Генеалогия нейронов

Сахаров Дмитрий Антонович

2. НЕОДНОРОДНОСТЬ КЛЕТОЧНОГО СОСТАВА НЕРВНОЙ СИСТЕМЫ МЛЕКОПИТАЮЩИХ

 

 

2. 1. Терминология

Прежде всего следует определить некоторые основные понятия и исходные позиции. Даже если читатель не разделяет этих определений, он по крайней мере будет знать язык, которым пользуется автор.

Речь будет идти о химических различиях между нейронами, но интересовать нас будут не любые особенности химизма, а лишь те, которые имеют отношение к продукции физиологически-активного начала, выделяемого из аксонных окончаний. Очевидно, что нейрон, секретирующий глутамат, должен отличаться от, скажем, дофаминергического нейрона. Эту сторону химизма физиологи нередко называют «эргичностью», но многими такой термин воспринимается как жаргонизм, хотя окончание «ергический», введенное в 1933 г. Дейлом [142], вошло в литературу прочно. Взамен «эргичности» мы будем пользоваться термином медиаторная специфичность. Нужно, однако, учитывать, что и этот термин не вполне удовлетворителен, поскольку рассматриваемая сторона химизма обеспечивает продукцию не только медиаторов, но и нейрогормонов. Следовательно, говоря о медиаторной специфичности, мы вкладываем в понятие «медиатор» расширительный смысл.

В точном смысле под медиатором (синонимы: синаптический передатчик, нейтротрансмиттер) понимается, как это принято в литературе, физиологически-активное вещество, которое секретируется из возбужденного эфферентного (эффекторного) нервного окончания и диффундирует к мишени. Предполагается, следовательно, что мишень находится где-то рядом и что она обладает чувствительностью к передатчику, т. е. соответствующими рецепторами. Бывает, однако, и так, что снабжённая рецепторами клеточная мишень находится на значительном удалении от аксонных терминалей. В этом случае их активный агент доносится до мишени кровью (или гемолимфой), и его удобно называть нейрогормоном.

Итак, действующее начало аксонных терминалей можно классифицировать в зависимости от его химической природы, и тогда мы говорим о медиаторной специфичности нейрона. (Подразумевается, что все аксонные терминали одного нейрона секретируют одно и то же активное начало, — в этом состоит известный принцип Дейла, который за несколько десятилетий своего существования не встретил сколько-нибудь обоснованных возражений). С другой стороны, секретируемые активные агенты можно группировать в зависимости от способа их доставки к месту назначения, и тогда мы делим их на медиаторы и нейрогормоны. Естественно, что в роли медиатора и нейрогормона (и даже просто гормона) может выступать одно и то же вещество, а клетки одной и той же медиаторной специфичности могут оказаться в роли как «обычных» нейронов, образующих синаптические контакты, так и нейросекреторных клеток, т. е. нейронов, выделяющих активное начало в жидкую среду организма.

Такое содержание рассмотренных понятий кажется нам более рациональным, чем встречающееся нередко в литературе, когда понятия нейросекреции и нейрогормона жестко связывают с определённой химической природой продукта секреции или когда нейросекреторным клеткам отказывают в праве называться нейронами только на том основании, что рядом с их аксонными терминалями не оказалось соответствующей мишени.

 

2. 2. Медиаторная специфичность нейрона и идентификация медиатора

Медиаторная специфичность нейрона выражается комплексом признаков, определяемых природой самого медиатора.

В клетках разной специфичности неизбежно различны ферментные системы, ведущие синтез медиатора. Так, в нейронах, секретирующих ацетилхолин, высока активность холинацетилазы, чего нет, допустим, в нейронах, секретирующих норадреналин и дофамин. Клетки двух последних типов, хотя и очень близки в ряде отношений, различаются между собой тем, что в первых (норадренергических) имеется фермент дофамин-бета-оксидаза, не нужный вторым (дофаминергическим).

Различны, в зависимости от природы медиатора, и вещества, из которых построены секреторные органеллы цитоплазмы нейронов. Так, в состав секреторных гранул в нервных клетках, выделяющих катехоламины, входят белки хромогранины, а в нейронах, выделяющих физиологически активные октапептиды, — белки нейрофизины.

Различия в химическом составе медиатора и сопутствующих ему макромолекул находят проявление в строении некоторых структур цитоплазмы, в частности, секреторных пузырьков и гранул, которые неодинаковы по своим морфологическим характеристикам в разных нейронах.

Наконец, неодинаковы системы избирательного накопления медиаторных веществ из внеклеточной среды. Этими системами обеспечивается реутилизация выделившегося из клетки медиатора, в связи с чем они работают с высокой специфичностью.

Благодаря тому что каждый тип медиаторной специфичности выражается совокупностью характерных свойств химизма и, отчасти, строения, работа по установлению типа специфичности у исследуемых нейронов и синапсов в значительной степени облегчается. Её, в принципе, можно вести, используя широкий арсенал методов, которые всё больше становятся реально доступными; в их числе цитохимическое обнаружение самих медиаторных веществ, определение активности ферментов синтеза медиаторов, иммунохимическая локализация этих ферментов или специфических структурных белков, ультрамикроскопическое исследование секреторных органелл, изучение систем захвата экзогенных медиаторов или их аналогов, и т. д. Применение каждого из этих приёмов связано, конечно, со своими трудностями, но всё же на этой основе можно идентифицировать тип нейрона или синапса.

Значительно труднее работа по химической идентификации неизвестных медиаторов. Вопрос о критериях, которые при этом должны выполняться, неоднократно обсуждался в литературе, и разными авторами публиковались разные списки таких критериев, Р. Верман справедливо заметил недавно, что для отождествления передатчика достаточно, чтобы были удовлетворены всего лишь два критерия: критерий накопляемости и критерий идентичности действия. Смысл первого заключается в том, что вещество, предполагаемое медиатором, должно при физиологических для данного синапса условиях выделяться из пресинаптической структуры в ответ на пресинаптическое раздражение в количестве, соответствующем количеству стимулов. По второму критерию, предполагаемый медиатор должен действовать на постсинаптическую структуру, используя те же молекулярные механизмы, которые обеспечивают эффект самого естественного передатчика [340].

Длинные списки критериев возникли, по мнению Вермана, потому, что достаточность двух указанных критериев не всегда осознается, и главным образом потому, что применить эти два критерия совсем не просто.

В последние годы выяснилось, что некоторые критерии, которые до середины 60-х годов считались чуть ли ни главными, нужно признать ошибочными. Исторически случилось так, что в первые десятилетия изучения медиаторного процесса объектом исследований служили периферические холинергические соединения позвоночных (окончания блуждающего нерва на сердце и моторных волокон на скелетных мышцах). В ходе этих исследований развились общие представления о химическом синапсе, в том числе убеждение, что химический синапс должен быть обеспечен ферментом, инактивирующим передатчик. Из «критерия инактивирующего энзима» вытекал как следствие ещё один критерий: эффект вещества, предполагаемого медиатором, как и эффект раздражения пресинаптических волокон, должен усиливаться при применении фармакологических агентов, ингибирующих указанный фермент. Эти критерии следует признать неудовлетворительными. Ярче всего их ограниченность выявилась при изучении синапсов, использующих в качестве медиатора иные, чем ацетилхолин, вещества. Как теперь считают, синаптическое действие катехоламинов прекращается главным образом благодаря обратному захвату их нервным окончанием из синаптической щели. Сходный механизм предполагается для синапсов, передачу в которых осуществляет глицин, гамма-аминомасляная кислота и некоторые другие медиаторы [см. 194]. Прекращение действия синаптического серотонина некоторые авторы связывают с десенситизацией рецепторов к передатчику [168], однако на беспозвоночных и для серотонинергических волокон показан избирательный захват медиатора [266].

