Чего не знает современная наука

Сборник статей

Эти таинственные числа

 

 

Математика о хаосе

Понятие «Хаос» в философских теориях древности означало бесконечное пространство, существовавшее до начала мира. В греческой мифологии это беспорядочная субстанция, из которой возник порядок – вселенная, вышли боги, люди, Земля, небесные светила. На протяжении нескольких тысячелетий это понятие было достоянием философии и мифологии, науке же предоставлялось описание «упорядоченного мира» – Космоса в понимании античных философов.

В современном мире с понятием хаоса связывается неповторяющаяся, нерегулярная, беспорядочная последовательность состояний. Буквально несколько десятилетий назад считалось, что такие процессы крайне редки, а природа развивается непрерывно, без резких скачков. Действительно, вся классическая физика «механика Ньютона и Галилея, электродинамика Максвелла, статистическая физика – и отчасти современная, например квантовая теория, оперируют с понятиями функции и отображения, геометрическим образом которого является кривая или поверхность. Галилею принадлежит фраза: «Вся наука записана в великой книге – я имею в виду Вселенную, – которая всегда открыта для нас, но которую нельзя понять, не научившись понимать язык, на котором она написана. А написана она на языке математики, и ее буквами являются треугольники, окружности и другие геометрические фигуры, без которых человеку невозможно разобрать ни одного ее слова; без них он подобен блуждающему во тьме». Во времена Галилея под функцией понималось лишь то, что в современной математике называют непрерывной функцией – ее график можно нарисовать, не отрывая пера от бумаги. Такой подход к описанию природы заранее исключал возможность рассмотрения полного беспорядка – хаоса.

Однако с развитием понятия функции усложнялись и геометрические образы, которыми оперировали физики для описания природы. Достаточно сложные математические объекты – такие, например, как функция, имеющая разрыв в каждой точке (функция Дирихле), непрерывная линия, плотно заполняющая весь квадрат, или множество точек плоскости, не имеющее площади, – стали рассматриваться около 100 лет назад. Геометрические образы этих абстрактных математических объектов довольно трудно представить и невозможно нарисовать. Эти примеры могут показаться пустой игрой ума, однако существуют и природные образования, явления и процессы, для описания которых необходимо привлечение математических объектов со столь экзотическими свойствами, получивших название фракталов. Эти объекты и лежат в основе современной теории хаотических процессов.

Почему хаос казался экзотикой несколько лет назад? Потому что эволюцию систем со времен Лапласа принято описывать, задавая их начальное состояние и скорость его изменения; для этого и была создана прекрасно работающая на практике теория дифференциального исчисления. С математической точки зрения поведение системы в любой момент времени полностью определено, если выполняются условия существования и единственности решения соответствующего дифференциального уравнения. Долгое время считалось, что в такой определенной (детерминированной) системе не может возникать хаоса, ведь решение этого уравнения – «гладкая», то есть непрерывная и дифференцируемая, функция. Лишь на границе XIX и XX веков Анри Пуанкаре обнаружил, что в некоторой гамильтоновой механической системе могут появляться хаотические движения. Эти примеры были восприняты современниками как парадокс.

Однако сейчас стало совершенно ясно, что если речь идет о достаточно сложной нелинейной системе, то ее хаотическое состояние – скорее правило, нежели исключение, оно является неотъемлемым свойством таких реальных систем. К настоящему времени открыто множество динамических систем, в которых возникают состояния нерегулярного, хаотического движения. Прекрасной иллюстрацией служат забавные механические игрушки, появившиеся сейчас в продаже, – маятники на карданных подвесах, причудливые движения которых приковывают к себе взгляд и завораживают, подобно текущей воде или огню. Подчеркнем, что такое поведение не является следствием ни случайного возмущающего воздействия – такие воздействия не включены в модель системы, приходящей к хаосу, – ни бесконечного числа степеней свободы – хаос возникает уже в системах, описываемых тремя координатами, – ни неопределенности (классической или квантовой) в начальных данных. Причина появления хаотических режимов кроется в нелинейной природе динамической системы и ее неустойчивости, проявляющейся в необычайно быстром разбегании первоначально близких траекторий: при достаточно большом удалении состояния системы от начального включаются нелинейные механизмы, возвращающие траекторию в окрестность начальной точки; вследствие неустойчивости ее вновь отбрасывает, и за счет этого происходит беспорядочное запутывание траектории. Заметим, что в линейных моделях, с которыми работала наука XVII–XIX веков и даже начала нашего столетия, хаотических режимов не возникает – они являются свойством исключительно нелинейных систем.

Интересно, что теоретически хаотическая траектория воспроизводится полностью, если создать точно такие же начальные условия, однако сколь угодно малые возмущения начального состояния приводят к абсолютно не похожему поведению системы. На практике это означает, что невозможно предсказать поведение хаотической системы на большой период времени, так как повторить начальные условия и проводить вычисления можно лишь с определенной точностью; по сути дела, это свойство хаотических систем – необычайная чувствительность к малым воздействиям – означает конец эпохи лапласовского детерминизма. Одно из далеко идущих следствий этого свойства иллюстрируется примером так называемой бабочки Лоренца: взмах крыльев бабочки может повлиять на климат Земли в глобальном масштабе, так как атмосфера является сложной нелинейной системой с неустойчивыми режимами.

Эти свойства хаотических систем приводят и к другим интересным выводам, чрезвычайно важным как с теоретической, так и с практической точки зрения. Например, оказывается, что сложная нелинейная система в процессе своего развития обязательно проходит через этапы хаоса. В физике такими этапами являются так называемые фазовые переходы (к ним относится, в частности, кипение воды: каждый, кто наблюдал бурлящий кипяток, скажет, что это действительно хаотический процесс). Человек – тоже сложная нелинейная система, и нам знакомы кризисы и депрессии, когда кажется, что весь мир рушится и нет ничего надежного. Развитие общества проходит через этапы социальных, технических, экономических и других революций, также сопровождающихся хаосом. Кризисы и революции – неминуемые этапы развития систем, и если мы не хотим оставаться застывшими, неподвижными, то неизбежно должны проходить через хаос. И относиться к этому надо не как к катастрофе, а как к естественному природному явлению, которое, как и все в природе, не может само по себе быть ни плохим, ни хорошим.

Обращаясь к мифологии, можно вспомнить, что хаос призван уничтожить, поглотить, разрушить старое, отжившее и дать дорогу новому, не существовавшему прежде. Причем зародыши, точнее, никак еще не проявленные потенциалы этого нового содержатся в самом хаосе, являясь его природой. Находясь в хаосе, имеет смысл не теряться, а постараться помочь природе, отбросив без сожаления (отдавая при этом должную дань благодарности) те старые формы, которым пришло время умереть, и пытаясь найти новое, дать импульс к его рождению. Свойства хаоса таковы, что если этот импульс совпадает по направлению с потенциальным путем развития, предназначенным законами природы, то он приводит к чрезвычайно значимым, заметным результатам, сколь бы малым и слабым ни был в начале. Математически это обусловлено существованием неустойчивых направлений возмущения нелинейной системы. Казалось бы, мы вновь пришли к предопределенности? Не совсем так, ведь неустойчивых направлений много, и система вольна выбрать любое из них.

С другой стороны, пассивное поведение в хаосе не приведет ни к чему хорошему – мы рискуем оставаться в этом неопределенном состоянии, не создавая ничего нового, сколь угодно долго. Нужно совершить некое действие, движение, первоначально хотя бы вслепую, для того чтобы почувствовать назначение этого этапа, понять, куда влечет нас течение реки эволюции, и потом, помогая ему, раскрыть, проявить потенциалы, заложенные в хаосе.

Взрывной первоначальный рост новой формы не может продолжаться вечно. Рано или поздно включаются стабилизирующие силы, связанные с нелинейностью. Они гармонизируют систему, уравновешивают ее и дают возможность спокойного существования в течение достаточно длительного времени. Это период накопления опыта, осознания значения нового рождения, период выполнения миссии. Это время устойчивого развития характеризуется тем, что теперь практически невозможно переключиться на иной режим, существенно отличающийся от данного.

В греческой мифологии эти этапы символически связывались с двумя божествами – Дионисом и Аполлоном. Первый из них – бог творческого вдохновения, экстаза, растворяющийся во множестве рожденных форм; второй – бог гармонии, приводящий в порядок, очищающий, отбрасывающий все лишнее.

Так символическое видение мира, отраженное и дошедшее до нас в мифологических образах, удивительным образом смыкается с современной наукой, использующей в своем языке иные образы – математические. Может быть, благодаря своей неисчерпаемой многогранности, родственной символическому языку мифа, математика и обладает столь удивительным свойством адекватно отображать реальность?

Алексей Чуличков, д-р физ. – мат. наук, МГУ

 

Математика о судьбе и свободе выбора

«Все, что ждет тебя в этой жизни, заранее предопределено. Рок, Судьба ведет человека по заранее намеченному пути». Что мы ответим тому, кто попытается нас в этом убедить? Скорее всего, повертим пальцем у виска или отмахнемся: «Не может этого быть. Придет же такое в голову!»

Нам ближе другой тезис: все зависит от нас, мы – хозяева своей жизни, строим ее по своему желанию, сами определяем свой путь. С этим мы склонны согласиться… процентов на девяносто.

А что же скрывается за оставшимися десятью?

Время от времени мы попадаем в ситуации, которые, несмотря на все свои усилия, не в силах изменить. Иногда жизнь несет нас словно поток, и все попытки выбраться из него не приводят к успеху. И тогда мы произносим загадочное слово «судьба». «От судьбы не уйдешь», – покорно разводим руками, встречаясь лицом к лицу с ситуацией, которой больше всего хотели избежать. «Не судьба!», – если что-то не сложилось, не получилось, не осуществилось.

Слово «судьба» надежно обосновалось в нашем лексиконе. Что-то такое есть в мире… Что же это все-таки? И какое место занимает в нашей жизни?

Древние традиции, религиозные концепции дают вполне определенный ответ на этот вопрос. Но мы уже не верим мифам и священным писаниям, мы давно разучились понимать их символический язык. Современный человек за ответами на свои вопросы обращается к науке. К ее ведению мы теперь относим законы природы, и уж, наверное, она-то и может объяснить, что в этом мире предопределено, а что – нет. И если есть в мире Судьба, то она должна найти свое отражение в математических моделях.

Немного истории. Детерминизм

Первые математические модели развивающегося мира относятся к концу XVII века, ко времени создания теории бесконечно малых и дифференциального исчисления. Эти модели обладали замечательным свойством: оказывается, если описать взаимодействие всех составных частей системы и задать ее начальное состояние, то ее эволюция определяется совершено однозначно. Вот так пощечина нам, неверующим: наука знает, что такое Судьба! Тайна Вселенной раскрыта – ее будущее уже определено настоящим, все предрешено, и все можно предсказать. Нужно просто решить дифференциальное уравнение, хотя и очень сложное. Для этого его еще надо написать, задать начальные условия… Но, в принципе, ничто, казалось бы, не запрещает это сделать.

Идея, что решительно все в этом мире предопределено, в то время была очень привлекательной и даже революционной на фоне христианского догматизма. Она утверждала веру в человеческий разум, способный объять всю Вселенную – ведь вот уже найден ключ к ее секретам. Предопределенность стала синонимом объективности научных знаний, возможность точных предсказаний рассматривалась как величайший триумф науки. Нет никаких неожиданностей – всякое явление однозначно определено поведением системы в прошлом. «В природе вещей нет ничего случайного», – утверждает Бенедикт Спиноза; с ним соглашается подавляющее большинство ученых XVI, XVII, XVIII, XIX веков… Да, мир изменяется, но изменяется он по раз и навсегда заданному сценарию, случайность – это иллюзия, возникающая, когда мы не знаем точно законов, по которым происходят изменения.

Достижения науки с момента ее возникновения всегда ложились в основу мировоззрения. Идея крайне выраженного детерминизма воплотилась и в философских концепциях, и в повседневных моделях поведения. Несмотря на весь наш сегодняшний скепсис по отношению к судьбе и веру в свободу своего выбора, фигура поручика Вулича, фаталиста, описанного М. Лермонтовым в «Герое нашего времени», кажется нам сейчас вовсе не гротескной, а вполне реальной.

Неужели фатализм? Новые надежды

И все-таки такая картина мира выглядит скучной. Неужели действительно миллионы лет назад было запрограммировано и возникновение жизни, и все катаклизмы и войны, все радости и напасти рода человеческого? Неужели все наши поступки, порой такие необъяснимые и непредсказуемые, полностью предопределены, и все наши сомнения, мучительные вопросы, моменты выбора – лишь пляска марионеток в театре неумолимой судьбы?

Если следовать этой точке зрения, то Вселенная с ее многочисленными формами жизни – это лишь чуть усложненный вариант известной математической игры «Жизнь», в которой колонии «клеточек» живут на тетрадном листке. Правила этой игры заданы раз и навсегда и очень просты: если число соседей клетки больше трех или меньше двух, клетка умирает, а если пустую ячейку окружают три живые клетки, то в ней рождается новая. Этих условий достаточно для того, чтобы сообщество клеток развивалось. Его дальнейшая судьба зависит исключительно от начальной конфигурации и законов, управляющих рождением и смертью. Некоторые структуры исчезают, другие достигают устойчивого положения, третьи движутся, иногда очень замысловато… Чем не наша действительность? Картинка страшноватая, прямо скажем. Но ведь это математика, с ней не поспоришь…

…если только реальность в самом деле описывается теми уравнениями, которые рассматривались во времена Ньютона и Лейбница. А это, как выясняется, не совсем так. И даже совсем не так. С развитием качественной теории дифференциальных уравнений приговор смягчается. Оказывается, в какие-то моменты уравнение, описывающее развитие нашей системы, может иметь несколько решений. То есть существуют точки, в которых у системы есть выбор дальнейшей траектории. Известная ситуация витязя на распутье: направо пойдешь – коня потеряешь, налево пойдешь…

Что же получается? Концепция, пришедшая на смену полному детерминизму, утверждает, что в своем развитии система, взаимодействующая с окружающей средой, проходит ряд чередующихся этапов. Стабильное, предопределенное, предсказуемое развитие рано или поздно прерывается точками развилки пути. В науке эти ситуации называются бифуркационными, от английского слова fork «вилка»; бифуркация – двузубая вилка, геометрический образ ветвящегося пути. В точках бифуркации существует определенный набор сценариев дальнейшего развития системы. Причем в математических моделях выбор одного из вариантов происходит непредсказуемым, случайным образом.

Такие модели несколько успокаивают наше самолюбие. Обидно ведь: думаешь, что ты все решаешь сам, а на самом деле оказывается, что тобой кто-то руководит – хотя бы и сама Природа. Как-то ближе сердцу такая картина, когда хоть что-то в своей жизни ты выбираешь самостоятельно, когда в твоих руках пусть не судьба мира, но хотя бы твоя собственная и твоих близких.

