Теперь можно, видимо, вернуться к нашему главному вопросу — вопросу о причинах качественного разнообразия, нейронов у млекопитающих. По крайней мере, некоторые стороны этого вопроса должны проясниться.
Начнем с того, что попробуем представить себе суммарную картину качественной разнородности популяции нервных клеток у гастропод — подобно тому, как это делалось в главе 2 для нейронной популяции млекопитающих. Консервативность медиаторного химизма, продемонстрированная в предыдущей главе, позволяет оценивать клеточный состав нервной системы гастропод, используя совокупно данные, полученные на разных представителях класса. Ещё раз отметим, что для предстоящего обсуждения особенно важно знать, в какой степени разнородна эта нейронная популяция и насколько «чисто» в ней представлен каждый из типов специфичности. Когда это возможно, будем также принимать во внимание, какую функцию выполняют клетки, относящиеся к тому или иному типу медиаторной специфичности.
6. 1. Медиаторная специфичность нейронов гастропод
Холинергические нейроны. Исчерпывающие доказательства медиаторной функции ацетилхолина получены для некоторых крупных нейронов аплизии. Измеряя активность ацетилтрансферазы холина в индивидуальных клетках абдоминального ганглия две группы исследователей независимо друг от друга нашли, что энзим имеется только в трёх крупных нейронах — П2, Л10 и Л11; клетка, парная к П2 и расположенная в левом плевральном ганглии, также способна синтезировать ацетилхолин [169, 241]. Клетка Л10 — это интернейрон, оказывающий как возбуждающие, так и тормозные влияния на другие клетки ганглия; эти влияния во всех отношениях подобны эффектам апплицируемого ацетилхолина [96].
При инъекции в тело нейрона меченого холина последний превращается клеткой П2 в ацетилхолин и в фосфорилхолин, тогда как контрольные нейроны, не содержащие ацетилтрансферазу холина, используют холин только для синтеза фосфорилхолина [222]. Микрохимически ацетилхолин определяется в перикарионе названных выше холинергических нейронов аплизии в концентрации 0,35±0,01 мМ, в нехолинергических гигантских клетках уловить присутствие ацетилхолина не удаётся, так что специфичность химизма очень высока [241а].
Кроме клетки Л10, у аплизии описаны другие холинергические интернейроны, расположенные в плевральных и буккальных ганглиях. На других гастроподах изучение таких интернейронов не проводилось, но полагаю, что вполне реальными были бы поиски, например, гомолога Л10 у других лабораторных гастропод, в частности, у виноградной и садовой улитки, у которых эта клетка должна, по-видимому, располагаться на вентральной поверхности абдоминального ганглия. Шагом на пути к идентификации холинергических интернейронов может стать работа по обнаружению клеток, способных к синтезу ацетилхолина. Судя по доступным тезисам доклада, такую работу начала группа английских авторов [150].
Можно с уверенностью думать, что холинергическими у гастропод бывают не только интернейроны. Давно считается, что ацетилхолин служит медиатором в некоторых нервных окончаниях на сердце моллюсков, при этом со стороны сердечной мышцы известно два типа ответов на ацетилхолин — торможение биений и тоническая реакция [см. обзор 333, а также 233а].
Клетки, дающие начало тормозным волокнам сердечного нерва, идентифицированы только у аплизии, у которой они расположены в левом полуганглии абдоминального ганглия [233а, 239].
Наши данные о фармакологии передачи с моторных волокон тентакулярного нерва на ретрактор глазного щупальца у виноградной улитки, а также об ультраструктуре секреторных везикул в окончаниях этих волокон указывают на возможную холинергическую природу соответствующих мотонейронов, которые расположены в плевральной доле церебрального ганглия. Блокирующие эффекты холинолитиков отмечаются на моторных окончаниях других дериватов колумеллярной мышцы и самой этой мышцы, о чём уже говорилось. Холинергическую природу колумеллярных моторных нейронов нельзя, однако, считать строго доказанной; более того, имеются экспериментальные данные в пользу медиаторной функции глутамата в моторных окончаниях на одной из мышц этой системы (ретрактор глотки) [212] — эти данные в свою очередь подвергались серьёзной критике [см. 157, 166].
Моноаминергические нейроны. По крайней мере, существование дофаминергических и серотонинергических нейронов вряд ли может сейчас вызывать сомнение. По-видимому, этими двумя типами медиаторной специфичности разнообразие моноаминергических нервных клеток у гастропод не ограничивается, но в отношении других типов данных немного.
Среди серотонинергических нейронов хорошо изучены только парные церебральные нейроны виноградной улитки (ПЦ1 и ЛЦ1), а также гомологичные им клетки тритонии и аплизии. Для этих клеток представлены хорошие доказательства тому, что их медиатором служит серотонин [131, 264]. Эксперименты на изолированных идентифицируемых нейронах виноградной улитки показали, что указанные клетки способны синтезировать серотонин, т. е. декарбоксилировать 5-окситриптофан, тогда как другие проверенные нейроны такой способностью не обладают [137, 259, 263]. Измеренное с помощью высокочувствительного микрометода содержание серотонина оказалось в парных церебральных нейронах тритонии и аплизии равным примерно 4 — 7 пМ на клетку (таково же содержание серотонина в дающих жёлтую люминесценцию педальных нейронах тритонии). В этих клетках измеримых количеств катехоламинов не оказалось [331, 240]. Синаптические эффекты серотонинсодержащих церебральных нейронов на клетки буккальных ганглиев и влияние этих нейронов на иннервированные их аксонами губные мышцы подобны эффектам апплицируемого серотонина [130, 266а]. Клетки, о которых идёт речь, обладают весьма специфичными системами захвата своего медиатора и его метаболического предшественника: сам серотонин захватывается терминальными участками аксона, а 5-окситриптофан — телом нейрона; контрольные нейроны, не содержащие серотонина, ни той, ни другой способностью не обладают и в их цитоплазме можно обнаружить лишь экзогенный триптофан [266].
Иннервационные отношения клеток ПЦ1 и ЛЦ1 указывают на то, что каждая из этих клеток сочетает функции интернейрона и мотонейрона [266а].
Выделение серотонина нейромоторными окончаниями показано у гастропод на сердечной мышце [298], где серотонин усиливает биения. Противоположное — расслабляющее действие серотонин оказывает на некоторые другие мышцы (например, ретрактор омматофора — собственные наблюдения); механизм такого эффекта давно изучается на ретракторе биссуса двустворчатого моллюска — мидии, где серотонин служит медиатором тормозных нервных окончаний [см. 166, 350].
На ультраструктурном уровне органеллы, содержащие серотонин, описываются в нейронах гастропод как везикулы диаметром около 1000 Å, содержащие центральное или эксцентричное плотное ядро; содержимое этих органелл избирательно выявляется при обработке бихроматом по методу Вуда [135, 266а, 331].