Сравнительное изучение холинергических соединений также привело к пересмотру существовавшего ранее представления об обязательном участии синаптической холинэстеразы в медиаторном процессе, осуществляемом ацетилхолином. Синаптическое действие этого передатчика может быть остановлено, по-видимому, по крайней мере тремя разными способами: диффузией из синаптической щели, инактивацией холинорецептора и, наконец, энзиматической инактивацией самого ацетилхолина. Это разнообразие механизмов, с одной стороны, выражает собой процесс эволюционного совершенствования синапсов, а с другой, способ, посредством которого определяются функциональные параметры передачи. Подробнее этот вопрос рассмотрен нами, совместно с Турпаевым, в специальных статьях [65, 285, 317]; отчасти, об этом будет идти речь ниже в связи с обсуждением вопроса об эволюции нервных клеток (7.3.).

С учетом данных, не укладывающихся в существовавшую ранее схему медиаторного процесса, вопрос о критериях идентификации медиатора рассмотрен в нескольких работах [337, 6, 242, 337, 339, 340]. В общем, мнения их авторов во многом совпадают. Признается ценным для периферических окончаний один из старых критериев: при раздражении пресинаптических волокон предполагаемый передатчик должен обнаруживаться во внеклеточной среде в области синапса. Хотя практические трудности ограничивают приложимость этого критерия к синапсам ЦНС, иногда удается их преодолевать, применяя высокочувствительные методы обнаружения малых количеств медиатора.

Несколько критериев выдвигаются в качестве более универсальных. Во-первых, вещество, предполагаемое медиатором, должно в достаточных количествах иметься в пресинаптическом нейроне, с преимущественной локализацией в окончаниях аксона. Во-вторых, здесь же должна присутствовать энзиматическая система для синтеза этого вещества или для обеспечения окончаний медиатором каким-то иным способом. В-третьих, постсинаптическая мембрана должна обладать специфической чувствительностью к предполагаемому медиатору. В-четвёртых, при нанесении предполагаемого медиатора на постсинаптическую структуру он должен воспроизвести все эффекты синаптическо-го действия. В-пятых, фармакологические агенты, влияющие на постсинаптические эффекты естественного передатчика, должны сходным образом влиять на эффекты предполагаемого медиатора при его искусственном нанесении на постсинаптическую структуру.

Почти все эти критерии могут приниматься с известными оговорками, и к ним нельзя относиться некритически. Так, нет полной уверенности в том, что специфические рецепторы, на которые действует медиатор, должны обязательно находиться на постсинаптической мембране: между медиаторами и гормонами нет строгой границы, а среди гормонов известны такие, которые взаимодействуют с внутриклеточными рецепторными структурами.

Больше всего оговорок высказано по поводу четвёртого и пятого из упомянутых критериев. Здесь исследователь встречается с некоторыми осложнениями принципиального характера. Техника многоканальных микроэлектродов, используемая в таких экспериментах, позволяет апплицировать испытуемое вещество на тело нейрона, внутрь которого введен отводящий микроэлектрод. Синаптические же окончания и сами рецепторы к медиатору нередко располагаются на значительном расстоянии от тела нейрона — например, на удалённых частях дендритов. В таких ситуациях испытуемое вещество, в точности идентичное медиатору, не будет давать эффекта, вполне идентичного эффекту раздражения пресинаптических волокон: например, неодинаковыми окажутся потенциалы равновесия. Специальные исследования этих трудностей показывают, что они преодолимы, но важно не упускать их из вида.

Мак-Леннан в последнем издании своей книги «Синаптическая передача» [242] предлагает включить в число критериев развитие денервационного повышения чувствительности к веществу — кандидату в передатчики. В самом деле, в некоторых синаптических структурах чувствительность к медиатору повышается после денервации на несколько порядков. Но нельзя забывать о том, что известны и противоположные ситуации. Так, клетки членистоногих вообще теряют чувствительность к гамма-аминомасляной кислоте после перерезки тормозных волокон, выделяющих на них этот медиатор; рецепторы к медиатору снова восстанавливаются после регенерации иннервирующих волокон [см. ссылки в 279].

Применение указанных критериев должно быть комплексным, только в этом случае можно с уверенностью решать вопрос о медиаторной роли того или иного вещества. Поучительна в этом отношении история изучения передачи в окончаниях симпатических нервных волокон. Сейчас общепризнанно, что передачу в них осуществляет, по крайней мере у теплокровных, норадреналин. Но ещё в начале 60-х годов, несмотря на наличие убедительных фактов, продолжались споры о месте, из которого высвобождается норадреналин при возбуждении симпатических нервов: нельзя было доказательно утверждать, что амин изливается из самих нервных окончаний, а не из внешней по отношению к ним структуры, например, из хромаффинных клеток. Как подчеркнул известный шведский фармаколог А. Карлссон, недостающий критерий удалось выполнить лишь благодаря появлению гистохимического метода Фалька и Хилларпа [111].

Вообще, нужно отметить, что если ещё не так давно вопросом об идентификации медиаторов и установлении типов медиаторной специфичности интересовались только физиологи, то сейчас в решении этих вопросов очень велика стала роль информации, получаемой с помощью морфологических [см. 180] и микрохимических методов исследования [162, 169, 240 - 241а, 259, 263, 330, 331 и др.], и эти методические подходы к медиаторным проблемам представляются сегодня наиболее перспективными.

 

2. 3. Типы нейронов у млекопитающих

Если теперь с точки зрения медиаторной специфичности рассмотреть клеточную популяцию нервной системы млекопитающих, то она представится в виде мозаики, своеобразный рисунок которой может показаться прихотливым.

С одной стороны, не видно закономерной связи между этой мозаикой и функциональной организацией нервной системы. С другой, распределение химически специфичных нейронов не следует за анатомическим членением нервной системы: в одном и том же её отделе нейронный состав, как правило, разнороден.

Нужно добавить, что многие группы нейронов остаются ещё неизученными, принадлежность других к тому или иному химическому типу остается предположительной. Но эти белые пятна довольно быстро заполняются.

Ниже перечислены выявленные к настоящему времени типы нейронов, различающиеся характером секретируемого физиологически активного продукта, и указано, где они располагаются. Из большой литературы вопроса выбраны для ссылок обзорные или наиболее важные работы.

 

2. 3. 1. Холинергические нейроны

Холинергическими называют нервные клетки, эффекторными окончаниями которых секретируется ацетилхолин. Впервые медиаторная функция была доказана именно для этого вещества [235]. Для нейронов, аксонные окончания которых находятся вне ЦНС, удаётся с достаточной полнотой выполнить систему критериев, позволяющих идентифицировать синаптический передатчик с ацетилхолином. Это позволило ещё в 30-х годах отнести к холинергическим следующие типы нейронов: 1) мотонейроны, дающие окончания на скелетных мышцах; 2) симпатические и парасимпатические преганглионарные нейроны и 3) парасимпатические постганглионарные нейроны. Проведённые в последующие годы исследования медиаторной функции ацетилхолина в окончаниях этих нейронов отличаются большой полнотой и тщательностью [см., например, 15, 62, 70, 191].