И действительно, эта модель очень похожа на нашу реальность. Куда поехать в отпуск – на дачу или в теплые края? Выбираешь Крым – и целый месяц загораешь себе на солнышке, купаешься в теплом море, и нужны жуткие катаклизмы, чтобы вырвать тебя из этого вполне предопределенного времяпрепровождения. Или выбираешь дачу – и так же предопределенно тот же месяц копаешься в огороде с чувством исполненного долга перед семьей, ходишь на рыбалку или за грибами…

Так и вся жизнь: осматриваешься, выбираешь путь, идешь до следующей развилки, и все повторяется… Если нарисовать это на бумаге, получится очень знакомая и приятная глазу картинка – дерево. Математики называют его «ветвящийся граф». В этом образе отражен весь набор возможных траекторий движения системы.

Как устроен выбор? «Тонкие» модели

Итак, неправ был Спиноза. Есть случайность в природе. Но… Вдруг просто наши модели слишком грубы и лишь поэтому не позволяют предсказать дальнейший путь?

Рассмотрим пример: маятник на жестком подвесе. Слегка отклонив его от состояния равновесия и предоставив самому себе, мы получим «полностью предсказуемое» движение – колебания, описываемые решением начальной задачи для дифференциального уравнения. Оно обладает всеми чертами, свойственными детерминированной системе: существует при любых начальных данных, единственно и устойчиво. Однако если в какой-то момент остановить маятник и направить его подвес вертикально вверх, то формальное решение задачи предсказывает ему вечную неподвижность. В реальности маятник, конечно, упадет, но дальнейшее его движение невозможно предсказать заранее: в математической модели не содержится ничего, что позволяет определить, в какую сторону, вправо или влево, продолжит он свои колебания. Мы встречаемся здесь с «неклассическим» случаем – неустойчивостью решения и непредсказуемостью поведения системы: имеется два варианта ее развития. Мы вынуждены говорить, что дальнейшее движение непредсказуемо и случайно.

Но можно, например, учесть тонкие эффекты взаимодействия маятника с окружающей средой, малые движения точки подвеса и т. п., то есть вместо «грубой» модели использовать более тонкие, взять своего рода «микроскоп» и в него разглядывать точки бифуркации. Может, тогда случайность исчезнет и выбор вновь станет предопределенным?

Полная свобода: хаос

Принципиально новая математика, родившаяся в XX веке, в корне перевернула многие представления о мире, в котором мы живем. Основы ее были заложены почти 100 лет назад французом Анри Пуанкаре, но тогда его идеи развития не получили. А вернулись к ним ближе к середине нашего века. Суть нового подхода заключается в том, что мир, который до сих пор считался развивающимся плавно и постепенно, оказался нелинейной системой, в которой есть и резкие переходы, и неустойчивости, и неоднозначности. А следствием этого является, например, то, что один взмах крыла бабочки «в нужное время в нужном месте» – то есть в момент неустойчивости – способен породить резкие и глобальные изменения климата всей Земли.

Эти открытия произвели эффект разорвавшейся бомбы. Ученые потупили взоры. В 60-х годах сэр Джон Лайтхил, президент Международной ассоциации математических исследований, посчитал своим долгом принести извинения перед просвещенным сообществом за то, что в течение 300 лет математики вводили человечество в заблуждение, так как концепция детерминизма оказалась далеко не безусловной.

Но вернемся к точкам бифуркации. Вооруженные новейшим «микроскопом», мы заглядываем в них… И видим там самый настоящий хаос. Динамический. Дело в том, что, прежде чем выйти на одну из траекторий, видимых «невооруженным глазом» на нашем дереве, система попадает в клубок, состоящий из бесконечного множества запутанных траекторий, и начинает крутиться в нем, как белка в колесе, беспорядочно перескакивая с нитки на нитку. Для того чтобы совершить такой скачок, бывает достаточно сколь угодно малого воздействия извне, ведь в клубке практически в каждой точке соприкасаются сразу несколько нитей, ведущих в самых разных направлениях.

Хаос – не экзотика, в своей жизни мы сталкиваемся с ним очень часто. Десять лет ты учился в школе, и всегда было более или менее известно, что будет завтра, а что – через месяц, через год… А потом жизнь вдруг взрывается: выпускные экзамены, бал – и ты вытолкнут во взрослый мир, живущий по своим суровым законам. Поступать в институт? В какой? Устраиваться на работу? Какую? Голова идет кругом, руки опускаются… Закончил институт, университет – проблемы те же. Переход на новую работу, сокращение штатов, пенсия… Надо строить жизнь заново – а как? Финансовый кризис выбивает из колеи уже не одного человека – вся страна превращается в разворошенный муравейник.

Поневоле задумаешься, нужна ли тебе такая свобода. В хаосе возможно все, здесь существует бесконечное множество вариантов развития, но что толку, если, перебирая вариант за вариантом, перескакивая с траектории на траекторию, ты не можешь вырваться из этого клубка, обреченный вращаться в нем, кажется, до скончания века?

Как же жить в мире хаоса?

«Ну, не все так плохо», – такой вывод можно сделать из анализа математических моделей. Выход все-таки есть. И даже не один – вспомним наше дерево. С точки зрения грубой модели движение по его ветвям означает изменение с течением времени некоторых параметров системы, описывающих ее «в целом», – для маятника это, например, положение центра тяжести. При подробном описании эти параметры являются «внешними», задающими общее состояние системы, они меняются медленно, но именно их изменение обеспечивает выход системы из хаоса. Изменение внешних параметров в математических моделях играет роль Судьбы, влекущей систему сквозь череду кризисов и этапов спокойного развития.

И что же, сидеть и ждать Судьбы? Можно прождать всю жизнь. Но есть и конструктивные соображения. Среди траекторий, переплетающихся в динамическом хаосе, всегда есть несколько жизнеспособных, соответствующих общему направлению эволюции системы, которые ведут к выходу на отрезок стабильного развития. Важно не ждать сложа руки, куда вывезет нас очередная кривая, а найти одну из этих «правильных» траекторий, и рано или поздно она, подобно нити Ариадны, непременно выведет нас из лабиринта. Все, что от нас требуется, это не сидеть на месте, а делать шаги в выбранном направлении. А еще – «спокойствие, только спокойствие!»: не паниковать, не дергаться, не перескакивать с нитки на нитку в поисках сиюминутной выгоды, а крепко держаться за путеводную нить, что бы ни происходило вокруг. Хаос – лишь один из этапов долгого пути эволюции, он не может длиться вечно – пока есть хоть кто-то, кто ищет из него выход.

…Бешеная пляска воды горного потока, клочья облаков, рвущиеся ветром, извивающиеся языки пламени… В их беспорядочном движении, казалось бы, нет никакой закономерности. Но стоит изменить масштаб – и мы увидим поток, стремящийся к морю, гигантские атмосферные вихри циклонов, костер…

Течет река времени. Рождаются и гибнут цивилизации, сменяя друг друга, подвластные законам Истории… Ручейки человеческих жизней, причудливо петляя, сливаются в речки, питающие собой реки побольше… Все они впадают в одну великую реку. Куда несет она свои воды?

Алексей Чуличков, д-р физ. – мат. наук, МГУ

 

Знает ли Бог математику?

Зачем мы изучаем математику? Чтобы нас не обсчитали в магазине или в банке? Да, наверное. Но для этого достаточно знать основные арифметические действия. А нам почему-то толкуют о геометрических теоремах, свойствах функций…

Можно ответить так: без математики не было бы науки, а значит, многих ее достижений, существенно облегчающих нашу жизнь. Ну и пусть бы тогда этой наукой занимались «яйцеголовые», их не так-то много и нужно. А всем-то зачем?

А оказывается, математика – это тот мостик, который соединяет нас с миром, где живут чистые идеи. Они бесплотны и невидимы, но ощутить их может тот, кто умеет мыслить абстрактно – так, как учит математика. А мир идей прекрасен, и ощутить его красоту помогает знание математических законов гармонии. Это знание позволяет видеть и создавать красоту, видеть присутствие Божественного (читай: природного) закона в окружающем и в нем самом. Видеть, что Бог не бесконечно далек, а рядом, и к нему можно прийти, обращаясь к прекрасному и создавая его. Ведь стремление к красоте может быть тем путем, на котором достигается гармония во взаимоотношениях человека с миром, с другими людьми и с самим собой. Числа правят миром, а значит, и каждым из нас…

Математика, как учат нас в школе, появилась из насущных потребностей людей: надо было как-то считать членов племени, добычу, домашний скот (так появилась арифметика), а потом – измерять участки земли (отсюда пошла геометрия). И кажется, что это естественно – считать мамонтов поштучно или измерять площадь квадратиками. И никакой загадки здесь нет.

Но все-таки без таинственного изучать математику скучно, трудно и противно. А поэтому давайте попробуем удивиться, как ребенок, встречающийся с этой наукой впервые.

Удивление вызывают парадоксы. А в этой области их множество. И вот первый из них: математика – наука о несуществующем, точнее, о невидимом. Ведь нет такой вещи, которая называется «число»: его нельзя потрогать, увидеть… Это лишь идеальная сущность, абстракция, нечто объединяющее многие разрозненные восприятия окружающего нас мира. Это же относится и к геометрическим фигурам, хотя и в меньшей степени, потому что точку или отрезок прямой можно если не нарисовать, то хотя бы представить как зримый образ. Реальная точка на бумаге, в отличие от математической, имеет хотя и достаточно малый, но все же ненулевой размер, так что нарисовать математическую точку действительно нельзя.

В этом смысле математика – наука о мире идей, а не о мире вещей. Из-за этого многие даже отказывают ей в праве называться наукой, считая, что она лишь специальный язык, всеобщий язык, на котором все-таки можно изъясняться и объяснять, как устроен мир.

И в этом еще один парадокс: как может математика – наука об идеальном – все-таки описывать мир существующих вещей? Этот вопрос мучил еще многих мудрецов античности и продолжает волновать умы современных ученых.

Священный Тетраксис пифагорейцев

Пифагор, например, считал, что миром правят числа. Вот уж точно удивительно: почему числа, а не боги, не законы природы, не цари, президенты, парламенты? Ну, с царями – вопрос особый: если кто-то думает, что он может править вопреки законам божественным или природным, то Бог ему судья… Поэтому остановимся на богах и природе, тем более что особой разницы между ними можно и не углядеть. А законы природы, оказывается, математичны, в этом великая догадка знаменитого мудреца. Одно из наиболее известных математических правил нашего мира известно как теорема Пифагора: в любом прямоугольном треугольнике сумма квадратов катетов равна квадрату гипотенузы. Смотрите-ка: В ЛЮБОМ! Какой ни возьми. А почему? Не измерял же Пифагор квадраты гипотенуз всех прямоугольных треугольников? Нет, он нашел правило, принцип. Закон природы или Бога. Он научился размышлять подобно Богу, и эти размышления оказались математическими, идеальными. А наш мир – «только тени от незримого очами».

Но не одни лишь арифметические и геометрические правила виделись мудрецами античности как основа мира. Числа «один», «два», «три» символизировали великие принципы Единства, Двойственности, Троичности.

Единство – единое начало, источник всего сущего, великая изначальная сила, рождающая Вселенную. Эти представления характерны как для мифологического, так и для современного способа восприятия мира. С Единством связан и древнегреческий Хаос, и Парабрахман индийских Вед, и Дао китайской философии. В современных научных космогонических теориях единое начало нашло свое отражение в теории Большого взрыва, «единую силу» ищут сейчас физики в теории, объединяющей четыре известных типа взаимодействий: сильное, электромагнитное, слабое и гравитационное. В мифологии Единое скрыто, не проявлено, недоступно для нашего понимания. В науке причина также скрыта: физика не в силах объяснить, почему произошел Большой взрыв, почему именно так проявляются те или иные фундаментальные взаимодействия, зато достаточно точно описывает, как они проявляются.

Двойственность возникает, как только мир начинает проявляться «из ничего». Возникает противоположность «проявленное – непроявленное». Более развитый мир мы также воспринимаем через противоположности: в нем существуют добро и зло, свет и тьма, тепло и холод, идеальное и материальное…

Однако мир разорвется в противоречиях и не сможет существовать, если эти противоположности не окажутся соединенными, связанными между собой, чем-то уравновешенными. Это Третье, уравновешивающее противоположности путем гармоничной связи, выражается принципом Троичности и символически связано с числом «три». Триединство Бога прослеживается в триадах египетской религии, в индуизме (Тримурти), в христианстве. О необходимости третьего элемента для разрешения двоичного противостояния противоположностей говорит профессор Р. Баранцев: «Внимательно изучая семантические свойства системных триад, сложившихся в самых разных культурных традициях, можно увидеть следующую закономерность: в одном из элементов любой триады доминирует аналитическое начало, в другом – качественное, в третьем – субстанциальное. Источник этой закономерности кроется, вероятно, в триединой природе человека, в его способности мыслить одновременно и понятиями, и образами, и символами». Элементы, из которых состоит системная триада, Баранцев называет интуицио, эмоцио и рацио. Противоположности эмоциональности и рациональности могут уравновеситься интуитивностью, как, например, философия или религия может дополнить и тем самым уравновесить противоположности науки и искусства. Примером системной триады является и сама математика: она состоит из аксиом, определений и теорем. Здесь определения имеют эмоциональную окраску, так как выражают вкусы и предпочтения исследователя, теоремы связаны с логически выверенными доказательствами и являют рациональную составляющую, а аксиомы есть истины, постигаемые интуитивным путем.

Таким образом, с числами «один», «два», «три» связаны динамические принципы, определяющие пути и способы становления Космоса как упорядоченного мира (космос в переводе с греческого «порядок», «организованный мир») из Хаоса как первопричины.

Космос этот строится в мире пространства и времени, с которым символически связано число «четыре». В пространстве в разных традициях выделяются четыре направления (восток – запад и север – юг), а во временных циклах четыре символических этапа: «утро», «день», «вечер» и «ночь».

Таким образом, первые четыре числа символически связываются с возникновением Космоса, его развитием и местом (ареной), где он рождается и развивается.

Первые четыре числа пифагорейцы называли Тетраксисом. Он символизировал все самые сокровенные тайны мира и считался священным: именем Тетраксиса клялись, и эта клятва была нерушима. Немалую роль играло и то, что из этих чисел путем сложения можно получить и все оставшиеся числа первой десятки: 10 = 1 + 2 + 3 + 4. А число «десять» служило символом завершенного этапа, после которого следовало рождение новой формы Космоса, подчиняющееся тем же принципам Единства, Двойственности и так далее.

