Путешествие полюса
Каждый, кто читал роман Жюля Верна «Дети капитана Гранта», вероятно, помнит, какие удивительные приключения довелось испытать его героям. В поисках капитана Гранта они перебрались через Кордильеры, пересекли по параллели всю Южную Америку, переплыли через Атлантический и Индийский океаны, прошли с запада на восток Австралию, а затем — все по той же параллели — Новую Зеландию. И, наконец, на острове Табор — этом небольшом клочке суши, затерянном в Тихом океане, — встретились с отважным шотландцем.
Героям книги пришлось совершить почти кругосветное путешествие по 37-й параллели. И все потому, что в документах, которые они обнаружили в бутылке, выловленной в море, сохранилось только обозначение широты — 37°11′, на которой произошло кораблекрушение. А цифра, указывающая вторую половину нужного им адреса — долготу, была смыта морской водой и осталась неизвестной.
На том, что у любой точки на Земле есть постоянный адрес, и основан замысел романа Жюля Верна, позволивший ему вести своих героев через многие страны и развернуть целую серию увлекательных приключений.
Герои Жюля Верна путешествовали в XVIII веке. А вот удалось бы им найти место кораблекрушения, если бы они отправились на его поиски сейчас? Ведь, как доказали ученые, теперешняя 37-я параллель, если говорить точно, проходит не совсем там, где раньше, и остров Табор окажется несколько в стороне от широты, которая была указана в романе Жюля Верна.
Впервые о том, что широта одних и тех же мест на земном шаре меняется, сообщил международному геодезическому конгрессу, состоявшемуся в конце прошлого века, немецкий астроном Кюстнер.
На всех картах обозначено, что Берлин расположен на параллели 52°30′. А Кюстнер утверждал, что только за несколько лет широта Берлина изменилась. Правда, на немного. Всего на сотые доли секунды. Но длина одной секунды дуги — это целых 30 метров!
Доклад ученого вызвал большой шум: не мог же целый город со всеми жителями незаметно переместиться к югу или северу? От Кюстнера потребовали объяснений. Но ученый мог лишь повторить то, что следовало из его наблюдений.
Он определял положение на небе семи звездных пар, нужных ему для астрономических вычислений. Координаты звезд, как обычно, отсчитывал от Полюса мира. И вот, когда наблюдения были закончены, Кюстнер обнаружил, что определенные им координаты звезд отличаются от тех, которые несколькими годами раньше для них же получили русские астрономы в Пулкове.
Кюстнер заново пересчитал все цифры: координаты звезд не сходились. Оставалось предположить, что за время, прошедшее между наблюдениями русских астрономов и его, изменилась широта Пулкова и Берлина, поэтому высота Полярной звезды при наблюдении с Земли и получается иной.
Вообразить «ожившими» линии, начерченные человеком на бумаге и не существующие в действительности, было трудно. Но за широтами все же решили присматривать.
За ними стали следить одновременно в Берлине, Потсдаме, Праге и Страсбурге. И уже через год подтвердились невероятные выводы Кюстнера: вопреки здравому смыслу широта каждого из этих городов менялась на глазах.
Пришлось организовать даже специальную «службу», которая следила бы за тем, как изменяются широты. Для этой цели выбрали несколько точек, расположенных на параллели 39°8′: Мицузаву в Японии, Чарджоу в России, Карлофорте на одном из островов Италии, Гейтесбург, Цинциннати и Юкайю в Северной Америке. Так были созданы специальные станции, кольцом опоясавшие земной шар.
Сейчас на территории нашей страны такие же станции действуют в Полтаве, Пулкове, Казани, Москве, Иркутске, Благовещенске и Китабе. А совсем недавно, в 1957 году, в службу широты включилась китайская наблюдательная станция, расположенная на берегу Великого китайского канала близ Тяньцзиня.
Свыше пятидесяти лет работает Международная служба широты. Теперь уже ни у кого из ученых не вызывает сомнений, что широта любого места на нашей планете со временем становится другой.
Вот так «надежный» адрес! Выходит, что мы, сами того не подозревая, все время переезжаем, или, вернее, такой «переезд» совершают параллели, от которых мы ведем счет широт.
Кто же передвигает невидимые нитки параллелей? Оказывается, всему причиной непоседа-полюс.
Это было удивительное открытие: полюс — математическая условная точка — совершает настоящие путешествия! Кончик несуществующей земной оси вычерчивает на поверхности планеты причудливую кривую, похожую на небрежный рисунок тросточкой по песку. Он движется в том же направлении, в каком вращается Земля, описывая запутанную то закручивающуюся, то раскручивающуюся спираль.
Бывают годы, когда полюс почти неподвижен. А временами, словно обуреваемый жаждой приключений путешественник, полюс как бы стремится наверстать упущенное. Но обычно дальше чем на 10 метров он не удаляется от места, где должен бы постоянно находиться. Не мудрено, что такую крохотную величину обнаружили только, когда астрономические наблюдения достигли чрезвычайно высокой точности.
Но вот в 1952 году полюс неожиданно забрался еще дальше: спираль, описанная им, не уместилась в рамках старого квадрата, размером 20×20 метров, который служил для него неизменной границей в течение половины столетия. На этот раз каждую из сторон «пограничного» квадрата пришлось увеличить еще на 6 метров.
Такие же сложные вензеля описывает и южный конец земной оси, возвращаясь по истечении некоторого срока к исходному положению. Но год от году, как установлено известным нашим специалистом по движению полюсов А. Я. Орловым, эти точки не совпадают: полюс все дальше уходит с того места, откуда начал когда-то свое путешествие, — он как бы медленно дрейфует в сторону 69-го меридиана, «отплывая» примерно на 12,5 сантиметра в год.
Когда-то ученые условились считать осью Земли прямую линию, проходящую через ее центр. Затем они провели поперечную плоскость и линию пересечения ее с поверхностью Земли назвали экватором. Это была твердая, раз и навсегда установленная система, костяк, на основе которого создана вся градусная сетка. Теперь из-за того, что Земля «болталась» на земной оси, вся координатная сетка как бы сдвигалась.
Что же заставляет «качаться» земной шар?
Вращая в лаборатории различные тела, ученые убедились, что они обязательно начинают покачиваться, если ось, вокруг которой их поворачивают, не совпадает с геометрической.
В таком положении любой предмет все время как бы теряет равновесие на какое-то мгновение и снова находит его, стремясь расположиться поудобнее, выпрямиться и начать вращаться вокруг оси, которая делила бы его симметрично. От этих качаний и движутся, путешествуют по поверхности тела его «полюсы».
Неужели такая же история случилась и с нашей Землей? Ответ на этот вопрос получили, когда удалось распутать извилистую кривую, вычерчиваемую полюсом на земной поверхности.
И тут обнаружились новые неожиданности.
Математические расчеты утверждали, что полюс будет путешествовать даже на правильном эллипсоиде, каким считали Землю. Причина этого — лишние утолщения вдоль экватора, образовавшиеся из-за сплющенности планеты. Но когда расшифровали следы полюса, оказалось, что он движется по овалу, а не по кругу, как это должно было быть на совершенно правильном эллипсоиде.
Было похоже, что где-то с боку нашей планеты подвешена добавочная «гора» — излишек массы, из-за которой ее ось вращения описывает более сложную кривую. Правда, путь полюса настолько незначительно отличался от круга, что обнаружить это было делом величайшей трудности. Ученые потрудились немало. Большая заслуга в этом известного русского астронома А. Я. Орлова. Тщательно изучив маршрут полюса по изменениям широты Полтавы за многие годы, А. Я. Орлов убедился, что земной эллипсоид действительно неправильный.
В задачниках на последних страницах, где приводятся ответы на решения, можно увидеть иногда значок ≈. Это значит, что ответ приблизительный. Так же приблизительно решили задачу о форме Земли ученые, доказавшие, что она сплюснута с полюсов. Самое любопытное, что те, кто утверждал, будто Земля сдавлена с боков, были не совсем неправы. Земля оказалась сжатой не только с полюсов, но — в каких-то местах — и с экватора.
По направлению, в котором вытянут путь полюса, удалось установить, где находятся сплюснутые, а где выпуклые части — своеобразные «скулы» планеты.
Радиусы экватора, упирающиеся в 15-й меридиан восточного полушария и противоположный ему — 165-й в западном полушарии, оказались примерно метров на 200 длиннее тех, которые заканчиваются на 105-м и, соответственно, 75-м меридианах. Индонезия и Перу, таким образом, несколько вдавлены, а Африка и центр Тихого океана находятся как бы на горбах.
Получалось, что у Земли не две отличающиеся по длине оси — полярная и экваториальная, а три: полярная и две экваториальных. Поэтому земной шар стали называть трехосным эллипсоидом.