Гораздо больше трудностей встретилось на пути изучения холинергических интернейронов. Хотя несомненно, что в ЦНС представлены, наряду с другими, и холинергические окончания (достаточно напомнить о существовании синапсов между аксонными коллатералями спинальных мотонейронов и клетками Реншоу), до сих пор сохраняется значительная неясность относительно удельного веса и локализации внутрицентральных холинергических систем. Несмотря на усилия многих исследователей, применение микроэлектродных методов принесло довольно бедные результаты. С достаточной обоснованностью можно сейчас говорить о наличии холинергических нейронов в составе ретикулярной формации (в частности, в стволовой части среднего мозга), откуда начинаются волокна, идущие к холинореактивным структурам коры большого мозга, боковых коленчатых тел и некоторых других участков мозга, а также о холинергической природе некоторых таламических проекций в первичную сензорную кору. Помимо гистохимических данных и демонстрации идентичности эффектов ацетилхолина и пресинаптического возбуждения, удалось показать, что при возбуждении этих структур ацетилхолин выходит во внеклеточное пространство [114, 244, 202, 126]. Мнение некоторых авторов о холинергической природе нейронов нижней оливы, дающих начало лиановидным волокнам мозжечка, оспаривается другими авторами, которые, в свою очередь, считают холинергическими некоторые клетки моста среднего мозга, дающие начало части мшистых волокон мозжечка. Данные о холинореактивности многих клеток ЦНС не подкреплены какими-либо сведениями об источниках волокон, возможно, дающих на этих клетках холинергические окончания. Подробнее см. об этом у Мак-Леннана [242] и Филлиса [268].

Крайне медленный прогресс в работе по обнаружению холинергических клеток головного мозга объясняется методическими трудностями.

В течение многих лет идентификацию холинергических структур связывали с гистохимическим выявлением активности ацетилхолинэстеразы. Простота этого подхода оказалась кажущейся. Только в редких и специальных случаях высокая активность ацетилхолинэстеразы наблюдается в нейронах, секретирующих ацетилхолин, — значительно чаще, но тоже не всегда, фермент располагается в структуре, на которую действует медиатор, т. е. за синаптической щелью. Далее, имеется огромная литература о выявлении ацетилхолинэстеразы в таких соединениях, где ни пре-, ни постсинаптическая клетки не являются холинергическими. Наконец, накопилось немало сведений о том, что присутствие этого фермента в нейронах вообще может не иметь отношения к синапсам и синаптической передаче. Всё это обязываеткрайне критически относиться к обширной литературе о «холинергических нейронах», идентифицированных столь ненадёжным способом.

Несравненно ценнее для идентификации сведения об активности ключевого фермента синтеза ацетилхолина — холинацетилазы (ацетилтрансферазы холина). Сделаны первые шаги в разработке методов гистохимического обнаружения этого фермента. Они ещё несовершенны, но во всяком случае специфичны: так, у крысы продукт гистохимической реакции выявляется в холинергических спинальных мотонейронах, но его нет в нехолинергических клетках спинальных ганглиев [см. 180]. Можно рассчитывать, что дальнейшее развитие гистохимии холинацетилазы, а также использование и совершенствование методов микрохимического определения активности этого фермента [169, 241] и содержания ацетилхолина в отдельных нейронах [241а] позволят уверенно локализовать холинергические нейроны и их связи.

В синапсах, для которых установлена медиаторная функция ацетилхолина (моторные окончания на скелетных мышцах позвоночных, парасимпатические окончания в сердце и др.), секреторные органеллы относятся к одной и той же категории: это не имеющие плотного содержимого округлые пузырьки диаметром около 450-500 Å. Для дифференцирования между пузырьками, содержащими ацетилхолин, и внешне похожими на них пузырьками в окончаниях другой специфичности (в частности, в секретирующих глутамат) важно было бы обладать методом выявления самого ацетилхолина. Однако попытки, предпринимаемые в этом направлении, пока не увенчались успехом. Акерт и Сандри в 1968 г. дали повод надеяться на то, что такой метод найден, когда им удалось импрегнировать содержимое прозрачных пузырьков в нервно-мышечных и центральных синапсах смесью иодистого цинка с четырёхокисью осмия [75], но последующие исследования показали, что реакция выявляет не ацетилхолин и природа её избирательности неясна [см. 74]. Между тем из ацетилхолин-содержащих синаптических пузырьков, полученных из электрических органов рыб, выделили особый кислый белок, везикулин, в связи с чем было высказано предположение, что именно этот белок связывает цинк, обеспечивая электронно-микроскопическую импрегнацию полости синаптических пузырьков [345]. Если в самом деле метод выявляет кислые белки, то специфичность его не может быть очень высока.

Внутри синаптических пузырьков ацетилхолин вряд ли находится в растворенном виде, — скорее, он связан отрицательно заряженными противоионами, роль которых, возможно, играют упомянутый везикулин и АТФ [344, 345].

В холинергических окончаниях, наряду с прозрачными секреторными пузырьками, в гораздо меньшем числе встречаются гранулы диаметром около 800 Å, имеющие плотное содержимое. Они как будто не принимают участия в процессе секреции. Эти более крупные гранулы, в отличие от секреторных пузырьков, обнаруживаются не только в пресинаптическом окончании, но и в теле нейрона, а также по ходу аксона. Существует предположение, что в таких гранулах, образующихся в элементах аппарата Гольджи в теле холинергического нейрона, в аксонные окончания доставляются какие-то макромолекулы, необходимые для производства секреторных пузырьков [см. 295].

Итак, для обнаружения холинергических нейронов и синапсов применяют комплекс методов. В микроэлектродных исследованиях широко используются фармакологические агенты, в частности, вещества, влияющие на синтез, секрецию и рецепцию ацетилхолина. Гистохимики возлагают сейчас свои надежды на холинацетилазу. Можно думать, что этот фермент, как и другие специфические белки холинергических нейронов, в частности, везикулин, скоро будут обнаруживать и иммуногистохимическими методами. Электронная микроскопия пока позволяет идентифицировать холинергические окончания лишь приблизительно: холинергические пузырьки трудно спутать с секреторными органеллами моноаминергических или пептидергических окончаний, но трудно и дифференцировать от прозрачных пузырьков какой-то другой медиаторной специфичности. Наконец, существуют основанные на разных принципах методы обнаружения рецепторов ацетилхолина [см. 39], что позволяет косвенно судить о холинергической природе волокон, иннервирующих такие холинореактивные структуры. всё это хорошо, но остро чувствуется потребность в более простых, прямых и надежных способах обнаружения холинергических структур.

Ещё одно замечание.

Начиная список медиаторных систем с холинергической, мы следовали традиции, которая всегда ставит ацетилхолин на первое место в ряду медиаторов. Это справедливо, если учитывать, что первые представления о механизме передачи в химических синапсах были получены благодаря открытию медиаторной функции ацетилхолина. Нужно, однако, не упускать из вида, что в реальных нервных системах ацетилхолин просто является одним из многих медиаторов и не имеет тех привилегий, которыми его наделила научная традиция. Об этом необходимо сказать потому, что особенное отношение к ацетилхолину явилось и продолжает являться психологической предпосылкой ошибочных генерализаций, которые лишь затрудняют изучение медиаторных систем.

