты». Сообщество Кембриджа не могло пройти мимо такого оскорбления и по прошествии двух лет создало премию Адамса, вручаемую раз в два года. Любопытно, что именно тогда Королевское общество признало свою забывчивость и вручило медаль Копли Адамсу.

При этом члены Колледжа Святого Иоанна установили, что согласно принятым нормативам данная премия будет присуждаться только бывшим ученикам Кембриджа и только за достижения по одной из тем, предварительно избранных комитетом. Первые три работы, выдвинутые на соискание премии, касались небесной механики. Они привлекли так мало ученых, что премию предоставили только в одном случае (в 1850 году) — некоему Роберту Пирсону, о котором ничего не известно. По остальным проблемам премию не присвоили.

ОТКРЫТИЕ НЕПТУНА

После двух лет работы, в 1845 году, Джон Куч Адамс вычислил, где может находиться планета, которая вызывала необъяснимые искажения орбиты Урана, замеченные астрономами. Он показал свои результаты Джеймсу Чэллису, директору Кембриджской обсерватории, а тот, увидев их, заявил, что должен переслать их сэру Джорджу Бидделю Эйри, настоящему астроному и директору Гринвичской обсерватории. К несчастью, вычисления Адамса совсем не понравились Эйри. Во-первых, потому что у Адамса, крестьянского сына, не было должного социального положения. Во-вторых, потому что он был исключительно практиком и не любил чистую теорию; он считал, что предсказывать математически, а затем проверять вычисления неприемлемо: начинать надо с эксперимента. Несмотря на свое негативное отношение, Эйри послал данные Адамса астроному-любителю, чтобы тот поискал планету. Но этот любитель не мог ничего искать, так как лежал в постели с вывихнутой лодыжкой. Между тем Нептун находился практически в том месте, которое вычислил Адамс.

Наблюдение из Берлина

Француз Урбен Жан Жозеф Леверье вычислил положение Нептуна, не зная ничего о результатах Адамса, и 31 августа 1846 года представил свои данные в докладе Французской академии наук, в котором указывал местонахождение планеты в «5 градусах к западу от звезды 6 Козерога». Но Леверье преследовал тот же самый рок, что и Адамса: ни один французский астроном не искал планету. За два месяца до этого, 23 июня, Эйри получил предварительный доклад Леверье, в котором он рассчитывал с меньшей точностью положение Нептуна. Оно отличалось только на один градус от того, что вычислил Адамс.

Эйри начал думать, что, возможно, восьмая планета существует: Леверье был гораздо более известным математиком, чем Адамс. Он намеренно прокомментировал различным английским астрономам идеи французского ученого, но никак не упомянул Адамса. Даже 2 июля, когда он посетил Кембридж, Эйри случайно встретил Адамса и не сказал ему ничего о том, что происходит во Франции. Между тем Адамс уточнил расчеты и решил представить свои результаты на собрании Британской ассоциации развития науки, но когда он пришел, заседание, посвященное астрономии, уже закончилось.

Он не смог убедить ни одного астронома поискать планету.

Леверье, рассерженный тем, что во Франции не обратили на него внимания, написал помощнику директора Берлинской обсерватории, Иоганну Галле. В тот самый день, 24 сентября 1846 года, когда письмо Леверье было доставлено, Галле и Генрих д’Арре, один из студентов, работавших в обсерватории, начали наблюдать за точкой, указанной французом, и меньше чем за час нашли планету.

Гравюра примерно 1880 года, на которой изображен Урбен Леверье в 1846 году, вычисляющий положение Нептуна.