В отличие от осей часового механизма земная ось не закреплена подшипниками и не заключена в футляр. На нее воздействуют разные силы. Наша планета живет: дышит, содрогается. Скандинавский полуостров вместе с городами и жителями поднимается год от году все выше, а побережье Дании и Голландии уходит под воду — материковые глыбы движутся. А мощные невидимые процессы в недрах Земли, отголоски которых мы слышим в реве вырывающейся из вулканических жерл лавы, наблюдаем во время страшных моретрясений? Может ли это пройти бесследно, не сказаться на облике нашей планеты? Такие мощные перемещения масс, вероятно, и сдвигают земной шар с оси.
Колоссальные массы постоянно перемещаются и по поверхности нашей планеты, хотя они и сложены, казалось бы, из почти невесомых частичек. Мы сталкиваемся с этими явлениями каждый день, но не задумываемся совсем о том, какое отношение имеют они к движению Земли.
Сколько весит, например, дождевая капля или зеленый лист? Какие-то доли грамма. А сколько весят все дождевые капли, выпавшие, скажем, во время осенних дождей, или вся зеленая листва, покрывающая весной наши леса и поля? Когда ученые занялись такими подсчетами, оказалось, что не столь уж мало.
Английский геофизик Г. Джефрис стал считать, сколько воды приносят в океан течения, много ли каждый год вырастает на земном шаре травы и листьев, выпадает снега. Он даже вычислил, сколько весит… ветер. И первый же ориентировочный подсчет убедил, что сезонных перемещений этих «гирь», давящих на земную поверхность, достаточно, чтобы раскачать, сдвинуть Землю с оси. Ведь только реки в течение года смывают с поверхности материков около 31 кубического километра пород. Эти нагрузки на поверхность волчка-Земли вызывают дополнительные колебания, и путь полюса делается еще более извилистым и путаным.
Совсем недавно советский ученый Н. Бызова проверила и уточнила вывод Г. Джефриса. Выяснилось, что Землю колеблет на оси главным образом ветер. Например, муссон, дующий зимой с Тихого океана на Азиатский материк, переносит громадные массы воздуха. По самым грубым подсчетам, только над Сибирью скапливается зимой около 15 миллиардов тонн лишнего воздуха. Летом воздушная шапка рассасывается, стекая вновь к океану.
Существует предположение, что вес этих «воздушных гирь» зависит от… Солнца. Недаром замечено, что в годы, когда Солнце изливало на Землю больше тепла, путешествие полюса было особенно «размашистым». Ведь в прогретой воздушной оболочке Земли возникают более сильные ветры. И наоборот, когда Солнце «успокаивалось», полюс двигался медленнее.
Сейчас все больше склоняются к «ветровому» объяснению путешествия полюсов. Во всяком случае эту точку зрения высказало большинство крупнейших ученых мира на проходившем в 1958 году X Международном астрономическом съезде в Москве. На съезде работала специальная комиссия, рассматривавшая современное изменение широт и перемещение полюсов по поверхности нашей планеты. Решено было продолжить наблюдения за путешествиями полюса. Одновременно ведется определение новых широт многих точек на земном шаре, которое начато во время Международного геофизического года.
Открытие того факта, что экватор сплюснут, явилось в свое время переломной вехой во взглядах на точную форму нашей планеты. Последний круг, который еще оставался на сжатой Земле — экватор, — и тот оказался эллипсом. А коварная планета, которая словно никак не хотела, чтобы люди, живущие на ней, узнали ее истинную форму, уже готовила новый сюрприз.
Часы, которые растянули Землю
Удивительные истории случаются не только с героями приключенческих книг. Не менее фантастической оказывается нередко и судьба научных открытий. Возьмите хотя бы этот случай с ожившей математической точкой — полюсом.
Но история с полюсом — сущий пустяк по сравнению с тем, какую «шутку» сыграли с учеными лет десять-пятнадцать назад кварцевые часы.
С часами у ученых были свои счеты. Они не могли забыть, как точнейшие маятниковые часы неожиданно оказались самыми изменчивыми. Астрономы с удовольствием отказались бы от этих неудобных часов, если бы не надо было переводить астрономическое время на земной язык.
Давно прошли времена, когда находились скептики, сомневавшиеся в том, что Земля вертится. Теперь все знают, что земной шар непрерывно поворачивается вокруг своей оси и делает это с идеальной аккуратностью. Во всяком случае так считалось до сих пор. Каждый оборот и служит нам мерилом времени. Ведь это и есть наши сутки.
В разных концах земного шара астрономы на специальных станциях службы времени неустанно следят за движением Земли — этих самых точных природных часов: обернулась Земля один раз — прошли сутки, обернулась другой — вторые. Следят по «небесным часам», у которых стрелка — Луна, а отметки на циферблате — звезды. Правда, эти часы своеобразны. Пока Луна один раз обойдет свой звездный циферблат, Земля успеет обернуться вокруг оси 27 раз. К тому же, Луна движется не по кругу, а по сложному пути — попробуй определить точное время по такой стрелке.
Вот почему для повседневного измерения «хода» Земли употребляют механические часы. Маятник часов качается. И движения эти очень равномерны: качнулся маятник один раз — прошла секунда, качнулся второй раз — другая. Качнулся 86 400 раз — прошли сутки. Земля обернулась вокруг оси.
Точнейшие часы на обсерваториях, как говорят, «хранят» время. А это не так-то просто. От толчка или сотрясения маятник может начать двигаться чуть быстрее или чуть медленнее. И тогда наши обычные часы, которые мы ставим и проверяем по сигналам, передаваемым из обсерваторий, тоже будут показывать неправильное время.
Чтобы этого не случилось, часы, хранящие время, устанавливают в глубоком подвале, куда не долетает ни один звук и где ни зимой, ни летом даже на полградуса не меняется температура. В нерушимом спокойствии и одиночестве пребывают эти верные стражи времени в своем подземном жилище.
Они никогда не отдыхают. Бесстрастные и неутомимые, со скрупулезной точностью день за днем отсчитывают они время, необходимое Земле, чтобы повернуться вокруг оси.
И все-таки, как мы знаем, ошибаются. Ведь сама сила тяжести, которая движет маятник, непостоянна повсюду на земном шаре. Конечно, такие отклонения от правильного хода могут быть незначительными, но в астрономических вычислениях важны и ничтожные величины. Поэтому ученые стремились изобрести такие часы, ход которых не зависел бы от всякого рода случайных причин.
Это удалось осуществить, когда физики предложили отсчитывать колебания не маятника, а кварцевой пластинки. Переменный электрический ток, пропущенный через пластинку, вырезанную из кварца, заставляет ее вибрировать. Вибрации эти отличаются большим постоянством. Обычно таких колебаний совершается до 60 тысяч в секунду.
Изобретатели кварцевых часов и не подозревали, какой сюрприз те преподнесут астрономам. Еще меньше предполагали это сами астрономы. Они были очень рады новому точному прибору. И в подземельях обсерваторий рядом с классическими маятниковыми часами расположились их молодые собратья.
Первыми, кто заметил, что со временем творится что-то неладное, были немецкие астрономы Павéл и Уинк. Наблюдая за кварцевыми часами Потсдамского геодезического института и сверяя их показания с движением Земли, они обнаружили, что осенью часы вдруг начали отставать, к зиме их ход выравнялся, а весной они неожиданно стали уходить вперед. Летом же, как и зимой, часы шли нормально.
Правда, изменения были ничтожно малы. Но ученых взволновало это явление. Принято думать, что астрономов интересуют величины только космических масштабов. На самом деле им, пожалуй, чаще приходится иметь дело с крошечными величинами. Вот почему немецкие астрономы не прошли мимо этого в буквальном смысле слова малозаметного факта.
Ученые — люди осторожные. И они прежде всего заподозрили ошибку в наблюдениях — ведь маятниковые часы в течение этого же времени шли как будто бы равномерно. Однако в следующем году подобный же каприз был обнаружен у кварцевых часов Парижской службы времени. Вряд ли это уже было простой случайностью. А вскоре оказалось, что и часы Вашингтонской службы времени осенью идут медленнее, а весной быстрее.
В 1950 году этот вопрос обсуждался в Париже на Международном совещании по постоянным величинам. Английский астроном Спенсер Джонс сообщил, что и на Гринвичской обсерватории, известной большой точностью наблюдений, кварцевые часы осенью и весной идут неровно.
Проблема приобретала все большую остроту. Попробовали проверить кварцевые часы. Тщательные исследования показали, что равномерных колебаний «кварцевого электричества» ничто не может нарушить. Да и тот факт, что все кварцевые часы на земном шаре имели совершенно одинаковые отклонения, убеждал, что причина лежит вне самих часов.
И тогда ученые пришли к поразительному выводу: не часы отстают осенью и уходят вперед весной, а Земля вращается в течение года то быстрее, то медленнее, расходясь в своем ходе с ходом часов.