Одним из таких обобщений был уже упомянутый «критерий инактивирующего энзима». Немало сил было впустую потрачено на суету вокруг другой ложной идеи — а именно, что ацетилхолин должен обязательно принимать участие в работе нехолинергического нервного окончания, в частности, адренергического («концепция холинергического звена» Бэрна и Ранда [см. 39, 103]). Также и электронные микроскописты, увидев пустые пузырьки в нервном окончании, дружно вспоминают ацетилхолин — а почему бы, скажем, не глутамат, который тоже хранится в таких пузырьках? Наконец, холинорецептор почти монопольно владеет вниманием исследователей, занимающихся рецепцией медиаторных веществ.

Важно не забывать, что этот крен в пользу ацетилхолина не имеет объективных оснований.

 

2. 3. 2. Моноаминергические нейроны

Этим названием объединяют нервные клетки, которые осуществляют свои синаптические эффекты при посредстве того или иного биогенного моноамина. Границы понятия «биогенные моноамины» (или «биогенные амины») в последние годы несколько сузились. Раньше сюда включали различные низкомолекулярные физиологически активные вещества, обладающие нейротропным действием и имеющие в своём составе аминогруппу, — в том числе и такие вещества, как гистамин, некоторые аминокислоты и т. д. После 1962 г., когда в гистохимическую практику вошел люминесцентный метод Фалька и Хилларпа, стало более принятым называть биогенными аминами те тканевые амины, которые выявляются этим методом, т. е. катехоламины и индолилалкиламины.

Интерес к этим веществам как медиаторам нервных влияний существует давно и восходит к классическим опытам Отто Леви, показавшего на сердце лягушки, что симпатические нервные влияния, подобно парасимпатическим, осуществляются при помощи химического посредника [236]. Довольно долго, однако, этот интерес ограничивался симпатическими окончаниями и адреналином, который считался передатчиком в этих «адренергических» окончаниях. Заметным шагом вперед явились исследования Эйлера, который пришёл к заключению, что медиатором симпатических эффектов у млекопитающих является не адреналин, а норадреналин [151]. Следующей важной вехой явился 1954 год, когда в английском физиологическом журнале появились две работы, положившие начало изучению медиаторной роли биогенных аминов в мозге млекопитающих. В одной из них М. Фогт показала, что неравномерность распределения норадреналина в разных отделах мозга не позволяет согласиться с существовавшим мнением о функциональной связи этого амина с сосудами: Фогт обсудила предположение, что норадреналин может быть одним из синаптических передатчиков в ЦНС [322].

Другая работа носила сходный характер и описывала распределение в мозге серотонина [76].

Период медленного накопления фактов затянулся на несколько десятилетий, но ситуация резко изменилась в 60-х годах, когда биогенные амины оказались в центре внимания исследователей, занимающихся проблемой синаптической передачи. Несомненно, главной причиной, вызвавшей эту концентрацию усилий, явилось внедрение уже упомянутого гистохимического метода, который впервые сделал возможным прямое наблюдение медиаторных веществ [см. 129].

Применение метода Фалька и Хилларпа и основанных на нём других специальных методов (снятие спектральных характеристик свечения, сочетание люминесцентной гистохимии с радиоавтографией, с фармакологическими воздействиями и т. д.) позволило за короткий срок получить ответ на ряд важнейших вопросов. Были выяснены места расположения моноаминергических нейронов в центральной и периферической нервной системе и для каждой группы таких клеток определены области иннервации [см. 16, 77, 161, 319 и библиографию к этим работам; специально для мозга человека — 253]. Одновременно физиологами было показано, что возбуждение гистохимически идентифицированных моноаминергических систем ЦНС сопровождается выделением медиаторных аминов [93, 272, 293] и что аппликация этих аминов воспроизводит эффекты раздражения пресинаптических моноаминергических элементов [127, 351 и др.].

Люминесцентный метод стал основой больших успехов в создании фармакологических средств, избирательно действующих на моноаминергические нейроны, что уже нашло применение в клинике нервных болезней, в частности, в лечении паркинсонизма.

Все большее развитие получает иммуногистохимия моноаминергических нейронов. В качестве антигенов, специфических для этих нейронов, используются ферменты, принимающие участие в синтезе медиаторов, хромогранины и другие специфические белки. Различия в наборе ферментов в клетках, секретирующих разные катехоламины, позволяют дифференцировать эти клетки с помощью иммунолюминесцентного метода [183, 184, 189].

Хорошие знания о рассматриваемых нейронах накоплены электронной микроскопией. Для клеток, секретирующих катехоламиновые медиаторы, характерно присутствие двух популяций пузырьков: мелких, диаметром около 400-500 Å, и более крупных. Первые наблюдаются только в области секреции, вторые — по всей длине аксона и в теле нейрона. И те и другие имеют электронноплотное центральное ядро, но при обычных условиях фиксации оно обычно сохраняется только в крупных пузырьках. Имеются хорошие основания считать, что плотное центральное ядро дают сами катехоламины в результате цепи реакций, которая начинается реакцией конденсации между амином и фиксирующим альдегидом. В самом деле, если фиксация проводится при условиях, уменьшающих возможность диффузии катехоламина из везикул, плотное ядро можно наблюдать и в больших, и в маленьких везикулах. Надёжное выявление плотного зерна в катехоламиновых везикулах обеспечивается фиксацией перманганатом [181, 182].

Недавнее исследование, проведенное на весьма чистой фракции крупных пузырьков (средний диаметр 763 Å), полученной из симпатического нерва, показало, что видимая в микроскоп плотность содержимого пузырьков коррелирует с содержанием в них норадреналина; авторы пришли также к заключению, что содержимое пузырьков сжимается в виде центрального или эксцентрично расположенного зерна лишь в результате фиксации, и нашли такие условия обработки, при которых содержимое остается равномерно распределенным в полости пузырька [314].

Дифференцирование между первичными катехоламинами, с одной стороны, и другими медиаторными биогенными аминами, с другой, основано на использовании разных фиксирующих альдегидов (глутаровый, муравьиный, акриловый), которые применяются в сочетании с тем или иным металлическим окислителем (перманганат, бихромат, четырёхокись осмия) [182, 349].

Электронная микроскопия широко использует также способность аминсодержащих нервных окончаний и секреторных везикул накапливать соответствующий амин, поглощая его из внеклеточной среды. Хотя специфичность таких систем захвата не абсолютна, указанное свойство позволяет локализовать пузырьки, содержащие амин, авторадиографическим методом [97].

Наконец, следует упомянуть о фармакологических агентах, которые, обладая химическим сходством с медиаторными аминами, способны лишать пузырьки их плотного содержимого (как, например, альфа-метилметатирозин) либо, наоборот, значительно повышать электронную плотность, накапливаясь в пузырьках в большом количестве (как, например, 5-оксидофамин). Вещества такого рода облегчают и делают более уверенной идентификацию моноаминергических клеток и волокон. Вместе с тем, обладая способностью разрушать нервные элементы, в которых они накапливаются, некоторые из таких веществ оказались полезным инструментом экспериментального изучения функций моноаминергических нейронов. Здесь в первую очередь нужно назвать 6-оксидофамин, поражающий норадренергические и дофаминергические нейроны [313], а также 5,6-диокситриптамин, оказывающий аналогичное действие на серотонинергические элементы [95].

Все упомянутые методы ультраструктурного анализа позволяют сделать вывод, что медиаторный амин в том или ином моноаминергическом нейроне содержится в обеих популяциях пузырьков. Выдвинута гипотеза, что пузырьки более крупного класса трансформируются в мелкие в терминальном участке аксона [218].