Преимущественным катехоламином нервной системы гастропод является дофамин [см. 166, 209, 334], и медиаторная функция этого вещества в ганглиях доказывается широкой системой критериев [83, 211, 306, 328]. Исследование идентифицируемого гигантского нейрона катушки, содержащего дофамин, дало окончательные свидетельства медиаторной роли этого катехоламина, который, подобно ацетилхолину в клетке Л10 аплизии, осуществляет как возбуждающие, так и тормозные синаптические эффекты [92]. Имеются все основания думать, что описанный в 5 главе гигантский непарный педальный нейрон прудовика, дающий зелёную люминесценцию, является гомологом названного интернейрона катушки; клетки этого ряда, как отмечалось в главе 5, имеются и у сидячеглазых пульмонат.
Наши и литературные данные указывают на то, что дофаминергические нейроны гастропод могут выполнять также функции моторных и сензорных нейронов. О моторных окончаниях на некоторых клетках педальной мускулатуры выше уже говорилось. Такие окончания, по-видимому, имеются и в других мышечных органах моллюсков: в пищеводе (собственные наблюдения), сифоне [248 — данные для аплизии] и т. д.
Помимо дофамина, в нервной системе гастропод отмечен, хотя и в меньших количествах, другой первичный катехоламин — норадреналин [260]. Гистохимический метод, позволяющий дифференцировать между дофамином и норадреналином, пока не прилагался к нейронам гастропод, но использование этого метода на других беспозвоночных (аннелиды, членистоногие) показало, что у них имеются как дофаминергические, так и норадренергические нейроны [149, 219]. Не исключено, что такова же ситуация у гастропод. Во всяком случае, эффекты этих двух катехоламинов на один и тот же нейрон улитки могут быть разными [170].
В экстрактах из нервной ткани разных моллюсков найдено несколько физиологически активных веществ, одно из которых имеет люминесцентные характеристики, присущие катехоламинам, не являясь в то же время ни дофамином, ни норадреналином, ни адреналином [73]. Вполне возможно, что эти находки указывают на существование неизвестного медиаторного амина. Имеется и другая сходная возможность: гигантские парные нейроны гастро-эзофагальных ганглиев тритонии проявляют, при обработке по методу Фалька и Хилларпа, жёлтое свечение, характерное для серотонина и других индольных соединений [37], микрохимические же исследования этих клеток показывают, что в них имеется неидентифицированное вещество, отличное от серотонина (Р. Мак-Каман, личное сообщение). Таким образом, кроме трёх известных медиаторных моноаминов, у гастропод, вполне возможно, существуют и другие вещества этой группы.
Наконец, клетки, найденные у лёгочных улиток в составе висцеральной дуги, как сообщают Керкут и соавторы, содержат два медиаторных амина, дофамин и серотонин [213]. Это весьма необычная ситуация, и я специально вернусь к ней в разделе 6.7.
Нейроны, имеющие медиаторами аминокислоты. У млекопитающих мы называли три таких медиатора: глицин, глутамат и гамма-аминомасляная кислота. Пока никто не исследовал, имеются ли у гастропод нейроны, медиатором которых служит глицин. Глицин присутствует в их нервной системе [258], а у самих нейронов имеются рецепторы к глицину, фамакологически похожие на соответствующие постсинаптические рецепторы позвоночных [255], но этих данных, конечно, недостаточно, чтобы утверждать, что у гастропод представлен этот тип синаптической передачи.
Примерно такая же ситуация с гамма-аминомасляной кислотой. Нервная ткань гастропод отличается низким содержанием этого вещества [257]. Следовательно, нейронов этого типа может быть очень мало, а возможно, что их нет совсем. Если верно последнее, то моллюски отличаются в этом отношении не только от позвоночных, но и от таких беспозвоночных, как ракообразные и насекомые [см. 61]. Однако чувствительностью к гамма-аминомасляной кислоте нейроны гастропод обладают, при этом рецепторы блокируются пикротоксином и бикукуллином, как и у позвоночных [326].
Глутамат скорее всего служит медиатором у гастропод. Этот вывод на основании совокупности экспериментальных данных делают в специальном обзоре Керкут и соавторы [212].Дополнительно упомяну, что особое двухфазное синаптическое торможение клеток ПЦ1 и ЛЦ1 садовой улитки во всех деталях воспроизводится глутаматом [304]. Из этого не следует, что глутамат выступает исключительно в роли тормозного передатчика: одни нейроны отвечают на него торможением, другие — возбуждением [167, 256, 288]. До сих пор никто, однако, не пытался идентифицировать нейроны, секретирующие глутамат,- в частности, неизвестны клетки, оказывающие тормозные синаптические эффекты на ПЦ1и ЛЦ1.
Кроме трёх названных аминокислот, можно упомянуть аргинин (или его производное), как будто высвобождающийся некоторыми нервными окончаниями улитки [298].
Пептидергические нейроны. Наши электронно-микроскопические данные, полученные на ЦНС виноградной улитки, показывают поразительное обилие и разнообразие нейронов, содержащих гранулы пептидергического типа. Об этом же говорят исследования, проведённые на переднежаберных улитках [79], а также на сидячеглазых пульмонатах [200, 336]. Во всех этих случаях наблюдается постоянство топографии клеток, содержащих гранулы определённой категории (рис. 15).
Разные группы предположительно пептидергических нейронов, различающиеся по ультраструктуре секреторных гранул, выступают как в роли нейросекреторных клеток, так и в роли «обычных» нейронов, иннервируя, в частности, мышечные клетки оболочки ганглиев.
У некоторых видов моллюсков такие нейроны картированы, но знания о строении секретируемых веществ пока что очень ограниченны. Ни в одном случае их идентификация не доведена до конца, но во всех изученных случаях эти вещества в самом деле оказались пептидами.
С начала 60-х годов ведутся работы по выделению «субстанции X» — вещества, стимулирующего сердце и содержащегося в пептидергических гранулах соответствующих нервных волокон. Эти волокна подходят к сердцу в составе сердечного нерва не только у гастропод, но и у двустворок, где подсчитано, что они составляют около 5% волокон нерва. Отмечают, что активное начало представляет собой «большую и устойчивую молекулу» и что оно инактивируется протеолитическими ферментами; фракционированием выделены два активных вещества молекулярным весом около 700 — 1500 [см. обзор 333, а также 175].
Про нейросекреторную клетку ППа1 и её гомологи, синтезирующие полипептид м. в. около 5000, говорилось в разделе 5.3.2.
Успешно развиваются исследования нейронов, выделяющих нейрогормон, который вызывает откладывание яиц у аплизии. Две группы таких клеток, по 400 нейронов в каждой, расположены вокруг плевро-висцеральных коннективов рядом с абдоминальным ганглием. Клетки электротонически связаны между собой и генерируют потенциалы действия синхронно, чем достигается одновременная секреция большого количества нейрогормона.
Рис. 15. Разнообразие пептидергических нейронов в ЦНС прудовика Lymnaea stagnalis [из 336].
А — схема окологлоточного ожерелья ганглиев (педальные комиссуры перерезаны и педальные ганглии отвёрнуты) и позиции клеток, различающихся по ультраструктуре секреторных гранул. Обозначение ганглиев: 1 — правый церебральный, 2 — левый церебральный, 3 — правый педальный, 4 — левый педальный, 5 -правый плевральный, 6 — левый плевральный, 7 — правый париетальный, 8 — левый париетальный, 9 — висцеральный.
