Развитие техники в каменном веке

Семенов Сергей Аристархович

Глава II. Обработка камня

 

 

Принципы ударной обработки изотропных пород

Экспериментальное научение способов оббивки галечных орудий, производившееся на морских и речных галечниках Крыма, Кавказа, pp. Немана и Нериса, приводит к представлениям о широком круге материалов, с которых могли начинать обработку камня древнейшие предки человека. Рубящее орудие возникало после двух-трех ударов оббивки и было вполне пригодно для грубой обработки дерева или раскалывания костей. Для этого подходили многие горные породы: кремень, кварцит, кремнистые известняки, глинистые и известковые сланцы, граниты, диабазы, мелкозернистые песчаники и т. д. Любая галька могла быть как-то использована. Однако форма гальки оказывала влияние на приемы ее оббивки. Крайне трудно оббивать шаровидные гальки. На поверхности таких галек нет площадок для нанесения ударов, каждый ее участок представляет часть сферы. Их можно раскапывать пополам, нанося сильный удар в центр. При косом ударе отбойник скользит но их поверхности. Не менее затруднительна и оббивка яйцеобразной гальки. Сферические и яйцеобразные гальки раскалывались на каменной «наковальне» благодаря действию контрудара.

Оптимальными формами галек для выработки простейших рубящих орудий были овально уплощенные. Из них сравнительно легко вырабатывались орудия типа чопперов различной формы. Оббивка таких галек начиналась с более узкого конца. Первый фас на гальке создавал условия для следующих актов оббивки. На фасе благодаря раковистой его форме возникали по крайней мере две точки, благоприятные для ударов. Они находились на противолежащих краях и позволяли вести двустороннюю оббивку гальки. С каждым новым ударом возрастало число таких ударных площадок (рис. 2).

П. Биберсон среди четвертичных оббитых галек в Марокко нашел преобладание плоско-овальных форм. Прослеживая способы оббивки, он разделил их на несколько групп по принципу нарастания числа фасов. Им была обнаружена оббивка не только на конце галек, но и по боковым краям, имеющая как бы целью образование и скобелей, и орудий с функциями резания. Показана эволюция обработки талек и формирование пирамидальных нуклеусов.

Определенную роль играла форма гальки, служившей отбойником. При первичной оббивке механический эффект обеспечивали пальцеобразные формы, удлиняющие траекторию удара, наносимого по касательной. Они предпочитались шаровидным, яйцевидным и дискообразным формам, которыми приходилось работать, применяя почти отвесный удар с короткой траекторией, а потому маломощный. Шаровидным отбойником труднее было наносить и точно направленные удары в фиксированную точку по причине неопределенности его рабочей части.

Рис. 2. Орудия из галек. Получены экспериментальным способом оббивки (последовательное нарастание числа ударов — актов оббивки).

Оббивка галек малого и среднего веса (до 2 кг) производилась без упора на землю или наковальню, над землей, в положении, когда одна из рук играла роль держателя и амортизатора.

При оббивке галек из сланцев и вулканических пород не следовало наносить много ударов в одну точку. Ударная часть отбойника и точка удара на оббиваемой гальке сминались и крошились. Эти части покрывались слоем пыли или мелкой крошки, которые гасили силу удара. Необходимо было менять рабочее положение отбойника и гальки. Поэтому при первичной обработке галек с мягкой или зернистой структурой очень важно было иметь отбойник из более твердого материала с гладкой поверхностью. При ударной обработке кремневого ручного рубила необходимо было применять отбойник из более мягкого камня (рис. 3). Это существенное различие при обработке кремня, обсидиана и кварцита, с одной стороны, и зернистых пород, имеющих шероховатую поверхность излома, — с другой, являлось одним из важнейших условий, определявших развитие техники уже в древнем палеолите. Обработка галек служила одним из путей получения орудий в разные эпохи, когда других материалов не было под руками.

Рис. 3. Кремневое ручное рубило обработанное двусторонней оббивкой с помощь отбойника из мягкого камня.

Кремень, кварцит, обсидиан и другие минералы и горные породы, обладающие одинаковыми физическими свойствами по всем направлениям внутри тела, нуждались в особых приемах обработки. Каждый удар оббивки ручного рубила или другого предмета из этих материалов был своего рода творческим актом, от которого зависел исход всего процесса. Каждый удар требовал тщательного выбора точки удара в соответствии с общей моделью (формой) и ходом обработки. Результат первого удара мог подкрепить или изменить намеченный план действия. Каждый следующий удар зависел от предыдущего.

Необходим был не только оптимальный удар из многих возможных, но и подбор отбойника по общей форме, по весу, форме рабочей части. Важна была позиция обрабатываемого предмета: гальки, желвака, нуклеуса и т. д.

Одним из технических требований был точный расчет удара по отбивной площадке в силовом отношении. Всякое отклонение от оптимума в ту или другую сторону приводило к неожиданным последствиям. Требовался расчет расстояния точки удара от края площадки. Удаление или приближение этой точки в отношении края решительным образом влипло не только на величину отщепа, толщину его сечения, но и на успех самого акта скалывания. Неудачный выбор расстояния мог обесценить весь нуклеус: расколоть его пополам или испортить всю отбивную площадку, в лучшем случае — часть ее.

Удар в намеченную точку необходимо было наносить один раз, но с достаточной силой. Если скалывание не происходило от одного удара, второй удар по тому же месту чаще всего не оказывался удачным, тем более 3-й, 4-й, 5-й удары. После первого удара возникала трещина, с которой не совпадала скалывающая от следующих ударов. Всякая лишняя трещина ухудшала качество. Рано или поздно она давала о себе знать, обесценивая нуклеус.