Пифагорова гамма и музыка сфер

Со священным Тетраксисом связан еще один закон гармонии Космоса, который выражается в законах музыкальных созвучий.

Вдохновившись игрой пианиста, мы подчас тоже подходим к роялю и пытаемся извлечь из него потоки звуков, радующих душу. Но почти наверное вместо этого у нас получается нечто весьма немелодичное. Почему? Потому что мы нарушаем закон музыкальной гармонии. Математическое выражение этого закона легенда также приписывает Пифагору и его ученику Архиту.

Чтобы пояснить этот закон, возьмем музыкальный инструмент, состоящий из двух одинаковых струн, длину которых можно менять, прижимая их к грифу, подобно тому как это делает скрипач или гитарист. Совместное звучание, издаваемое струнами, наиболее благозвучно, если длины струн находятся в правильном численном отношении друг к другу: звучащие струны определяют консонанс, если их длины относятся как целые числа Тетраксиса, то есть как 1:2, 2:3, 3:4. Причем чем меньше число n в отношении n:(n + 1) (n = 1, 2, 3), тем более гармоничным кажется созвучие.

В Средние века эти созвучия были названы совершенными консонансами, это: октава (если длины струн относятся как 1:2), квинта (если длины струн относятся как 2:3), кварта (если длины струн относятся как 3:4).

На основе этих созвучий была построена совершенная пифагорова гамма. Пусть звучание двух струн образует октаву. Звуки, издаваемые струнами, сопоставим с нотами «до» первой и второй октав. Пусть далее одна струна звучит как нота «до» первой октавы, а вторая составляет с ней квинту, – назовем ее звучание нотой «соль» первой октавы. Точно так же нотой «фа» первой октавы назовем звучание струны, составляющей квинту с нотой «до» второй октавы. Ноты можно графически изобразить на отрезке прямой, как это сделано на рисунке слева внизу. Расстояние между нотами назовем интервалом, он измеряется отношением длин звучащих струн. Так, интервал между нотами «до» первой и второй октав равен 2:1, это октава; интервал между «до» и «соль» первой октавы, так же как и между «фа» первой и «до» второй октав, равен 3:2, это квинта.

Тогда окажется, что «до» и «фа» первой октавы и «соль» первой и «до» второй октавы образуют кварту. Интервал между нотами «соль» и «фа» составляет тон, он равен 9/8, полутоновый же интервал имеет величину 256:243. На основании этого строится вся октава.

Именно эту гармонию признают музыканты с идеальным слухом. Однако, исходя из удобства перехода к различным тональностям, в настоящее время пользуются устройством музыкальной гаммы, основанном на интервалах, составляющих геометрическую прогрессию. Несовершенство этой гаммы может ощутить только хорошо тренированное ухо, тем не менее эксперименты с пифагоровой гаммой продолжаются и в наше время.

Во все времена считалось, что идеальное расположено на небе, именно оно демонстрирует непреложный порядок чередования дня и ночи, движения небесных созвездий и других светил. По свидетельству Пифагора, идеальные гармонические пропорции, основанные на законах Тетраксиса, то есть на отношениях 1:2, 2:3 и 3:4, присущи как звучащей струне, так и строению Космоса. Считалось, что между землей и небом натянуты невидимые струны, и планеты в своем движении заставляют их звучать, образуя небесную музыку сфер. Однако эта музыка недоступна физическому уху, но лишь «уху внутреннему», «уху души».

В каждом из нас тоже звучит своя мелодия, отражающая равновесие наших противоположных жизненных сил. И если она звучит в согласии с мировой гармонией, то человек здоров, нарушение же гармонии с космической музыкой сфер приводит к болезни. Помочь настроиться на ритмы Космоса может мелодия, создаваемая с помощью музыкальных инструментов, но опять-таки если ее источником является небесная гармония.

Вот так, по мнению пифагорейцев, числа правят и Вселенной, и человеком. То есть и Макрокосмом, и Микрокосмом.

Математика в философии Платона

Платон, которому приписывают открытие мира идей, дающего закон существования и развития вещей, так же как Пифагор, использовал числа и пропорции для описания развития Космоса. В диалоге «Тимей» он утверждает, что тело Вселенной Творец создал из огня и земли, а чтобы они были хорошо сопряжены между собой, Он использовал золотую пропорцию, когда «из трех чисел… при любом среднем числе первое так относится к среднему, как среднее к последнему». Наряду с этим, по мысли Платона, фундаментальную роль в творении Космоса играли отношения целых чисел 1, 2, 3, 4, интервал в полтона пифагорейской музыкальной гаммы и так далее.

Платон, так же как и Пифагор, признавал влияние музыки на душу человека. Он считал, что музыка призвана воспитать гражданина идеального государства, построенного по тем же законам, что и космическое целое. Музыка служила «гимнастикой души», создавая человека, чья жизнь организована подобно идеальному движению небесных светил. Считалось, что музыкальные мелодии оказывают различное воздействие на душу человека, в зависимости от своей структуры, которая также описывалась математическими правилами чередования тонов и полутонов. В Греции наиболее возвышенным, мужественным и нравственно совершенным почитался дорийский лад; фригийский – возбуждающим и пригодным для войны, лидийский – женственным, изнеживающим и расслабляющим, а потому непригодным для воспитания.

Математический порядок небес

Представление о том, что мир живет по законам математики, характерно и для Средневековья. В это время широкое распространение получило сочинение Клавдия Птолемея «Великое математическое построение по астрономии в 13 книгах», созданное во II веке, более известное под своим арабским названием «Альмагест». В нем утверждалось, что небосвод имеет идеальную форму – форму сферы, форма Земли также идеальна, это шар, помещенный в центр мира; с помощью набора идеальных круговых движений объясняется видимое движение планет. Форма, выбранная для описания законов неба, умозрительная, она предложена из соображений красоты и симметрии, а не получена экспериментально.

Поиск выраженного математическим языком идеального продолжается и позже. Иоганн Кеплер утверждал, что «геометрия есть сам Бог», она «служит ему прообразом при сотворении мира». Поэтому «главной целью всех исследований внешнего мира должно быть открытие рационального порядка и гармонии, которые Бог ниспослал миру и открыл нам на языке математики». Неудивительно, что своим самым великим достижением Кеплер считал геометрическую модель Солнечной системы, основанную на правильных многогранниках (Платоновых телах). Согласно ей, орбита Меркурия является экватором сферы, вокруг которой описан октаэдр, по экватору сферы, описанной вокруг него, движется Венера и так далее. Ниже приведены погрешности, отличающие реальные орбиты от теоретически рассчитанных согласно модели Кеплера.

Другая модель Солнечной системы построена на основе эмпирической формулы, в которую входят числа от 1 до 4, то есть образующие Тетраксис. Это правило в 1766 году предложил немецкий математик И. Тициус, но получило оно известность после того, как его впервые опубликовал немецкий астроном И. Боде в 1772 году. Правило связывает среднее расстояние а планеты от Солнца с ее порядковым номером и выглядит следующим образом:

a = 0.1 (2n*3 + 4),

где a – средний радиус орбиты планеты, выраженный в радиусах Земной орбиты (расстояние, равное среднему радиусу орбиты Земли, называется астрономической единицей). Здесь для Меркурия следует положить n = -∞, так что 2-∞ = 0, для Венеры n = 0, так что 20 = 1, для Земли и Марса n = 1 и 2 соответственно, для Юпитера n = 4 и далее по порядку. Пропущенное значение n = 3 соответствует поясу астероидов, что дало, в частности, возможность предположить, что когда-то между Марсом и Юпитером обращалась еще одна планета, распавшаяся на части в результате космической катастрофы. Эта планета получила гипотетическое название Фаэтон.

Это правило достаточно точно описывает радиусы первых семи планет от Меркурия до Урана. Причина столь хорошего совпадения астрономам неизвестна.

Математика. Бог. Вселенная. Человек

Издавна считалось, что математика – язык, который в наилучшей степени может помочь нам понять законы прекрасного. Источником красоты является гармония, упорядочивающая все части, вообще говоря различные по природе, согласно совершенным соотношениям. Человек может стать счастливым, стремясь к красоте, которую он чувствует душой.

Эти положения легли в основу множества философских теорий эпохи Возрождения и более поздних. В качестве примера приведем теорию красоты одного из титанов Возрождения флорентинца Леона Батиста Альберти, гуманиста, философа, писателя, архитектора, скульптора, художника. В его теории математика играет ведущую роль: он считает, что законы природы выражаются определенными числами, а красота – идеальный образ числа и идеальный образец для художника.

Математику пытались использовать не только для описания основных принципов развития мира и человека, но и для познания Бога. Так, Николай Кузанский, исходя из того, что божественное присутствует везде, дал начало исследованиям по интегральному и дифференциальному исчислениям, пытаясь из бесконечно малых дифференциалов сложить единый интеграл. Формально эта схема была воплощена в трудах Ньютона и Лейбница.

Ученые Нового времени, несмотря на наступление позитивизма, также видели Бога в простых и красивых математических законах.

Для эмпирика Джона Локка существовали лишь три несомненные истины – наше собственное существование, существование Бога и истинность законов математики.

Широко известно высказывание Лейбница «Cum Deus calculat, fit mundus», что значит: «Как Бог вычисляет, так мир делает». Вслед за философами Средневековья, такими, например, как Фома Аквинский, Лейбниц считал, что Бог не может действовать вопреки законам логики, но он может повелеть все, что логически возможно, и это предоставляет ему величайшую широту выбора.

Ньютон считал, что математическая красота и сила законов механики, оптики и так далее является наилучшим подтверждением существования Бога. Рассуждая об аналогиях в устройстве музыки и цвета, он писал об устройстве музыки: «…в нем содержится нечто от гармонии цветов (о которой знают художники, но о которой сам я не имею достаточно определенного суждения), подобной, может быть, созвучию тонов. Посему правдоподобным кажется сходство между крайним пурпуром (фиолетовым. – А. Ч.) и краснотой, – концами цветов – и между концами октавы (каковая может почитаться унисоном)». Этим он, по сути, продолжил пифагорейскую традицию поиска математических законов гармонии.

Иммануил Кант, размышляя о возможностях познания мира, пришел к выводу, что математические понятия не могут быть извлечены из опыта, они априорны, а следовательно, всеобщи и необходимы. «Математика дает нам прекрасный пример того, как далеко мы можем продвинуться в априорном знании независимо от опыта».

Ученые, благодаря трудам которых произошли колоссальные сдвиги в естествознании XX века, также отдавали должное математическому устройству мира. Анри Пуанкаре всеобщий характер математических законов выразил во фразе: «Математика – это искусство называть разные вещи одним и тем же именем». Арнольд Зоммерфельд, один из творцов квантовой механики и современной математической физики, утверждал: «Платоновское выражение, что Бог является геометром, сегодня кажется более истинным, чем когда-либо. Мы все яснее видим, что наиболее общая математическая формулировка одновременно является и физически наиболее плодотворной». Схожим образом рассуждал и Поль Дирак: «Ситуацию, вероятно, можно было бы описать, сказав, что Бог является математиком очень высокого ранга и что он при построении Вселенной использовал математику высшего уровня». О необыкновенной силе и красоте математики размышлял Юджин Вигнер: «Математический язык удивительно хорошо приспособлен для формулировки физических законов, это чудесный дар, который мы не понимаем и которого не заслуживаем. Нам остается лишь благодарить за него судьбу и надеяться, что и в своих будущих исследованиях мы сможем по-прежнему пользоваться им».

* * *

Мы видим, что существует глубокая традиция, связывающая устройство мира и нашу способность его познания с математическими понятиями. Причина такой связи скрыта от нас, таинственна, часто она побуждает ученых прибегать при описании этого феномена к терминологии далекой от той, что характерна для научных текстов, а более свойственна текстам религиозным. Мне думается, что причина этого не в стремлении лидеров теоретического сообщества «освятить» эти принципы, «убедить в недоказуемом», а в искреннем удивлении перед тайной.

Алексей Чуличков, д-р физ. – мат. наук, МГУ

 

Фрактальная Вселенная: гармония природы

Бурлящий поток воды, пляшущий огонь костра, даже морозный рисунок на оконном стекле завораживают нас новизной постоянно обновляющихся фрагментов и в то же время ощущением ритма, неуловимой повторяемости деталей. Размышляя над изменчивостью и постоянством этих картин, философ придет к мысли о существовании единого принципа, связующего начала, присутствующего во всех явлениях природы; человек, не искушенный в науках, отнесет все на волю божью. Физик же или математик предложит свое объяснение: он будет говорить о законах природы, описываемых математическими моделями.

Мистика чисел и геометрических фигур

Мысль о том, что явления реального мира могут подчиняться математическим законам, возникла еще в античности. Язык математики тех времен был достаточно беден по сравнению с современным, его «словами» были числа и геометрические фигуры. Но уже тогда правила геометрии, применяемые при разметке участков земли или при строительстве, правила действия с числами при подсчете урожая, в астрономических расчетах или в торговле давали точный ответ и никогда не подводили. Язык чисел и фигур был достаточно выразительным и универсальным, он позволял действительно находить то общее, что проявляется во многих явлениях реальности, на первый взгляд, казалось бы, совершенно не связанных между собой.

Предсказательная сила, содержащаяся в математических моделях, в древности настолько поражала ум (да и сейчас поражает, несмотря на привычку к современным техническим чудесам), что в числах и геометрических фигурах видели тайный мистический смысл. Пифагор учил: «Что самое мудрое? – Число». Филолай из Кротона, его ученик, писал: «Все, что познаваемо, имеет число, без него ничего нельзя ни помыслить, ни познать». Платон (в диалоге «Парменид, или Об идеях»), а за ним и неоплатоники, в частности, Прокл, выстраивают иерархию Космоса от Единого через «сверхсущие» единицы – непознаваемых богов (по сути, через числа) к «сущим», т. е. умопостигаемым богам. Числа в древности несли в себе не только обозначение количества, но и великие принципы – Единство, Двойственность, Троичность и т. п., – свойственные всему мирозданию. Пользуясь числами как символами, античные философы описывали процесс рождения Космоса, т. е. то, как из Единого (обозначаемого единицей) возникает множественность форм.

Можно ли измерить свойства мира?

Со временем мистический смысл математики теряется, на первый план выступает ее прикладной аспект. Но суть математики как всеобщего языка природы признается и поныне; мы верим, что, пользуясь этим языком, можно найти и выразить неуловимую общность, единое начало, исток всех явлений, то, что связывает весь мир.