Рис. 15 (продолжение) Б — гистограммы диаметров секреторных гранул для некоторых групп нейронов из изображённых на рис. 15, А. Заштрихованные столбцы — гранулы в телах нейронов, светлые — гранулы в аксонных терминалях. Латинскими буквами обозначены сокращённые названия клеточных групп.
Показано, что он представляет собой полипептид молекулярным весом около 6000. Секреторные гранулы, имеющие типичную для пептидергических нейронов ультраструктуру, выделяются, по-видимому, в оболочку коннективов и абдоминального ганглия, где слепо заканчиваются аксоны этих нервных клеток. Выделившийся нейрогормон оказывает свой эффект, вызывая сокращение неиннервированных мышечных клеток протока гермафродитной железы [80, 81, 123, 125, 227, 315].
Значительное большинство пептидергических нейронов остаётся пока неисследованным ни в отношении функции, ни тем более в отношении строения активного начала. У прудовика различают 10 типов таких нейронов [200], но, на мой взгляд, эта цифра занижена.
Нейроны с неизвестными медиаторами. Многие авторы, изучающие постсинаптические потенциалы в ганглиях виноградной улитки и аплизии, отмечали, что далеко не во всех случаях синаптические эффекты воспроизводятся каким-либо из известных или предполагаемых медиаторов. Очевидно, что медиаторные функции у моллюсков выполняются многими веществами неизвестной природы. Так, из интернейронов абдоминального ганглия аплизии только один [Л10] оказывает свои эффекты с помощью известного медиатора — ацетилхолина.
Есть основания предполагать, что и в нервных окончаниях на эффекторных органах гастропод действует ряд пока что неизвестных медиаторных механизмов. Назовём только один пример, известный нам по собственному опыту работы. У свободноплавающей личинки — велигера голожаберных моллюсков имеются ярко выраженные тормозные нервные влияния на биения моторных ресничек паруса. Г. Н. Бузников и Б. Н. Манухин, детально исследовавшие это явление, нашли, что на той стадии развития, когда устанавливаются эти нервные влияния, в гомогенате личинок начинает обнаруживаться вещество, воспроизводящее этот эффект. Одновременно появляется вещество, воспроизводящее другой синаптический эффект — сокращение мышцы паруса.
Ни одно из двух веществ не похоже ни на один из известных или предполагаемых медиаторов [см. 15, гл. 6]. Позже мы с Г. Н. Коробцовым снова пытались изучать механизм синаптических влияний на биения ресничек и, в частности, показали, что активное начало при хроматографировании экстракта в системе уксусная кислота: бутиловый спирт: вода (1: 4: 1) обнаруживается в области Rf = 0,9 и даёт пятно, которое не красится нингидрином [22]. Большего пока об этом неизвестном медиаторе сказать нельзя.
Неизвестной остаётся также природа тех нервных окончаний, описанных в разделе 5.3.5., для которых характерна высокая активность дегидрогеназы глюкозо-6-фосфата.
О наличии у моллюсков неизвестных медиаторов, возможно, свидетельствует и постоянное присутствие в их нервной ткани нескольких неидентифицированных физиологически активных веществ [73, 172].
Подытожив данные о химической (медиаторной) разнородности нейронной популяции гастропод, мы сравним их с соответствующими данными для млекопитающих, чтобы получить ответ на вопрос, зависит ли гетерогенность нейронной популяции от уровня нервной организации.
6. 2. У кого больше медиаторов?
Уровни нервной организации, представляемые млекопитающими и гастроподами, очень различны. Мощно развитая нервная система первых содержит, как считают, 109 - 1010 нейронов, у вторых их число в миллион раз меньше (103 - 104). Простым отношениям соподчинения, существующим в нервных центрах гастропод, противостоят сложнейшие иерархические системы нейронов мозга млекопитающих и, соответственно, высокая степень функциональной специализации нейронов и нервных центров, многоэтажные надстройки над рефлекторными дугами и т. д. Короче говоря, различия очевидны.
Но при сравнении качественного состава нейронных популяций у организмов, относящихся к этим двум далеким друг от друга классам, разница вовсе не бросается в глаза. Хотя нейронная популяция у млекопитающих исследована несомненно с большей тщательностью, не может быть и речи о том, что у них разнокачественность нейронов представлена ярче, чем у гастропод. Скорее, можно говорить о противоположном общем впечатлении, а в отношении моторных нейронов это уже не впечатление, а непреложный факт.
При всей фрагментарности и неполноте данных об иннервации мышц гастропод обращает на себя внимание необычайное (по сравнению с позвоночными) разнообразие типов моторных окончаний. О холинергическом и дофаминергическом моторных механизмах говорилось в предыдущих разделах. Серотонин выделяется в сердце виноградной улитки при раздражении интестинального нерва и стимулирует биения [298], этот же медиатор, по-видимому, выделяется в моторных окончаниях нейронов ПЦ1 и ЛЦ1 на некоторых губных мышцах [266а]. Мышечные клетки периневрия получают моторные окончания от нейронов пептидергического типа. В иннервации таких мышечных органов, как нога и сердце, участвует несколько типов моторных клеток.
Имеющиеся сведения об иннервации сердца особенно интересны. Напомню, что обнаружено по крайней мере три типа постсинаптических потенциалов на клетках миокарда, и эти типы связаны с разными идентифицированными нейронами [239]. В медиации влияний экстракардиальных нервных волокон, вероятно, принимают участие ацетилхолин, серотонин, «субстанция X» [см. 333], но в сердце электронно-микроскопически выявляется не один тип пептидергических окончаний, а больше. Так, на ахатинидах показано, что пептидергические гранулы разные в нервных волокнах, приходящих в предсердие и желудочек [252]. Мы с Н. К. Остроумовой только в предсердии одной из улиток этого семейства (Achatina fulica) нашли два типа пептидергических окончаний с совершенно разными гранулами. Конечно, не исключено, что некоторые из волокон являются нейросекреторными и их секрет не действует на миокард, как это утверждается для заканчивающихся в предсердии аксонных ветвей клетки ППа1 [162б].
Короче говоря, в иннервации мышц моллюсков участвуют нейроны, относящиеся к большему числу специфических типов, чем у позвоночных. Хотя позвоночные изучены в этом отношении лучше моллюсков, до сих пор у них найдено всего три типа мотонейронов: холинергические, иннервирующие как скелетную так и висцеральную мускулатуру; адренергические, контролирующие различные висцеральные мышцы; и пуринергические, иннервирующие мышечные клетки кишечника и его дериватов.
Между тем, с точки зрения гипотезы о плюрихимической примитивной нервной клетке, которая дала якобы начало разным химически специализированным типам нейронов, должно было бы быть наоборот: у млекопитающих с их высоко развитой нервной системой и мощными дифференцированными двигательными системами разнообразие медиаторов должно было бы быть более выраженным, чем у малоподвижных и простых гастропод. На деле в примитивной нервной системе моллюска, содержащей всего несколько тысяч нейронов, обнаруживается большее разнообразие химических типов мотонейронов, чем у высших млекопитающих с их миллиардами нервных клеток и высокодифференцированными структурами нервной и мышечной систем. Сравнение центральных нейронов, взятых в целом, также не дает преимущества ЦНС млекопитающих перед ганглиями гастропод в отношении разнородности популяции.