Важным условием скалывания отщепов с нуклеуса была подготовка поверхности площадки в точке приложения удара. Углы, бугорки, ребра и прочие неровности затрудняли скалывание, а иногда делали его невозможным. Углы и бугорки дробились ударом отбойника, поглощали силу удара. Поэтому подправка площадки для удара входила в технику скалывания как необходимый прием, исторически возникающий в древнем палеолите. Ф. Бордом предложены приемы описания и классификация отбивных (ударных) площадок для отщепав и пластин мустьерско-леваллуазских типов. Прослеживается постепенное усовершенствование подправки края нуклеуса. Начиная с гладкой площадки, покрытой желвачной или галечной коркой, и следующей за ней, подправленной одним легким актом ретуши, картина подправки все усложняется. В конечном итоге мы видим на отщепах и пластинах площадки, тонко испещренные мелкими фасетками, имеющие выпуклую форму. Очевидно, некоторые формы выделенных Ф. Бордом площадок не имеют значения в прогрессе мустьерско-леваллуазской обработки камня, сохраняя узкоклассификационное значение. Вместе с тем тенденция к улучшению отбивной площадки в целях получения более тонкого и правильного отщепа здесь понята правильно. Именно выпуклая, тонко фасетированная площадка позволяла нанести точно рассчитанный удар по намеренно подготовленной точке. Этой точкой была самая высокая часть выпуклости. Ударом по ней некоторым образом предопределялось направление скалывающей для получения отщепа тонкого поперечного сечения и должной длины.

В процессе скалывания, был ли то пирамидальный нуклеус или другой предмет, площадку, по которой наносился удар, требовалось держать не горизонтально, а наклонно, под углом в 30—40°. Такая позиция позволяла наносить удары наиболее сильные и результативные. Когда же отбивная площадка нуклеуса находилась в горизонтальном положении, удар не был достаточно силен.

Если скалывание производилось с плоского (дисковидного) нуклеуса, последний было целесообразно держать скалываемой (рабочей) стороной в опрокинутой позиции.

Опытами установлено, что лучшие результаты скалывания леваллуазско-мустьерских отщепов получались тогда, когда мастер держал нуклеус в руке без опоры. В таком положении сила удара отбойником целиком тратилась на акт скалывания. Если нуклеус лежал на земле, а тем более на твердой опоре, значительная часть ударной силы расходовалась безрезультатно благодаря действию контрудара.

Не менее существенным был и угол края площадки в отношении вертикальной оси нуклеуса. Этот угол должен быть не более 95°, но лучше, если он был 90—85°. При угле площадки более чем 95° и даже при 95° необходимое скалывание не происходило.

Кроме угла отбивной площадки, необходимо было учитывать вертикальный профиль нуклеуса со стороны скалывания. При оптимальном угле площадки (90—85°) профиль нуклеуса не должен был иметь излишнюю выпуклость или вогнутость, В первом случае скалывающая могла не преодолеть массу лежащего на пути материала, и на нуклеусе оставалась только трещина. Во втором — скалывающая часть могла получить выход по кратчайшей кривой. В профиле нуклеуса, готового к скалыванию, требовалось удалять все излишки материала, затрудняющие скалывание.

Помимо вертикального профиля нуклеуса, важно было принимать во внимание и поперечное сечение его. Скалывающей обеспечивался тем более благоприятный выход» чем уже был нуклеус на шесте скалывания. На этом принципе основан переход от древнепалеолитической техники скалывания к позднепалеолитическому расщеплению призматического нуклеуса.

Качество отщепа определялось также и углом падения отбойника. Известно, что сила удара распространяется в массе кремня концентрически волнообразно, как и во всяком изотропном теле. Очень часто это можно наблюдать на кремне в форме конуса, возникшего от удара, нанесенного на расстоянии от край площадки нуклеуса. Скалывающая здесь выражена в виде замкнутой кривой вокруг глазка — точки удара. На конусе можно проследить едва заметные или хорошо обозначенные концентрические волны очень малой длины. Конус — идеальная форма скалывающей, замкнутой линии в твердой среде изотропного тела. Скалывание, расщепление и ретушь кремня основаны на умелом использовании принципа волнообразно-концентрического распространения силы удара.

Если удар нанесен в центр площадки нуклеуса, скалывающая распространяется равномерно, кругообразно-конически. Это будет симметрически замкнутая кривая, глубина которой зависит от силы удара. Если удар нанесен вблизи края площадки нуклеуса, вся сила удара будет вложена только в часть кривой, а скалывающая, захватив край нуклеуса, пойдет вглубь его. Скалывающая может расколоть нуклеус но диагонали или отколоть отцеп в зависимости от того, под каким углом будет нанесен удар надлежащей силы. Отщеп может получиться длинным или коротким, скалывающая может оказаться волнообразной. Некоторые особенности скалывающей, а следовательно и форма отщепа, до сих пор не имеют полного объяснения. Но уже сейчас остается вполне достоверным роль в этом деле угла падения отбойника и формы отбивной площадки.

Величина, т. е. длина и ширина, отцепов целиком определяется весом и величиной отбойника. Легким отбойником можно сколоть малый отщеп. Для скалывания крупного отщепа требуется соответственно тяжелый отбойник. Для скалывания крупных отщепов необходимо не только соответствие веса отбойника, но и величины его. Тяжелым, но малым по объему отбойником нельзя отколоть хороший большой отщеп. Нужен отбойник, у которого ширина рабочей части пропорциональна весу и объему.

Эксперименты по скалыванию крупных отщепов от тяжелых нуклеусов около 5 кг весом показали, что необходим отбойник в треть этого веса. В результате опытов под Волковыском последовательными пятью ударами было сколото 5 крупных отщепов. Отбойником служит булыжник весом более 1.5 кг. Отбивная площадка на конкреции была получена после удаления «шапки» свыше 1 кг весом. Площадка в процессе скалывания отщепов находилась в наклонном положении, а вся конкреция лежала на куче рыхлого песка, игравшего роль амортизатора.