Как ни кажется невероятным, это действительно так. Ныне доказано, что наша Земля вращается неравномерно: всего быстрее она движется в августе, а всего медленнее в марте — апреле. И, значит, наши сутки непостоянны. Осенью они меньше, чем весной, хотя разница и не превышает сотых долей секунды.
Часы, созданные руками человека, оказались точнее природных — самой Земли. А Земля — далеко не таким точным «механизмом», каким представлялась раньше. Выяснилось, что она вращается неравномерно не только в течение года, но и на протяжении веков. Когда-то она крутилась быстрее, чем теперь. Из-за этого сутки за последние две тысяча лет удлиняются почти на 0,002 секунды в столетие.
Кроме того, случается, что в некоторые годы скорость Земли неожиданно резко увеличивается, а в иные — уменьшается гораздо больше, чем ежегодно весной и осенью. Эти «скачки» происходят через неравные промежутки и не подчиняются никакой видимой закономерности.
Но, вы помните, еще Ньютон говорил, что наша Земля потому и сжата, что она вращается. А позже было доказано, что такую форму, как сейчас, наша планета будет сохранять только при вполне определенной скорости вращения. При скорости, так сказать, в пределах нормы сжатый эллипсоид находится в устойчивом равновесии. Другими словами, если какие-то силы со стороны, из космоса — например, ближайшие планеты или Луна — вздумают растянуть земной шар, то изменят его форму ненадолго. Как только они его «отпустят», земная поверхность, подобно пружине, примет прежний вид.
Но если скорость вращения станет увеличиваться, то центробежная сила на экваторе тоже будет становиться все больше. Она еще сильнее растянет Землю в поперечном направлении — наша планета заметнее сплющится, а ее экваториальный радиус удлинится.
Ученые подсчитали, что если бы Земля стала обращаться вокруг оси не за 24 часа, а за 1 час 25 минут, то есть ее скорость увеличилась бы в 17 раз, то центробежная сила возросла бы в 289 раз и уравновесила силу тяжести. (Ведь сейчас она, как уже говорилось вначале, равна на экваторе именно 1/289 силы тяжести.) Тяжесть не удерживала бы больше частиц Земли, и оказалось бы достаточно самого легкого воздействия на нашу планету со стороны, чтобы она разрушилась.
Больше того, уже при периоде вращения, меньшем 2 часов 39 минут, Земля не сможет сохранить форму эллипсоида. Однако эти расчеты чисто теоретические, и такое катастрофическое увеличение скорости нашей планете не грозит. При существующем ритме вращения земной шар обладает громадным запасом прочности. Наблюдаемые повышения скорости совершенно безвредны для него.
А к чему может привести замедление оборотов? Но прежде чем ответить на этот вопрос, попробуем выяснить, что и насколько тормозит Землю.
Существование таинственного земного тормоза предполагал еще Кант. Он считал, что Землю тормозят морские приливы — вернее, трение приливной волны о земную поверхность. Но вплотную занялись этим исследованием лишь недавно. Свои соображения о причине торможения Земли высказывали ученые разных стран и разных специальностей. Всемирную известность снискали работы в этой области наших отечественных исследователей — в особенности геофизика Николая Николаевича Парийского.
Чтобы ответить на вопрос, что же именно тормозит Землю, астрономам и геофизикам пришлось на время стать математиками и механиками. Они как бы поместили земной шар в лабораторию и принялись тщательно исследовать взаимодействие всех деталей этого громадного и сложного механизма, устройство которого вдобавок ко всему еще не совсем ясно.
Исследователи Земли соорудили несколько различных моделей земного шара и окружающей его атмосферы. Только модели эти не напоминали обычные механические модели. Они были «построены» на бумаге чернильным пером и состояли из столбцов цифр и рядов формул. И ученые принялись изучать эти цифры.
Н. Н. Парийский считает, что изменить скорость планеты так, как это бывает во время непредвиденных «скачков», мог бы только миллион метеоритов, весом по миллиону тонн каждый, если бы они вдруг все сразу упали в районе экватора. Или если в результате какой-то невероятной катастрофы плоскогорье вроде Тибетского, площадью около полумиллиона квадратных километров и высотой в четыре километра, неожиданно расплющилось до уровня моря. Или, на худой конец, если все пассаты, которые, как известно, всегда дуют к экватору, вдруг переменили бы свое направление и погнали массу воздуха к полюсам.
Как видите, торможение нашей планеты не столь уж микроскопическое, раз для этого требуются такие гигантские усилия.
Но, разумеется, подобного рода события не могли бы остаться незамеченными. Поэтому сейчас большинство ученых считает, что причина «незакономерных» скачков в скорости вращения Земли кроется внутри самой планеты.
Советские ученые придерживаются мнения, что эти перебои в «часовом механизме» природы могут быть следствием перекристаллизации глубинных пород. Наши специалисты подсчитали, что если подобный процесс будет происходить на глубине около 80 километров, то достаточно плотности внутренних слоев Земли измениться в результате перекристаллизации на 1/10 долю, и это уже вызовет заметный скачок в скорости ее вращения.
Самое же интересное, что это изменение плотности пород, несмотря на то, что оно происходит на огромной глубине, можно обнаружить на поверхности Земли по изменившейся силе тяжести.
В Институте физики Земли Академии наук СССР наблюдения за такими колебаниями силы тяжести уже ведутся. Особенно интенсивно проводили эти исследования во время Международного геофизического года. Когда результаты их будут обработаны, станет возможным судить, насколько справедливо это предположение.
Что же касается весенних и осенних изменений в скорости, то, судя по всему, Землю в первом случае тормозит, а во втором — «подталкивает»… ветер. Те самые воздушные гири весом в миллиарды тонн, которые «сдвигают» Землю с оси, заставляя путешествовать полюс. Они нарушают ритмичную работу всего земного механизма, изменяя «нагрузки», которые приходятся на различные его «детали».
Но ведь есть еще какой-то тайный тормоз, действующий постоянно в течение веков?
Когда начались его поиски, первое подозрение пало на малоизученный ледяной материк. «А может быть, и в самом деле виной всему Антарктида?» — подумали ученые. Ведь миллионнотонный ледовый панцирь шестого материка должен оказывать огромное влияние на земной механизм. Если бы он растаял, уровень всех океанов поднялся бы метров на 50. А если ледники Антарктиды, наоборот, начнут увеличиваться? Достаточно им вырасти за столетие всего на 3,2 метра, и их возросшая тяжесть оправдала бы вековое торможение Земли.
Однако наблюдения ученых, работающих сейчас на шестом материке, говорят скорее об общем таянии ледников Антарктиды, чем об их увеличении.
Сейчас ученые сходятся на том, что Землю тормозит ее спутница по небу — Луна и наше светило — Солнце. Вызываемые ими приливы набегают навстречу вращению Земли и замедляют вращение земного шара, говорят они.
Но пусть природа самого тормоза еще не вполне ясна, он действует уже не одно тысячелетие. И хотя колебания скорости сами по себе незначительны, накапливаясь в течение многих сотен лет, они заметно увеличили длину суток.
Подсчитано, что только с архейской эры наши сутки стали длиннее на 4 часа. Это значит, что 3 миллиарда лет назад Земля поворачивалась вокруг себя всего за 20, а не за 24 часа, как сейчас. Замедлив свой ход, Земля «распрямилась» за это время примерно на 44 километра.
Рассуждая теоретически, можно сказать, что скорость вращения Земли будет замедляться до тех пор, пока время обращения ее вокруг оси не станет вначале равным лунному месяцу. А потом не сравняется с продолжительностью движения земного шара вокруг Солнца, то есть пока земные сутки не станут равными году. Это подтверждается наблюдениями за другими планетами нашей солнечной системы. Так, Меркурий, по-видимому, уже вступил в полосу «равновесия»: и «сутки» и «год» на этой планете длятся 88 земных суток.
Вращению Земли и связанному с ним определению точного времени была посвящена специальная дискуссия на том же Международном астрономическом съезде, где обсуждалось и путешествие полюсов. По последним сведениям, приливная волна действительно укорачивает земные сутки на полтысячную долю секунды за 100 лет. А воздушная гиря способна вносить изменения в 10 раз большие, но периодические.
И ту и другую микроскопическую величину приходится учитывать хранителям точного времени. Для этого они пользуются сейчас новым, еще более надежным инструментом — атомными и молекулярными часами. В молекулярных часах время отсчитывается по колебаниям атомов в молекуле аммиака. Эти колебания совершаются 23 870 миллионов раз в секунду. А наблюдают их по изменениям, которые они вносят в спектр аммиака. Атомные часы «устроены» иначе. В них время определяется частотой, с которой перескакивают электроны с одного уровня на другой внутри атома цезия. «Наблюдают» этот перескок также по спектрограмме.
Из-за постепенного «удлинения» Земли меняется уже сложившаяся ее форма. Но планета наша не является чем-то жестким и монолитным и затормаживается неодинаково. В первую очередь тормозится земная кора. А внутренние, глубинные, слои немного отстают от верхних, двигаясь некоторое время по инерции с прежней скоростью.