6. 3. Каковы отношения между медиаторной специфичностью и функциональной специализацией нейрона?
Тот факт, что гомологичные клетки разных гастропод проявляют один и тот же тип медиаторной специфичности, сам по себе недостаточен для отрицания связи между типом химизма и функцией. Ведь можно было бы думать, что гомологичные клетки выполняют одинаковую функцию, и в этом видеть объяснение однотипности их химизма. Такое рассуждение приложимо и к гомологичным нейронам позвоночных.
Опровергнуть это объяснение было бы просто, если бы в ряду гомологичных нейронов, стойко сохраняющих свою медиаторную специфичность, наблюдались бы разные направления функциональной специализации. Думается, педальные катехоламиновые нейроны представляют собой именно такой сравнительный ряд. Однако имеющиеся в нашем распоряжении данные нельзя пока принимать в качестве решающих, так как о сензорной и моторной функциях этих клеток мы судим только на основании морфологических критериев; для большей уверенности нужны были бы и физиологические данные, которых пока недостаёт.
Правда, имеются другие яркие примеры. В эволюции некоторых рыб часть скелетной мускулатуры полностью утратила свою прежнюю функцию, превратившись в электрические органы. Хорошо известно, что на медиаторной специфичности эффекторных нервных окончаний это радикальное изменение функции никак не сказалось — они остались холинергическими. Ещё удивительнее пример с нервной регуляцией молокоотделения. Известно, что ответственные за эту функцию мышечные (так называемые миоэпителиальные) клетки молочной железы не пришли в этот новый орган из старых мышечных систем, а развились заново из эпителия. У низших позвоночных эти эпителиальные клетки принимают участие в водно-солевом обмене, и их ионная проницаемость регулируется гипоталамическим нейрогормоном. Новые мышечные клетки стали выполнять совершенно иную функцию, но сокращаться их заставляет, меняя ионную проницаемость, гипоталамический нейрогормон — окситоцин.
Имеет смысл расмотреть вопрос шире. Располагает ли вообще сравнительная физиология данными, которые указывали бы на существование зависимости между химической природой медиатора и его синаптическим эффектом?
На первый взгляд, существование такой зависимости может показаться самоочевидным. Вероятно, не одному физиологу приходила в голову мысль, что неспроста быстрые скелетные мышцы запускаются в действие холинергическим механизмом, тогда как тонические сокращения гладких мышц контролируются адренергическими окончаниями. При этом привычно упускается из виду, что тот же самый синаптический ацетилхолин вызывает сокращения не только быстрых тетанических, но и медленных тонических скелетных мышц позвоночных, что он же на сердечную мышцу оказывает тормозные влияния, и т. п.
В самом деле, сравнительные данные показывают, что один и тот же медиатор может обеспечить разнообразные синаптические эффекты, различающиеся по ионным механизмам, знаку синаптического действия, эффективности и физиологическим параметрам передачи.
О разнообразии ионных эффектов ацетилхолина на постсинаптические мишени уже говорилось: этот медиатор может открывать ионные каналы для натрия, калия, хлора; кроме того, описан способ действия ацетилхолина, когда он не повышает, а понижает ионную проницаемость постсинаптической мембраны [224,329].
Избирательное повышение проницаемости для одного из названных выше ионов, а также избирательное понижение проницаемости для ионов натрия или калия лежит в основе замечательного разнообразия эффектов серотонина на нейроны гастропод [165, 166, 168, 264а; о разнообразии эффектов серотонина на клетки мозга млекопитающих см. 193]. Помимо этого, известны эффекты серотонина, при осуществлении которых он, по-видимому, действует внутриклеточно: таково его действие на биения моторных ресничек личинок моллюска [23], на ретракторную мышцу биссуса мидии [350].
Сходные факты, хотя и в меньшем объеме, можно представить для эффектов других медиаторных веществ. Ограничив клеточные мишени нейронами гастропод, можно найти данные о нескольких способах действия дофамина [83, 92], глутамата [167,256, 288], гамма-аминомасляной кислоты [12]. Глицин, который вместе с гамма-аминомасляной кислотой часто именуется тормозным медиатором, тоже способен деполяризовать некоторые нейроны гастропод [255]. Для синаптического норадреналина известны противоположные по знаку эффекты на гладкомышечные клетки позвоночных [например, 69, 84].
Короче говоря, не может быть сомнений в том, что знак и ионный механизм синаптического действия определяется молекулярным устройством воспринимающих структур постсинаптической мишени — клеточных рецепторов. Разные медиаторы могут вызывать сходные синаптические эффекты, действуя сходным образом на ионные каналы постсинаптической мембраны, и вместе с тем один и тот же медиатор может действовать по-разному.
Всё это важно иметь в виду, потому что вопрос о факторах, обусловливающих знак синаптического действия, излагается путано или неверно даже весьма именитыми авторами.
Так, Экклс в своей книге «Тормозные пути центральной нервной системы» [71]не только широко оперирует понятием «тормозной медиатор», но и устанавливает некий принцип, который гласит, что «во всех синаптических терминалях нервной клетки медиатор открывает ионные поры лишь одного типа, характерного либо для возбудительных, либо для тормозных синапсов» (стр. 145). Упоминая данные о том, что у моллюсков разные ветви одного интернейрона могут оказывать противоположные по знаку синаптические эффекты (например, [203, 301]), Экклс утверждает, что эти эффекты не противоречат сформулированному им «принципу», так как в данном случае и в возбудительных, и в тормозных синапсах открываются-де поры для ионов хлора, а эффекты различны из-за различных внутриклеточных концентраций хлора в постсинаптических клетках.
Это утверждение не соответствует действительности. Холинергический интернейрон аплизии Л10 тормозит некоторые клетки, открывая поры для ионов хлора, возбуждает другие, повышая проницаемость для натрия, а в клетке Л7 повышает проницаемость для обоих этих ионов [96].
Приходится с сожалением констатировать, что многие авторитетные специалисты в области физиологии и морфологии нервной системы, внесшие заметный вклад в изучение химических синапсов, допускают подчас непростительную небрежность в обращении с химической концепцией синаптической передачи. Можно лишь удивляться, например, легковерию, с каким многие восприняли дилетантскую идею Учизоно [318], что знак синаптического действия можно идентифицировать по форме и размеру синаптических пузырьков (см., например, в той же книге Экклса, стр. 136). Ведь очевидно, что эта идея подразумевает невероятное — что молекулярная организация органелл секреции должна зависеть от того, с какой клеткой продукт секреции встретится во внеклеточном пространстве.
