Пусть числа a и b оба будут равны 1. Поскольку они равны между собой,
b 2 = ab . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (1).
Поскольку a равно самому себе, очевидно, что
a 2 = a 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (2).
Вычтем уравнение (1) из уравнения (2). Это дает
a 2 — b 2 = a 2 — ab . . . . . . . . . . . . . . . . . . . . . . . . . . (3).
Мы можем преобразовать обе части уравнения:
a 2 — ab = a(a — b); a 2 — b 2 = (a + b)(a — b).
Тут нет ничего сомнительного. Эти выкладки совершенно верны. Подставьте в них числа и убедитесь сами. Подставив эти значения в уравнение (3), получаем:
(a + b)(a — b) = a(a — b) . . . . . . . . . . . . . . . . . . . . (4).
Пока все хорошо. Теперь разделим обе части равенства на (a — b) и получим
а + b = a . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .(5).
Вычтем из обоих частей a и получим
b = 0 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (6).
Однако в самом начале этого рассуждения мы задали b = 1, и это значит, что
1= 0 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (7).
Это важный результат. Рассуждаем дальше. Нам известно, что Уинстон Черчилль имел одну голову. Но, согласно равенству (7), один равен нолю, значит, Черчилль головы не имел. У него не было набора лиственных побегов, значит, он имел один набор лиственных побегов. Далее умножим обе части равенства (7) на 2 и получим
2 = 0 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (8).
У Черчилля было две ноги, следовательно, он не имел ног. У Черчилля было две руки, следовательно, он не имел рук. Теперь умножим равенство (7) на размер талии Черчилля в дюймах. Значит,
размер талии Черчилля = 0 . . . . . . . . . . . . . . . . . . . . . . . . (9).
Это значит, что Черчилль сужался до ноля. А теперь посмотрим, какого цвета был Уинстон Черчилль? Возьмем любой световой луч, отраженный от него, и выберем фотон. Умножим равенство (7) на длину волны и получим:
длина волны фотона Черчилля = 0 . . . . . . . . . . (10).
Однако умножив равенство (7) на 640 нанометров, мы видим, что
640 = 0 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .(11).
Соединив равенства (10) и (11), мы получим, что длина волны фотона Черчилля = 640 нанометров.
Это означает, что данный фотон, как и любой другой, исходящий от мистера Черчилля, — оранжевый. Таким образом, Уинстон Черчилль имеет ярко-оранжевый цвет.
Суммируя полученные результаты, можно сказать, что мы математически доказали, что Уинстон Черчилль не имеет рук и ног, вместо головы у него пучок зелени, он сужается до точки и имеет оранжевый цвет. Ясно, что Уинстон Черчилль — морковка. (Есть и более простой способ доказать это. Добавление 1 к обеим частям уравнения (7) дает равенство 2 = 1. Уинстон Черчилль и морковка — разные вещи, поэтому они — одно и то же. Однако такое заключение менее удовлетворительно.)
Что не так в этом доказательстве? Только один шаг имеет порок — тот, благодаря которому мы переходим от уравнения (4) к уравнению (5). Мы делим на (a — b). Однако осторожно! Поскольку и a, и b равны 1, a — b = 1 — 1 = 0. Мы делили на ноль и в результате получили смешное равенство 1 = 0. Отсюда следует, что мы можем доказать любое утверждение, независимо от того, верно оно или ложно. Вся система математики развалилась.
Неосмотрительное использование ноля обладает властью уничтожить логику.