Далее: разные точки земной поверхности вращаются с разной скоростью. Быстрее всего движутся расположенные на экваторе — они проходят в среднем 28 километров в минуту. А чем ближе к полюсам, тем медленнее их передвижение. На широте Москвы, например, они успевают за одну минуту продвинуться всего километров на 15. Они и тормозятся по-разному. Поэтому, если бы меридианы были нанесены на поверхности Земли наподобие градусной сетки на карте, они постепенно искривились бы. Около самого экватора эти линии шли бы еще прямо с севера на юг, но в северном полушарии загибались к северо-востоку, а в южном — к юго-востоку.
Как же по такой кривой градусной сетке определять точную фигуру Земли? Да и какую фигуру стали бы теперь определять геодезисты? Ведь даже и от представления о трехосном земном эллипсоиде пришлось отказаться. Действительная Земля оказалась по очертаниям еще более сложной и меньше всего походила на правильное геометрическое тело.
Все больше убеждались ученые, что форма нашей планеты неправильная и зависит от того, как распределены на Земле различные по тяжести массы.
Земля имеет форму Земли
Мы говорим, что высота Джомолунгмы (Эвереста) 8882 метра над уровнем моря, а Москва лежит выше уровня моря только на 120 метров. Какое море при этом имеется в виду?
Зеркало Черного моря, например, ниже Балтийского. А уровень этого последнего, в свою очередь, ниже Белого моря и выше уровня Тихого океана. Тихий же океан возвышается над Атлантическим.
Если говорить строго, так и одно и то же море не всегда находится на одинаковом уровне. На Балтике, в Кронштадте, вода осенью — в период дождей — всегда стоит выше, чем зимой или весной. Подобное явление наблюдается и на Черном море. Здесь летом воды больше, чем осенью. Замечено, что Атлантический океан у берегов Мексиканского залива наклонен к востоку, а кроме того, тот же Атлантический и Тихий океаны приподняты с севера и «текут» на юг. Балтийское же море наклонено, наоборот, на север, и на южном побережье его уровень выше.
Как же считать высоту от такого непостоянного основания?
Оказывается, говоря «высота над уровнем моря», имеют в виду вовсе не то или иное конкретное море, а некий средний уровень Мирового океана. Если поверхность совершенно спокойного «среднего» океана мысленно продолжить под материками, то эта воображаемая поверхность и образует тот уровень, от которого отсчитываются высоты любых точек на земном шаре.
Вот тут мы и подошли к понятию геоида.
Когда выяснилось, что наша Земля не похожа ни на простой, ни на трехосный эллипсоид и стало ясно, что земной шар вообще не является правильным геометрическим телом, пришлось придумывать какой-то новый способ измерения неправильной бугристой Земли.
Но прежде надо было выяснить: что считать поверхностью планеты — землю или воду? Самой земли здесь не так уж много. Лишь четвертую часть всей поверхности занимает выступающая из воды суша. А намного ли она возвышается над уровнем океана? Даже самые высокие горы — ничтожные песчинки на лике громадной планеты. В среднем материки выше океана всего на тысячную долю земного радиуса. Океаны же и моря, сообщаясь друг с другом, образуют почти сплошную водную гладь.
Это и навело на мысль, что Землю в первом приближении можно представить состоящей из одних океанов. Поверхность среднего океана, как бы ограничивающая собой Землю, и была названа геоидом.
Слово это специально придумано учеными для обозначения фигуры Земли. Его предложил известный немецкий физик и астроном И. Листинг. Никакого геометрического смысла оно не имеет. Буквально это значит: тело, имеющее форму Земли. Поэтому, если вы попросите назвать какую-нибудь геометрическую фигуру, похожую на геоид, вы услышите в ответ, что в геометрии не существует такой. Ближе всего к ней подходит только наша Земля, представляющая собой неправильное тело очень сложных очертаний.
Единственный «твердый» признак, которым можно охарактеризовать геоид, заключается в том, что направление силы тяжести в любой его точке должно быть перпендикулярно его поверхности. Вот все, что про него известно.
Мы уже встречались с геометрическими линиями и точками, которые вдруг начали приобретать физические свойства. Геоид — это нечто прямо противоположное. Не имея никакого подобия в геометрии, он обладает вполне определенными физическими свойствами: форма его воображаемой поверхности зависит от распределения на ней силы тяжести.
Свободная поверхность морей и океанов состоит из подвижных частичек воды, и ее вид определяется силой тяжести, под действием которой каждая такая частичка стремится занять ближайшее к центру Земли положение. Земное тяготение как бы натягивает невидимые ниточки, на которых висят капельки в море. В итоге поверхность моря в любой точке становится перпендикулярной к направлению силы тяжести в них.
Раз форму Мировому океану придает сила тяжести, то, измеряя ее величину и направление, можно определить вид этой поверхности, а тем самым и почти точную фигуру нашей планеты. Так, в исследование фигуры Земли включилась еще одна наука — гравиметрия, измеряющая силу тяжести на Земле.
Поначалу казалось, что определить геоид не очень сложно. Стоит только найти закон, подчиняясь которому распределяется на поверхности геоида сила тяжести.
Теперь уже никто не сомневался, что вес одних и тех же предметов в разных местах Земли может быть различным. Все знали, что сила тяжести больше всего на полюсе, а чем ближе к экватору, тем она становится меньше. Если удастся определить, насколько она меняется с широтой, то силу тяжести в разных точках земного шара можно будет вычислять прямо по ее координатам, и, значит, без труда окажется найденной форма геоида.
Но неожиданно обнаружились довольно странные вещи.
Казалось бы, на морях геоид будет совпадать с поверхностью воды, а продолженный на материки — проходить где-то внутри них. Во всяком случае так должен был себя вести теоретический геоид. Но ученых подстерегал очередной сюрприз.
Измерив с большой точностью силу тяжести в окрестностях Москвы, русские гравиметристы обнаружили, что подо всем городом, от самого Кремля и дальше в Замоскворечье, тянется какая-то очень легкая полоса. Исследованием ее занялись виднейшие ученые.
Известный астроном П. К. Штернберг, несмотря на начавшуюся мировую войну, сам ездил измерять силу тяжести в Подольск, Киёво, Узкое и другие подмосковные места, пересекающие загадочную пустоту в поперечном направлении. Эти исследования подтвердили, что в окрестностях Москвы сила тяжести заметно меньше обычной: с запада на восток через село Коломенское тянулась какая-то непонятно легкая полоса. Получалось, что в этом месте на «ровном» геоиде находится довольно большая впадина.
Столь же неровной оказалась сила тяжести и в других, самых неожиданных местах.
Теперь установлено, что на Земле есть два больших возвышения и два таких же крупных понижения геоида. В Европе и на Тихом океане геоид поднимается «бугром». А Индия и Америка лежат в «низине».
Если разрезать земной шар по экватору и посмотреть на его профиль, то окажется, что в Западной Европе геоид изогнулся небольшим бугром, который постепенно понижается, а, начиная примерно с меридиана Москвы, поверхность геоида ныряет на 140 метров вниз. Эта впадина тянется через всю Сибирь до Иркутска. Дальше на восток геоид опять начинает повышаться, и на 180-м меридиане посреди Тихого океана очередной холм достигает почти 100 метров высоты. Вблизи западных берегов Северной Америки — опять 75-метровая «яма», а потом «холм», поднимающийся на 125 метров, после чего снова понижение.
Такие повышения и понижения как бы опоясывают невидимыми волнами земной шар. А чуть меньшие волны тянутся между полюсами. «Ровный» геоид в действительности весь изрыт «буграми» и «ямами».
Сейчас составлена очень приблизительная, разумеется, карта высот геоида.
На первый взгляд может показаться странным: как же удалось начертить то, что не имеет строгой формы? На такой карте вы и не найдете невидимку-геоид. Это просто обыкновенная карта полушарий, на которой причудливо изогнулись цветные линии. Там, где вьется красная полоса — «бугры» геоида, где извиваются зеленые линии — его «впадины».
Когда говорят о «впадинах» и «буграх» геоида, это не значит, что речь идет о горах или оврагах на земной поверхности. В окрестностях Москвы, скажем, там, где на геоиде значительная «вмятина», нет ни достаточно глубоких оврагов, ни гор. И на север и на юг здесь тянется совершенно гладкая равнина. «Впадины» и «бугры» эти так же невидимы, как и сам геоид. И лишь если бы удалось соединить каналом московскую равнину с океаном, то уровень воды под Москвой установился бы ниже, чем к северу и к югу от нее. Вот эти воображаемые водяные бугры и ямы и есть волны геоида.
Форма действительного геоида оказалась, таким образом, очень сложной.
Чем же это объяснить?