Что касается упомянутого выше «принципа», то здесь необходимо отметить, что Экклс провозгласил его, практически не располагая экспериментальными фактами в его пользу. Ведь моллюски — единственные животные, у которых до сих пор удавалось регистрировать синаптические эффекты в разных постсинаптических клетках, иннервированных одним и тем же нейроном, и факты, полученные на моллюсках, противоречат «принципу» Экклса. Немногие факты, касающиеся млекопитающих, тоже не говорят в пользу этого «принципа». Так, терминальное сплетение норадренергических симпатических нейронов деполяризует мышечные клетки одних кровеносных сосудов, гиперполяризуя мышечные клетки других. Представляется крайне маловероятным, что одни участки сплетения образованы «возбуждающими» симпатическими нейронами, а другие «тормозными»,- скорее, это отростки одинаковых клеток, антагонистически действующие на разные мышечные рецепторы. Но детально это никем не исследовано.
Итак, важнейшие функциональные характеристики синапса — знак и ионный механизм синаптического эффекта могут определяться особенностями структур, воспринимающих действие медиатора. Другие характеристики — такие, как размеры, форма и длительность постсинаптического потенциала, облегчение, десенситизация, пластичность и т. п., определяются не без участия самого пресинаптического нейрона, но, судя по всему, без какой-либо необходимости менять медиатор. Упомянем в этой связи моторные окончания на быстрых и медленных мышцах членистоногих: разная эффективность синаптического действия обеспечивается здесь при одном и том же медиаторе — глютамате различиями в размерах терминалей, числе везикул, числе активных зон синапса и т. п. [см. обзор 279]. В нескольких работах, совместных с Т. М. Турпаевым, нами детально рассмотрены некоторые физиологические механизмы, обеспечивающие изменение параметров передачи в холинергических синапсах, в частности, влияние способа инактивации ацетилхолина на свойства синапса (см. гл. 7).
Нет и фатальной зависимости между типом медиаторного химизма и «макрофункцией» нейрона — его местом в рефлекторной дуге. Холинергические нейроны бывают и сензорными [86, 157], и вставочными, и эффекторными (примеры приводились выше). В тех же ролях выступают дофаминергические нейроны: сензорными они бывают у многих беспозвоночных, интернейроны хорошо известны у млекопитающих (см. главу 2) и гастропод [92], о существовании мотонейронов этого типа говорилось выше. Видимо, по мере накопления сравнительных данных наши знания о функциях, выполняемых нейронами того или иного химического типа, будут всё более расширяться. Они уже сейчас достаточно широки, чтобы окончательно отказаться от терминов «возбуждающий медиатор» и «тормозной медиатор».
В свете всего сказанного в этом разделе предположение о том, что химический тип нейрона может задаваться функциональным прессом — специализацией ли нейрона или режимом функционирования синапса, представляется лишенным основания. Из этого, конечно, не следует, что за нейронами определенного химического типа в определенном нервном образовании не может закрепиться определенная функциональная специализация [см., например, 2а]. Напротив, наличное разнообразие медиаторов предоставляет удобную возможность дифференцировать сигналы разного назначения: так, в каких-то мышцах медиатор А может быть возбуждающим, а Б — тормозным, но в других мышцах А и Б могут поменяться ролями.
6. 4. Специфичен ли химизм примитивных нейронов?
Из представления о плюрихимической примитивной нервной клетке с неизбежностью вытекает, что в простой нервной системе химическая специфичность нейронов должна быть выражена не так четко, как в сложной, эволюционно продвинутой Факты говорят о противоположном. В разделе 6.1. приводились данные, говорящие о совершенной специфичности холинергических, серотонинергических, дофаминергических нейронов гастропод. Результаты микрохимических исследований на их гигантских нейронах получают полное подтверждение в этом отношении в электрофизиологических наблюдениях, которые однозначно показывают, что в том или ином синапсе действует индивидуальный передатчик, а не смесь таковых. Никаких данных, указывающих на меньшую, по сравнению с млекопитающими, степень медиаторной специфичности нейронов, нет и для других животных, обладающих простой нервной системой [см., например, обзоры 166, 279].
Даже у наиболее примитивных из организмов, имеющих центральную нервную систему, — у плоских червей (планарии и трематоды) разные группы нейронов закономерно различаются по своей специфичности. Об этом свидетельствуют данные люминесцентной гистохимии биогенных аминов: позиции и связи нейронов, содержащих серотонин, отличаются от позиций и связей нейронов, содержащих первичный катехоламин [89, 335]. У плоских червей описаны также системы пептидергических нейронов.
Более того, специфичность нейронов четко выражена у кишечнополостных — организмов, не обладающих ещё нервными центрами. Нервную сеть кишечнополостных обычно рассматривают как наиболее примитивную из нервных систем, развившихся в ходе эволюции многоклеточных животных. До недавнего времени оставались неясными даже принципы строения сети, вернее двух сетей, независимо развивающихся в эктодермальном и энтодермальном слоях кишечнополостных. Ныне полностью опровергнута идея о синцитиальной организации сети: даже у наиболее примитивных представителей типа, как и у относительно сложных, электронно-микроскопически доказано наличие истинных химических синапсов между нейронами. При этом обнаружился замечательный факт: сеть всегда построена из нейронов разных типов, с разными ультраструктурными характеристиками секреторных везикул [341 — 343].
Выводы электронной микроскопии подтверждаются гистохимическими данными. Присутствие первичного катехоламина обнаружено у актиний в закономерно расположенной категории эктодермальных нейронов — в веретеновидных клетках, тела которых находятся в эпителии щупалец, а отростки, имеющие характерные для катехоламиновых нейронов варикозные пресинаптические утолщения, образуют субэпителиальное сплетение нервных волокон в самих щупальцах и вокруг рта. Авторы, описавшие эти клетки у некоторых актиний [140, 47], сочли их сензорными нейронами, принимая во внимание типичную для чувствительных клеток позицию в наружном эпителии. Я переисследовал этот вопрос на актинии Bunodactis stella и нашел явные синаптические контакты между указанными отростками и мышечными клетками эктодермального слоя мускулатуры щупалец [рис. 1 и 2 в работе 281]. По-видимому, эти клетки выполняют и сензорную и моторную функции. Это — примитивное свойство, свидетельствующее о низком уровне функциональной дифференциации клеток в нервной системе актинии. Но никаких признаков низкого уровня химической дифференцированности нейронной популяции не видно: специфичность катехоламиновых нейронов выражена у актиний так же отчетливо, как у млекопитающих.
Кстати, примитивные мультифункциональные сензо-моторные нейроны, существование которых ещё недавно отрицалось [188], почти одновременно были найдены у трех разных организмов — и именно там, где такие нейроны следовало ожидать, т. е. в нервных образованиях с низким уровнем функциональной дифференциации. Кроме упомянутых только что нейронов актинии, такие клетки описаны у гидры, где они сочетают функции сензорных, моторных и вставочных нейронов [342а], а также в гениталиях аплизии [124]. Последний случай не должен удивлять. В целом гастроподы, конечно, намного сложнее кишечнополостных по уровню нервной организации, но если взять, периферические нервные сплетения гастропод, то они вряд ли намного сложнее, чем нервная сеть актинии или гидры. Это общее правило: даже у человека, имеющего высокоразвитый мозг, уровень функциональной организации некоторых отделов нервной системы весьма примитивен, и, скажем, интрамуральные ганглии кишечника недалеко ушли в этом отношении от ганглиев беспозвоночных.