На чем основана эта вера? Еще в начальной школе мы узнаем, что число – это обозначение количества: числом 3 можно описывать то общее, что содержится в высказываниях «три барана», «три брата», «три яблока», «три медведя» и т. д. Но, оказывается, числами можно характеризовать и качественные свойства мира – такие, например, как протяженность его объектов, тяжесть (вес) тел, высоту звука. Для этого еще в древности была придумана специальная процедура – измерение. Чтобы оценить количественно то или иное свойство объекта, надо задать единицу измерения, эталон – например, эталон длины или веса, – и определить способ подсчета количества эталонов, содержащихся в измеряемом объекте. Так, для определения расстояния между пунктами А и Б нужно подсчитать количество метров, укладывающихся в отрезок прямой, соединяющей точки А и Б, для нахождения веса предмета нужно уравновесить его на коромысле весов с набором гирь в 1 грамм и подсчитать их количество. Приняв за эталон высоты звука единицу длины звучащей струны, натянутой с определенной силой, можно измерить высоту любого звука, приписывая ему длину струны, звучащей в унисон.

Фундаментальное свойство природы – ее измеримость – дает надежду на то, что на пути математической абстракции мы можем найти ответ на вопрос, в чем выражается общее, единое, что связывает разнородные явления мира. Измерение сопоставляет с каждым объектом набор чисел, характеристик его содержания, сути. Отношения между объектами различной природы теперь могут быть выражены на одном языке, достаточно технологичном и содержательном. Догадка древних о том, что числом можно описать свойства любого объекта, дала человеку могущественное средство понимания реальности – сегодня мы называем его наукой.

Отражение «идеального плана» Вселенной – пропорции

Итак, пользуясь эталонами и сравнением, вместо объектов реального мира можно исследовать их абстрактную числовую модель, обобщающую свойства целого класса «похожих» объектов, явлений, процессов. Нельзя ли на этом пути дойти до платоновского мира Идей, отражением которого является наш воплощенный реальный мир? Ведь как было бы замечательно! Есть идеальный план мира, и есть его реальное воплощение. И соответствие этих миров можно было бы проверить, имея единый эталон для измерения их качеств и сравнивая числа. Но вот беда: количественные выражения зависят от эталона, как зависит расстояние между пунктами А и Б от того, в каких единицах мы будем его измерять – в метрах, футах или локтях. А эталон-то выбирает человек, а не Бог, и, значит, полученная модель будет отражать не высшие принципы, а, скорее, наши собственные предпочтения в выборе эталонов. Да к тому же и измерения в мире идеальном для нас недоступны…

Но если миры похожи, то в них подобны не только все элементы, но и соотношения между ними. А ведь отношения величин, измеренных в одних и тех же единицах, уже не зависят от эталона – этому нас учили в средней школе. Действительно, если расстояние от пункта А до пункта Б в семь раз больше, чем от А до В, то их отношение, равное в данном случае семи, сохранится для расстояний, измеренных и в локтях, и в стадиях! Значит, идеальность мира откроется в пропорциях – отношениях количеств.

Таким образом, следы единства явлений природы надо искать в законах пропорций. Если что-то построено по божественным, идеальным законам, то это выражается в отношении количеств, и пропорции любого естественно существующего объекта должны быть идеальны.

Пропорция и музыкальная гармония

Итак, у нас в руках один из ключей к пониманию природы. Но какие пропорции идеальны, а какие – нет? Вслед за античными мудрецами мы часто говорим о «божественной красоте» картины или «божественном звучании» музыки, не разделяя «божественное» и «прекрасное». Может быть, найти идеальные соотношения можно, опираясь на наше чувство красоты?

По этому пути пошли пифагорейцы, взяв за основу красоту созвучий – ведь отличить гармоничное звучание от душераздирающей какофонии может любой человек, не только музыкант. В пифагорейской теории музыки для анализа приятных на слух созвучий – консонансов – использовался инструмент, состоящий из одной струны, который назывался «монохорд». Наиболее гармоничное звучание получалось, когда звучали два монохорда, один с полностью открытой струной, другой – со струной, зажатой посредине. Это созвучие, называемое октавой, возникало, когда отношение длин звучащих струн (т. е. отношение высот двух звуков) равнялось 2. Два другие гармоничные созвучия получались при отношении длин струн 2:3 (квинта) и 3:4 (кварта).

Таким образом, если чувство красоты дано человеку для ощущения божественного, а законы прекрасного можно записать в виде математических соотношений, то появляется возможность находить единство (например, божественное происхождение) как в явлениях природы, так и в творениях человека: те объекты или явления, которые существуют по законам простых (целочисленных) пропорций, являются идеальными.

Легенда говорит, что свойства музыкальной гармонии настолько вдохновили Пифагора, что в отношениях целых чисел он стал искать главный ключ к законам мироздания. По его идее, весь мир пронизан вибрациями, и чтобы познать его, надо уметь услышать голоса мира, «музыку сфер», прикоснуться к идеальной пропорциональности вселенских созвучий.

Золотое сечение

Еще одним ярким примером пропорции, закрепляющей мимолетное чувство гармонии в строгих фиксированных математических законах, является так называемое отношение золотого сечения. Первое формальное ее определение содержится в «Началах» Евклида: «Говорят, что отрезок прямой разделен лучшим образом, пропорционально, если целая часть так относится к большей части, как большая к меньшей». Отношение золотого сечения встречается и в природных объектах: в пропорциях человеческого тела, в строении раковины улитки, в рисунке паутины, и в искусстве: архитектуре, живописи, скульптуре, музыке. Построение художественного произведения по законам золотой пропорции стало синонимом его совершенства: Парфенон в Афинах, храм Василия Блаженного в Москве, скульптуры Фидия, полотна Боттичелли, Рафаэля, Леонардо да Винчи, фуги Баха, сонаты Бетховена – везде присутствует золотое отношение.

Понятие подобия в современной науке

Имея еще с древности столь блестящие подтверждения действенности математики в решении проблемы поиска единства явлений природы, человек продолжает искать новые объекты, новые законы, новые знаки и символы, отражающие общие принципы.

XVIII век, эпоха Просвещения. Вдруг осознается, что мир может меняться, он не застывший, статичный, а подвижный; возникает интерес к описанию движения. Трудами Ньютона и Лейбница разрабатываются теория бесконечно малых и дифференциальное исчисление. Снова поразительные результаты математического метода! Оказывается, если известны начальное состояние и скорость (т. е. отношение бесконечно малых пути и времени), то поведение системы полностью определено.

Успехи математической физики просто поражают. Бесконечное разнообразие природы описывается математическими моделями, составленными из небольшого числа уравнений, их можно классифицировать – например, как гиперболические, параболические и эллиптические, – и изучить качественное поведение их решений. Явления природы разнятся по форме, но в основе их лежит не так уж много сценариев, главных механизмов. Кажется, вот-вот будет ухвачен общий принцип, основа всего сущего, еще чуть-чуть – и не останется никаких тайн… Но чем дальше в глубь вещества или в глубины космоса – тем больше проблем; с любовью создаваемое здание науки рушится на пороге XX века.

Кризис классической физики вновь разрешается на математическом пути: волновая, или квантовая, механика, современная теоретическая физика, теория нелинейных динамических систем – все они немыслимы без математики, более того, зачастую даже выглядят как ее разделы. Возникают новые математические объекты – функции, случайные процессы и поля, операторы… Кажется, что математические построения, модели, символы и средства времен фараонов, критских архитекторов, Пифагора и Архимеда безнадежно устарели, мы снисходительно называем их наивными…

Но вернемся к пропорции. В рассмотренных примерах музыкальной гармонии и золотого сечения мы под пропорциями понимали отношение двух величин, измеренных с помощью одного и того же эталона. Равенство двух таких отношений выражает принцип подобия. Но подобие можно понимать и в более широком смысле. Например, все явления, описывающиеся дифференциальными уравнениями гиперболического типа, можно считать подобными, поскольку их поведение сходно на качественном уровне. Различные реализации случайного процесса тоже подобны, так как они описываются качественно одной и той же математической моделью. Можно считать, что современная наука только подтвердила, развила, наполнила новыми особенностями древний принцип, записанный еще на изумрудной скрижали Тота-Гермеса: «Все во всем» или «Что наверху, то и внизу». Сегодня этот принцип можно сформулировать как самоподобие мира: его части устроены так же, как и целое.

Фрактал: геометрический образ подобия

Обозначением, символом самоподобия в современной математике является относительно недавно возникшее геометрическое понятие «фрактал».

Объекты, которые сейчас называются фракталами, впервые появились в математике при развитии понятий «линия», «плоская фигура» и т. п.: к ним относятся такие фигуры, которые нельзя назвать ни линией, ни поверхностью в полном смысле слова. Примером такого объекта является кривая Коха, названная в честь датского математика Хельге фон Коха. Она получается из отрезка прямой последовательной заменой каждого прямолинейного участка на ломаную линию путем «вытягивания» средней трети исходного отрезка до равностороннего треугольника. Повторяя такую процедуру бесконечное число раз, в пределе мы получим конечную «линию», соединяющую две точки, имеющую бесконечную длину. Для привычных нам линий такое свойство кажется экзотичным. В то же время назвать кривую Коха плоской фигурой тоже язык не поворачивается – скорее, это «пушистая линия».

Строгого определения фрактала не существует. Наиболее известными являются определения Бенуа Мандельброта, математика, благодаря работам которого мы теперь осознаем, насколько важны эти новые геометрические объекты для понимания окружающего мира. В основе первого, пробного определения лежит представление о топологической размерности множеств: размерность точки принимается равной 0, линии —1, плоской фигуры – 2 и т. д. Формулируется оно так: «Фракталами называются множества дробной размерности», – что выражает «пограничное» свойство фракталов лежать между точкой и линией или между линией и плоской фигурой (это как раз такие «пушистые» линии, как описанная выше кривая Коха). Однако мало того, что требуется расшифровка понятия дробной размерности, неудачность этого определения стала очевидной после приведения ряда контрпримеров объектов, для которых оно не выполняется, притом что исходя из интуитивного представления их имело бы смысл отнести к фракталам (например, чрезвычайно «дырявая» пирамида, построенная польским топологом Вацлавом Серпинским, формально имеет размерность, равную 2, хотя получена из трехмерного тетраэдра поочередным отбрасыванием вписанных в него тетраэдров с половинной стороной).

Несколько менее формальное и значительно более общее определение фрактала, данное Мандельбротом несколько позже, звучит так: «Фракталом называется структура, состоящая из частей, которые в некотором смысле подобны целому». Неопределенность этого определения, содержащаяся в словах «в некотором смысле», делает понятие фрактала чуть ли не всеобъемлющим.

Поясним, как в это определение укладываются «математические» фракталы типа прямой Коха. Заметим вначале, что такие геометрические объекты, как прямая или плоскость, разумно назвать самоподобными. Формально охарактеризовать это свойство можно тем, что эти фигуры не изменяются при некоторых геометрических преобразованиях: перенос прямой вдоль нее приводит к той же самой прямой, плоскость при параллельном сдвиге и повороте переходит в себя же. Независимость от преобразований в математике принято называть симметрией. Есть множества, не обладающие столь полной симметрией, как плоскость или прямая, например, окружность не изменяется только при повороте – она также самоподобна. В этом смысле, согласно второму определению, все эти множества являются фракталами, несмотря на свою простую геометрическую структуру. Их можно назвать гладкими фракталами, в отличие от кривой Коха, пирамиды Серпинского, множества Кантора и т. п.

Какой же симметрией обладает кривая Коха? Выбрав ее фрагмент, например, одну треть всей кривой, и увеличив его в три раза, мы вновь получим в точности исходную кривую. Физики говорят, что такие объекты обладают скейлингом, от слова scale «шкала»: изменить шкалу в три раза – это все равно что рассматривать исходный объект под микроскопом с трехкратным увеличением. Если мы вновь видим ту же картину, что и без микроскопа – значит, объект обладает скейлингом и является фракталом.

Фрактальность пространственных форм

Сначала фракталы воспринимались как экзотика. Ну действительно, не бывает же в природе объектов, для которых адекватной моделью является конечная линия с бесконечной длиной или объемная фигура с нулевым объемом! Но вот Морское министерство Великобритании заказывает своему геодезическому управлению работу по измерению длины береговой линии Британских островов. И что же? Ответ зависит от масштаба используемой карты, длина имеет тенденцию стремиться к бесконечности при уменьшении масштаба. Ага, да это же фрактал! То же самое можно сказать и о рисунке речной сети на поверхности Земли, о структуре разломов в горных породах, о следах, оставляемых высоковольтным разрядом при пробое, о скоплении молекул, осаждаемых из раствора (они выглядят как длинные разветвленные «мохнатые» цепочки типа кораллов или снежинок), о замысловатых узорах из молекул одного вещества, «расползающихся» по поверхности другого, – к ним относятся и ледяные рисунки, появляющиеся на окнах в морозные дни, – это все примеры природных фракталов.

Вспомним, что фрактал обладает дробной размерностью. Во многих справочниках, особенно по материаловедению, часто можно встретить эмпирические зависимости типа степенной функции с дробным показателем, и для объяснения таких «странных» законов весьма правдоподобной кажется гипотеза, что эти зависимости отражают фрактальные свойства объектов, их порождающих, – структуры зерен металла, структуры поверхностей и пр.

Посмотрим теперь на такую знакомую всем картину, как растущий за окном куст. Вспомним: сначала появилась веточка, потом она выпустила два побега, на следующем этапе каждый побег вновь раздвоился, то же самое происходит на следующем этапе; в результате из незамысловатой «вилки» двух побегов вырастает причудливое растение, но – самоподобное, фрактальное. Оно получено многократным тиражированием простейших вилок.

А Вселенная? Рассмотрим околоземное пространство: в нем есть центральное тело, Земля, вокруг которого вращаются спутники. Изменим масштаб, и получим ту же картину для Солнечной системы. Еще больший масштаб – и та же ситуация для Галактики, для скоплений галактик и т. д. Выберем меньший масштаб – и получим сходную картину структуры вещества. Вселенная – пространственный фрактал!

Пространственно-временная фрактальность

До сих пор речь шла о фрактальности пространственных форм. Однако самоподобие можно увидеть и в динамике процессов, протекающих во времени. Действительно, мы часто говорим о цикличности истории: государства, этносы, общественные структуры, целые цивилизации в своем развитии проходят через сходные этапы, «история повторяется».

В прошлом номере журнала мы рассказывали о процессах развития Вселенной – и здесь бросается в глаза повторяемость этапов развития. Сначала из единой точки рождается множество форм – фундаментальные частицы, ядра простейших элементов. Затем, после концентрации этой первоматерии, происходит следующий этап, в чем-то подобный первому: из простейших протонов и альфа-частиц рождается множество более тяжелых ядер. По тому же сценарию идет образование планет – от однородного, единого к множеству разных форм: от атомов («точек», размерность которых равна 0) через линейные молекулы (1) к плоским (2) и объемным структурам (3). Так же – от «единиц», через «двойки» к «тройкам» – формируется нервная система в процессе эволюции живых организмов. Не является ли это частным проявлением общего принципа, которые древние мудрецы отразили в своих философских концепциях, говоря о развитии от Единого к множественности через двоичность и троичность?