При употреблении каменного отбойника из твердого материала (кремня, кварцита) удар отличался большей резкостью, облегчающей скалывание, но качество отщепов ухудшалось. Последние имели укороченные пропорции и большую кривизну профиля. При использовании отбойников из материала, поверхностный слой которого дробился и сминался от удара, отщеп получался более длинный и более прямой в профиле. Резкость удара была смягчена, скорость замедлена, а скалывающая отличалась более плавной волной. Поэтому для окалывания тонких отщепов леваллуазского типа требовался отбойник из более мягкого камня.

После того как Ф. Борд на основании своих опытов отвел большую роль дереву в обработке каменных орудий, возникли попытки проверить его выводы экспериментальным путем. Работы Крымской опытной экспедиции 1958 г. не подтвердили эффективности деревянных отбойников. Дуб и кизил оказались недостаточно твердыми для скалывания е кремневого нуклеуса отщепов мустьерского типа, не говоря о других, более сложных операциях. Деревянные отбойники из мягких пород (ели, сосны, липы, осины и др.) были совершенно не пригодны для обработки кремня. Сухая древесина березы, в особенности карельской, позволяла производить некоторые весьма ограниченные операции по ударному ретушированию кремневых ручных рубил ашельского типа. Однако в этих операциях древесина березы очень быстро сминалась и размочаливалась. Даже сухой дуб и кизил не годились для скалывания крупных отщепов с нуклеусов. Ими нельзя было расколоть кремневый желвак или сбить с него верхушку для получения отбивной площадки. Такие операции приходилось производить каменным отбойником. От удара деревом получались тонкие в сечении отщепы. Требовалось большое усилие при нанесении удара. В работе каменным отбойником усилие требовалось значительно меньшее, а эффект был лучший.

В 1964 г, самшитовым отбойником удалось в опытах получать более крупные отщепы и даже пластины неправильной формы. Тяжесть этого материала, твердость и большая амплитуда взмаха благодаря длине отбойника в 25—30 см позволяли достигать значительного силового эффекта. В результате сколотые пластины отчасти напоминали некоторые леваллуазские формы небольшого поперечного сечения, но имели широкую отбивную площадку.

Однако для получения таких отщепов требовалась подготовительная работа с помощью каменного отбойника: раскалывание кремня, подготовка отбивной площадки, удаление массивных выступов, ибо эти операции нельзя было получить при помощи самшитового отбойника. Рабочая часть последнего покрывалась вмятинами, выщербинами от ударов по кремню. Приходилось менять рабочую часть на отбойнике, поворачивая последний по оси.

Недостаток скалывания самшитовым отбойником заключался еще и в том, что благодаря большой амплитуде удар пе был прицельным и достаточно точным. При ударе возникали большие отклонения от точки прицела и как следствие этого — частые заломы, преждевременно обесценивающие нуклеус. Тонкие отщепы, близкие по сечению к пластинкам, разбивались на части в момент скалывания.

Отщепы и пластины, скалываемые самшитовым отбойником, имели свои морфологические особенности, отличающие их от отщепов и пластин, сколотых каменным отбойником. На них были слабее выражены отбивные бугорки в верхней части брюшка. Редко встречалась на этом бугорке характерная фасетка. А главное, на отбивной площадке отщепа или пластинки отсутствовал «глазок», представлявший круговую трещинку около 1—3 мм в диаметре, которая, как правило, возникает дочти на всех площадках при ударе каменным отбойником. По этому важному признаку всегда можно без тщательного анализа формы определить, каким отбойником работал мастер древнего палеолита. Глазок уловим и на типичных леваллуазскнх отщепах с фасетированной площадкой.

Бели твердость сухой древесины молодого дуба и кизила принять за 1, а самшита за 1.5—1.8, то твердость рога и кости близка к 2.5—3. Такое свойство рога делает его материалом, более пригодным для обработки камня как техникой удара, так и давления. Все же археология не дает нам пока надежных указаний на применение в эпоху палеолита роговых отбойников, в то время как костяные и роговые ретушеры известны уже с мустьерской эпохи. Экспериментальное изучение этого вопроса приводит к мысли, что кость и рог могли быть использованы в палеолите для ударной обработки каменных орудий. Твердость, плотность и вес рога благородного оленя и лося вполне подходили для этих целей. Однако возможности рога в такой работе были ограничены. Роговые, а тем более костяные отбойники не годились для разбивания и раскалывания галек и конкреций. Эффект их действия состоял в скалывании отщепов тонкого сечения при ударах по краю, подготовленному каменным отбойником, как и в оббивке деревом. В таком узком назначении они даже были незаменимы, например в ударном ретушировании ашельских бифасов. Ударами рогового отбойника можно выравнивать в прямую линию боковые лезвия этих орудий, снимая материал тонкими плоскими отщепами. Роговые отбойники превосходили деревянные весьма важным качеством: они изнашивались постепенно, теряя маленькие частицы рогового вещества, а изношенная поверхность не утрачивала своего рабочего назначения. Это были износостойкие орудия, в то время как поверхность деревянных быстро вылущивалась и размочаливалась. Повышенная плотность и вес рогового вещества имели преимущество и в ударном ретушировании мелких кремневых орудий.