Для премии 1857 года попросили Джеймса Чэллиса (1803- 1882) предложить подходящую тему, способную привлечь внимание возможных кандидатов. Чэллис занимал должность профессора престижной кафедры астрономии и был директором Кембриджской обсерватории. По иронии судьбы, Чэллис был замешан в «деле* Нептуна. Адамс показывал ему свои расчеты, но он, должно быть, не поверил в них. А когда Чэллис все-таки начал искать Нептун, то стал исследовать обширные зоны неба вместо того, чтобы использовать координаты, предоставленные Адамсом. Когда Нептун был открыт, Чэллис хотел подняться на помост славы, но получил серьезную критику на собрании Королевского астрономического общества. Таким образом, он был самым подходящим человеком для того, чтобы возобновить премию, которая фактически еще не существовала. Однако Чэллис был пессимистично настроен и не верил в воодушевление молодых исследователей. Так он и сообщил Уильяму Томсону:

«Боюсь, математики Кембриджа ничего не понимают в исследованиях, требующих долгих математических расчетов. Я бы обрадовался, если бы мог предложить какую-нибудь тему, которая привлекла бы кандидатов».

ПЛАНЕТА С КОЛЬЦАМИ

С помощью своего примитивного телескопа Галилей заметил в 1610 году, что нечто странное сопровождает Сатурн, — как будто у планеты есть ручки или два больших спутника с каждой стороны:

«Я заметил, что самая дальняя планета — это тройная система... Они почти соприкасаются».

Но еще большее замешательство ученый испытал, когда два года спустя эта картина исчезла. «Сатурн пожирает собственных детей?» — написал он Марку Вельзеру, члену влиятельной семьи на юге Германии, который подогрел его интерес к астрономии, увлекшись открытием солнечных пятен. В последующие годы многие астрономы наблюдали кольца в различных ситуациях, но никто не решался дать объяснение, полностью охватывающее такой странный объект, и на время он был предан забвению.

От Гюйгенса до Кассини

В 1655 году голландец Христиан Гюйгенс с помощью своего брата построил телескоп и открыл спутник Титан — небольшую планету, которая сопровождала Сатурн. Она имела период обращения 16 дней и 4 часа. Но больше всего Гюйгенса заинтересовали странные придатки, которые показались ему двумя ручками. Поразмыслив, ученый предположил, что они не могут находиться в состоянии покоя, а должны вращаться вокруг планеты, и так как они сохраняют свой облик, то, должно быть, это что-то вроде колец. Исчезновение «ручек» в 1656 году доказало ему. что данное образование должно быть очень тонким и плоским. Так что в 1659 году в работе Systems Saturnium он писал:

•Сатурн окружен тонким и плоским кольцом, которое нигде не касается его и расположено под наклоном к эклиптике [...] Здесь я должен покончить с подозрением тех. кто считает странным и нерациональным то, что я придал форму небесному телу. Раньше этого никто не делал, ведь кажется точным и естественным то, что тела приобретают только сферическую форму. [...] Нужно иметь в виду, что мне подобное пришло в голову не из-за каприза, (...) но я ясно видел кольцо собственными глазами».

Решение, найденное Гюйгенсом для загадки Сатурна, не пришло просто с помощью построения мощного телескопа (который был грубым и неуклюжим по сравнению даже с теми, что сегодня доступны любому астроному-любителю), оно было результатом тщательных рассуждений. Пришлось ждать 1675 года, когда итальянец Джованни Доменико Кассини (1625-1712) открыл, что у этих колец есть структура и внутри них существует щель. Сегодня она известна как щель Кассини.

Изображение Сатурна, сделанное в 1980 гаду с помощью автоматического зонда Вояджер-1. На кольцах Сатурна можно увидеть тень планеты.

Чэллис включил в свое письмо список из четырех вариантов. Две проблемы были связаны с небесной механикой, и одна — с аберрацией света, его любимой темой. Аберрация света — это различие, которое возникает между наблюдаемым положением звезды и ее реальным положением из-за комбинированного эффекта скорости Земли и скорости света. Данное явление подобно тому, которое мы переживаем, идя под дождем: даже если капли падают вертикально, при перемещении нам кажется, что они летят под углом. Четвертой темой в списке значилось «Исследование возмущений в формах колец Сатурна при предположении, что они текучие». Это также была одна из любимых тем Чэллиса, и в то время о ней говорили многие астрономы благодаря выводам, к которым пришел известный русский астроном Отто Струве (1819-1905) о «приближении внутреннего кольца к планете Сатурн».