Лучше всего на ультраструктурном уровне изучены норадренергические нейроны. Средние диаметры пузырьков в симпатических терминалях крысы определены в 495 (малые) и 967 (крупные) Å [181]. Многие авторы указывают, однако, для крупных пузырьков цифру 750 Å. Дофаминергические нейроны мозга очень сходны с норадренергическими в ультраструктурном отношении. Слабее изучены серотонинергические элементы. В супрахиазмальном ядре гипоталамуса крысы, богатом терминалями серотонинергических волокон, найдены, помимо окончаний указанного типа, другие окончания. В них тоже имеются мелкие и крупные пузырьки, причём диаметр крупных около 1400 Å, т. е. почти вдвое больше, чем в катехоламиновых окончаниях [303].

Медиаторной функции катехоламинов и индоловых аминов посвящено много современных обзорных и обобщающих работ [например, 2, 16, 91, 98, 117, 186]. В отношении млекопитающих с уверенностью можно говорить о двух катехоламиновых медиаторах (норадреналин и дофамин) и одном индоловом (серотонин). Данных в пользу участия адреналина в синаптической передаче не было до последнего времени, когда свидетельства в пользу медиаторной функции адреналина были получены для двух групп нейронов мозга крысы [183].

Начнём с нейронов, секретирующих дофамин, — иначе говоря, с дофаминергических клеток (рис. 1). Они у млекопитающих лежат почти исключительно в среднем мозге. Одна большая группа расположена в substantia nigra и частично в вентролатеральной части ретикулярной формации среднего мозга; другая, самая мощная, занимает медиальный отдел среднего мозга. Волокна от этих двух групп следуют в краниальном направлении и заканчиваются частично в nucleus caudatus и putamen, частично в tuberculum olfactorium и nucleus accumbeus. Это — нигро-неостриарная система дофаминергических клеток. Она хорошо изучена в количественном отношении. Подсчитано, что в substantia nigra крысы насчитывается около 3500 нейронов, содержащих дофамин; каждый из них образует сеть терминальных волокон общей протяженностью 55-77 см, на этом протяжении имеется около 500 000 варикозных расширений (т. е. пресинаптических участков, из которых секретируется медиатор). В neostriatum крысы, где расположено около 4 000 000 клеток, не содержащих дофамина, этот медиатор находится в примерно 1 000 000 000 пресинаптических варикозных расширений дофаминергических аксонов, занимающих около 0,3% объема этой части ЦНС. Концентрация дофамина в пресинаптическом варикозном расширении составляет до 3000 мкг/г, тогда как в теле такого нейрона содержание амина в 30-150 раз ниже.

Кроме нигро-неостриарной системы, дофаминергические нейроны имеются в составе сетчатки (их волокна не выходят за её пределы) и в гипоталамической области (в частности, клетки арочного ядра, отсылающие аксоны к срединному возвышению и в гипофиз). В периферической нервной системе дофаминв высокой концентрации обнаруживается в особых мелких клетках симпатических ганглиев [94], однако мнения о природе этих клеток расходятся: одни исследователи считают их особыми дофаминергическими интернейронами [233], другие полагают, что это островки железистой хромаффинной ткани, которая всегда богата катехоламинами.

Нейроны, содержащие норадреналин, имеются в ЦНС в составе среднего мозга, варолиева моста, продолговатого и промежуточного мозга. От них восходят волокна, оканчивающиеся в гипоталамусе, таламусе, лимбических отделах переднего мозга, в коре мозга и мозжечка, и нисходят волокна в спинной мозг. Наконец, норадренергическими являются многие нейроны, расположенные вне ЦНС, в частности нейроны симпатической цепочки и некоторых периферических узлов.

Рис. 1. Моноаминергические системы нейронов в ЦНС млекопитающих.

5-ОТ — серотонин; НА — норадреналин; ДА — дофамин. А — схема связей между отделами ЦНС, осуществляемых моноаминергическими нейронами: 1 — новая кора; 2 — лимбические отделы переднего мозга; 3 — неостриатум; 4 — палеостриатум; 5 — таламус; 6 — гипоталамус; 7 — медиальный пучок переднего мозга; 8 — средний мозг; 9 — варолиев мост; 10 — продолговатый мозг; 11 — спинной мозг; 12 — сетчатка [из 77]. Б — топография моноаминергических нейронов в мозге крысы (сагиттальный разрез, схема). Индексами указано принятое шведскими авторами обозначение групп моноаминергических клеток [из 161а].

В продолговатом мозге крупное скопление норадренергических нейронов расположено в вентролатеральном отделе ретикулярной формации, другая небольшая группа лежит в комиссуральном ядре. В варолиевом мосте самая значительная группа находится в locus caeruleus, кроме неё имеются ещё две небольшие группы. В среднем мозге встречаются лишь отдельные клетки этого химического типа. Восходящие пучки норадренергических волокон имеют очень широкие области иннервации. Густотой терминальной сети выделяются лимбические отделы мозга; очень плотные скопления окончаний этого типа найдены в нижних отделах ствола мозга, в чувствительных и двигательных ядрах черепномозговых нервов, в ретикулярной субстанции и griseum centralis среднего мозга. Нисходящие пути прослежены от варолиева моста и продолговатого мозга до крестцового отдела спинного мозга. Один пучок проходит в боковых канатиках и даёт окончания в боковых и задних рогах; другой спускается на границе передних и боковых канатиков, заканчиваясь в передних рогах на альфа-мотонейронах, а также на преганглионарных симпатических нейронах. В спинном мозге проходит ещё один нисходящий путь норадренергических волокон, который не заканчивается в нём, а выходит в составе передних корешков. Клеточных тел, содержащих норадреналин или другие биогенные амины, в спинном мозге млекопитающих нет, но такие нейроны найдены в спинном мозге рыб [88].

Нейроны, содержащие норадреналин, наряду с дофаминергическими, имеются в составе гипоталамо-гипофизарной системы: окончания в срединном возвышении и в промежуточной доле гипофиза образованы волокнами, приходящими из медиобазальных отделов гипоталамуса.

Почти все серотонинергические нейроны расположены в срединной области мозгового ствола. Из нейронов этого типа состоят, в частности, дорзальное и медиальное ядра шва продолговатого, среднего мозга и варолиева моста. Кроме того, небольшие скопления таких клеток найдены в каудальной части среднего мозга. Серотонинергические нейроны иннервируют обширные области ЦНС, включающие новую кору, гиппокамп, бледное тело, миндалину, подбугровую область, ствол головного мозга, спинной мозг. В коре наиболее плотно серотонинергические окончания представлены в её фронтальных отделах. В стволе мозга такие окончания имеются в ряде ядер черепномозговых нервов, в частности, в моторных ядрах блуждающего и тройничного нервов. Множество терминалей этого типа расположено в поверхностной части subst. grisea periventricularis, в area pretectalis и вблизи nuc. interpeduncularis. В спинном мозге серотонинергические окончания распределены примерно так же, как норадренергические.