В современной физике скейлинг, или масштабная инвариантность, понимаемая как неизменность формулировки физической теории при одновременном изменении всех расстояний и временных промежутков в одинаковое число раз, рассматривается как фундаментальное свойство природы. Этим свойством обладают такие, например, соотношения, как уравнения Максвелла, которым удовлетворяют все электродинамические процессы макромира, уравнения Клейна-Гордона и Дирака, описывающие явления микромира. Стало быть, Вселенная – не только пространственный, но и пространственно-временной фрактал!

После всех этих примеров читателя, наверное, не удивит то, что в современной науке фрактальность поведения сложных нелинейных систем считается их неотъемлемым свойством как строго доказанный математический факт! Оказывается, что если система достаточно сложна, то она в своем развитии обязательно проходит через чередующиеся этапы устойчивого и хаотического развития. Причем сценарии перехода от порядка к хаосу и обратно поддаются классификации, и вновь все многообразие природных процессов распадается на небольшое число качественно подобных. Один из таких сценариев может быть описан с помощью наглядного геометрического образа, рисунка, являющегося фракталом, полностью самоподобным объектом. Речь идет о так называемом логистическом отображении, впервые использованном П. Ферхюльстом в 1845 году как модель роста числа особей в популяции животных; согласно этой модели, общее число x(n) особей n-ного поколения пропорционально числу x(n–1) особей предыдущего поколения с коэффициентом пропорциональности, линейно убывающим в зависимости от этого числа особей. Подобной динамикой обладает и изменение банковского вклада по закону «сложного процента», когда начисление линейно зависит от самого вклада. Более того, оказалось, что свойства логистического отображения универсальны, они характерны для динамики любой системы, поведение которой описывается гладкой функцией вблизи точки ее минимума.

Развитие систем, описываемых логистическим отображением, очень напоминает античные натурфилософские и мифологические сценарии рождения мира. Сначала, при некотором значении коэффициента пропорциональности, в системе имеется лишь одно устойчивое положение равновесия – Единое еще не начало свой путь творения. При изменении коэффициента наступает момент, когда точка равновесия раздваивается, возникают два устойчивых состояния, в которых система пребывает по очереди, то в одном, то в другом, шаг за шагом по времени. Потом каждая из этих точек вновь раздваивается, и ситуация повторяется, сохраняя общий рисунок. Рано или поздно множество точек равновесия плотно заполняет все множество состояний, система переходит к хаосу, полностью разрушая свою структуру. Но затем, при дальнейшем росте параметра, из хаоса вновь возникает некоторое конечное число упорядоченных состояний, которые в конце концов «схлопываются» в единственное, и все начинается сначала. В математической модели этого явления обнаружено множество подобных, скейлинговых элементов; эти свойства подобия в науке носят название универсальности Фейгенбаума.

Мифы тоже фрактальны!

Представления о схожести, фрактальности процессов развития закреплены и в мифах. Согласно древнегреческой мифологической традиции, мир рождается по этапам, в развитии которых видны подобные черты. Несколько поколений богов сменяют друг друга, на каждом этапе выстраивая свой Космос, упорядоченную Вселенную, по подобным принципам. Так, например, принцип Любви – Эрос – мыслится и одним из четырех космогонических первоначал (наряду с Хаосом, Геей и Тартаром), и сыном Эреба и Ночи, происшедших от Хаоса, и сыном Афродиты; это можно истолковать как указание на то, что связующий принцип, влекущий противоположности друг к другу, работает на каждом этапе творения.

Во всех мифах, повествующих о происхождении Вселенной, единое божество наполняет мир своими помощниками – подчиненными богами, каждый из которых является проводником фундаментальных принципов мирового устройства; своими последователями – вестниками, ангелами, посланниками-апостолами; наконец, людьми, сотворенными «по образу и подобию божьему». Каждое творение имеет свою задачу по продолжению процесса созидания, по воплощению воли божьей, приводящей к устройству мира по законам Единого и проявляющейся в «похожести» всех процессов и явлений, в их самоподобии.

Из сказанного вовсе не следует, что все усилия современной науки, и математики в частности, – лишь повторение древних религиозных или философских концепций. Но если интересоваться не только технологией, не только способами расчета тех или иных конструкций, механизмов или машин, а общими принципами, лежащими в основе рождения и развития, то можно заметить, что во все времена люди мыслили сходно, лишь результаты их размышлений облекались в разные формы: в древности – в мифы, числовые и геометрические математические модели, в наше время – в более развитые математические объекты и построения; и понимаемые не буквально, но символически сказочные и мифические сюжеты древности и сейчас, спустя тысячелетия, по-прежнему могут служить источником вдохновения для исследователей, ищущих истину.

Если посмотреть на наш мир в целом, от момента его рождения и до наших дней, возникает величественный образ Вселенной как гигантского пространственно-временного фрактала, возникшего в точке Большого взрыва и выросшего к настоящему времени, подобно мифическому мировому древу, до необъятных размеров; фрактала, несущего в своей структуре единый, но пока еще не уловленный нами Закон развития природы.

Алексей Чуличков, д-р физ. – мат. наук, МГУ

 

Как звучит число?

Что может быть скучнее таблицы умножения или метрической системы мер! Одно упоминание о них вызывает в памяти серые школьные тетрадки советских времен, где на последней странице обложки были приведены упомянутая таблица, а ниже – данные о том, сколько метров в километре, сколько килограммов в тонне и т. д. Лишь у первоклашек они вызывали священный трепет перед могуществом знания, ученики же старших классов скользили рассеянным взглядом по колонкам цифр, воспринимая их, скорее, как декоративный орнамент. А между тем…

Целые числа и законы гармонии

Могущество числа в древности не подвергалось сомнению. Ключ к законам всеобщей гармонии Пифагор и его ученики видели в знаменитом Тетраксисе. Он образуется числами 1, 2, 3, 4; составленные из них дроби дают идеально согласованные пропорции. Самый яркий пример этого мы видим в музыке: две одинаково натянутые струны с отношением длин 1:2 звучат приятно для слуха. Столь же гармоничный звук издают струны с отношением длин 2:3 и 3:4. На основе этих законов созвучий была построена пифагорейская гамма, в которой ноты «до», «фа», «соль» и «до» второй октавы звучали на частотах, образующих именно такие пропорции. В современном строе во имя большей технологичности принято другое расположение нот в октаве, однако к пифагорейской гамме постоянно возвращаются композиторы и музыканты в поисках гармонии.

Столь замечательное применение этого принципа в практике не могло оставить равнодушными античных философов, и закон гармоничных отношений распространяется в их учениях и на строение неба, и на человека. Так укрепляется представление о том, что «числа правят миром».

Но время течет, и вот уже успехи математики не кажутся нам столь ошеломляющими. Люди додумались до иррациональных дробей, до мнимых чисел – совсем уж абстрактных. Над древними поверьями только посмеиваются: что знали эти мудрецы, так твердо придерживавшиеся своих целых чисел? Да и загадка музыкальной гармонии, казалось бы, давно раскрыта. Стало ясно, что струна при колебании может иметь профиль синусоиды, и пифагорейские ноты образуются такими профилями колебаний, в которых полупериоды синусоиды укладываются целое число раз, – никакой тут тайны нет.

Но так ли уж правы те, кто так говорит? Анализ уравнения колебаний струны позволяет увидеть удивительное свойство его решений – выбирать из многообразия возможностей лишь те, которые разрешены природой. Связано это с определенным принципом, напоминающим резонанс, с законом, который подавляет все, кроме дозволенного. Оказывается, в уравнении есть спектр решений, не меняющих со временем своей пространственной формы, изменяется лишь их амплитуда. Члены уравнения, отвечающие за пространственную форму решения, лишь умножают их на определенное число (так называемое собственное число оператора Лапласа), комбинация только таких решений и может существовать. И самое удивительное – эти числа как раз и являются пифагорейскими отношениями целых чисел.

Прекрасно сознавая, что предыдущий абзац покажется загадочным для людей, далеких от математики, поясним: это означает, что законы гармонии в виде отношений целых чисел заложены в самой структуре мира, отраженной в уравнениях.

Но уравнения подобного типа описывают не только звучащую струну, им подчиняется и множество других процессов. Законы колебаний мембран и тел правильной формы (прямоугольной, шаровой, цилиндрической), распространения в них тепла, законы излучения света атомами, законы распространения радиоволн и т. п. выводятся из решений задачи на собственные числа для оператора Лапласа, которая и дает в качестве этих чисел пифагорейские дроби.

Самое удивительное, что в ряде случаев эти решения воспринимаются человеком как гармоничные. Пример с музыкой нас в этом убеждает. Может быть, наше чувство красоты связано со структурой мира, ведь мы тоже являемся его частью?

Целые числа и структура Солнечной системы

А теперь обратимся к космосу, точнее – к строению Солнечной системы. Множество ученых, начиная с античности, видели в движении небесных тел высшее воплощение гармонии и пытались найти для ее описания те или иные математические закономерности. Представления об идеальных телах, движущихся по идеальным кривым (окружностям), лежали в основе систем мира Птолемея и Коперника. Кеплер пытался построить геометрическую модель Солнечной системы на основе правильных платоновских многоугольников. Пифагор положил в основу законов строения системы небесных сфер те же отношения целых чисел, которые дают гармонию в музыкальных созвучиях. И Боде пытался найти подтверждение этому в пропорциях между радиусами планетных орбит и даже вывел формулу, в основе которой лежали числа 0, 1, 2 и т. д., – так называемую формулу Боде.

Теперь нам известны размеры и форма орбит главных планет нашей системы, и опять кажется, что представления древних были слишком далеки от истины, – сравнение моделей Кеплера и Боде с реальностью дает слишком большие погрешности.

Но если посмотреть на отношения периодов обращения планет вокруг Солнца, можно уловить интересные закономерности, схожие с законами музыкальной гармонии. Прежде чем сформулировать их, поясним, как можно услышать музыку в периодических движениях планет.

Оказывается, что гармоничное созвучие, называемое октавой, дают две ноты «до», звучащие в разных октавах. То же самое можно сказать и про квинту и кварту – их дают ноты «до-соль» и «до-фа», независимо от того, в какой октаве взяты нота «до» и нота «соль». Однако ноты одного наименования, но разных октав отличаются тем, что период их колебаний отличается в два раза для соседних октав, в четыре раза для октав первой и третьей, в восемь – для первой и четвертой и т. п. И вообще, для того чтобы понять, какое созвучие образуют две ноты, надо привести их «в одну октаву». Для этого нужно взять отношение большего периода к меньшему и, если это отношение больше двух, делить его на два до тех пор, пока не получим числа в интервале от единицы до двух. Если в результате получится число два, эти ноты звучат в октаву, если 3/2 или 4/3 – они образуют созвучие квинта или кварта. Во всех других случаях пифагорейского созвучия не получается. Например, период колебаний второй струны в 64/3 раз больше первой. Делим это отношение на два – получим 32/3, еще раз на два – получим 16/3, еще раз – получим 8/3, и, наконец, следующее деление на два дает число больше единицы, но не больше двух – 4/3. Так звучат ноты «до» и «фа».

Применим этот принцип для периодов вращения планет солнечной системы – получим таблицу 3.

Интересно, что движения целого ряда планет в этом смысле образуют гармоничные созвучия: Солнце и Юпитер, Меркурий и Нептун звучат как ноты «до» и «фа», Меркурий и Плутон с хорошей точностью образуют октаву, а Нептун с Плутоном и Венера с Сатурном звучат, как ноты «до» и «соль».

Может быть, за этими числами и скрыта великая гармония небесных сфер, о которой говорил Пифагор?

В наше время на эти удивительные закономерности обратил внимание В. Г. Буданов. Одна из возможных моделей, объясняющая то, что отношения периодов обращения планет достаточно близки к пифагорейским, отправляет нас на много миллиардов лет назад, к моменту, когда планетная система нашего Солнца только зарождалась из протопланетного вещества. В теории нелинейных систем, созданной в XX веке, есть представление о том, что существует лишь небольшое число сценариев, по которым могут развиваться системы из большого числа элементов, сложным образом взаимодействующих между собой. Один из сценариев говорит о том, что если существует ритм жизни системы (например, цикл обращения протопланетного облака вокруг Солнца), то с изменением условий и вследствие нелинейных резонансных взаимодействий внутри системы может возникнуть подсистема, живущая с ритмом вдвое отличающимся от изначального. Затем могут возникать резонансы, связанные со сложением частот этих циклов, – этот процесс и мог дать в результате периоды обращений планет, описываемые гармоническими соотношениями. После этого можно лишь удивляться наблюдательности и интуиции пифагорейцев.

Меры длины и времени, или Загадка числа 60

Благодаря индусам и арабам сейчас мы пользуемся десятичной системой счисления. Выражается это в том, что, имея десять цифр, от нуля до девяти, любое число мы записываем, указывая, сколько в нем единиц, десятков, сотен (т. е. десятков десятков) и т. п. Принято считать, что в основе этой системы счисления лежит строение тела человека, а точнее – наличие десяти пальцев на руках. Мы к этому так привыкли, что трудно даже себе представить, как можно считать по-другому (пожалуй, это не относится к компьютерщикам, которые привыкли считать в двоичной, восьмеричной или шестнадцатеричной системах). Тем не менее в древности были люди, которые считали шестидесятками, а не десятками. Эти мудрецы жили в Вавилоне много тысячелетий назад. Важную роль в этой системе счисления играли и делители числа 60 – числа 6 и 12 (до сих пор некоторые любят считать все в дюжинах). Возможно, эта система счета взята не от человека, а от Солнца.

Судите сами. Видимый угловой размер Солнца (впрочем, как и Луны) – половина углового градуса, то есть 1/360 часть дуги полуокружности. Значит, в день равноденствий, делящих год на две равные части, когда Солнце восходит точно на востоке, а заходит на западе, диаметр солнечного диска 360 = 60 x 6 раз укладывается в видимом его пути по небу. Во всех древних календарях считалось, что год состоял из 360 = 60 x 6 дней, то есть, по представлениям древних, за одни сутки Солнце сдвигалось на небе относительно звезд на 1/360 своего годового пути – то есть на один градус. Число 60 лежит в основе и более мелких угловых единиц – в одном градусе 60 угловых минут, а в минуте – 60 угловых секунд. Кроме того, до сих пор у нас 60 минут в часе, и 60 секунд в минуте времени – древние очень хорошо понимали, что единицы измерения пространства (в данном случае углов) тесно связаны с единицами измерения времени – один угловой градус по небу Солнце проходит за одни сутки по времени.