Проблема колец превратилась в жаркую тему с тех пор, как в 1850 году американский астроном Джордж Филлипс Бонд (1825-1864) из Гарвардского университета нашел «темное кольцо», расположенное внутри уже двух известных и открытых Кассини ранее. На следующий год он посетил Европу и обсудил свое открытие со своими коллегами. В Пулковской обсерватории в Санкт-Петербурге Бонд смог наблюдать за Сатурном вместе с Отто Струве. В своем дневнике он записал, что ему показалось, будто Струве в первый раз видит новое кольцо. После того как они обсудили это явление с ним, а также с его отцом, Вильгельмом Струве, был сделан вывод, что система колец находится «в процессе изменения».

Открытие Бонда подстегнуло интерес Струве к Сатурну, и он начал ряд наблюдений и тщательное штудирование соответствующей литературы, пока не заключил, что темное кольцо образовалось недавно. Изучив результаты двухвекового наблюдения системы колец, он сделал вывод:

«Нижний предел самого внутреннего кольца постепенно приближается к диску планеты, и в то же время общая ширина двух блестящих колец находится в постоянном увеличении».

У этого утверждения было важное теоретическое значение, потому что если кольца действительно меняли форму с течением времени, это подтверждало бы гипотезу о том, что они — текучие, а не твердые тела, как и думал Чэллис, предлагая данную тему для премии.

Итак, с учетом этой идеи Чэллис объявил об условиях премии 1857 года, которая касалась стабильности колец. Он предполагал, что стабильность появляется, если только учитывать исключительно силу тяготения, и объяснил Томсону:

«Я отделил часть проблемы, которую мы можем принять как решенную, от той, на которую едва лишь можно ответить без учета этой заданной гипотезы».

Обсуждение данных гипотез сыграло главную роль в ответе Максвелла на утверждение Струве о том, что с течением времени в кольцах Сатурна должно произойти изменение. И что более важно, рассмотрение трения как чего-то изменяющего стабильность системы привело его к размышлению о вязкости газов, и отсюда он перешел к исследованию кинетической теории газов — одной из своих самых главных работ.

КОЛЬЦО ДЛЯ ПРЕМИИ

Дело колец было чем-то, как говорил Чэллис, «в духе математики Кембриджа». Действительно, ректор Тринити-колледжа, эрудит Уильям Уэвелл, предложил в качестве экзаменационного вопроса для студентов Кембриджа, которые сдавали экзамен на премию Смита, «доказать, что жидкость может вращаться в виде идеального кольца, как кольцо Сатурна. Каким было бы кольцо Сатурна, если бы оно не было твердым телом?»

Этот вопрос был тесно связан с дискуссией, которая шла на эту тему у Лапласа в главе 6 Книги III его знаменитого «Трактата о небесной механике», где он утверждал, что движение твердого кольца нестабильно. Лаплас сделал вывод, что кольца должны быть неправильными твердыми телами, центры тяжести которых не совпадают с их геометрическими центрами. С другой стороны, первая часть вопроса Уэвелла могла быть сформулирована под влиянием предположения бельгийского физика Жозефа Антуана Фердинана Плато (1801-1883), высказанного после экспериментального установления законов поведения мыльных пузырей. Согласно Плато, динамика колец Сатурна может быть аналогичной эффекту, получаемому при вращении масляного шара в растворе воды и спирта. В данном случае шар превращается в «идеально правильное кольцо», и вывод ученого заключался в том, что «тело со структурой, аналогичной нашему жидкому кольцу, — это кольцо Сатурна». Плато также говорил, что его модель служит «миниатюрным изображением образования планет согласно небесной космологии Лапласа», по которой Солнечная система возникла из-за конденсации газообразной материи, окружившей первоначальное Солнце. Более того, сам Лаплас указывал, что спутники и кольца Сатурна образовались таким же образом на основе газа атмосферы планеты. В случае с премией Адамса спрашивали, при каких условиях кольцо было бы стабильным, если бы оно: (1) было твердым телом, (2) было текучим и (3) состояло из множества различных твердых частей.