 

2. 3. 3. Нейроны, имеющие медиаторами аминокислоты

Рассмотренные только что медиаторы, объединяемые названием «биогенные моноамины», — катехоламины и серотонин представляют собой продукты декарбоксилирования замещённых производных двух аминокислот, фенилаланина и триптофана. В других нейронах сами аминокислоты, по всей вероятности, берут на себя функцию медиаторов. В список таких аминокислот обычно включают гамма-аминомасляную, глутаминовую и глицин [90, 138, 139, 339]. В качестве возможных кандидатов в медиаторы называют также аспарагиновую кислоту, таурин и некоторые другие аминокислоты, но мы здесь ограничимся рассмотрением первых трёх веществ.

Нужно признать, что наиболее полные доказательства медиаторной роли гамма-аминомасляной кислоты и глутамата имеются для нейронов беспозвоночных [см. обзоры — 61, 270, 279, 320, а также 237].

Напротив, предположение о медиаторной роли глицина возникло и затем получило подтверждения в процессе изучения синаптической передачи у позвоночных [см. историю вопроса в 339], а у беспозвочных пока неизвестны синапсы, где медиатором был бы глицин.

Вывод о том, что глицин является передатчиком в тормозных окончаниях на спинальных мотонейронах, как будто мало кем оспаривается, так как он подтвержден убедительными экспериментальными данными. При аппликации на мотонейроны глицин полностью воспроизводит эффекты, вызываемые естественным медиатором тормозных окончаний. Действие этого медиатора, как и действие глицина, избирательно блокируется стрихнином. Наконец, распределение глицина в спинном мозге проявляет сходство с распределением интернейронов и, возможно, проприоспинальных волокон [см. 71, 99, 234, 339, а также библиографию к этим работам]. Робертс и Митчелл показали, что если изолированный препарат спинного мозга амфибий проинкубировать с меченым глицином, то можно наблюдать выход глицина в раствор в ответ на раздражение ростральной части препарата. Из ряда испытанных веществ способность высвобождаться при раздражении проявили, кроме глицина, только гамма-аминомасляная, глутаминовая и аспарагиновая кислоты, причём во всех этих случаях высвобождение происходило только в присутствии ионов кальция, т. е. носило характер секреции. Авторы ссылаются ещё на два наблюдения секреции глицина из нервных окончаний спинного мозга, одно из которых сделано на млекопитающих [274]. Добавим, что ткань спинного, а также продолговатого мозга обладает специфичной системой накопления глицина, т. е. извлечения его из внеклеточной среды и переноса через клеточную мембрану против градиента концентрации [234]. Сейчас общепризнанно, что такие системы накопления, или обратного захвата, во многих синапсах служат для освобождения синаптической щели от подействовавшей порции передатчика и для реутилизации его пресинаптическим аксоном [194].

На клетки продолговатого мозга глицин оказывает такое же действие, как на спинальные мотонейроны [190, 312]. Данные в пользу синаптической функции глицина в других отделах головного мозга менее определенны [см., однако, 99]

Напротив, для головного мозга имеется хорошая система доказательств медиаторной роли гамма-аминомасляной кислоты в различных тормозных синапсах. Среди нейронов, для которых с разной степенью убедительности показана секреция гаммааминомасляной кислоты, можно назвать ряд мозжечковых нейронов (корзинчатые, звёздчатые клетки, клетки Пуркинье), зернистые клетки обонятельных луковиц, корзинчатые нейроны гиппокампа. Насколько известно, все названные клетки образуют только тормозные окончания на постсинаптических структурах [см., однако, 173]. Вывод о том, что синаптические эффекты этих клеток медиируются гамма-аминомасляной кислотой основан на следующих наблюдениях. Во-первых, апплицируемая гамма-аминомасляная кислота воспроизводит эффекты тормозных нервных окончаний. Во-вторых, в обоих случаях, т. е. при действии как естественного передатчика, так и гамма-аминомасляной кислоты, постсинаптические эффекты блокируются одними и теми же алкалоидами — пикротоксином и бикукуллином. В-третьих, гамма-аминомасляная кислота концентрируется именно в тех участках нервной ткани, где имеются соответствующие тормозные окончания. Так же локализован фермент, производящий эту кислоту, — декарбоксилаза глутаминовой кислоты, причём активность этого фермента резко падает после разрушения аксонов, дающих тормозные окончания. В-четвёртых, в области таких тормозных окончаний локализована система избирательного и противоградиентного накопления гамма-аминомасляной кислоты. В-пятых, при синаптическом торможении отмечается выход гамма-аминомасляной кислоты в экстраклеточную среду. Эти результаты, убедительно подтверждающие медиаторную функцию гамма-аминомасляной кислоты, рассматриваются в ряде работ [см. 61, 139, 159, 245, 250, 291, 339 и библиографию к ним]. Значительно менее ясным пока остаётся вопрос об участии этого медиатора в синаптической передаче в спинном мозге и в периферической нервной системе. Локализовать нейроны и синапсы этого химического типа будет гораздо легче, когда будет доработан и усовершенствован гистохимический метод выявления гамма-аминомасляной кислоты на срезах ткани [348].

В отличие от глицина и гамма-аминомасляной кислоты, за которыми закрепилось название «тормозные медиаторы», глутамат оказывает на нейроны млекопитающих, как правило, деполяризующее действие, вследствие чего его часто называют «возбуждающим медиатором». Хотя возбуждающие эффекты глутамата в самом деле отмечаются у нейронов, расположенных в самых разных отделах нервной системы млекопитающих, встречаются также клетки, в частности в коре головного мозга, которые глутаматом тормозятся [см. 43].

На пути доказательства медиаторной функции глутамата встретились серьёзные трудности. Так, действие глутамата оказалось мало специфичным и характерным для дикарбоновых аминокислот. Далее, отсутствие вещества-антагониста не давало возможности проверить, параллельно ли угнетаются эффекты глутамата и натурального передатчика возбуждающих окончаний. Эти и другие трудности, подробно рассмотренные МакЛеннаном в последнем издании его книги «Синаптическая передача», привели этого автора к заключению, что «вопрос о роли глутамата как возбуждающего передатчика в ЦНС млекопитающих должен оставаться открытым» [242, стр. 121 — 122].

Вскоре, однако, сам же Мак-Леннан с сотрудниками нашли среди производных глутаминовой кислоты два вещества с искомыми свойствами фармакологических антагонистов глутамата — альфа-метилглутамат и диэтиловый эфир глутаминовой кислоты [174, 174а]. Также и другие факты, которые накапливаются в последнее время, укрепляют уверенность в том, что глутамат служит медиатором у млекопитающих. Глутамат высвобождается из мозга, причём имеется чёткая зависимость между скоростью его выхода и уровнем активности нейронов [197]. Далее, в нервной ткани имеется высокоэффективная система избирательного захвата глутамата, подобная другим таким системам инактивации и реутилизации медиаторов. Выраженность эффектов глутамата на нервные клетки и богатство нервной ткани этой аминокислотой открывают очевидную и заманчивую перспективу установить природу синаптической передачи в огромной массе возбуждающих синапсов мозга, в частности, его коры. Мнение о том, что глутамат выполняет медиаторную функцию в ЦНС млекопитающих, имеет приверженцев среди видных специалистов [197, 199, 223, 339].