Переход от приемов двусторонней обработки каменных орудий к леваллуазско-мустьерской технике получения заготовок с нуклеуса, хотя был подготовлен предшествующей эпохой, все же является достижением новой эпохи. В ашеле нередко оббивка сопровождалась скалыванием, когда бифасы делались из крупных или мелких отщепов. Но практика подсказывала необходимость превращения этого вспомогательного приема работы в основной способ обработки. Преимущества способа скалывания заготовок с нуклеуса были очевидны, но не сразу стали несомненными в представлении неандертальского человека. Отщеп, сколотый с нуклеуса, имел тонкое сечение, которого нельзя было достигнуть двусторонней обработкой. А заготовку с тонким сечением легче было превратить в орудие с острым лезвием — нож или наконечник копья. Скребла и скобели из отщепов но всем своим рабочим признакам были целесообразнее подобных орудий из бифасов. Исходный материал расходовался экономно, сокращались отходы на оббивку и ретушь. Эти акты вторичной обработки сводились к подправке отщепов путем удаления лишних участков, притупления нерабочего края и подретушевки края, предназначенного к использованию. Следствием более деликатного отношения к тонколезвийным отщепам объясняется и возникновение отжимной ретуши при помощи каменного или костяного ретушера в новую эпоху. К ударным приемам присоединялись приемы давления на край подправляемого лезвия. Труд по изготовлению каменных орудий постепенно приобретал прецизионный характер.

Однако возникновение нуклеуса не явилось чем-то неожиданным. В развитии нуклеусов прослеживается несколько этапов. К ранним формам принадлежали такие нуклеусы, в которых не было выработанной системы скалывания. Удары наносились беспорядочно, превращая в отбивную площадку любой фас. При получении отщепов не ставились задачи экономии материала, достижения определенной формы заготовки (ее длины, ширины, толщины). Фасы носили характер глубокораковистых граней, нуклеусы не имели определенной формы. К этой категории относились гальки, оббитые ради получения отщепов, шаровидные и кубовидные типы (дотпелль, шелль, ранний ашель).

На следующем этапе возникли дисковидные нуклеусы, в которых наметилась определенная ориентировка при скалывании. Нанося удары от периферии к центру (радиальные), человек стремился к получению

а

нескольких отщепов с одной или с обеих сторон нуклеуса. Таким приемом обеспечивались более плоские отщепы с лучше выраженными лезвиями. В качестве исходного материала подбирались линзовидные и плоскоовальные гальки и желваки.

Несколько позднее начинали свое развитие пирамидальные нуклеусы, выражающие тенденцию к получению ножевидных отщепов и пластин как почти готовых орудий. Прямолинейность, тонкое сечение, ограненность спинки, листовидная или треугольная форма заготовок, наличие отбивных площадок, специально подготовленных перед скалыванием, — таковы основные черты получаемых с пирамидальных нуклеусов заготовок. В лучших своих образцах эти заготовки имеют трех- и даже четырехгранную спинку. Появление этой техники связывают с серединой ашеля, а расцвет — с мустьерской эпохой.

Из пирамидального нуклеуса как логическое завершение наметившейся тенденции получения наиболее совершенной заготовки вырастает нуклеус призматический. Повседневная практика многих тысячелетий убеждала человека в преимуществах удлиненной, прямолинейной пластинки. Именно такая заготовка позволяла максимально и наиболее экономно использовать материал. Узкие, прямые, параллельно снимаемые пластинки, площадки которых малы, объем скупо рассчитан, оказывались универсальными заготовками. Техника, зародившаяся в конце мустьерской эпохи и сделавшая серьезные завоевания в позднем палеолите, открыла человеку возможность резко умножить состав его орудий при скромных запасах сырья, дифференцировать производство. Наконечники дротиков, ножи разных типов, концевые скребки, проколки, сверла, вкладыши и другие орудия приобрели специализированные функции.

Рассмотренные нами механические принципы первичной ударной обработки изотропных пород преимущественно касались оббивки и скалывания без опоры, когда обрабатываемый предмет поднят над землей. Что касается ударной обработки на опоре (камень, кость, дерево, земля), то, хотя указанные правила остаются в силе и здесь, сам процесс несколько усложняется действием силы контрудара. Особенно значителен контрудар в процессе работы на каменной наковальне. На основании опыта можно заключить, что действие сил удара и контрудара не должны совпадать по своим направлениям. В противном случае скалывающая резко деформируется и дает мелкий осколок с волнистой поверхностью. Действие контрудара в значительной мере ослабевает, если скалывание ведется с пирамидального нуклеуса, нижний конец которого, упирающийся в наковальню, не противостоит точке удара на отбивной площадке.

У нас пока нет сведений, пользовались ли люди древнего или среднего палеолита каменными наковальнями. Под этим углом зрения археологический материал еще не изучен. Что касается костяных наковален, то такого рода данные уже выявлены. Имеются в виду кости от стопы мамонта из грота Кош-Коба (Крым) со следами обработки на них каменных орудий. На промежуточной кости (Os intermedium dextra) правой кисти мамонта обнаружены глубокие угловатые вдавленности, свидетельствующие своей формой и ориентировкой об установке на ее плоскую поверхность неандертальским человеком кремневых нуклеусов для скалывания с них отщепов.

Об использовании каминных наковален при ударной обработке кремня говорят позднепалеолитические материалы Европы, Азии и Африки. Этот способ широко применялся аборигенами Австралии. Археологами Аделаиды древние каменные наковальни обнаружены на о. Кенгуру. Этнографы работу туземцев с каменными наковальнями отметили в разных частях континента. Но чаще всего австралийцы скалывали отщепы и пластинки с опорой нуклеуса о землю.

Преимущество скалывания отщепов и пластин с нуклеусов на шоре заключалось в возможности более надежно ориентировать предмет обработки и значительно точнее наносить удар отбойником. Если же эта опора была пластичной, ослаблявшей силу контрудара, как в случае опоры на землю, скалывание могло достигнуть некоторого прогресса.

Как о том свидетельствуют австраловеды, туземец брал кусок кварцита или мелкозернистого песчаника около 20 см длиной и 15 см в диаметре, на котором для образования отбивной площадки один конец был сбит поперечным ударом. Заготовку такого нуклеуса он острым концом упирал в землю и, придерживая ее левой рукой, начинал наносить удары кварцитовой галькой, зажатой в правой руке.