С большими циклами движения Солнца тоже связано число 60. С древности известно явление, называемое сейчас прецессией земной оси: если вы когда-нибудь наблюдали за вращением волчка на полу, то видели, что кроме быстрого вращения его вокруг своей оси есть еще одно более медленное движение самой оси вокруг перпендикуляра к поверхности пола. Земля – тот же волчок, и ее ось перемещается вокруг перпендикуляра к плоскости эклиптики с периодом, как считали древние, 60 x 6 x 6 x 12 = 25920 лет (по современным данным – 25776 лет; относительная точность 0.0056!). Этот процесс приводит к тому, что в день весеннего равноденствия Солнце восходит на фоне разных зодиакальных созвездий. Всего таких созвездий 12, и в каждом созвездии Солнце восходит в этот день года в течение 60 x 6 x 6 = 2160 лет. (Сейчас примерно 21 марта Солнце восходит в точке на границе созвездий Рыб и Водолея, отсюда название наступающей эры – эра Водолея.)

Еще одна интересная особенность древних мер для измерения пространства и времени – их связь с человеком. Меры, соизмеримые с человеком, связаны с характерным масштабом его тела: локоть, фут – само название свидетельствует об их происхождении. Существуют сказания о легендарных личностях – царях или божественных правителях, длина ног или рук которых стали единицами измерений. К таким единицам относится, в частности, английский фут.

Но и в более масштабных мерах присутствует целое число ярдов и футов – например, в сухопутной миле 1760 ярдов. А в длине лунного экватора с хорошей точностью укладывается 2140 = 60 x 6 x 6 сухопутных миль. А в длине земного экватора с точностью 1,5 % содержится 21400 = 60 x 60 x 6 морских миль. Таким образом, число 60 является универсальным, позволяющим найти пропорции между размерами человеческого тела, размерами планет, длительностью суток, года и эры.

В школе нас учат, что складывать секунды с метрами нельзя, так же как нельзя складывать груши с мальчиками. Однако в основе самих систем мер лежит принцип единства пространства и времени, и что самое удивительное – этим принципом прекрасно воспользовались наши предки, жившие за многие тысячелетия до нас.

Алексей Чуличков, д-р физ. – мат. наук, МГУ

 

Математика о судьбе

Определенность

Что ценят в науке больше всего? По всей видимости, то, что она может предсказывать будущее. Именно по этому признаку большинство людей отделяют «науку» от «ненауки». Если вы говорите: «Возможно, это будет так, хотя, может, и иначе», на вас в лучшем случае посыплются упреки в некомпетентности. В худшем – вам объяснят, что наука абсолютно ничего не знает, всех ученых надо разогнать и гораздо лучше за разъяснениями обратиться к шаманам или астрологам.

Полная определенность научных предсказаний стала идеалом во времена классики. Механика Галилея и Ньютона, законы электромагнетизма, тепловых явлений, оптики и других разделов физики к XIX веку, казалось бы, достигли совершенства: в одних и тех же условиях физические системы демонстрировали с достаточной точностью однозначное поведение, полностью соответствовавшее предсказаниям теории. Масла в огонь подлила математика. Если мир состоит из множества частиц, то его развитие во времени подчинено законам, записанным на строгом языке математических уравнений. А уравнения, которые были известны в эпоху классической науки, обладали удивительным свойством: если знать все положения и скорости частиц в фиксированный момент времени, то можно «увидеть» единственный сценарий, по которому будет происходить их дальнейшее движение! Отсюда – полный фатализм: все, что произойдет в будущем, полностью предопределено настоящим. И не только ваш выигрыш или проигрыш в рулетку, но и жизненный путь всех живых существ и их сообществ.

Это, безусловно, бросало вызов человеку: неужели не сам он решает, как ему поступить, и неужели во всех его горестях и радостях виноват рок? Так идеал науки вступил в конфликт с идеалом человека – творца своей судьбы.

Неопределенность

К счастью, развитие науки в XX веке привело к революционным изменениям во взглядах на мир и его эволюцию. Сначала выяснилось, что мир нельзя свести к системе частиц, имеющих координаты и скорости: процессы, идущие на уровне атомов и более мелких частиц, характеризуются принципиальной неопределенностью, их невозможно предсказать с абсолютной точностью, можно вести речь лишь о вероятности того или иного исхода. Это, если говорить предельно просто, объясняется законом больших чисел: когда на эксперимент оказывает влияние очень большое количество независимых случайных факторов, то его исход становится практически предопределенным. Так, например, при однократном подбрасывании монетки разумный человек не рискнет предсказать выпадение орла, но при подбрасывании 10 миллиардов монеток можно утверждать, что частота выпадения орла будет равна 1/2 со среднеквадратичной погрешностью всего лишь в пять миллионных. В наблюдаемых же событиях нашего мира участвует значительно большее число случайных микроявлений: например, в 12 граммах (одном моле) углерода содержится 6 * 1023 атомов (это так называемое число Авогадро).

Второй удар по идеалу предсказательной силы науки нанесли математики. На границе XIX и XX веков Анри Пуанкаре заметил, что существует целый класс уравнений, описывающих эволюцию механической системы, решение которых не может быть однозначным! Пример такой системы – детская игрушка «китайский бильярд», в которой катящийся шарик натыкается на своем пути на множество столбиков, отскакивает от стенок, и в результате траектория его движения кажется случайной. Столкновение шарика с препятствием вызывает колоссальные математические трудности – приходится рассматривать очень подробные модели, которые оказываются чрезвычайно неустойчивыми: при изменении положения или скорости шарика на сколь угодно малую величину его дальнейшее движение меняется радикально. Достичь же необходимой точности определения параметров модели, чтобы однозначно описать движение, не удается по принципиальным соображениям, в частности следующим из законов микромира.

Управляемый хаос

Как видим, наука серьезно рисковала оказаться в ситуации, с описания которой началась статья: ничего предсказать нельзя и лучше уж гадать на кофейной гуще. Но, к счастью, в конце XX века научились работать и с такими сложными системами. Можно, например, выделить в жизни системы этапы, когда ее движение предопределено и предсказуемо (в случае с «китайским бильярдом» это этап движения шарика по инерции между двумя столкновениями с препятствиями). Но рано или поздно этот этап закончится, и начнется следующий, такой же «спокойный». Самое интересное творится на их стыке – в это время система словно погружается в хаос, в котором теряется значительная доля информации о движении на предыдущем этапе. Иногда этот кризис длится мгновение, иногда заметное время. Попытка описать движение на переходном этапе не приводит к успеху. Оказывается, что в это время система чувствительна к очень малым воздействиям, каждое из которых может поменять ее дальнейшую судьбу. В «китайском бильярде» направление полета шарика после столкновения с препятствием может значительно изменяться при микроскопических изменениях положения шарика в момент удара. Замечательным достижением явилось то, что в ряде ситуаций исследователи научились предсказывать возможные пути движения системы после кризиса: выяснилось, что иногда этих путей не слишком много. Научились даже указывать способы воздействия на систему, в результате которых ее развитие выходит на нужный режим.

Теперь на смену фатализму пришла новая точка зрения: есть этапы, когда твоя воля бессильна и ты находишься в строгих рамках судьбы. Освободиться из этих рамок можно, лишь совершая сверхусилия (например, сообщив системе достаточную энергию извне, ударив по шарику и изменив тем самым направление и скорость его движения). И есть этапы переломные, когда небольшие по сути изменения и подвижки могут резко изменить дальнейшую судьбу (в рассмотренном примере это этапы соударения со столбиками или стенками бильярда).

Конечно, перенос законов движения шарика на человеческую судьбу может показаться рискованным – все-таки математики исследуют уравнения, описывающие те или иные частные системы. Но важно то, что найдена принципиально иная возможность эволюции систем, сочетающая в себе и модель выбора, и реальные ограничения «судьбы». Теория нелинейных систем – математическая дисциплина, и сама по себе она не может предотвратить ни резкого ухудшения обстановки, ни быстрого выхода из застоя. Но как любая теория, она позволяет глубже вникнуть в суть вещей, явлений и процессов реального мира. С точки зрения математики катастрофа и хаос – это не обязательно крушение всех надежд или еще какая-нибудь беда, это этап резкой перестройки системы, качественный скачок ее состояния: неожиданный поворот жизненного пути, социальная революция, экономический бум. И важно в преддверии этих кризисных ситуаций найти нужный путь и не «застрять». А если момент упустишь, то будут тянуться перед тобой длинные пыльные окольные тропы…

Алексей Чуличков, д-р физ. – мат. наук, МГУ

 

Математика и мифология о «чужом»

Помните сказку для младших научных сотрудников «Понедельник начинается в субботу», написанную А. и Б. Стругацкими? Там в одном из фрагментов волшебник Мерлин, перенесенный волей авторов из средневековой Англии в наше время, рассказывает о своем путешествии по окрестным совхозам с председателем горисполкома и поминутно сбивается, называя его королем Артуром. А портреты вождей пролетариата в чукотских чумах, на которых привычные нашему глазу лица приобретали черты, свойственные людям народов Севера? Эти забавные ситуации – проявление так называемого феномена Чужого, превратившегося, по словам Ш. М. Шукурова, в XX веке «в одну из наиболее интенсивно обсуждаемых проблем гуманитарной мысли».

Действительно, что такое «свое» и что такое «чужое»? Как мы отличаем одно от другого, как превращаем непривычное, незнакомое в близкое и понятное? Эти вопросы важны для каждого человека – от ребенка, познающего мир, до политика, пытающегося найти общий язык с народами и правителями других стран. Попытки разобраться в этих вопросах делаются и психологами, и философами, и историками, и даже математиками.

Представьте себя на месте автора книги, в которой описывается путешествие героя в неведомые страны. Вам предстоит придумать нечто совершенно не похожее на наш мир. Как это сделать?

Можно, например, придумать замысловатые названия тем вещам и явлениям, которыми наполнен «тот» мир, – тогда он точно не будет похож на наш. Но если эти названия не будут растолкованы, если не вызовут никаких ассоциаций у читателя – то, скорее всего, такая книга никогда и не будет прочитана. Нужно что-то хотя и составленное из привычных слов, но вызывающее яркое впечатление необычного, невозможного в мире «нашем».

Итак – парадокс: из набора привычных понятий возникает новое, непривычное. Однако наш опыт свидетельствует о том, что это противоречие преодолимо – ведь мифы, сказки, фантастические романы реально существуют и пользуются неизменной популярностью, и в них именно за обычными словами и понятиями возникает мифическая, сказочная, фантастическая реальность.

Попробуем разобраться в этом процессе, используя простую математическую модель. Ее можно громко назвать Моделью Познания Неведомого, которая описывает процесс построения понятий «мира Чужого» из понятий «мира Своего». Оказывается, многое из того, что нам понадобится, уже придумано в математике – вот уже примерно полвека существует ее раздел под названием «распознавание образов». В нем дано формальное описание понятий «свой – чужой», его мы и положим в основу наших рассуждений.

Методы распознавания образов позволяют в разнообразной информации узнавать и выделять тот или иной «свой» объект. Для успешного решения задачи сформулируем ее на математическом языке, то есть формально определим, что такое «свое» и чем оно отличается от «чужого», и зададим критерий, определяющий качество решения. После этого останется лишь решить техническую задачу выбора наилучшего решения, либо убедиться, что такового не существует, и тогда переформулировать задачу.

«Кирпичиками», из которых складывается математическая модель, являются знакомые нам понятия, обычаи, предметы и т. п. Примем как аксиому, что любое явление «мира сего» можно представить как простую, или, как говорят математики, линейную, комбинацию из заданного набора известных понятий.

Теперь надо определить, что такое «мир иной». В нашей модели он понимается как все то, что невозможно представить как линейную комбинацию привычных понятий. Чтобы отличить «чужого» от «своего», надо записать анализируемое понятие линейной комбинацией «своих», и если это удастся – то следует признать это понятие «своим». Этот принцип, доведенный до математического решающего правила и алгоритма, позволяет создавать устройства, «узнающие своего» существенно лучше человека.

Приведем пример. Рассмотрим два вектора в пространстве – две стрелочки, выходящие из общей точки. По законам геометрии, они лежат в одной плоскости. Их линейная комбинация (то есть векторная сумма) обязательно лежит в той же плоскости. Вывести из этой плоскости может лишь результат такой их композиции, основанной на более сложных операциях с векторами. Эти операции должны внести в результат некую новую информацию, не содержащуюся в исходных векторах, – в частности, информацию о существовании направлений, выводящих из плоскости.

Подведем итог и сформулируем особенности рассмотренной выше математической модели в форме двух предложений: для построения новых понятий на основе привычных необходимо, во-первых, признать существование «мира Чужого» – мира, не укладывающегося в плоскость привычных понятий; а во-вторых, при объединении понятий нужно иметь в запасе нечто, позволяющее подняться над этой плоскостью.

Первое предложение достаточно понятно. Если мы не подозреваем об иных измерениях, а все события стараемся толковать только в терминах понятий мира «Нашего», то в результате, не видя всей ситуации в целом, остаемся «слишком плоскими» и попадаем в ситуацию с Мерлином, описанную в начале статьи, или удивляемся, почему американцы до сих пор не говорят по-русски, хотя уже столько москвичей приехали в Нью-Йорк.

Несколько сложнее со вторым предложением. По закону линейной комбинации, дракон – это всего лишь «сумма» змеи и крыльев, а кентавр – не более чем соединение лошади и человека. Более общий подход требует знания некоторых дополнительных сведений: например, того, что в Китае дракон – это повелитель пяти стихий, хранитель тайных богатств и знаний, он дышит огнем, летает в воздухе так же хорошо, как и плавает в воде, знает и тропы подземного мира. Это знание (а еще – воображение) позволят увидеть, что в этом сказочном существе заключена и тайна жизни, и дыхание океана, и блеск звезд, жар огня, наши мысли и стремления, любовь и смерть. И тогда дракон воспринимается как образ объединения всех символических стихий земли.

Такая возможность – не буквального, а образного восприятия слов – является, по-видимому, фундаментальным свойством нашего языка. По мысли известного математика В. В. Налимова, построившего вероятностную модель языка, каждое слово содержит в себе множество смыслов, и они раскрываются, «распаковываются» по мере того, как объединяются во фразы. Смысл каждой фразы, в свою очередь, зависит и от контекста, и от настроя слушателя, и благодаря этому возникает возможность передачи весьма ограниченным запасом слов бесконечности мира, взаимосвязи множества явлений. С математической точки зрения это означает, что обязательно существует связь («корреляция», говоря вероятностным языком) между миром известных понятий и непознанным.