На ультраструктурном уровне аминокислотные медиаторы изучены не очень хорошо. Учизоно нашел, что в мозжечке кошки пузырьки в тормозных окончаниях уплощены, т. е. имеют на срезе форму овала, тогда как в возбуждающих окончаниях они округлые [318]. Последующие наблюдения других авторов, выполненные не только на позвоночных, подтвердили, что в секреторных пузырьках уплощённой формы хранится гамма-аминомасляная кислота. Возможно, сходное строение имеют секреторные пузырьки в глицинергических окончаниях; во всяком случае, экзогенный меченый глицин аккумулируется в спинном мозге пузырьками такой формы [234]. Напротив, глутамат хранится в округлых пузырьках. Все названные секреторные органеллы не содержат электронно-плотного материала. Для членистоногих, у которых легко идентифицировать возбуждающие и тормозные окончания на соматических мышцах, определены следующие диаметры пузырьков: для возбуждающих (содержащих глутамат) — 448±20Å, для тормозных (содержащих гамма-аминомасляную кислоту) — 460±24 (большой диаметр) и 362±18 Å (малый диаметр) [294].

 

2. 3. 4. Пептидергические нейроны

В 1967 г. Баргманн и соавторы при электронно-микроскопическом исследовании промежуточной доли гипофиза кошки нашли на железистых клетках пресинаптические окончания, образованные аксонами нейросекреторных клеток гипоталамуса [85]. Авторы резонно рассудили, что это наблюдение не позволяет с прежней уверенностью называть во всех случаях такие клетки нейросекреторными и в качестве альтернативы предложили новый термин — пептидергические нейроны. В их оригинальной трактовке этот термин относился только к гипоталамическим нейронам, вырабатывающим октапептиды, и, соответственно, пептидергическими синапсами назывались контакты терминалей этих клеток с клетками эндокринных органов. В последующие годы, однако, новый термин наполнился более широким содержанием. Практика пользования им в литературе показывает, что пептидергическими называют нейроны не только позвоночных, но и беспозвоночных, и что характеру структур, с которыми контактируют аксонные терминали, не придают значения. В принципе сознаётся, что важно было бы в каждом случае располагать данными о действительно пептидной природе активного агента (который вовсе не обязательно должен быть октапептидом), но в реальной действительности природа секретируемого вещества часто остается неизвестной и пептидергическими нейроны называют, опираясь на то, что ультраструктурные или гистохимические характеристики секреции в них такие же, как в нейронах с установленной пептидной природой секрета.

Из сказанного видно, что понятие «пептидергические нейроны» должно отличаться от более старого понятия «нейросекреторные клетки» не только по содержанию, но и по объему. Хотя нейросекреция, по-видимому, чаще всего осуществляется пептидергическими нейронами, известны и исключения. Так, у млекопитающих туберо-инфундибулярная система катехоламиновых нейронов, вероятно, функционирует как нейросекреторная: дофамин, выделяемый окончаниями этих нейронов в срединном возвышении, как полагают, попадает в портальную систему сосудов, чтобы таким путем принять участие в регуляции секреции гонадотропина клетками гипофиза. Наличие нейросекреции непептидной природы предполагают и у насекомых.

С другой стороны, пептидергические клетки во многих случаях функционируют как «обычные», а не нейросекреторные, нейроны, выделяя свои активные агенты непосредственно вблизи соответствующей клеточной мишени. Тому известно немало примеров, кроме приведённого в начале этого раздела. Так, для рыб известна прямая иннервация железистых клеток аденогипофиза гипоталамическими пептидергическими нейронами [220, 221]. У насекомых имеется целый ряд эффекторных органов, получающих прямую иннервацию пептидергического типа [163]. Иногда в этих случаях пресинаптические окончания называют «нейросекретомоторными», но упоминание о нейросекреции, которой на самом деле здесь нет, без нужды запутывает дело. Физиология синаптической передачи в пептидергических окончаниях совершенно не исследована, и эксперименты в этом направлении представили бы немалый интерес, учитывая вероятную устойчивость пептидной медиаторной молекулы.

В ЦНС млекопитающих пептидергические нервные клетки сосредоточены в гипоталамической области головного мозга.

Два парных клеточных ядра гипоталамуса — супраоптическое и паравентрикулярное — дают начало волокнам, образующим гипоталамо-гипофизарный тракт, который следует в заднюю долю гипофиза. Это — детально исследованная нейросекреторная система, в которой задняя доля гипофиза выступает в роли гемального органа, т. е. депо секрета, где наполненные им аксонные терминали образуют функциональный комплекс с собирающими секрет сосудами. Окончания нервных волокон содержат здесь два нейрогормона — вазопрессин (антидиуретический гормон) и окситоцин, которые при секреции попадают в общую систему циркуляции. Строение того и другого гормона известно, каждый из них представляет собой октапептид с молекулярным весом около 1000, построенный из девяти аминокислот. Гипоталамо-гипофизарной нейросекреторной системе посвящено немало сводок и монографий [см., например, 48, 143]. Клетки паравентрикулярного и супраоптического ядер обладают всеми морфологическими и физиологическими чертами нейронов. Об этом приходится сказать в связи с продолжающимися, несмотря на их нелогичность, попытками противопоставить пептидергические нейроны всем прочим типам, рассматриваемым вкупе. У пептидергических нейронов имеются дендриты и аксон, в их цитоплазме наблюдаются характерные для нервных клеток структуры. Физиология этих клеток типична для нейронов: они генерируют потенциалы действия, распространяющиеся по аксону; в аксонном окончании такой потенциал вызывает акт секреции, при этом действует типичный для нейронов механизм экзоцитоза, посредством которого секретируются и медиаторы; сами пептидергические нейроны получают аффрентацию от других клеток мозга [145, 146, 246, 251 и др.].

Идентификация нейронов супраоптического и паравентрикулярного ядер облегчается их сродством к некоторым, так называемым «нейросекреторным», красителям. Чаще всего в качестве таковых применяют хромовый гематоксилин по Баргману, паральдегид-фуксин по Габе и псевдоизоцианин по Стербе. Все три красителя, по-видимому, реализуют одну и ту же особенность химической организации этих клеток — наличие особого белка, богатого цистином.

Предполагают, что окрашиваемым компонентом клеток является полипептид нейрофизин, который выделяется при секреторном акте вместе с активным началом [254], но сам активностью не обладает. Нейрофизин считают белком-носителем физиологически активного пептида. В самом деле, он обладает способностью абсорбировать вазопрессин и окситоцин, образуя комплексы с ними [см. литературу в 143]. Обладая в некоторых случаях антигенными свойствами, нейрофизин, вернее, группа нейрофизинов даёт возможность локализовать пептидергические нейроны с помощью иммунолюминесценции [см. 199а].

На ультраструктурном уровне клетки, о которых идет речь, отличаются от других типов нейронов наличием крупных, в среднем около 1900 Å, электронноплотных секреторных гранул, окруженных мембраной [201]. Органеллы этого рода нередко называют элементарными нейросекреторными гранулами, но лучше этим термином не пользоваться, так как те же гранулы могут применяться и для синаптической функции, о чём говорилось выше. Гранулы прослеживаются от тела клетки до аксонных терминалей, где они особенно многочисленны.

В процессе секреции в области секреторной мембраны аксона накапливаются мелкие пузырьки, лишенные плотного содержимого, которые, по всей вероятности, представляют собой остатки секреторных гранул, изливших свое содержимое во внеклеточную среду, или продукт пиноцитоза [323, 296].

Имеются серьёзные основания считать, что вазопрессин и окситоцин вырабатываются разными группами нейронов. Содержащие эти нейрогормоны гранулы можно разделить дифференциальным центрифугированием, хотя они не различаются внешне по диаметру и электронной плотности [201]. Локальным электрическим раздражением удается вызвать преимущественную секрецию одного из двух веществ. Итогом разных экспериментов по раздельному разрушению гипоталамических ядер, по анализу содержания нейрогормонов в них и т. д. [см. ссылки в 201] является вывод, что в супраоптическом ядре находятся клетки, вырабатывающие вазопрессин, а в паравентрикуляр ном — окситоцин.