1) Первый удар наносился в точке X и отделял отщеп по линии А—В. Второй удар наносился в точку Y и отделял отщеп по линии С—D. Оба отщепа имели только спинку, покрытую коркой, и брюшко. Если сколотые таким образом два отщепа создавали на нуклеусе две пересекающиеся внизу грани, как показано на рис. 4, то третьим ударом, нанесенным в точку Z, отделялась уже пластинка. Она имела две или три грани на спинке (рис. 4).

Рис.  4 .  Последовательные  этапы ( X, Y, Z ) нанесения ударов отбойником по нуклеусу при скалывании пластин-отщепов (Leilira) у австралийцев.

На практике очень редко хорошая ножевидная пластинка получалась после третьего удара. Как форма, так и размеры пластинок во многом зависели от случая и удавались только опытному мастеру. Такие пластинки-отщепы или клинки выделывали у аранда, варраманга, кайтиш и других племен. Их применяли в качестве наконечнике копий, ножей, заключая тупым кондом в смоляную рукоятку (рис. 5), которая в некоторых случаях имела с противоположного конца маленькую плоскую деревянную дощечку, нередко расписанную желтой, белой и черной красками. Смола на рукоятке покрывалась красной охрой.

Рис. 5. Кварцевый нож австралийцев в смоляной рукоятке.

Готовый нож обычно держали в ножнах, сделанных из тонко нарезанных полосок коры, обмотанных шерстяными или растительными волокнами и обмазанных белой глиной. На конце ножен был прикреплен пучок перьев эму.

Крупные пластины до 20 см длины, которые скалывались в бассейне р. Кунер-Крик, служили ножами, пригодными для двуручного строгания дерева. Такие ножи использовались и в поединках как оружие. Рукояточная часть их обертывалась в шкуру опоссума мехом наружу. Они нередко служили наконечниками копий после дополнительной обработки или без нее, если пластина была прямая и заостренная. Из массивных экземпляров в центральных областях часто делали топоры-клевцы. По словам Спенсера и Гиллена, было трудно определить, какое назначение получит такая заготовка (ножа, наконечника, клевца), пока она не скреплена с рукояткой. Из мелких пластинок австралийцы изготовляли ножички, проколки, скребки, ланцеты.

Кроме ножей из пластин-отщепов и пластинок, у австралийцев существовала древняя форма каменных ножей, очень грубо и наскоро обработанная. Она напоминала лучшие образцы тасманийских орудий и употреблялась больше в качестве скобеля. Рукояточная часть покрывалась смолой.

Топоры-клевцы из отщепов обычно скреплялись с рукояткой двумя способами: 1) каменное орудие вставлялось в расщеп прямой палки, вырезанной из мульги или камедного дерева, размерам около 46—50 см длины; место соединения скреплялось смолой; 2) рукоятка изготовлялась из продольной половинки расщепленной палки длиной 90—100 см, которая разогревалась на огне и складывалась пополам плоскими сторонами внутрь; на месте изгиба помещалось орудие, схваченное гибкой рукояткой, которая в этом месте обмазывалась смолой, а далее связывалась растительными волокнами или женскими волосами.

В Новом Южном Уэлсе, Виктории и других областях из кремня, кварца и кварцита тем же ударным способом отщеплялись микропластинки, из которых делались полулуния, трапеции, треугольники, острия, служившие вкладышами для копий, ножей и гарпунов.

Ударная обработка кремня находит свое завершение в производстве нешлифованных топоров-транше, известных в Европе с мезолита. Ф. Сальмой раньше других заинтересовался орудием типа транше и определил его в качестве топора, вызванного к жизни изменившимися природными условиями. С открытием этих орудий в Кампиньи возникло представление о том, что здесь мы имеем «первое проявление лезвия без ретуши, помещающегося на конце инструмента», играющего роль топора. Такой вывод подкреплялся находкой транше в деревянной рукоятке на торфяных разработках в Дании. Рукоятка имела изогнутую форму и была расколота в процессе употребления. Ж. Дешелетт, А. Брейль и другие авторы пришли к выводу, что транше (предшествует шлифованному топору, являясь его прототипом.

Характерной особенностью топора типа транше была техника его изготовления, основанная на использовании ровных и гладких поверхностей, получаемых при обработке кремня усовершенствованным скалыванием. Заготовками для транше служили крупные кремневые отщепы или плоские конкреции, обработанные оббивкой и ретушью так, чтобы орудие имело более или менее широкое лезвие, образуемое одной или двумя боковыми плоскостями, Лезвие, образуемое одной плоскостью, ретушировалось с противоположной стороны. Лезвие, образуемое двумя плоскостями, не ретушировалось.

Опыты показывают, что кремневые топоры типа транше могли служить для обработки дерева в течение продолжительного времени, если лезвие было образовано боковыми плоскостями, расположенными под углом 50—60°. Более тонкое лезвие скорее ломалось. Для получения широких боковых плоскостей на нешлифованном топоре древние мастера пользовались боковым сколом, наносившимся под утлом 90° к вертикальной оси топора. Боковым сколом иногда пользовались и для подновления затупленного топора.

Трудность шлифовки кремня заставляла некоторые древние племена Европы эпохи неолита пользоваться топорами типа транше в течение долгого временя, почти до возникновения металлов. Отдельные авторы полагают, что односторонние топоры-транше предшествовали двусторонним топорам-транше.

 

Расщепление с помощью посредника

Расщепление призматических нуклеусов на ножевидные пластинки возникло в позднем палеолите под влиянием общих тенденций развития: экономного использования цепного материала и получения универсальной заготовки, которая способна была бы служить для самых различных целей. Разумеется, такая задача не ставилась древним человеком сознательно. Она вырастала в самом процессе труда как необходимое и закономерное направление его.