Возвращаясь ещё раз к мнению Т. Лентца о том, что комбинации нескольких медиаторов в одном нейроне есть отголосок прошлого [231], нужно сказать следующее. Лентц в этом мнении лишь предложил свое объяснение явлению, которое 10 лет назад считалось установленным фактом. В то время большинство нейробиологов принимало, что ацетилхолин имеется в симпатических норадренергических нейронах и гипоталамических пептидергических клетках и что он каким-то образом участвует в этих клетках в синаптической передаче. В частности, электронными микроскопистами в те годы описывались в окончаниях этих нейронов, помимо специфических гранул с электронно-плотным содержимым, скопления мелких прозрачных пузырьков, которые повсеместно считались вместилищем ацетилхолина и назывались «синаптическими везикулами» — в противовес более крупным «секреторным гранулам». В поддержку этих представлений привлекались данные о локализации холинэстеразы. Напомню, что чрезвычайно популярным было объяснение этих явлений, исходящее из предположения, что из любого окончания сначала секретируется ацетилхолин, который затем помогает выделиться «главному» медиатору — например, норадреналину [103].
Сейчас эти взгляды представляют только исторический интерес, так как вся их фактическая база сведена к нулю. Специальная проверка, проведённая с помощью разных методов, показала отсутствие измеримых количеств ацетилхолина в адренергических нервных окончаниях млекопитающих [128, 148]. Мелкие пустые гранулы окончаний этих клеток перестали быть пустыми, как только микроскописты научились с помощью тех или иных предосторожностей сберегать находящийся в них катехоламин. Также и в пептидергических окончаниях скопления пустых пузырьков получили естественное объяснение, когда выяснилось, что их число увеличивается по мере того, как «секреторные гранулы» теряют своё содержимое.
Таким образом, у высших животных практически неизвестны нейроны с комбинациями медиаторов и нейрогормонов. Сравнительные данные показывают, что и у низших животных химическая специфичность нейронов выражена в полной мере.
6. 5. Един ли гистогенетический источник нервных клеток?
Существует несколько мнений о том, от каких клеток могли произойти примитивные нейроны, потомками которых являются клетки современных нервных систем. Чаще всего в качестве непосредственного источника нейронов называют эпителиальные клетки — мнение, восходящее к прошлому веку [3, 187, 188]. Имеются и другие точки зрения: известный биофизик Г. Грундфест считает предками нейронов железистые клетки, а Л. Пассано — мышечные [см. 231]. На мой взгляд, спора здесь нет, так как это взаимно дополняющие, а не исключающие мнения.
В самом деле, легко найти аргументы в пользу каждого из трёх названных источников. Присутствие нейронов в составе разных эпителиев дает поддержку классическому взгляду. Вторая точка зрения может опереться не только на данные о цитофизиологических механизмах секреции, общих для железистых и нервных клеток, но и на возможное существование переходных форм клеток, примером которых могут служить так называемые «мелкие» клетки симпатических ганглиев млекопитающих, сочетающие, как считают, свойства железистых клеток хромаффинной ткани и нейронов. Труднее, казалось бы, иллюстрировать третью точку зрения, но и это возможно. Известно, что эволюция сердечной мышцы у позвоночных выражается всё увеличивающимся разделением функций между сократительными элементами и «специфической мускулатурой», принимающей на себя функцию генерации и проведения электрических импульсов. В ходе эволюции наблюдается прогрессивная утрата миофибрилл элементами специфической мышечной ткани. Если вообразить этот процесс продолжающимся, то легко представить, что миофибриллы будут утрачены полностью, и тогда по любому из цитологических или физиологических критериев получившиеся клетки нужно будет назвать нейронами. Одни из них будут выполнять пейсмекерную функцию, другие проводить возбуждение к сократимым элементам миокарда, получится сердце с нейрогенной автоматией. Вполне возможно, что эти этапы эволюции, воображаемые для сердца позвоночных, являются свершившимся фактом в историческом развитии сердца у членистоногих.
Понятно, что эти спекуляции допустимы только в рамках представления о множественном происхождении нейронов. Если же исходить из точки зрения о едином филогистогенетическом источнике всех нейронов, то приходится каким-то двум из трёх предполагаемых предков давать отставку.
Нужно, однако, уточнить, что представление о едином источнике нейронов может рассматриваться в качестве рабочей гипотезы лишь для ограниченного круга объектов. Претендуя на универсальность, оно вступило бы в непримиримые противоречия с известными фактами о независимом развитии эктодермальных, энтодермальных и иногда целомических нейронов в онтогенезе ряда беспозвоночных типов.
Давно считается, что экто- и энтодермальные нервные сплетения независимо друг от друга развиваются у кишечнополостных [см., однако, 267]. Слабее это изучено для гребневиков, но и там возможна такая же ситуация. У низших вторичноротых (кишечножаберные, кишечнодышащие, иглокожие) тоже представлены два названных источника нервных сплетений, к которым добавляется третий — эпителий целома. Находки нейронов в эпителии средней кишки у аннелид, моллюсков и членистоногих указывают на то, что и у этих животных эктодерма служит гистогенетическим источником не для всех нейронов.
Подробности и ссылки на оригинальные работы можно найти у В. Н. Беклемишева [3, гл. 3].
Любопытно, что в гистологии (зоологии это не касается) широко признаётся множественное происхождение различных специализированных клеток: мышечных, железистых и т. д., и лишь для нервных традиционно делается исключение. Наиболее глубоко, на сравнительной и экспериментальной основе вопрос о конвергентном развитии и, следовательно, независимом происхождении разных специальных тканей рассмотрен Н. Г. Хлопиным [66], который, однако, вслед за своими предшественниками считал, что к нейронам это не относится. Зная старые работы о развитии нейронов в производных разных эмбриональных пластов у беспозвоночных, Н. Г. Хлопин призывал переисследовать это явление и хотел думать, что нейроны появляются среди клеток неэктодермального происхождения в результате миграции из эктодермы. Единственным основанием для идеи о родстве всех нейронов, как это отмечал сам Хлопин, служило поразительное морфофизиологическое сходство всех нейронов.
Ныне нам известно, что это впечатление сходства было результатом несовершенства методов исследования, существовавших в 30 — 40-х годах. На самом деле нейроны очень разные — качественно разные. Особенно важно, что качественно различны нейроны, развивающиеся в разных источниках. Так, катехоламиновые нейроны ни в одном зоологическом типе не встречаются в нейронных популяциях неэктодермального происхождения [см. обзор 279].
К сожалению, имеется очень мало исследований, из которых можно было бы извлечь данные о составе нейронных популяций разного происхождения. Наиболее удобным объектом таких исследований представляются иглокожие, и то немногое, что известно об их нейронах, ярко демонстрирует обусловленность специфического химизма происхождением.