Как проникнуть в этот мир? Как математические модели, так и примеры из мифологии свидетельствуют, что для этого необходимо ощущение пространства, находящегося за рамками наших привычек, дотянутся до которого можно путем аналогий, ассоциаций, выстраивания новых понятий – неожиданных и переворачивающих сознание, вопреки законам простой «линейной» логики. Иногда этому помогает судьба, проводящая нас через множество жизненных испытаний, в которых просто невыносимо оставаться в рамках прежних «плоских» понятий. И тогда через боль и страдания, через отказ от дорогого «привычного мирка» мы приходим к новым, более широким горизонтам. И тогда, свободные от рамок, мы с облегчением улыбаемся нашим прежним «плоским» представлениям, где в любом начальнике мы готовы узнавать короля Артура, а в иноплеменных вождях искать родные черты.

Алексей Чуличков, д-р физ. – мат. наук, МГУ

Литература

Шукуров Ш. М. Чужое: опыты преодоления. Очерки из истории культуры Средиземноморья. – М.: Алетейа, 1999. – 384 с.

Налимов В. В. Спонтанность сознания: Вероятностная теория смыслов и смысловая архитектоника личности. – М.: Изд-во «Прометей», 1989. – 288 с.

 

Платоновы тела

Человек всегда проявлял интерес к многогранникам. Некоторые из правильных и полуправильных тел встречаются в природе в виде кристаллов, другие – в виде вирусов, которые можно рассмотреть с помощью электронного микроскопа. Что же такое многогранник? Многогранником называется часть пространства, ограниченная совокупностью конечного числа плоских многоугольников.

Издавна ученые интересовались «идеальными» или правильными многоугольниками, то есть многоугольниками, имеющими равные стороны и равные углы. Простейшим правильным многоугольником можно считать равносторонний треугольник, поскольку он имеет наименьшее число сторон, которое может ограничить часть плоскости. Общую картину интересующих нас правильных многоугольников наряду с равносторонним треугольником составляют: квадрат (четыре стороны), пентагон (пять сторон), гексагон (шесть сторон), октагон (восемь сторон), декагон (десять сторон) и т. д. Очевидно, что теоретически нет каких-либо ограничений на число сторон правильного многоугольника, то есть число правильных многоугольников бесконечно.

Что же такое правильный многогранник? Правильным называется такой многогранник, все грани которого равны (или конгруэнтны) между собой и при этом являются правильными многоугольниками. Сколько же существует правильных многогранников? В XIII книге «Началах Эвклида», посвященной правильным многогранникам, или платоновым телам (Платон их рассматривает в диалоге «Тимей») мы находим строгое доказательство того, что существует только пять правильных многогранников, а их гранями могут быть только три типа правильных многоугольников: треугольники, квадраты и пентагоны.

Доказательство того, что существует ровно пять правильных выпуклых многогранников, очень простое.

Очевидно, что каждая вершина многогранника может принадлежать трем и более граням. Сначала рассмотрим случай, когда грани многогранника – равносторонние треугольники. Поскольку внутренний угол равностороннего треугольника равен 60°, три таких угла, помещенные на плоскость, дадут в сумме 180°. Если теперь согнуть эти углы по внутренним сторонам и склеить по внешним, получим многогранный угол тетраэдра – правильного многогранника, в каждой вершине которого встречаются три правильные треугольные грани. Три правильных треугольника с общей вершиной называется разверткой вершины тетраэдра. Если добавить к развертке вершины еще один треугольник, в сумме получится 240°. Это развертка вершины октаэдра. Добавление пятого треугольника даст угол 300° – мы получаем развертку вершины икосаэдра. Если же добавить еще один, шестой треугольник, сумма углов станет равной 360° – эта развертка, очевидно, не может соответствовать ни одному выпуклому многограннику.

Теперь перейдем к квадратным граням. Развертка из трех квадратных граней имеет угол 3 x 90° = 270° – получается вершина куба, который также называют гексаэдром. Добавление еще одного квадрата увеличит угол до 360° – этой развертке уже не соответствует никакой выпуклый многогранник.

Три пятиугольные грани дают угол развертки 3 x 108° = 324° – вершина додекаэдра. Если добавить еще один пятиугольник, получим больше 360°.

Для шестиугольников уже три грани дают угол развертки 3 x 120° = 360°, поэтому правильного выпуклого многогранника с шестиугольными гранями не существует. Если же грань имеет еще больше углов, то развертка будет иметь еще больший угол. Значит, правильных выпуклых многогранников с гранями, имеющими шесть и более углов, не существует.

Таким образом, мы убедились, что существует лишь пять выпуклых правильных многогранников – тетраэдр, октаэдр и икосаэдр с треугольными гранями, куб (гексаэдр) с квадратными гранями и додекаэдр с пятиугольными гранями.

Пять правильных многогранников или платоновых тел использовались и были известны задолго до времени Платона. Кейт Кричлоу в своей книге «Время остановилось» дает убедительное свидетельство тому, что они были известны людям неолита Британии, по крайней мере, за 1000 лет до Платона. Это заявление основывается на наличии ряда сферических камней, хранящихся в музее Ашмолина в Оксфорде. Эти камни, размеры которых соответствовали тому, что можно уместить в руке, были покрыты геометрически точными сферическими фигурами куба, тетраэдра, октаэдра, икосаэдра и додекаэдра, также как и некоторые дополнительные сложносоставные и псевдоправильные тела, такие как кубо-октаэдр и ико-додекаэдр. Кричлоу говорит: «То что у нас есть, представляет собой объекты, несомненно указывающие на степень математических способностей, которые до сих пор отрицались в отношении человека неолита некоторыми археологами или историками математики».

Теэтет Афинский (417–369 до н. э.), современник Платона, дал математическое описание правильных многогранников и первое известное доказательство того, что их ровно пять.

В «Тимее», который, по сравнению со всеми остальными работами Платона, носит наиболее ярко выраженный пифагорейский характер, он утверждает, что четырьмя базовыми элементами в мире являются земля, воздух, огонь и вода, и что каждый из этих элементов соотносится с одной из пространственных фигур. Традиция связывает куб с землей, тетраэдр с огнем, октаэдр с воздухом и икосаэдр с водой. Платон упоминает «некое пятое построение», использованное создателем при сотворении вселенной. Так додекаэдр стал ассоциироваться с пятым элементом: эфиром. Устроитель вселенной Платона установил порядок из первобытного хаоса этих элементов с помощью основополагающих форм и чисел. Приведение в порядок в соответствии с числом и формой на более высоком уровне привело к предначертанному расположению пяти элементов в физической вселенной. Основополагающие формы и числа затем стали действовать в качестве границы раздела между высшим и низшим мирами. Сами по себе и в силу своей аналогии с другими элементами, они обладали способностью формировать материальный мир.

Те же пять правильных тел в соответствии с классической традицией рисуются таким образом, что они содержатся в девяти концентрических шарах, и каждое тело соприкасается со сферой, которая описана вокруг следующего тела, расположенного внутри ее. Такая композиция проявляет немало важных взаимоотношений и заимствована из дисциплины, называемой corpo transparente, относящейся к восприятию сфер, изготовленных из прозрачного материала и размещенных одна в другой. Такое наставление давалось Фра Лукой Паччоли многим великим людям Ренессанса, включая Леонардо и Брунуллески.

В своей книге «Тайна мира» (Mysterium Cosmographicum), которая вышла в свет в 1596 г. Иоганн Кеплер предположил, что существует связь между пятью платоновыми телами и шестью открытыми к тому времени планетами Солнечной системы. Согласно этому предположению, в сферу орбиты Сатурна можно вписать куб, в который вписывается сфера орбиты Юпитера. В нее, в свою очередь, вписывается тетраэдр, описанный около сферы орбиты Марса. В сферу орбиты Марса вписывается додекаэдр, в который вписывается сфера орбиты Земли. А она описана около икосаэдра, в который вписана сфера орбиты Венеры. Сфера этой планеты описана около октаэдра, в который вписывается сфера Меркурия. Такая модель Солнечной системы получила название «Космического кубка» Кеплера. Расхождение между моделью Кеплера и реальными размерами орбит (порядка нескольких процентов) И. Кеплер объяснял «влиянием материи».

В XX веке платоновы тела были использованы в теории electron shell model Роберта Муна, которая также известна как «теория Муна». Мун заметил, что геометрическое расположение протонов и нейтронов в атомном ядре связано с положением вершин вложенных платоновых тел. Эта концепция была вдохновлена работой И. Кеплера «Mysterium Cosmographicum».

Существует формула Эйлера для многогранников:

F + V = E + 2

В этой формуле F – число граней, V – число вершин, E – число ребер. Эти числовые характеристики для платоновых тел приведены в таблице.

Количественные особенности платоновых тел

Важные соотношения между ребрами, диаметрами вписанных и описанных сфер, площадями и объемами правильных многогранников выражаются через иррациональные числа. В таблице ниже представлено отношение длины ребра к диаметру описанной сферы для каждого из пяти платоновых тел.

Каждый полученный результат есть иррациональное число, которое можно найти только через извлечение квадратного корня. Мы видим, что здесь фигурируют числа, которые являются важными и особенными в сакральной математике.

Геометрия додекаэдра и икосаэдра связана с золотой пропорцией. Действительно, гранями додекаэдра являются пентагоны, т. е. правильные пятиугольники, основанные на золотой пропорции. Если внимательно посмотреть на икосаэдр, то можно увидеть, что в каждой вершине икосаэдра сходится пять треугольников, внешние стороны которых образуют пентагон. Уже этих фактов достаточно, чтобы убедиться в том, что золотая пропорция играет существенную роль в конструкции этих двух платоновых тел. Эти две фигуры являются обратными друг другу: обе состоят из 30 ребер, но, несмотря на это, икосаэдр имеет 20 граней и 12 вершин, а додекаэдр – 12 граней и 20 вершин. Также обратными друг другу являются октаэдр и гексаэдр, и театраэдр сам к себе.

Существуют удивительные геометрические связи между всеми правильными многогранниками. Так, например, куб и октаэдр дуальны, т. е. получаются друг из друга, если центры тяжести граней одного принять за вершины другого и обратно. Аналогично дуальны икосаэдр и додекаэдр. Тетраэдр дуален сам себе. Додекаэдр получается из куба построением «крыш» на его гранях (способ Евклида), вершинами тетраэдра являются любые четыре вершины куба, попарно не смежные по ребру, то есть из куба могут быть получены все остальные правильные многогранники.

Роберт Лолор в своей работе показывает, что платоновы тела можно построить исходя из икосаэдра. Он пишет: «Если мы соединим все внутренние вершины икосаэдра, нарисовав три линии из каждой из них, соединяющих каждую вершину с ей противолежащей, и затем из двух верхних вершин проведем четыре линии к двум противоположным, так чтобы эти линии сошлись в центре, мы, действуя в соответствии со сказанным, естественным образом построим ребра додекаэдра. Такое построение происходит автоматически при пересечении внутренних линий икосаэдра. После создания додекаэдра мы можем, просто используя шесть из его вершин и центр, построить куб. Используя диагонали куба, мы можем построить звездообразный или переплетенный тетраэдр. Пересечения звездообразного тетраэдра с кубом дают нам точное местоположение для построения вписанного октаэдра. Затем в самом октаэдре с использованием внутренних линий икосаэдра и вершин октаэдра получается второй икосаэдр. Мы прошли через весь полный цикл, пять этапов от семени к семени. И такие действия представляют собой бесконечную последовательность.

Тетраэдр

Простейшим среди правильных многогранников является тетраэдр. У Платона он соответствует стихии Огня. В физике «огонь» можно соотнести с состоянием плазмы. Тетраэдр имеет наименьшее число граней среди Платоновых тел и является трехмерным аналогом плоского правильного треугольника, который имеет наименьшее число сторон среди правильных многоугольников. Его четыре грани – равносторонние треугольники. Четыре – это наименьшее число граней, отделяющих часть трехмерного пространства. Каждая его вершина является вершиной трех треугольников. Все многогранные углы тетраэдра равны между собой. Сумма плоских углов при каждой вершине равна 180°. Таким образом, тетраэдр имеет 4 грани, 4 вершины и 6 ребер.

Октаэдр

Октаэдр составлен из восьми равносторонних треугольников. У Платона он соответствует стихии Воздуха. В физике «воздух» можно соотнести с газообразным состоянием вещества. Каждая его вершина является вершиной четырех треугольников. Противоположные грани лежат в параллельных плоскостях. Сумма плоских углов при каждой вершине равна 240°. Таким образом, октаэдр имеет 8 граней, 6 вершин и 12 ребер.

Икосаэдр

Икосаэдр – одно из пяти платоновых тел, по простоте следующее за тетраэдром и октаэдром. У Платона он соответствует стихии Воды. В физике «воду» можно соотнести с жидким состоянием вещества. Икосаэдр составлен из двадцати равносторонних треугольников. Каждая его вершина является вершиной пяти треугольников. Сумма плоских углов при каждой вершине равна 300°. Таким образом, икосаэдр имеет 20 граней, 12 вершин и 30 ребер.

Гексаэдр

Гексаэдр или куб составлен из шести квадратов. У Платона он соответствует стихии Земли. В физике «землю» можно соотнести с твёрдым состоянием вещества. Каждая его вершина является вершиной трех квадратов. Сумма плоских углов при каждой вершине равна 270°. Таким образом, куб имеет 6 граней, 8 вершин и 12 ребер.

Додекаэдр

Додекаэдр составлен из двенадцати равносторонних пятиугольников. У Платона он соответствует пятому элементу – Эфиру. Каждая его вершина является вершиной трех пятиугольников. Сумма плоских углов при каждой вершине равна 324°. Таким образом, додекаэдр имеет 12 граней, 20 вершин и 30 ребер.

Правильные многогранники встречаются в живой природе. В начале XX века Эрнст Геккель (Ernst Haeckel) описал ряд организмов, формы скелета которых подобны различным правильным многогранникам. Например: Circoporus octahedrus, Circogonia icosahedra, Lithocubus geometricus и Circorrhegma dodecahedra. Формы скелета этих организмов запечатлены в их названиях.

Скелет одноклеточного организма феодарии (Circogoniaicosahedra) по форме напоминает икосаэдр. Большинство феодарий живут на морской глубине и служат добычей коралловых рыбок. Но простейшее животное пытается себя защитить: из 12 вершин скелета выходят 12 полых игл. На концах игл находятся зубцы, делающие иглу еще более эффективной при защите.

Многие вирусы, например вирус herpes, имеют форму правильного икосаэдра. Вирусные структуры строятся из повторяемых протеиновых субъединиц, и икосаэдр – самая подходящая форма для воспроизведения этих структур.

Кристаллические решётки многих минералов имеет форму платоновых тел.