Известно, что получение ножевидной призматической пластинки из кремневого нуклеуса долгое время представляло техническую загадку. Сохранившееся с XVII в. описание испанскими монахами Торквемадой и Хернандесом процесса расщепления обсидиана индейцами Мексики удовлетворяло ученых лишь частично. Попытки археологов воспроизвести описанный способ на кремне не удавались.

Поиски разгадки способа получения призматических пластинок из кремневого материала принудили нас к исследованию отжимных площадок на пластинках позднего палеолита. Были просмотрены большие коллекции из Костенок I и IV, из Тимоновки, Елисеевичей, Супонева и других стоянок. Удалось установить своеобразные следы на площадках кремней в виде трещин, вдавлен и царапин. На что указывали эти следы? Было очевидно, что они являются результатом давления очень твердого орудия на площадку. Согласиться с А. Барнесом относительно предварительного царапания площадки нуклеуса для облегчения операции расщепления было трудно. Вдавленности, трещины и царапины на площадках отличались признаками, которые говорили о единичности этих следов и тесной связи их с актом расщепления. Кроме того, от царапания пе должны были появиться трещины, вдавленности и измятость края. На основе этих фактов сложилось предположение о способе отщепления пластинок с помощью деревянного отжимника, оснащенного кремневым наконечником. Таким отжимником можно было работать с упором его в плечо.

Эту гипотезу не удалось подкрепить экспериментом. Опыты по расщеплению кремня в Крымской экспедиции убедили нас в том, что даже для скалывания небольшой пластинки путем давления мускульной силы человека недостаточно. Давление следовало заменить ударом.

Изучение способа, описанного испанскими монахами, показывало, что здесь речь шла не о простом давлении стержнем на нуклеус, а об импульсивном движении, толчкообразном, резком нажиме грудью на перекладину стержня. Изображение процесса обработки кремневых ножей на гробнице Амени в Бени-Гасан (XII династия, 1700 л. до н. э.) свидетельствует не об отжимном ретушировании, как обычно было принято понимать способ получения крупной ретуши, зародившейся еще в солютрейскую эпоху, а о толчкообразном, импульсивном воздействии на край орудий через посредник. Ретушируемый нож краем приставлялся к верхнему концу ретушера, и оба предмета одновременно с силой опускались на «наковальню». От удара возникал импульс, который передавался вверх и отщеплял крупную чешую с поверхности кремневого изделия. Г. Селлерс, опираясь на наблюдения Г. Кэтлиным труда американских индейцев, тоже говорит об импульсивных, даже об ударных способах расщепления. В обоих случаях, которые наблюдал Г. Кэтлин, употреблялись деревянные стержни, на рабочих концах которых были прикреплены костяные или роговые наконечники. Иногда наконечниками служили бивни моржа, доставляемые с берегов моря. В первом случае, когда отщепление пластинки с нуклеуса производилось резким надавливанием грудью на задний конец стержня, индейцы работали стоя или сидя, в зависимости от длины стержня. Для закрепления нуклеуса на земле в неподвижном положении употребляли деревянную щемилку: это были две полосы дерева, крепко связанные у обоих концов. В другом случае индейцы стержень своего орудия делали из молодого ствола, оставляя на нем два сучка. К одному сучку привязывался тяжелый камень для увеличения давления на нуклеус. Другой, пониже, служил уступом, но которому наносился помощником мастера удар дубиной в тот момент, когда сам мастер надавливал на стержень грудью, с позиции стоя. Удар дополнял давление, ускоряя импульс. Таким удвоенным усилием удавалось отщеплять пластины из кремнистого сланца до 30 см длиной.

В Крымской экспедиции нами был применен более простой способ, которым работали индейцы Калифорнии. Отщепление пластин производилось ударами каменного молотка по роговому посреднику, наставленному на край нуклеуса. Примерно таким же способом работали мастера племени апахов, употребляя в качестве посредника зуб кашалота, а ударника — деревянный молоток. Расщепление происходило в воздухе, без опоры нуклеуса на землю или какое-либо приспособление. Работали нередко двое. Один человек держал нуклеус в левой руке, а посредник, наставленный на край нуклеуса, в правой. Другой — наносил удар по посреднику молотком. Если работал один человек, нуклеус и отжимник он вынужден был держать в одной руке, левой, прижимая тремя пальцами нуклеус к ладони, а между двумя (указательным и средним) удерживая посредник.

В наших опытах работал один человек. Чтобы обе руки были свободными, он зажимал нуклеус между коленями, предварительно обернув его с боков куском кожи (рис. 6). Работающий садился на чурбан или камень в такой позе, чтобы колени были в отношении корпуса под углом 80—90°. Посредником служил отросток рога оленя или лося, ударником (колотушкой) — кусок дерева с утолщением на конце. Для смягчения удара к заднему концу рогового отростка  привязывалась деревянная рукоятка, и удар наносился по ней. Таким образом, рог играл роль наконечника.

Рис. 6. Отщепление призматических пластинок с нуклеуса при помощи посредника и колотушки (Крымская опытная археологическая экспедиция. 1957 г.).

Целям амортизации служил и зажим нуклеуса между коленями. На зыбкой опоре с упругим посредником действие скалывающего эффекта замедлялось. Линия скалывания проходила «пологой волной», отщепляя пластину во всю длину нуклеуса.

Зажим нуклеуса между коленями был возможен, если обрабатывались нуклеусы крупные и средние. Работа с мелкими нуклеусами осуществлялась посредством щемилки, которую с полным правом можно считать древнейшими тисками. Щемилка состояла из расщепленного кизилового ствола около 5 см в диаметре, а длиной до 70—80 см. Две половинки ствола, связанные на одном конце ремнем, защемляли нуклеус и затягивались петлей на другом конце. Щемилка укладывалась между двумя чурбанами или камнями, на один из которых садился мастер, прижимая ее к сиденью. И в этом случае было соблюдено требование амортизации (рис. 7).