Как известно, у иглокожих сосуществуют, взаимодействуя, несколько нервных систем, различающихся по месту и источнику своего происхождения: эктоневральная, развивающаяся в эктодерме; энтодермальное сплетение, развивающееся из кишечного эпителия; гипоневральная и апикальная системы, являющиеся производными разных областей целомического эпителия (подробности см. у В. Н. Беклемишева [3]). Функция локомоции выполняется в разных классах иглокожих мышцами разного происхождения и, соответственно, находится под контролем разных нервных систем: апикальной у морских лилий, экто- и гипоневральной у представителей других классов. Другие функциональные отправления также выражены совершенно по-разному в разных классах иглокожих, столь непохожих друг на друга, что роднит их лишь общность плана строения. И тем не менее, у иглокожих наблюдается поразительное сходство в характере распределения нейронов специфических типов в разных по происхождению отделах нервной системы:
Происхождение системы, в которой найдены | ||
Класс | катехоламиновые нейроны | пептидергические нейроны |
Морские лилии | нет данных | целомическое [185] |
Морские звезды | эктодермальное [136, 178] | то же [178, 229] |
Офиуры | то же [136] | » » [265] |
Морские ежи | » » [121] | нет данных |
Голотурии | » » [287] | то же |
Ограниченность сравнительных сведений о качественном составе нейронных популяций, различающихся по своему происхождению, не должна заслонять главного факта: нейроны в самом деле могут возникать независимо друг от друга. Никакого единого источника всех нейронов в реальности не существует.
В какой степени сказанное относится к позвоночным, мы обсудим несколько позже (6.7).
6. 6. Трудности функционального объяснения
Вопросы, подлежащие проверке, были поставлены в такой форме, чтобы ответы, которые априорно даёт на них одна из гипотез, были противоположны тем, которые даёт другая. Сопоставляя эти априорные ответы с результатами исследований, мы вправе заключить, что трудности, с которыми сталкивается функциональная гипотеза, непреодолимы.
В самом деле, она предсказывает, что разных медиаторов должно быть тем больше, чем выше уровень нервной организации. Это не соответствует реальной действительности.
По функциональной гипотезе, определённому типу специфичности нейрона должна соответствовать определённая специализация нейрона и (или) синапса. Этого тоже нет.
Ожидалось далее, что химические различия между нейронами, хорошо выраженные у высших животных, не должны быть столь же четкими у организмов, имеющих простую нервную систему. И это ожидание не оправдывается.
Наконец, функциональная гипотеза подразумевает существование единого гистогенетического источника всех нейронов. В действительности же источники бывают разными.
6. 7. Трудности гипотезы полигенеза нейронов
Те же самые факты, которые не оставляют места для функциональной гипотезы, находятся в хорошем согласии с альтернативным представлением, предполагающим консервативность медиаторного химизма и сосуществование в нервной системе разных (по происхождению) линий нервных клеток. В рамках этого представления, т. е. гипотезы полигенеза, следует ждать, что:
1) у животных, сильно различающихся по уровню нервной организации, не должно быть заметных различий в разнообразии медиаторов;
2) нейроны, имеющие один и тот же тип химизма, могут сильно различаться в функциональном отношении;
3) химические различия между нейронами должны быть равно выраженными как в простых, так и в сложных нервных системах;
4) нервные клетки могут развиваться из разных тканевых источников.
Однако мне не хотелось бы проходить мимо фактов, которые, по крайней мере на первый взгляд, могут показаться несовместимыми с данным представлением.
Прежде всего обратимся к случаям, которые трактуются как примеры «комбинации медиаторов».
Ещё несколько лет назад к этой категории явлений многие относили постулированное участие ацетилхолина в секреции норадреналина симпатическими нейронами и нейрогипофизарных нейрогормонов гипоталамическими пептидергическими нейронами; сейчас, однако, это участие вряд ли будет кем-нибудь из специалистов рассматриваться всерьез (см. об этом в разделе 6.4.). В нейробиологии беспозвоночных упоминания о «комбинации медиаторов» ещё сохранились, и наиболее известным примером служат моноаминергические клетки висцеральной дуги пульмонат, про которые утверждают, что в них представлены два медиатора — серотонин и дофамин.
Единственное сравнимое явление известно для теплокровных, у которых симпатические нервные волокна в эпифизе содержат как норадреналин, так и серотонин. В этом случае природа явления известна, оно связано с некоторой неточностью механизма захвата аминов из внеклеточной среды. Содержащийся в паренхиме эпифиза серотонин благодаря захвату попадает внутрь симпатических волокон, где уже имеется присущий им норадреналин.
Доступные экспериментальные данные о рассматриваемых висцеральных нейронах пульмонат указывают на возможность такого же происхождения «комбинации» и в этом случае. Нужно заметить, что эти данные очень невелики [213, 292]. На препаратах нервной системы садовой улитки, полученных по методу Фалька и Хилларпа, авторы отметили, что названные клетки имеют свечение жёлто-зелёного оттенка, которое становится зелёным, если улиткам ввести диоксифенилаланин (предшественник дофамина), и жёлтым, если им ввести 5-окситриптофан (предшественник серотонина). Не проводилось ни снятие спектров люминесценции, ни микрохимическое определение аминов в этих клетках; совсем неизвестны медиаторные механизмы их синаптических эффектов.
В гистохимии биогенных аминов принято за правило не ограничиваться оценкой цвета люминесценции при окончательных суждениях о природе амина — такая оценка чревата ошибками [129]. В одной из цитированных работ [292] говорится, что люминесценция висцеральных нейронов улитки выцвечивается ультрафиолетом — свойство, присущее серотонинсодержащим клеткам, но отнюдь не тем, в которых содержатся катехоламины. Опыты с усилением свечения под действием предшественников малодоказательны: эти предшественники сами при обработке по методу Фалька и Хилларпа могут дать свечение. Известно также, что они декарбоксилируются у моллюсков одним и тем же ферментом, так что неточность механизма захвата предшественников из среды неминуемо может привести к появлению в цитоплазме медиаторного амина, который несвойствен самому нейрону. Я думаю, что для вывода о двух медиаторах, уживающихся в одном нейроне, имеющиеся данные совершенно недостаточны. С большей степенью вероятности можно думать, что в ганглиях висцеральной дуги у пульмонат имеется группа серотонинергических нейронов.
Обратимся теперь к мотонейронам ракообразных. При микрохимическом исследовании одиночных клеток с известным действием на соматическую мускулатуру было найдено, что в тормозных и возбуждающих нейронах содержание глутамата примерно одинаково; тормозные отличаются от возбуждающих наличием значительного количества гамма-аминомасляной кислоты [см. обзор 279].
В данном случае комбинацию объяснить несложно. Прежде всего нужно подчеркнуть, что на самом деле никакой комбинации медиаторов здесь нет; как медиатор глутамат выделяется лишь в возбуждающих нейронах, синаптические же эффекты тормозных мотонейронов воспроизводятся гамма-аминомасляной кислотой, которая и является здесь единственным медиатором. Присутствие глутамата в тормозных нейронах имеет лишь косвенное отношение к синаптической функции: глутамат является метаболическим предшественником гамма-аминомасляной кислоты. О генеалогических отношениях между этими двумя типами нейронов см. также ниже (7.2.).
Более трудной и неясной представляется ситуация в случае декарбоксилазы ароматических аминокислот. Медиаторные моноамины нейронов моллюсков — серотонин и дофамин образуются, как только что говорилось, в результате декарбоксилирования своих метаболических предшественников, 5-окситриптофана и диоксифенилаланина. В обоих случаях реакцию осуществляет один и тот же фермент, декарбоксилаза ароматических аминокислот (ДАА). Естественно было бы ожидать, что ДАА должна избирательно проявлять высокую активность в моноаминергических клетках.