Сложным строением коры и земных глубин. Дело в том, что внутренность Земли очень неоднородна. В глубинах ее находятся и тяжелые и легкие слои. Земная кора, лежащая под ней оболочка и ядро имеют разную плотность и, значит, по-разному притягивают частички воды в океане.
Было бы еще полбеды, если бы слои располагались внутри земного шара достаточно равномерно — каждый слой, допустим, одинаковой толщины и на равном расстоянии от центра Земли. Но в действительности земная кора местами стелется тонким слоем, а местами слагающие ее массы скапливаются огромными, тяжеленными глыбами. Распределение тяжелых и легких масс внутри Земли и влияет на форму геоида.
Встретившись с каким-нибудь новым явлением, ученые стремятся открыть закон, которому оно подчиняется. Естественно, что и тут показалось соблазнительным отыскать какое-то правило, повинуясь которому массы разной плотности распределяются внутри Земли и на ее поверхности.
Вначале думали, что строение земных глубин должно как-то соответствовать главным неровностям в строении земной поверхности. Сам собой напрашивался вывод, что тяжелые глыбы континентов уравновешиваются более легкими породами внутри земного шара, а легкие воды океана — тяжелыми подстилающими слоями. Только так, казалось, и может соблюдаться общее равновесие земной коры.
Но хотя наблюдения и подтвердили, что такое соотношение действительно есть, оно проявляется далеко не везде. Тяжелая континентальная Индия, например, или не менее тяжелые Памир, Индонезия, Кавказ, Урал расположены вовсе не на «облегченной подкладке».
Наверняка предсказать, где можно ожидать поднятие, а где понижение геоида, удается поэтому с трудом. Более или менее удачно получается это в горной и вообще сильно пересеченной местности. Горы почти всегда вызывают небольшие в длину, но довольно глубокие волны тяжести. Кавказский хребет, скажем, образует на поверхности геоида 30-метровый «бугор».
Такие же волны, как и возле горы с ее избытком тяжести, только обращенные гребнем вниз, возникают и в районе глубоких впадин, в которых наблюдается нехватка земных масс. Озеро Байкал — узкая глубокая «щель» длиной примерно в 600 километров — создает почти такую же по величине волну тяжести, как и громадный Кавказский хребет. Поэтому мы можем считать, что в сильно изрезанных районах сила тяжести действительно большей частью зависит от рельефа.
Но как же угадать, где расположатся «бугры» и «ямы» геоида, возникающие среди совершенно гладких равнинных мест и не проявляющиеся внешне, как, например, под Москвой? Ведь здесь рельеф не имеет видимой связи со строением внутренних масс.
Помочь могут только непосредственные измерения этих волн на всей поверхности Земли. Чтобы составить хотя бы примерное представление о геоиде, узнать его форму в самых общих чертах, надо произвести десятки и сотни тысяч взвешиваний!
Перед геодезистами встали совершенно новые задачи. Оказалось, что неровный геоид нельзя вычислить. Его можно только практически измерить, обойдя весь земной шар. И геодезисты принялись за такие измерения, вооружившись не только «линейкой», но на этот раз и «гирей».
По волнам невидимого океана
Последние наблюдения силы тяжести в окрестностях Москвы Петр Карлович Штернберг проводил 4 ноября 1917 года — в канун Великой Октябрьской социалистической революции. А через несколько дней заслуженный профессор астрономии Московского университета и директор обсерватории, интересовавшийся всю свою жизнь, казалось, только небесными делами, командовал орудийным расчетом.
Мирная обсерватория на Пресне оказалась хранилищем оружия рабочих, а революционные деятели, прославившиеся еще во время революционных событий 1905 года и известные под партийными кличками «Лунный», «Эрот», «Владимир Николаевич», — почтенным седовласым астрономом П. К. Штернбергом, членом партии с 1905 года.
Революция и затем гражданская война прервали исследование московской аномалии силы тяжести, которое он так успешно проводил. Но эти наблюдения, выполненные в пылу военных сражений, положили начало гравиметрическим работам по всей стране. Из скромной помощницы геодезии, выполнявшей подсобную роль, какой гравиметрия была во времена Штернберга, она стала основным направлением геодезических исследований, которому принадлежит сейчас решающее слово в определении истинной фигуры планеты. Это наука, родившаяся в нашей стране после Октября.
За сто лет, на протяжении которых в России велись отдельные гравиметрические наблюдения, была определена сила тяжести всего в 400 пунктах. После 1920 года темп исследований резко изменился. Одни ученые отправились измерять силу тяжести на Урале, другие обследовали центральные районы. Экспедиции Ленинградского астрономического института меряли Поволжье, окрестности Баку. Полтавская гравиметрическая обсерватория «взвешивала» Украину.
К 1932 году на территории нашей страны было промерено свыше 2 тысяч точек. Но распределялись они очень неравномерно. Почти вся Европейская часть страны и вся Сибирь оказались не затронутыми этими исследованиями. Поэтому Совет Труда и Обороны объявил, что с этого года начинается плановая гравиметрическая съемка всей страны. Предстояло в течение нескольких пятилеток произвести 22 тысячи измерений.
«Гирей» служил обычный маятник — тот самый маятник, которым Рише измерял время и который дал когда-то Ньютону основание, вопреки всеобщему мнению, утверждать, что Земля сплюснута у полюсов.
Рише, путешествуя из Парижа в Кайенну, то удлинял его, то укорачивал, пытаясь сохранить постоянным количество качаний. Теперь же длину стержня маятника не меняли, а считали, на сколько раз он качнется больше, будучи перевезен в новое место.
Секундным или полусекундным он был только в какой-нибудь одной точке, например экватора. И делал там за сутки 86 400 качаний. Когда маятник привозили в средние широты, он начинал качаться быстрее. Определяя количество лишних движений, устанавливали, насколько сила тяжести тут больше, чем на экваторе. Ведь раз маятник качается быстрее, значит его толкает бóльшая сила.
Для отсчета ударов к маятнику приделали специальный счетчик. Но производить измерения тяжелыми шарами, подвешенными на длинной проволоке, какими были маятники во времена Ньютона, неудобно, и из шара на длинной нити он превратился в невысокий устойчивый прибор.
Вначале маятник делали из меди, потом на смену медным пришли бронзовые маятники и инварные — из специального, почти не расширяющегося сплава. А теперь их все чаще изготавливают из кварца. Время же колебания отсчитывают обычно по хронометру.
Существует несколько десятков различных типов таких приборов. В нашей стране чаще всего применяется тот, который сконструирован в Астрономическом институте имени Штернберга, а для более точных измерений — кварцевый маятник, созданный Центральным научно-исследовательским институтом геодезии, аэросъемки и картографии.
Чтобы еще больше упростить задачу, силу тяжести не измеряют каждый раз заново, а определяют лишь разность между ее величиной в данной точке и тем пунктом, для которого она хорошо известна.
Маятники определяют требуемую величину силы тяжести с точностью до миллионной доли. Но они большие неженки. От малейших сотрясений или незначительных изменений температуры их ход нарушается.
Кроме того, для измерений силы тяжести в какой-либо точке с помощью маятников нужно потратить много времени, иногда несколько дней. Поэтому вместо них в последние 15–20 лет стали применять для измерений силы тяжести специальные приборы — гравиметры.
Гравиметры напоминают обычные пружинные весы. В них тоже взвешивается какой-то определенный груз, небольшой «шарик» ртути, скажем. Но его вес уравновешивается не гирей, а какой-либо упругой силой — пружиной, натянутой нитью или газом определенного объема.
Уравновесив груз в контрольном пункте, гравиметр везут в другой город, где сила тяжести иная. Вес грузика там соответственно увеличится или уменьшится. Как только груз станет, предположим, тяжелее, он сильнее растянет пружину или закрутит нить, что тотчас отразится на измерительной шкале. Все другие причины, которые могут нарушить равновесие этих сверхточных пружинных весов, тщательно устраняются: гравиметр помещают в термостат, герметически закупоривают, изолируют от возможных магнитных воздействий.
К началу гравиметрической съемки в стране было всего 20 маятниковых приборов. А сейчас специальные заводы снабжают геодезистов различными типами маятников и гравиметров. За конструирование гравиметра с нитью из кварца С. Поддубному и Н. Семенову присуждена в 1948 году Сталинская премия. Премией отмечен и пружинный гравиметр, разработанный группой советских гравиметристов под руководством Г. Лукавченко.
Благодаря применению столь различных «гирь» и «гирек» геодезистам впервые оказались подвластны громадные пространства. Они смогли, наконец, с «пятачка» суши, на котором топтались до сих пор, шагнуть и на остальные две трети планеты, остававшиеся неисследованными. Правда, для этого «гирю» пришлось усовершенствовать, чтобы она чувствовала себя уверенно и на шаткой поверхности океана.
Впервые измерил силу тяжести на море голландский ученый Венинг-Мейнес. В 1923 году он принимал участие в гравиметрической съемке на территории своей страны. В сильно заболоченной Голландии трудно было найти устойчивую опору для маятника. Это и заставило его задуматься над возможностью создания прибора, не боящегося качки.