Этими двумя ядрами не ограничивается система пептидергических нейронов гипоталамуса. В неё следует включить также группу мелкоклеточных ядер вентральной области (инфундибулярное, передние перивентрикулярные и некоторые другие). Считается, что в состав этих ядер входят клетки, вырабатывающие нейрогормоны, которые регулируют секреторную активность тропных желез аденогипофиза. Указанные клетки вентрального гипоталамуса связаны с аденогипофизом специальной портальной системой кровеносных сосудов.

Не будучи ещё общепринятым [48], такое представление о механизме регуляторных влияний гипоталамуса на аденогипофиз получило широкое распространение [60, 143].

Нейроны мелкоклеточных ядер вентрального гипоталамуса не обладают тинкториальными свойствами пептидергических клеток супраоптического и паравентрикулярного ядер, поэтому обычные «нейросекреторные красители» при их исследовании неприменимы. Это затрудняет локализацию клеток, синтезирующих физиологически активные агенты вентрального гипоталамуса. Различают семь эффектов, оказываемых этими агентами на железистые клетки аденогипофиза. Соответственно, можно говорить о семи гипоталамических факторах, имеющих следующие обозначения: CRF — фактор, вызывающий выделение кортикотропного гормона, LRF — фактор, вызывающий выделение лютеинизирующего гормона, FSHRF — фактор, вызывающий выделение фолликулостимулирующего гормона, TRF — фактор, вызывающий выделение тиреотропного гормона, GRF или SRF — фактор, вызывающий выделение соматотропного гормона, PIF — фактор, тормозящий выделение пролактина, MIF — фактор, тормозящий выделение меланоцит-стимулирующего гормона.

Пептидная природа этих факторов предполагалась давно, но только в недавнее время эти предположения стали получать прямое подтверждение. TRF идентифицирован как (пиро)глутамил-гистидил-пролинамид, т. е. как пептид, построенный всего из трёх аминокислот [101, 102б]. LRF оказался идентичным FSHRF, это — пептид, в составе которого девять аминокислот [102а, 238а]; он обладает антигенными свойствами, что позволило использовать иммунолюминесцентный метод для локализации соответствующих нейронов в мозге млекопитающих [87а]. Имеются данные, что и CRF представляет собой пептид молекулярным весом около 2500 [см. 143].

 

2. 3. 5. Пуринергические нейроны

Термин «пуринергические» был предложен в 1971 г. Бурнстоком для обозначения клеток, которые, как было показано этим автором и его сотрудниками, применяют в качестве медиатора АТФ или его производное [105, 106]. При изучении нервных влияний на мышцы желудочно-кишечного тракта накапливалось всё больше свидетельств тому, что, помимо адренергических тормозных и холинергических возбуждающих нервных элементов, в регуляции моторики желудочно-кишечного тракта принимают участие нервные клетки какой-то иной химической природы. Бурнстоком и сотрудниками был использован широкий арсенал методов для выяснения природы медиатора, осуществляющего неадренергические тормозные эффекты. Удалось с необходимой строгостью удовлетворить как критерий накопляемости (АТФ и продукты его гидролиза появлялись в перфузате при раздражении соответствующих нервов), так и критерий идентичности действия (АТФ и АДФ являются наиболее мощными ингибиторами моторики кишечной мышцы из большого ряда испытанных пуриновых и пиримидиновых соединений). В той же лаборатории было показано, что нервные окончания, о которых идет речь, отличаются от адренергических и холинергических окончаний, присутствующих в кишечной мышце, по ультраструктурным характеристикам: секреторные органеллы пуринергических окончаний представляют собой достаточно крупные гранулы (диаметр 1000-2000 Å), умеренно плотное содержимое которых заполняет всю гранулу, вплоть до её наружной мембраны. Фармакологические воздействия, которые резко сказывались на внешнем виде гранул адренергических окончаний, не влияли на пуринергические окончания [108]. По данным лаборатории Бурнстока, пуринергические нервные элементы представлены в разных классах позвоночных, в частности, у амфибий, птиц, млекопитающих, и принимают участие в иннервации мышц не только желудка и кишечника, но и дериватов кишечной трубки — легкого, мочевого пузыря. Не только тормозные, но и некоторые формы возбуждающих нервных влияний на эти мышцы тоже, по-видимому, осуществляются пуринергическими нейронами [107, 297].

 

2. 4. Заключение

Несмотря на работу большого числа исследователей, выясняющих химическую специфичность различных нервных клеток у млекопитающих животных, полученная к настоящему времени картина далека от полноты. Имеется ещё много нервных клеток, которые скорее всего не относятся ни к одному из перечисленных выше типов. Неясна медиаторная специфичность системы волокон, содержащих особые крупные (750-1600 Å) везикулы, — такие волокна представлены в дорзальном сером веществе спинного мозга [147]. Почти неизвестны синаптические механизмы, действующие в сетчатке: за исключением незначительной группы дофаминергических клеток, сложная нейронная популяция сетчатки остаётся лишь приблизительно охарактеризованной в химическом плане. Если взять такой хорошо изученный нервный центр, как мозжечок, то и здесь обнаруживаются зияющие пустоты: неизвестны медиаторы возбуждающих входов, нет данных о специфическом химизме зернистых клеток, не до конца ясно, все ли тормозные нейроны используют в качестве медиатора гамма-аминомасляную кислоту. Такие белые пятна остаются во всех отделах нервной системы.

В некоторых, пока немногих, случаях кандидатами в медиаторы предложены определённые вещества, и эти предложения экспериментально проверяются. Одним из старейших кандидатов является гистамин. Некоторое время назад казалось, что эта кандидатура окончательно отпала, так как чувствительный гистохимический метод обнаружения гистамина дал возможность убедиться, что гистамин не содержится в какой-либо категории нервных элементов и локализуется только в ненервных клетках. Однако в последнее время появляются данные, говорящие в пользу кандидатуры гистамина [например, 311]. Гораздо больше интереса вызывает «вещество Р» — группа близких соединений пептидной природы. Удалось изолировать несколько форм «вещества Р» и установить строение одной из них, выделенной из гипоталамуса крупного рогатого скота,- это пептид, построенный из 11 аминокислот. «Вещество Р» обладает сильным деполяризующим действием на корковые нейроны — клетки Беца [269] и на спинальные мотонейроны [222а]. Этот факт интересен не только как свидетельство в пользу старых предположений о медиаторной роли «вещества Р» в первичных сензорных нейронах позвоночных [см., например, 242], но и как доказательство того, что крупная пептидная молекула способна выполнять роль синаптического передатчика.

Предложенные кандидаты в медиаторы, однако, слишком немногочисленны, чтобы залатать бреши в знании механизмов передачи. Тем не менее уже сейчас ясно, что таких механизмов много. Мы насчитали около десятка типов нервных клеток, продуцирующих разные медиаторы (ацетилхолин, четыре биогенных амина, три аминокислоты, АТФ или его дериват), ещё столько же типов нейронов занято продукцией гипоталамических нейрогормонов. Этого достаточно, чтобы задаться вопросом о природе и причине клеточного разнообразия.

Задача состоит в том, как сформулировать этот вопрос.