МЫЛЬНЫЕ ПУЗЫРИ

В публичных научных опытах XIX века обычно использовали такие продукты, как желатин, пластик, стекло и мыло.

Ученые XIX века думали, что за мыльными пузырями скрываются загадки материи: они были моделью и проявлением основного вещества природы.

Это может показаться удивительным, но банальное мыло сыграло важную роль в изучении света. Один из великих умов того времени, Уильям Томсон, имел интеллектуальную смелость идентифицировать эфир, проводивший волны света, с «воздушной материей», из которой делались мыльные пузыри.

В 1852 году этот профессор в Глазго объяснял своим ученикам, что интерференция света на тонких пленках мыла доказывает причудливость этого эфирного материала, который, как считалось, имел природу, близкую к природе воздуха. Однако в 1870 году сам Томсон, основываясь на данных, полученных при экспериментальном изучении мыльных пленок, доказал в статье, посланной в журнал Nature, что молекулы воздуха не равны молекулам гипотетического светового эфира. Это не лишило тему привлекательности. На своих публичных лекциях Томсон показывал на большом экране цвета, которыми переливался мыльный пузырь, говоря:

«Те. кто занимается мыльными пузырями, имеют возможность восхищаться одним из самых интересных явлений физики. Достаточно надуть мыльный пузырь и наблюдать за его поведением, изучая саму жизнь в ее целостности и мимоходом усваивая еще один урок физики».

Гравюра, изображающая бельгийского физика Жозефа Антуана Фердинана Плато, 1890 год.

Но настоящим знатоком данной темы, проделавшим более детальные исследования в 1840-х годах, был бельгийский физик Жозеф Антуан Фердинан Плато. Ученый ослеп после десятилетий, посвященных изучению выносливости зрения, поэтому при наблюдении движений мыла, масла и других текучих веществ ему помогали родственники и друзья. Плато разработал несколько очень хитроумных техник для работы с пузырями и их пленками. В одном из его экспериментов капля масла, помещенная в раствор спирта и воды такой же плотности, помогла ему определить, что происходит с маслом при отсутствии тяготения. И когда он изучил свойства коммерческого глицерина и установил, какова самая подходящая для его исследований смесь мыла и воды, он смог делать долгоживущие мыльные пузыри и пленки, которыми его помощники управляли с помощью проволочных петель различной формы. Кроме того, он объяснил, как его вращающиеся капли масла имитируют кольца Сатурна, поскольку они превращаются в последовательные круглые кольца. Эта работа имела большой отклик в Англии, поскольку Джеймс Чэллис ее перевел, а лондонская газета опубликовала в 1846 году.

Точно не ясно, когда Максвелл начал работать над задачей, выдвинутой на премию Адамса. В июле 1856 года, когда ученый оставил Кембридж, чтобы занять место преподавателя натуральной философии в Маришал колледже в Абердине, он уже был полностью поглощен проблемой. Джеймс рассказал своему другу Р. Б. Личфилду, что «посвящает значительную часть времени кольцам Сатурна, проблеме чрезвычайно сложной, но любопытной, особенно в случае с движущимся текучим кольцом». В следующем письме в октябре он поведал о результатах, касающихся условий стабильности колец. Окончательный вариант статьи Максвелл написал и послал в жюри 16 декабря. Она оказалась единственной работой, представленной на конкурс.

«О СТАБИЛЬНОСТИ ДВИЖЕНИЯ КОЛЕЦ САТУРНА»

Статья была разделена на две части, как того требовали условия конкурса. В первой изучалось движение твердого кольца, а во второй — движение жидкого, образованного несвязанными частицами. В своей математической работе Максвелл использовал хорошо известные методы, такие как теорема Тейлора, анализ Фурье и теория потенциала, но примененные не очень обычным способом.