Попытки определить силу тяжести на море делались и раньше. С помощью особого прибора — гипсотермометра — можно в месте наблюдения измерить температуру пара кипящей воды, а по ней узнать атмосферное давление. Ведь вода, как известно, закипает при 100 °C, лишь когда давление нормальное. И уж совсем просто определить одновременно давление воздуха по обычному — ртутному — барометру. Величина получится разной, так как на столбик ртути, кроме давления воздуха, действует еще сила тяжести, а гипсотермометр показывает «чистое» атмосферное давление без помех. Сравнив показания обоих приборов, можно узнать, чему равна в месте наблюдения сила тяжести.
Но чтобы получить нужные результаты, температуру пара кипящей воды пришлось бы измерять с точностью до 100-тысячной доли градуса, а давление по барометру — до 10-тысячной миллиметра, что практически невыполнимо.
Профессор Венинг-Мейнес поступил иначе. Он использовал для этой цели обычный маятник, только не один, а сразу два, качающиеся в противоположных направлениях. Чтобы сосчитать движения маятника, к нему обычно приделывают зеркальце и наблюдают в трубку счетчика или ловят на фотопленке изображение отраженного светового луча.
Венинг-Мейнес предложил это изображение направить вначале на зеркальце второго маятника, подвешенного на том же штативе, и только потом ловить его. Случайные толчки при этом взаимно уничтожатся, и записанным окажется движение некоего идеального маятника, как бы не ощущающего посторонних колебаний.
…Осенью 1923 года от берегов Голландии отплыли три подводные лодки и, поблескивая перископами, направились в открытый океан. Их путь пролегал через Гибралтар, Средиземное море, Суэц, Индийский океан к голландской колонии — острову Ява. На одной лодке находился профессор Венинг-Мейнес со своим прибором.
Подводная лодка была выбрана не случайно. В открытом море волны мешают наблюдениям, а стоило погрузиться метров на 20–30, и всякое волнение прекращалось.
Путь подводной лодки проходил главным образом через тропики. Внутри корабля стояла страшная жара, одежда и белье не просыхали в насквозь пропитанном влагой воздухе. Даже вода для проявления пленок нагревалась так сильно, что ею нельзя было пользоваться. Всплывала же лодка очень редко. Маршрут экспедиции пересекал район сильных и частых тайфунов, и моряки старались не вступать в бой с бушующими волнами. Ученому казалось, что экспедиция затерялась в бездонной синеве между голубым небом и голубым морем.
Два года спустя было предпринято новое подводное плавание опять до острова Ява, но на этот раз через Панамский канал и Тихий океан. За несколько лет профессор Венинг-Мейнес пересек Атлантический и Тихий океаны, совершил плавание вдоль восточных берегов Америки, промерил Мексиканский залив, Караибское, Средиземное и Красное моря, произведя свыше 500 измерений силы тяжести.
Более чувствительный двойной маятник сконструировал советский ученый Л. В. Сорокин, меривший в те же годы силу тяжести на Черном море. Он произвел измерение в 72 пунктах, а потом перебрался на Тихий океан и провел еще 170 наблюдений в Охотском и Японском морях.
Во время первого полярного рейса ледокола «Садко» через Ледовитый океан советский профессор И. Д. Жонголович определил силу тяжести от Земли Франца-Иосифа до Северной Земли: в результате на почти пустую гравиметрическую карту Арктики было нанесено сразу 80 новых точек.
Исследования отважной четверки папанинцев — коллектива первой советской дрейфующей станции «СП-1» — добавили к ним еще 20. Тяжелый — около 70 килограммов весом — прибор с двойным маятником пришлось заменить более легким прибором, изготовленным специально для высокоширотной экспедиции Ленинградским астрономическим институтом. Новый прибор весил всего около 7 килограммов. Молодой научный сотрудник, теперь известный ученый, член-корреспондент Академии наук Евгений Константинович Федоров определял силу тяжести на всем пути дрейфа. Это были первые вылазки в неизведанные арктические просторы, ныне промеренные гравиметристами буквально вдоль и поперек.
Двойной маятник Венинг-Мейнеса был установлен и на американских подводных лодках «Барракуда», «Аргонаут», «Медрегал» и других, с которых велись наблюдения в Караибском море, на Тихом океане и в районе Австралии. Средиземное море промерили французы и итальянцы. Датчане исследовали побережье Северного моря, японцы — океан вблизи своих островов.
И все же гравиметрическая съемка на земном шаре образует очень неравномерную сеть. На территории нашей страны расстояние между пунктами, в которых измерена сила тяжести, как правило, не превосходит 30 километров. А во многих районах составляет 10 и меньше. В Западной Европе сеть промеров столь же часта. А в Центральной Азии, Центральной и Южной Африке, Австралии, на большей части Южной Америки громадные пространства, площадью в несколько миллионов квадратных километров, образуют на гравиметрических картах почти сплошные «белые пятна». Южный Ледовитый океан и Антарктида были до недавнего времени совсем не обследованы.
Чтобы создать более или менее ровную гравиметрическую сеть на всем земном шаре, необходимо сотрудничество ученых всех континентов. Вот почему такие исследования вошли в программу Международного геофизического года.
Сейчас по всей планете работает огромное количество специальных гравиметрических станций, исследующих силу тяжести. Их вклад станет нагляднее, если представить, что только в один из международных центров, в котором собирают результаты гравиметрических наблюдений, ожидается поступление такого обильного количества новых сведений, что они с трудом уместятся в 90 томах, объемом страниц по 500 каждый. А чтобы запечатлеть материалы гравиметрических наблюдений на микрофильмах, такому центру потребуется свыше 100 километров пленки.
Геоид минус эллипсоид
Совсем избавиться от эллипсоида геодезистам так и не удалось. И вот почему.
Предположим, сила тяжести уже промерена на всей земной поверхности, и так часто, как это требуется. Теперь мы можем провести поверхность, перпендикулярную найденным направлениям силы тяжести, то есть получить, наконец, хоть и не тот, который предполагали — не гладкий, а бугристый, но все же самый настоящий геоид.
Можем-то можем. Но при этом мы узнаем только форму его поверхности. А расстояние, на котором поверхность геоида находится от центра Земли (то есть его размер), нам не может сообщить гравиметрия.
Точная наука, позволившая вычислить с правильностью до нескольких метров форму Земли, оказывалась вдруг в положении гадалки, за результаты предсказаний которой трудно поручиться.
Пришлось опять вспомнить об эллипсоиде. Волнистая поверхность геоида местами поднимается над эллипсоидом, местами же опускается ниже его. Вычислив с помощью градусного аршина размеры земного эллипсоида, геодезисты как бы вычитают его затем из геоида, то есть находят излишки и недостающие куски. Этот земной эллипсоид так и назвали «референц-эллипсоид», что значит «эллипсоид, с которым сравнивают».
Изучение формы геоида свелось, таким образом, к определению разницы между его бугристой поверхностью и ровным эллипсоидом.
Но геоид — это ведь только близкая к действительной Земле фигура. Настоящая же физическая поверхность Земли находится, как мы знаем, на некоторой высоте над ним. Поэтому найти высоту геоида над эллипсоидом — это только половина задачи. Теперь предстоит вычислить, насколько сам геоид отступает от действительной поверхности Земли.
И хотя с введением понятия «геоид» определять форму земного шара стало сложнее, потому что ученым, занимающимся этой проблемой, приходится пользоваться и «градусным аршином» и «гирей», наше представление о собственной планете стало гораздо ближе к истине, чем раньше.
Как же производится это двойное вычитание?
После того как размеры эллипсоида вычислили достаточно точно, надо его надлежащим образом разместить, установить в теле Земли. Ведь его поверхность и поверхность геоида должны находиться достаточно близко друг от друга.
Для этого намечают какую-то точку на поверхности Земли и уславливаются, что здесь эллипсоид будет касаться земной поверхности. У нас обычно для этой цели выбирают Пулково, где расположена Главная астрономическая обсерватория Академии наук. Тогда эллипсоид займет внутри Земли вполне определенное положение: его полярная ось и плоскость экватора будут параллельны оси вращения Земли и земному экватору. Но центр эллипсоида разместится где-то в стороне от земного.
Понятно, что два референц-эллипсоида одних и тех же размеров, но ориентированные в двух разных городах, например один в Пулкове, другой в Ташкенте, займут совершенно разные положения внутри Земли. Поэтому, когда говорят, насколько геоид в том или ином месте отступает от эллипсоида, приходится указывать не только, от какого эллипсоида — Красовского, Бесселя или Хейфорда — ведется счет, но и в какой точке он ориентирован.
На территории СССР геоид отступает от эллипсоида Красовского, ориентированного по Пулкову, в среднем метров на 20, а местами на 50 и даже 80. Это вполне допустимая разница. Достаточно сказать, что старый эллипсоид Бесселя расходился с поверхностью геоида в Хабаровске на 370 метров, а в районе дальневосточного побережья на целых 400.