Рис. 7. Отщепление призматических пластин от мелкого нуклеуса в щемилке с помощью посредника.

Весь процесс изготовления призматических пластин начинался с подготовки нуклеуса, включающей следующие операции:

1) отбор кремневых желваков соответствующей формы, однородной структуры и без трещин;

2) скалывание с желвака «шапки» ударом отбойника для образования отбивной площадки;

3) удаление желвачной (меловой) корки с помощью того же посредника;

4) снятие на площадке «бахромы» (острых углов и «карнизов»), образовавшейся после отщепления корки (эта операция производилась вслед за отщеплением каждой пластинки).

Когда нуклеус был готов, мастер приступал к анализу отбивной площадки с целью выбора топки для установки рабочего конца посредника. Предстояло найти такое положение последнего, при котором нуклеус не раскололся бы пополам, пластинка не получилась бы слишком толстая или короткая. Для этого конец посредника нельзя было удалять от края или слишком приближать к нему. Здесь имели решающее значение миллиметры и даже доли миллиметра. Одновременно с установкой посредника на площадку нуклеуса решался вопрос о том, под каким углом он был наклонен, что в свою очередь определяло успех расщепления. Эти два существенных условия сопоставлялись. Мастер должен был предвидеть, в каком направлении пойдет скалывающая и какие препятствия встретит на своем пути — утолщения, неровности профиля, неоднородности структуры материала, пустоты и включения. Немалую роль играл расчет силы удара по посреднику.

Как и при скалывании мустьерско-леваллуазских отщепов, результат зависел от величины и веса орудий расщепления. В работе с крупным нуклеусом требовался большой посредник и пропорционально тяжелый ударник. Мелкие пластинки с малого нуклеуса отщеплялись орудиями соответствующего размера. В практике эксперимента выяснилось, что для получения пластин длиной 10—15 см наконечники посредников лучше делать из крупных отростков лосевого рога, для средних пластин (8—10 см) подходят отростки рога благородного оленя, а мелкие (4—5 см) можно отщеплять посредником с наконечником из отростков косули. Если же такого выбора не было, наконечники для посредников разной величины изготовлялись из какого-нибудь одного материала — оленьего или лосевого рога.

Опыт, кроме того, показал, что роговые наконечники очень быстро выкрашивались от ударов колотушкой и затуплялись. Их необходимо было время от времени приострять, придавая слегка уплощенную форму рабочему концу. Когда наконечники сильно укорачивались и их трудно было привязывать к деревянному стержню (рукоятке), они заменялись новыми.

Пластинка в момент отщепления с металлическим звоном отлетала в сторону на 3—5 м от мастера, причем она нередко разбивалась, встречая на пути твердое препятствие. Поэтому целесообразно было экранировать сферу полета пластинок во избежание брака. Лучшим являлся экран из мягких ветвей и листьев.

Каждый раз вслед за отщеплением пластинки мастер должен был тщательно осматривать и даже подправлять отбивную площадку нуклеуса горизонтальными сколами при помощи посредника. Требовалось, чтобы угол края площадки не превышал 90°, а сам край был слегка приподнят во избежание срыва с него посредника, чтобы поверхность площадки оставалась гладкой.

После того как способы расщепления кремня были усвоены, с одного нуклеуса мастер снимал десятки пластинок (рис. 8). Два сотрудника экспедиции за 1.5 месяца работы изготовляли несколько тысяч призматических пластинок разных размеров — от 4 до 15 см длины. За тот же период усилиями двух лиц часть этих пластин была отретуширована: удалены «хвосты», «припуски», различные «наросты», столь обычные на только что отщепленных заготовках. Несколько сот из них послужили для выработки резцов, концевых скребков, ножей, наконечников, копий, сверл, разверток, проколок и других орудий позднепалеолитического типа. Выяснилось, что в основе изготовления резцов лежала та же техника расщепления, как и при расщеплении пластинок, но осуществляемая при помощи посредника и колотушки малых размеров. Посредник устанавливался на торец рассеченной пополам пластинки. Ударом колотушки часть лезвия пластины снималась, образуя на боковом крае торца рабочую кромку резца.

Высокая производительность при выработке призматических пластин имела влияние на экономическую жизнь древнейших людей. Группы охотников, занимавшие территории с ценным камнем, могли, как это мы знаем по австралийским племенам, обменивать заготовки или почти готовые орудия, каковыми фактически являлись призматические пластинки. Обмен, конечно, не мог не влиять на рост мастерства их производителей, а следовательно, и на качественные различия технического уровня в разных областях и странах в одну и ту же эпоху.

Рис. 8. Пластины, отщепленные от одного нуклеуса.

Однако при всей неравномерности технического прогресса в разных районах мы наблюдаем большие сдвиги при переходе от одной эпохи к другой. Уже в мезолитическую эпоху обращает на себя внимание дальнейшее совершенствование техники расщепления кремня. Пластинки приобретают очертания более правильных призм, на нуклеусах выступает четкость граней, изделия становятся мельче, отделка тоньше. Микролитизация, возникшая еще в позднем палеолите, теперь служит важным направлением развития.