Максвелл исходил из классической работы Лапласа и искал способ определения условий, в которых жесткое вращающееся кольцо было бы стабильным на основе уравнений теории потенциала, развитых самим Лапласом в его «Небесной механике*: «Мы должны определить силы, действующие между кольцом и сферой, и мы это сделаем с помощью потенциала, V, относительно кольца». Получив уравнения движения для вращения кольца вокруг центра тяжести, он вывел условия, при которых возможно его однородное вращение. К своему удивлению, Максвелл открыл, что твердое однородное кольцо может быть стабильным, в противоположность доказанному Лапласом. Должно быть, что-то было не так, и именно Чэллис отыскал ошибку, указав на уравнения гравитационного потенциала кольца. Он попытался снова решить задачу, но не смог. Когда в августе Максвелл переделал свою работу, он сумел исправить ошибку и доказать, что твердое однородное кольцо полностью нестабильно. Он выяснил, что твердое кольцо может быть стабильным в крайне странном положении, когда 4/5 части массы кольца находятся в одной точке окружности, а оставшаяся часть распределена неравномерно. Очевидно, что такая структура не была свойственна кольцам Сатурна.

Вторая часть его работы была посвящена текучему кольцу.

В данном случае «каждая частица кольца должна считаться спутником Сатурна». Таким образом, он предположил, что различные части кольца способны двигаться независимо; следовательно, «мы должны учитывать в каждой зоне кольца действующее притяжение, вызванное нерегулярностью в других зонах». В этом случае Максвелл доказал, что текучее кольцо в итоге разобьется на ряд отдельных капель. Итак, методом исключения получалось, что кольца должны состоять из огромного числа мелких тел, каждое из которых независимо вращается вокруг планеты и подвержено взаимодействиям и столкновениям друг с другом. Однако регламент премии требовал математического исследования условий стабильности кольца. Очевидно, что способ рассмотрения уравнений движения каждого из тел, составляющего кольцо, непригоден.

Но чтобы показать то, что может происходить, Максвелл исследовал отдельный случай: единое кольцо, в котором каждый кусок равномерно расположен в пространстве. В такой ситуации он доказал, что подобное кольцо было бы стабильным.

Если бы существовали два кольца — внутреннее и внешнее, — нестабильность системы можно было бы предсказать в зависимости от отношения между двумя соответствующими радиусами, поскольку было бы несколько значений, при которых система разрушилась бы, однако имелись бы и другие значения, при которых этого не произошло бы.

[...] интересный пример красивого метода, умело примененного к решению очень сложной проблемы.

Похвала королевского астронома Джорджа Бидделя Эйри доказательствам, использованным Максвеллом в его работе «О стабильности...»

Это был предел того, куда Максвелл смог зайти. В статье он признал: если учесть возможность взаимодействия между собой различных тел, образующих кольца (по сути, это присутствовало в уравнениях в виде трения), то можно ожидать, что внутреннее кольцо будет приближаться к планете, а внешнее — удаляться. Из этого следует, что вывод Струве об изменении системы колец со временем верен: «Это единственный наш наблюдаемый результат или который, как считается, был наблюдаем», — написал Максвелл. Кольца Сатурна оказались «облаком метеоритов», вращающихся вокруг газового гиганта. Когда зонды Вояджер сфотографировали Сатурн и его кольца в 1980-х годах, мы получили прямое доказательство того, что ученый был прав.

Максвелл получил за свою работу 30 мая 1857 года премию Адамса. Но это был не конец. Следующие два года ученый продолжал работать над проблемой, стремясь сделать ее более понятной и разработав модель, сооруженную им с помощью абердинского ремесленника. Благодаря ряду шариков из слоновой кости, вставленных в деревянное кольцо, которые могли по-разному вибрировать, Максвелл обеспечил способ визуального представления своих математических результатов. Возможно, его вдохновителем в данном вопросе был Уильям Томсон, который обычно говорил, что единственный способ узнать, понял ли кто-то тему, — это спросить его: «Ты можешь построить механическую модель этого?» Сегодня такую модель можно увидеть в Кавендишской лаборатории в Кембридже как свидетельство того, что математическую абстракцию можно превратить в физическую реальность.