Но вот эллипсоид наконец-то установлен. Тогда вступает в игру гравиметрия. Вооружившись маятниками и пружинными часами, гравиметристы отправляются измерять силу тяжести в разных концах земного шара.
Собственно, их интересует не сама сила тяжести, а ее неправильности — насколько она отличается от той, которая должна соответствовать «нормальной», как они говорят, Земле. Величину силы тяжести на «нормальном» — совпадающем с гладкой морской поверхностью — геоиде можно рассчитать теоретически: по формулам. Теперь надо бы ее сравнить с действительной, измеренной силой тяжести. Но тут-то и начинаются новые трудности.
Ведь измерения этой действительной силы тяжести производились не на самом геоиде, а где-то выше него — на поверхности суши. Значит, надо узнать прежде всего, насколько именно выше, а затем выяснить, как сказалось на подлинном результате притяжение лишних, расположенных над геоидом масс Земли. Добавочный кусок, который прибавляется на материке к длине притягивающей «нити», можно попытаться вычислить — ведь это и есть наша высота над уровнем моря.
Делается это чисто условно. У нас для отсчета высот всех точек принят средний уровень воды в Финском заливе. Его определили, наблюдая, насколько в разные годы поднимается футшток. От кронштадтского футштока советские геодезисты и отсчитывают все высоты над уровнем моря. В других странах пользуются уровнями других морей.
Так в расчетах геодезистов появляется первая поправка и первая ошибка — расплата за приблизительность.
А вот как определить, тяжелые или легкие породы лежат над геоидом, не зная, что это за породы? Геодезистам приходится высчитывать вес пород средней плотности и вычитать из измеренной силы тяжести величину развиваемого этими породами среднего притяжения. Удивительно ли, что такая поправка тоже оказывается приблизительной?
Но и это еще не все. Чем дальше, тем таких поправок становится все больше. Всевозможные допущения, средние, примерные, величины загромождают формулы новыми членами, усложняют, запутывают вычисления. И избавиться от них нельзя.
Хорошо, если вы измеряли силу тяжести в равнинной местности. А если такие наблюдения производились, например, на Кавказском хребте? Тогда обязательно придется вычислять то лишнее притяжение, которое исходит от горного массива.
Попробуйте взвесить гору. Эта задача показалась бы непосильной и сказочному великану. Гравиметристы же смело приближаются к заоблачному гиганту с крошечными «весами» и с помощью очень сложных и, конечно, опять-таки приблизительных расчетов находят, насколько гора искажает силу тяжести на уровне моря.
И только теперь можно, наконец, узнать разницу между силой тяжести на поверхности идеального и действительного геоида. Для определения формы геоида необходимо, таким образом, достаточное количество гравиметрических промеров.
Но даже если мировая гравиметрическая съемка будет завершена, мы узнаем лишь приближенную форму поверхности геоида. Неточности, как мы говорили, возникают главным образом от того, что неизвестно строение земных недр и, значит, распределение плотностей внутри нашей планеты. Эти ошибки особенно значительны в горных районах. Они сильно искажают карты земной поверхности.
На какие только хитрости не шли ученые, чтобы обойти это препятствие, делающее геоид в современных условиях точно неопределимым!
Одно время хотели провести новый геоид на уровне самой высокой точки суши — так, чтобы все материки, которые раньше оставались за пределами геоида Листинга, оказались бы внутри. Но это мало спасало дело. Вместо высот над уровнем моря теперь пришлось бы мерить глубины от уровня нового геоида. В остальном же все осталось бы по-прежнему — ведь силу тяжести непосредственно на этом геоиде измерить тоже невозможно.
Был предложен и другой вариант: все лишние, надгеоидные массы материков вообразить как бы опрокинутыми внутрь него. Тогда все измерения силы тяжести, произведенные на поверхности Земли, как говорят, «повиснут в воздухе», и поэтому измерять придется только одну высоту над уровнем моря-геоида. А вычислив ее, можно представить, будто измерения производились непосредственно на геоиде, величину же опрокинутых излишков массы приплюсовать к излишкам или недостаткам неоднородных по плотности внутренних слоев Земли, также искажающих, как известно, вид ровного геоида. Форма такого «исправленного» геоида зависела бы, таким образом, лишь от строения заключенных внутри него земных масс.
Однако и эти способы требовали знания внутреннего строения Земли. И теоретики-геодезисты принялись за поиски принципиально нового способа нахождения фигуры Земли. Нужно было освободиться от необходимости знать плотности пород земных глубин.
Более десяти лет тому назад эту очень сложную математическую задачу решил наш соотечественник М. С. Молоденский. В настоящее время у него много последователей и в СССР и за рубежом. В Советском Союзе теория Молоденского вошла в геодезическую практику.
Наши геодезисты уже не стремятся определить геоид и высоты точек поверхности Земли над геоидом. В качестве посредника на этот раз используется другая, вспомогательная поверхность, которая названа квазигеоидом, то есть почти геоидом.
Если говорить точно, то никакого квазигеоида нет в действительности, как нет на самом деле географических полюсов или градусной сетки. И то и другое — условные, то есть существующие только в представлении ученых, линии или фигуры, выведенные чисто математически. И вот математически-то и удалось «провести» между глубинным эллипсоидом и земной поверхностью еще одну воображаемую поверхность, по очертаниям очень близкую к геоиду.
Расчеты показывают, что квазигеоид отступает от геоида Листинга в ту и другую сторону не больше чем на 2 или 3 метра. И то только в горной местности, а на равнинах — едва на 2–3 сантиметра. На морях же они полностью совпадают.
Так мало отличаясь по форме от подлинного геоида, его искусственный собрат лишен главного недостатка, ставшего камнем преткновения при определении формы Земли: он не зависит от плотности слагающих нашу планету пород.
С помощью квазигеоида можно, таким образом, определить форму Земли по одним градусным и гравиметрическим промерам, независимо от того, каково ее внутреннее строение.
Расстояние от поверхности Земли до эллипсоида и в этом случае разбито на две части. Из чрезвычайно сложной по очертаниям Земли, как и раньше, выделяется наиболее неправильная внешняя часть, представление о которой дают высоты над квазигеоидом. Вторая, оставшаяся часть — несравненно более ровная. О ней можно судить, определив высоту квазигеоида над совсем уже гладким эллипсоидом.
Но в отличие от старого способа обе эти части можно вычислить очень точно. Ведь теперь точность вычислений зависит только от правильности измерений, и на результат не влияет степень наших знаний о «внутренности» земного шара.
Зависящий от строения земной толщи, геоид превращал измерение высоты и внешней — той, что выше него, и внутренней, охваченной эллипсоидом — частей Земли скорее в геологическую, не имеющую пока точного решения задачу. А квазигеоид позволяет свести ее к чисто математическому, легко достижимому решению.
Тем не менее новый способ, или, вернее, новая наука — геодезическая гравиметрия, основанная трудами М. С. Молоденского, не дает возможности обойтись без участия «гири». Для изучения фигуры Земли по-прежнему требуется мировая гравиметрическая съемка.
Магнитный «ключ»
С тем, что изобретенный геодезистами геоид, едва родившись, вышел из повиновения и распластался по Земле совсем не там, где отвели ему место, ученые уже примирились. Не первый раз природа уготавливала им такие фокусы. И отправляясь в плавание по беспорядочным волнам геоида, они ставили перед собой только одну цель: на первое время хоть в самых общих чертах измерить эти волны.
Но все чаще и чаще возникал перед ними вопрос: так ли уж они беспорядочны? Может быть, есть все-таки какой-то скрытый порядок в этом хаосе больших и малых тяжестей?
Случайно ли, например, оба больших гребня геоида соответствуют океанам, а обе низины — материкам? Когда занялись исследованием состава дна океанов, оказалось, что оно повсюду состоит из тяжелых базальтов. А материки сложены из более легких гранитов. Разница в силе, с которой базальты и граниты притягивают тела, довольно значительна.
Получалось, что в земной коре есть две области, в которых сосредоточены тяжелые массы, образующие возвышения геоида, и два района, где сгруппировались менее тяжелые массы континентов, вызывающие понижения геоида.
В таком случае расшифровать, почему геоид изгибается так, а не иначе, вероятно, поможет наука, изучающая образование на земном шаре материков и океанов?
А наблюдения приносят новые удивительные открытия. Обнаружилось, что и магнетизм Земли такой же «неровный», как сила тяжести на ее поверхности. В самых неожиданных местах Земля оказалась намагниченной сильнее, чем в соседних. Одни из таких магнитных сгустков тянутся всего на протяжении нескольких километров, другие охватывают нередко целые материки.