Проверка с помощью микрохимического метода, осуществлённая группой Р. Мак-Камана на отдельных нейронах тритонии и аплизии, показала, что, действительно, у тритонии в серотонинергических нейронах активность ДАА примерно в 500 раз выше, чем в контрольных нейронах. Однако на клетках аплизии результат получился иной: здесь ДАА в серотонинергических клетках лишь в 10 раз активнее, чем в остальных [330, 331]. Причина расхождения пока не найдена. Определённо, что оба вида представляют одинаковые уровни нервной организации, так что было бы неразумным связывать это расхождение с «эволюцией». Не исключено, что у аплизии ДАА может иметь высокую активность в глие, от которой практически невозможно очистить крупные нейроны, и тогда результаты стали бы понятными. Вообще, мне по собственному опыту известно, что межвидовые различия в ферментах глии у гастропод очень велики: так, холинэстераза имеется в сателлитной глие у одних видов и отсутствует у других.
Наконец, хотелось бы специально рассмотреть вопрос об эктодермальном происхождении нервной системы позвоночных.
Чаще всего обращают внимание на то, что гипотеза, объясняющая множественность медиаторных механизмов множественным происхождением нейронов, противоречит общепринятому взгляду, что все нейроны имеют единое эктодермальное происхождение. Вообще-то говоря, если бы гипотеза не противоречила общепринятым взглядам, то в ней не было бы никакой потребности. На протяжении всей этой книги я рассматриваю материалы, свидетельствующие об обоснованности предложенного объяснения и о невозможности объяснить множественность химических механизмов другим способом. Если это так, то в упомянутом противоречии, возможно, повинен общепринятый взгляд на происхождение нейронов позвоночных, который может оказаться неверным или неточно сформулированным.
При более пристальном рассмотрении оказывается, что никакого общепринятого взгляда на эктодермальное происхождение всех нейронов не существует. В литературе имеется довольно много формул, различных в зависимости от того, насколько критически оценивают авторы фактическую сторону дела. Что касается фактической стороны, она заключается в следующем:
1) в онтогенезе позвоночных нервные клетки развиваются из эктодермальных закладок (спорным остается только онтогенетическое происхождение интрамуральных ганглиев, которые, по мнению многих, в том числе современных, авторов представляют в этом плане исключение [см. обзор этой дискуссии в 78]);
2) в онтогенезе многих групп беспозвоночных нейроны дифференцируются в составе как эктодермы, так и других клеточных пластов, о чём уже шла речь выше (6.5.).
Если игнорировать факты, относящиеся ко многим беспозвоночным, и считать, что «онтогенез повторяет филогенез», то получается самая простая формула: все нейроны имеют эктодермальное происхождение, при этом «происхождение» трактуется расширительно, в историческом и онтогенетическом плане. Такая точка зрения вовсе не представляет редкости, она особенно характерна для учебных руководств, но порой попадает и в специальные издания. Например, в книге, дающей сравнительный обзор нейрогормонов и гормонов в животном царстве, утверждается, что у всех животных нейросекреторные клетки, «будучи нейронами», имеют эктодермальное происхождение [198]. В действительности, если взять, например, иглокожих, то у них пептидергические нейросекреторные клетки имеются только среди нейронов целомического происхождения.
Более критические авторы уточняют, говоря об эктодермальном происхождении нейронов, что речь идёт о позвоночных. И, наконец, самые пунктуальные дают понять, что имеется в виду лишь онтогенетическое развитие нейронов у позвоночных, и в таком виде формула, возможно, соответствует фактам.
За этой формулой встаёт интересное и во многом загадочное явление. В самом деле, почему в онтогенезе позвоночных все нейроны развиваются из эктодермальной закладки, если у беспозвоночных, в том числе и у вторичноротых, близких к предкам позвоночных, дело обстоит иначе? Думается, в анализе этого явления не отделаться заклинанием «онтогенез повторяет филогенез». Предположение, что прямые предки позвоночных существенно отличались от других низших многоклеточных, имея нейроны в составе только дериватов эктодермы, представляется маловероятным, — в таком случае из предков позвоночных пришлось бы исключить организмы, подобные кишечнополостным и низшим вторичноротым. Не исключено, конечно, что в процессе эволюции у предков позвоночных имела место утрата всех нейронов, кроме тех, которые произошли в эктодерме. Другая возможность — что здесь мы встречаемся с явлением мерогенеза, т. е. смещения разнородных закладок нервной системы в одну, эктодермальную.
В онтогенезе позвоночных центральные и периферические нейроны происходят из нервной трубки (и плакод). Сама трубка является закладкой ЦНС — спинного и головного мозга. Нет сомнений в том, что история нервной системы не начинается с ЦНС, ЦНС возникает на относительно поздней стадии эволюции нервной системы и, следовательно, такой способ закладки нервной системы тоже является относительно поздним приобретением. Таким образом, онтогенетические данные мало что могут дать для понимания исторического прошлого нейронов позвоночных, по крайней мере, для понимания тех этапов их истории, которые предшествовали образованию ЦНС.
Но если даже в самом деле оказалось бы, что у позвоночных сохранились лишь эктодермальные нейроны, то и в этом случае противоречия с гипотезой о множественном происхождении не было бы. Лёгкость, с какой нервные клетки возникают у низших животных в разных клеточных пластах, убеждает в том, что нейроны должны независимо друг от друга неоднократно появляться в ходе исторического развития разных производных одного и того же пласта. Я вовсе не утверждал и не утверждаю, что типов нейронов столько, сколько клеточных пластов. Напротив, нейронная популяция, развившаяся в пределах одного пласта (например, в эктодерме актиний или в дериватах целома морских звёзд), всегда неоднородна, и отсюда скорее всего следует, что такая популяция сама имеет множественное происхождение.
6. 8. Заключение
Результаты исследований, рассмотренных в предыдущих главах, легли в этой главе в основу обсуждения, к которому были также привлечены дополнительные литературные и отчасти собственные данные. В ходе обсуждения имеющиеся факты были сопоставлены с двумя гипотетическими схемами, описывающими возможный путь возникновения медиаторной специфичности нервных клеток. Обнаруживается, что гипотеза полигенеза, связывающая химическую разнородность нейронов с множественным и независимым их происхождением, хорошо соответствует фактам, тогда как альтернативная гипотеза, объясняющая множественность медиаторных механизмов различной специализацией нейронов, сталкивается со значительными, практически непреодолимыми трудностями.
Вывод о том, что нервные клетки имели тот или иной тип химической специфичности с момента своего возникновения, означает, что явление специфичности не возникло в ходе эволюции нервной системы. Из этого, однако, не следует, что процесс функциональной эволюции, связанной с прогрессивным развитием нервной системы, не коснулся медиаторных механизмов. Напротив, правильное решение вопроса о происхождении медиаторной специфичности, является необходимой предпосылкой для понимания того, как шла эволюция медиаторных механизмов нервной системы. Этому вопросу будет посвящена следующая глава.