Получение серной кислоты, железа, особых сортов цемента не обходится без сернистого колчедана (FeS). Кристаллы этого химического вещества имеют форму додекаэдра. Минерал сильвин имеет кристаллическую решетку в форме куба. Кристаллы пирита имеют форму додекаэдра, а куприт образует кристаллы в форме октаэдров.

Платоновы тела – очень важный объект для изучения, как с точки зрения сакральной математики, так и с точки зрения естественных наук. Платоновы тела проявляются повсюду, начиная от вирусов, многие из которых имеют икосаэдрическую форму и заканчивая сложными макроструктурами, такими, например, как Солнечная система.

Антон Мухин

 

Единство мер – единство мира

Секунда, метр, килограмм… Мы так привыкли к этим единицам системы СИ, что кажется странным вопрос: как можно измерять по-другому? Впрочем, еще есть пуды, аршины, сажени… Но кто ими пользуется? Или в далекой Англии есть футы и фунты – так это, скажете вы, пережитки прошлого. Как и баррели, которые сейчас ассоциируются только с нефтью.

Удобно, когда система мер единая: все цифры и расчеты сразу всем понятны. Но почему именно килограмм, метр и секунда?

О мерах, времени и пространстве

Физики ответят, что через комбинацию этих мер массы, пространства и времени можно выразить все остальные кинематические физические величины, такие как сила, энергия, частота и так далее. Даже для описания многих свойств света достаточно величин с размерностями длины или времени. Большое разнообразие окружающих нас явлений современная естественная наука смогла свести к комбинации не такого уж большого количества разнородных принципов, или начал, Природы. Но эти три: масса, размер, длительность – самые универсальные. Они совершенно различны, и их нельзя складывать, так же как, например, нельзя складывать яблоки и километры. Но тут же можно привести другой пример, из жизни: длину дороги еще не так давно измеряли в днях или часах пути, да и сейчас можно услышать: «…не больше часа общественным транспортом». Или: «…минутная стрелка преодолела последние сантиметры на своем пути, ударили куранты, и начался новый год». Да ведь если вспомнить, то и сами стрелочные часы, наглядно показывающие, что не все так однозначно в отношениях пространства и времени, пришли к нам от более «примитивных» солнечных, то есть, по сути, астрономических, небесных, измеряющих доли периода вращения Земли вокруг своей оси.

Выходит, чтобы измерить время, мы используем пространственные величины?

Не совсем так: пространство, циферблат нужны нам для разделения на части неких временных циклов, которые, конечно, не сводятся только к пространству.

Но остается вопрос: что вообще есть время? Набор различных состояний вещества в пространстве, которые мы последовательно наблюдаем, или нечто большее? Если первое, то время дискретно или непрерывно? Кстати, то же можно спросить и про само пространство: и с ним не все ясно… Как вы думаете, например, сколько в нем измерений? Три? Современная физика подозревает, что гораздо больше. В современных космологических теориях часто говорят про 10, а то и 11 измерений, часть из которых находится в «скрученном» состоянии и недоступна для наших органов чувств.

И опять же, есть такое понятие – планковская длина: 1,6 x 1033 см. Даже самый маленький атом, атом водорода, гигант по сравнению с ней. Но вопрос о том, возможно ли более мелкое пространственное деление, все еще открыт. Есть много оснований думать, что более мелкие структуры в принципе невозможны. А значит, мы снова стоим перед вопросом, действительно ли наш мир непрерывен, или он только таковым кажется? Ведь надежность наших чувств оказалась под сомнением, еще когда были изобретены микроскоп и телескоп. Как сейчас совершенно ясно, даже наше зрение, доверять которому мы привыкли больше всего, скрывает от нас значительно больше, чем показывает…

60, 360, 2160

С часами связана еще одна загадка. В системах отсчета времени издревле используется число 60: так относятся минуты к часу и секунды к минуте. Число как число…

Но для того чтобы оценить все его удобства, достаточно просто посмотреть на циферблат: оно легко делится пополам, на 3, на 4… В современном мире, где циферблат со стрелкой встречается все реже, нам частенько хочется, чтобы в сутках было круглое число часов, а в часе – круглое число минут. Например, 100 часов по 100 минут… Впрочем, с точки зрения удобства представления информации для современных цифровых и компьютерных технологий, наверное, интереснее рассмотреть вариант 16 часов по 16 минут, что ближе к двоичной системе счисления, понятной компьютеру… Но никакой подобной унификации исчисления времени как-то не предвидится, и такие предложения вызывают улыбку.

А вот с измерением углов подобная попытка делалась. В XVIII веке вместо 360 градусов было предложено разделить круг на 400 градов: прямой угол равняется при этом ровно 100 градам. На большинстве калькуляторов предусмотрена возможность считать углы в этих «удобных» единицах. Но даже эту попытку нельзя назвать успешной: старомодные градусы, минуты и секунды крепко держат свои позиции.

Только ли в привычке здесь дело?

Даже простое перечисление делителей числа 60 наводит на некоторые мысли: 1, 2, 3, 4, 5, 6… 10, 12, 20, 30, 60… В памяти всплывают пифагорейский Тетраксис (числа 1, 2, 3, 4, открывающие пытливому уму все тайны мироздания, их сумма – совершенное, по мнению Пифагора, число 10), пифагорейская звезда с пятью лучами, шестиугольная звезда Давида… К делителю 12 мы вернемся чуть позже.

Использование числа 60 при измерении времени не уникально для Европы и арабского мира: полная длительность китайского зодиакального цикла тоже 60, но, конечно, уже не минут, а лет.

Число 360 также тесно связано со счетом времени: это число дней в году во многих древних календарях. Расхождение в пять дней с полным астрономическим годом трактовали по-разному. Например, в Древнем Египте про эти дни рассказывали, что их выиграл и добавил к году бог Тот. Они считались днями рождения главных богов: Осириса, Сета, Гора, Исиды и Нефтиды. В загадочном гражданском календаре хааб древних майя было 18 месяцев по 20 дней и 19-й месяц с пятью днями «без имен». Даже привычные для нас новогодние каникулы, восходящие к древнеримским Сатурналиям, вполне возможно, связаны с особой ролью этих «дополнительных» дней.

Получается, что число 360 каким-то образом связывает два вида вращения нашей планеты: вокруг своей оси и вокруг Солнца, то есть сутки и год. Случайно ли длительность астрономического года на Земле оказалась такой близкой к этому числу?

Интересную взаимосвязь мы можем обнаружить между числами 60 и 360. Как известно, окружность, состоящую из 360 частей, или градусов, легко разделить на 6 дуг по 60 градусов. Удивительно, что такую операцию можно проделать одним циркулем, при этом даже раствор его не придется менять!

Число 12, делитель чисел 60 и 360, известно нам как число месяцев в году, число часов в полусутках и число зодиакальных знаков.

С числами 60 и 12 связана еще одна интересная история. Сейчас общеизвестно, что зодиакальные эры (прошедшие Рыбы, наступающий Водолей и другие) связаны с движением точки весеннего равноденствия по эклиптике, что, в свою очередь, вызвано прецессией земной оси. Помните, как вертится ось раскрученного волчка? Земная ось, по современным оценкам, полный оборот делает примерно за 25 800 лет. Это число непостоянное, оно меняется от цикла к циклу: ось Земли вычерчивает на небе не строгий круг, а движется то по сжимающейся, то по расходящейся спирали. В древности длительность цикла прецессии считали равной 25 920 годам. В каждом таком цикле получается 12 великих космических «месяцев» длительностью по 2160 лет. При этом 2160 – это все те же 360, только еще раз умноженные на 6! То есть оно равно 6 x 6 x 6 x 10…

Как тут не вспомнить знаменитые три шестерки, упомянутые в Откровении Иоанна Богослова, – предмет суеверий для европейцев и, напротив, символ удачи на Востоке.

Но давайте внимательнее присмотримся к числу 2160. Оказывается, это еще и средний диаметр Луны (3476 км), выраженный в сухопутных милях (1609,344 м), и длина земного экватора в десятках морских милей (1,852 км). Вот и опять от счета времени мы вернулись к измерению расстояний.

Человеческие меры

Интересно, что миля произошла от milia passuum – тысячи двойных римских шагов, то есть от антропометрических данных человека. При этом сами и сухопутная, и морская мили связаны с футами, ярдами и дюймами: 1 сухопутная миля = 1760 ярдов = 5280 футов, 1 морская миля = 6080 футов, 1 ярд = 3 фута = 36 дюймов. А ярд, фут и дюйм ведут свое происхождение от размеров человеческого тела: руки, ступни и большого пальца.

Подобная антропометрическая система измерений по сей день активно используется в Японии, причем соотношения некоторых единиц выражаются уже знакомыми нам числами 6 и 36. Старинный французский арпан равняется 180 французским футам (180 – это половина от 360), а китайский ли равнялся 360 шагам.

Не буду утомлять вас описанием китайского цуня, египетского локтя и других подобных единиц измерения: все они связаны с размерами человеческого тела, причем сам человек видится как интегральная часть более общего мирового порядка.

Древние относились к человеку и, в частности, к его телу как к очень важным и емким символам Космоса, проявленного и невидимого. Например, древние египетские жрецы-терапевты очень хорошо знали анатомию, которую в Европе с таким трудом вновь открывали после темной эпохи Средневековья. В каждом органе человеческого тела египтяне видели стоящие за ним универсальные космические принципы. К пропорциям человека древние также не были равнодушны. Вот что писал Витрувий, римский архитектор I века нашей эры, в своем трактате «Десять книг об архитектуре»: «Композиция храмов основана на соразмерности, правила которой должны тщательно соблюдать архитекторы. Она возникает из пропорции, которая по-гречески называется analogia. Пропорция есть соответствие между членами всего произведения и его целым по отношению к части, принятой за исходную, на чем и основана всякая соразмерность. Ибо дело в том, что никакой храм без соразмерности и пропорции не может иметь правильной композиции, если в нем не будет такого же точного членения, как у хорошо сложенного человека».

Неужели все это неслучайно? Получается, что английская, японская и многие древние системы мер связывают в одно множество пространство, время и человека, при этом его естественные размеры: длины пальцев, ступни, руки – используются при построении системы мер, а в качестве оснований счета частенько можно встретить числа 12, 60, 360…

Вообще делить круг или что угодно другое на 2, 3 и 4 так для нас естественно, что поневоле подумаешь об особой роли этих первых чисел. Помните даосское: «Дао порождает одно, одно порождает два, два порождает три, а три порождает все существа»? Впрочем, нам в наш компьютерный век ближе знаменитое высказывание Пифагора «Числа правят миром». Оно начинает звучать по-новому, когда задумываешься о возможной дискретности, а значит, и счетности – в конце концов! – пространства и времени.

Масса и материя

Но может быть, эти игры с числами возможны только при измерениях пространства и времени? В нашем кратком экскурсе по мерам и числам мы упустили третий основной элемент современной Единой системы мер – массу. Пуд, килограмм, тонна… Когда произносишь эти слова, то сразу понимаешь, что к эфемерным секундам они не имеют никакого отношения. Они предстают перед нами как символы материального начала в мире. Даже сам эталон килограмма – вполне материальный объект, в отличие от метра и секунды, которые давно связаны с атомными процессами (тоже, кстати, ставшими своего рода символами – символами идеальной статистической повторяемости).

Так ли все ясно с килограммами? И почему знакомые нам числа 60 и 12 вновь встречаются, например, в современных аптекарских мерах?

Да и что такое сама материя? Спросим об этом физиков. Оказывается, они давно не занимаются собственно материей, они оставили эту область познания философам-онтологам. Физики изучают физическую реальность, то есть то, как феноменальный мир можно описать с помощью математических закономерностей! А как же материя и сам наш такой материальный килограмм? С долей юмора можно сказать, что для физиков он становится все менее и менее материальным…

Современная наука все больше понимает, что описывать физический мир отдельно от сознания человека неверно, так как в конце концов есть и другая сторона медали: все явления материального мира имеют место быть именно в нашем сознании! «Старая песня», – скажете вы. Это действительно не новость – об этом парадоксе размышляли еще в Новое время. Дэвид Юм, кажется, был первым в Европе, кто осознал всю его глубину. Но посмотрите на современные теорию струн или поиски суперсимметрии, посмотрите на теории классической физики элементарных частиц: материя в нашем привычном смысле буквально исчезает на глазах по мере нашего проникновения в ее основы. Чего стоит только один принцип неопределенности или знаменитый квантово-волновой дуализм элементарных частиц! Или на какие мысли наводит такой научный термин, как «виртуальные частицы»?

Вращение и творение

«И все-таки она вертится!» – сегодня мы знаем, что весь мир в макромасштабе построен как система вложенных вращающихся структур. Но если мы вглядимся в глубины материи, то есть заглянем в мир элементарных частиц, то увидим зеркальное подобие того, что происходит на макромасштабе: атом в старой боровской модели очень и очень похож на Солнечную систему. Ядро с вращающимися вокруг него электронами и Солнце с семьей планет выглядят как два частных случая какой-то общей модели. Но какая разница в масштабах явления! Воистину, как наверху – так и внизу, как в большом – так и в малом! Конечно, не все так просто с поведением электронов в атоме, но и с поведением планет в астрономических масштабах времени тоже все далеко не так просто, как у Кеплера. Так что эта аналогия остается и не теряет своей загадочности.

Вращение и связанные с ним вихри и спирали играют очень существенную роль в образовании самых фундаментальных структур на таких разных планах и уровнях существования, как мир атомов и мир звезд. Например, галактики, эти огромные звездные острова, кажутся застывшими вихрями из десятков миллионов звезд. И не только кажутся: вращение галактик открыто еще в середине XX века. По современным представлениям, и само Солнце родилось из первоначального вихря галактического вещества. Неудивительно поэтому, что сейчас борются за право существования теории, представляющие физические частицы как вихри некой тонкой субстанции, которую древние греки называли эфиром.

Кстати, вы знаете, что физическое пространство не может существовать, если в нем нет ни одного физического объекта? Так тогда что есть само пространство, как не одна из форм материи, и чем оно на самом деле отличается от загадочного полуматериального эфира древних?..

* * *

Так мы каждый раз вновь возвращаемся к осознанию того, что за всеми явлениями видимого и осязаемого нами мира стоит какой-то Единый принцип, в своих трудновообразимых космологических дифференциациях давший начало и Пространству, и Времени, и Материи. Если мы обратимся к древним мифам, то встретим это загадочное Первоначало под разными именами. Хаос… Нун… «Познайте: нет ни первого, ни последнего; ибо все есть Единое Число, исшедшее из Не-Числа» – цитировала таинственную Книгу Дзиан Елена Петровна Блаватская. Да, и древние предания, и современная наука говорят об одном: мир един в своей основе, у него единый корень, и уже по одному этому все в мире связано невидимыми нитями и находится в той или иной степени родства или аналогии.

Анатолий Иванов