Советский магнитолог В. П. Почтарев обратил внимание, что эти магнитные волны как бы бегут с меридиана на меридиан, огибая земной шар. Во всяком случае наиболее крупные волны расположены именно так. Но именно в тех же самых местах распределены по поверхности Земли и главные волны геоида. Волны тяжести и магнитные сгустки и пробелы оказались словно вложенными друг в друга, подобно тому как совмещается волнистая поверхность двух кусков рифленого железа.
Оказалось, что более легкие материки и намагничены слабее тяжелого дна океана. В Европе, например, лишь Скандинавский полуостров лежит во впадине геоида. Но здесь же, в Скандинавии, земной шар и намагничен слабее, чем на всей остальной территории Европы.
Один из бугров геоида расположен там, где находится Южно-Африканский Союз, а на севере Африки лежит «впадина». И соответственно северная часть Африканского материка намагничена слабее. На Прикаспийской равнине геоид уходит вниз и поднимается только на побережье Тихого океана. И покорно «ныряет» здесь вниз по шкале стрелка магнитометра. Так же плотно складываются магнитные и гравитационные неровности в Северной и Центральной Америке.
В южном полушарии волна тяжести, которая приходится на Австралию, совпала с магнитным сгустком. А более тяжелая по сравнению с Арктикой Антарктида и намагничена гораздо сильнее первой.
Откуда берутся такие магнитные сгустки? На этот вопрос еще не может дать точного ответа современная наука. Ей просто недостает многих данных. Ведь и сам магнитный океан открыт сравнительно недавно. Выдала его хорошо известная всем магнитная стрелка, вытягивающаяся всегда в направлении магнитных полюсов с юга на север. Эта же стрелка и стала первым измерителем силы земного магнита.
К обычному компасу присоединили шкалы отсчета и стали измерять колебания магнитной стрелки в каждой точке и величину действующих на нее сил. А когда к такому магнитометру прикрепили «перо» и бумажную ленту, он стал записывать движение стрелки в течение многих часов и дней и перемены в ее положении при перемещении по поверхности Земли. Извилистая кривая, вычерчиваемая магнитными приборами в разных концах земного шара, рассказала ученым о примерном строении магнитного океана.
Казалось бы, чего проще: промерить магнитный океан вдоль и поперек и определить все его неровности. Но для этого с юга на север и с запада на восток должны обойти земной шар многочисленные специальные экспедиции. Через каждые 20–25 километров — остановка: нужно установить приборы, тщательно выверить их, произвести замер и снова в путь.
Такую густую и равномерную съемку не легко провести даже в одной стране. А на всем земном шаре? Как прокладывать магнитный маршрут в девственных тропических лесах Бразилии, безлюдных песках Сахары, на бескрайных просторах океана?
Вот почему ученым известно еще очень мало о земном магните. Более или менее изучен он лишь на территории нашей страны, Западной Европы, США да в Японии. А на целых громадных материках — в Африке, Южной Америке — сеть магнитных промеров еще очень редка. По таким редким промерам трудно представить себе все глубины и мели невидимого магнитного океана.
В. П. Почтарев, обнаруживший загадочную связь между геоидом и земным магнетизмом, считает, что все его неровности возникают в верхнем слое Земли — земной коре. Носителями магнитных свойств являются те же самые массы, которые создают земную тяжесть. Тяжелые они или легкие — зависит от того, насколько они плотны. А намагничены они слабее или сильнее — от их способности намагничиваться, или, как говорят специалисты, от их магнитной восприимчивости.
Эти свойства совпадают не всегда, почему не везде сгустки тяжести и магнетизма «вкладываются» друг в друга. Но как раз более плотные базальты намагничиваются в сотни раз сильнее, чем менее плотные граниты. Поэтому гранитные материки и оказываются более слабыми магнитами, чем базальтовое дно океана. А так как гребни геоида образованы, по-видимому, тоже базальтами, а впадины — гранитами, то они и совпадают с магнитными волнами.
Другой известный магнитолог, профессор Ю. Д. Калинин, убежден в ином. Вовсе не обязательно, чтобы магнитные сгустки создавались сильно намагниченными горными породами. С таким же успехом они могут возникать в результате каких-нибудь процессов в толще Земли: например, при перемещении электрических зарядов — ведь движущийся проводник с электрическим током тоже становится магнитом.
И вот если переложить все, что уже известно об этих магнитных неоднородностях на язык математических формул, то получится, что причиной их является вовсе не то или иное распределение в земной коре пород с разными свойствами, а что-то совершающееся значительно глубже. Ю. Д. Калинин даже назвал глубину, на которой происходят таинственные электрические процессы — примерно посредине земного радиуса.
Какая из этих гипотез подтвердится, сейчас трудно сказать. Но, может быть, земной магнетизм и окажется со временем тем ключом, которым удастся открыть тайники земных глубин, хранящие секрет извилин геоида. Пока же магнитный ключ помог обнаружить, что геоид не остается все время одним и тем же.
Оказывается, магнитные волны как бы отстают со временем от волн геоида, и совпадение не получается уже таким точным. Магнитологи, исследовавшие это любопытное явление, пришли к выводу, что так может быть в случае, если допустить, что волны геоида движутся, смещаясь, на запад. По-видимому, это значит, что в Земле происходит какое-то перемещение масс.
Несколько лет назад в научном мире широко обсуждалась другая сенсация, которую уготовил ученым земной магнит. В Арктике обнаружился, казалось, второй магнитный полюс. Это было немыслимо. Но упрямая магнитная стрелка так сильно отклонялась в одном из районов высоких широт, что ничего другого не оставалось думать. На поиски этого незаконного магнитного полюса в 1948 году отправилась специальная экспедиция советских полярников.
Никакого добавочного полюса экспедиция не обнаружила. Зато было сделано интереснейшее географическое открытие: подводный хребет на «плоском» дне океана! В районе же Новосибирских островов, где предполагалось существование второго полюса, отмечена колоссальная магнитная аномалия, равной которой по силе нет нигде на земном шаре. Магнитные меридианы, не сходясь вместе, как это должно быть на настоящем полюсе, узким густым пучком тянутся здесь через Ледовитый океан. И этот загадочный магнитный мост проходит как раз над вершинами подводного хребта Ломоносова.
В чем его причина?
Точный ответ еще не найден. Но уже наметилась новая цепочка удивительных связей и открытий — от магнитного полюса — к якутским алмазам. И опять в это, хотя и косвенно, оказалась замешанной форма Земли.
В известном смысле в северном полушарии все же два магнитных полюса, говорит советский исследователь Я. Я. Гаккель. Ведь магнитную силу Земли можно мерить в двух направлениях — горизонтальном и вертикальном. И вот если рассматривать только ее вертикальную составляющую, то окажется, что наибольшего значения она достигает не на магнитном полюсе, как можно было ожидать, а на концах загадочного магнитного моста — в центре Канадского и Сибирского кристаллических щитов.
Канадский и Сибирский щиты — интереснейшие геологические центры, единственные в своем роде на всем земном шаре. Это самые древние участки суши, так называемые «ядра» формирования земной коры. В центре щитов, которые никогда не заливало море, лопнула когда-то земная кора, растекаясь во все стороны лучами трещин и разломов.
Паутина тысячеметровых трещин распространилась далеко за пределы самих щитов, неузнаваемо меняя лик Земли: там, где протянулись лучи разломов, из земных недр вырывается пылающая магма; реки, встретив на пути провал, сворачивают в сторону, края трещин сминаются в горные складки, а море проникает по трещинам далеко в глубь континентов.
В этих центрах зарождались мощные движения материковых глыб, развивались чудовищные напряжения, страшнейшая температура, колоссальное давление. И именно среди нестерпимого жара и огромных давлений из магмы рождались сверкающие алмазы.
Ясно, что Сибирский и Канадский щиты — центры, где прорвалась какая-то колоссальная энергия, отголоски которой мы наблюдаем теперь в отчаянных колебаниях магнитной стрелки да россыпях самых твердых и самых дорогих камней.
Но почему раскололись крепчайшие щиты?
Предполагают, что именно здесь-то и распрямилась когда-то замедлившая свои обороты Земля. Вслед за вытягивающейся планетой поднялась горбом земная кора и, не выдержав колоссального напряжения, лопнула, подобно стеклу, в которое с размаху бросили камень.
В единую цепочку, как видно, связаны не только магнетизм Земли и развиваемая нашей планетой сила тяжести, но и процессы образования гор, формирования горных пород.
И разве не говорит каждое новое открытие в смежных областях наук, что разгадку секрета геоида надо искать сообща с магнитологами, геофизиками, геологами, геохимиками и другими специалистами, изучающими разные стороны той жизни, которой живет наша планета? Ведь облик Земли несет на себе отпечатки этой бурной и еще не разгаданной до конца жизнедеятельности.
Вопрос о форме Земли становился все более сложным. Крепла мысль, что одними наземными измерениями при его решении не обойтись. А что, если попробовать «взвешивать» Землю из космоса?