В неолите мы видим новый подъем техники расщепления. Даже на территориях, где, как, например, в Сибири и Казахстане, из-за недостатка хорошего кремня изготовление палеолитических орудий стояло на низком уровне, теперь находим превосходно ограненные нуклеусы и соответствующие им пластинки из кремнистого сланца. Были выработаны иные приемы, позволявшие совершенствовать изделия из низкокачественного камня. Показательна в этом отношении поздненеолитическая стоянка Восточного Казахстана Усть-Нарым, раскопанная С. С. Черниковым в 1950—1956 гг., материалы которой изучены Г. Ф. Коробковой. Здесь употреблялась кремнистая порода с шероховатой поверхностью в изломе, встречавшаяся в гальках и плитках. Обитатели стоянки оставили после себя многочисленные серии нуклеусов, пластинок, готовых и использованных орудии, исчисляемых тысячами. На нуклеусах можно проследить стадии развития их от палеолитических форм с аморфными очертаниями до совершенных «карандашей» и «подушек». В хозяйственной практике усть-нарымцев необходимы были весьма различные орудия, куда входили и давно изжитые типы. Однако главным в облике каменного инвентаря оставались весьма развитые способы расщепления. Чтобы получить прямолинейные пластинки с параллельными гранями, мастера Усть-Нарыма тщательно оформляли нуклеусы — нужны были такие формы, при которых операция расщепления была бы максимально облегчена, обеспечен свободный ход скалывающей. С нуклеусов удалялись все лишние части, выступы, боковые наросты, площадке придавался вогнутый вид, нижний конец заострялся, чтобы свести искривление пластинки в профиле к минимуму. Прямые пластинки более всего отвечали требованиям вкладышей. Л их скорее всего можно было получить от укороченных нуклеусов, если материал не отличался высоким качеством.

Рис. 9. Кремневые призматические пластинки.

А — отщеплены в Крымской опытной археологической экспедиции (1957 г.);  Б — из погребального неолитического комплекса, раскопанного З. В. Гоголевым близ р. Амги (Якутия).

Неолитическое погребение у р. Амги в Якутии, раскопанное в 1967 г. 3. В. Гоголевым, дает нам пример другого рода. Призматические пластинки получалась из халцедонового кремня, редкого в Сибири. Эти предметы производит впечатление ювелирных изделий. Многие из них имеют ширину в 5 мм, толщину 1 мм и длину 55 мм (рис. 9, В). Пластинки таких пропорций свидетельствуют о мастерстве, пока не имеющим исчерпывающего объяснения. Их нельзя было получить ударом колотушки по посреднику. Ширина их отбивной площадки колеблется от 1 до 0.3 мм. Изучая с лупой площадку, мы нашли слабые следы воздействия, говорящие скорее об отжимном способе их отщепления при помощи костяного или рогового инструмента. При сопоставлении этих пластинок с полученными экспериментальным путем (рис. 9, А) видно, что они имеют более правильную форму.

В неолитических мастерских Гран Прессиньи отщеплялись пластинки длиной в 20—30 см от узких и длинных нуклеусов, которые в свою очередь представляли собой крупные отщепы. Здесь мы имеем еще один пример прецизионной техники.

 

Обработка давлением

Отжимное ретуширование кремневых, кварцитовых и обсидиановых орудий началось в древнем палеолите. Оно зародилось, по всей вероятности, одновременно с каменными ретушерами, роль которых вначале выполняли отбойники, а затем мелкие камни или куски оббиваемой породы. Отжимная ретушь выражала новый подход к каменному изделию, стремление улучшить его качество замедленными усилиями и более тщательным выбором точки силового воздействия. Она рассчитана на удаление малых частиц материала и продиктована желанием уменьшить риск погубить изделие неудачным ударом.

Отжимная ретушь появляется почти одновременно с леваллуазской техникой скалывания отщепов и пластин с нуклеуса и представляет закономерное дополнение этой техники в такой степени, в какой ударная ретушь служила неотъемлемой частью техники двусторонней оббивки, техники производства бифасов. Это не значит, что ударная ретушь прекращается с появлением ретуши отжимной. Ударная ретушь и двусторонняя обработка продолжают свое развитие дальше, взаимодействуя и дополняя другие способы обработки камня, возникающие позднее.

Впервые каменные ретушеры-отжимники были установлены на материале Волгоградской мустьерской стоянки трасологическим методом, а результаты наблюдений опубликованы в 1961 г. Это были кремневые и кварцитовые гальки малого размера — от 75 до 95 г весом, слегка уплощенной подтреугольной формы. Признаками такого употребления являлись выщербины или лунки на поверхности галек, возникшие от давления на край обрабатываемого кремневого орудия. Выщербины были невелики, занимали площадь от 0.3 до 0.8 мм3, отличались продолговатой формой. Они группировались по несколько десятков и лежали на узких выпуклых боках уплощенных галек, а если размещались на плоских частях, то были сдвинуты ближе к узкому. концу.

В 1965 г. эти сведения были дополнены новыми данными, полученными на материале мустьерской стоянки Рожок I, раскопанной Н. Д. Прасловым близ Таганрога в Приазовье. Здесь функции ретушеров выполняли готовые кремневые орудия. Для ретуширования использовались преимущественно отбивные бугорки, выступающие на плоскости брюшка. Кроме того, было возможно для той же цели пользоваться и отбивной площадкой, находящейся поблизости к отбивному бугорку.

Три орудия, на которых обнаружены такие следы, имеют различные формы и размеры. Наименьшее из них (рис. 10, Г) можно было назвать а симметричным остроконечником. Отбивной бугорок и отбивная площадка покрыты не только мелкими выщербинками, но и трещинами дугообразной формы («занятыми»). На бугорке очертания трещин видны более отчетливо, чем на площадке, где использованы главным образом края. По ряду признаков можно судить, что орудие вначале не предназначалось для функций ретушера. Оно могло служить ножом, скобелем и проколкой одновременно. Ретуширование стало четвертой, дополнительной функцией.

Самое крупное орудие представляет подправленный по краям ретушью отщеп 11.5 см длины и 6 см ширины с большой отбивной площадкой. На спинке сохранилась значительная часть желвачной корни (рис. 10, А). Следы работы сосредоточены на отбивном бугорке. Это хорошо заметные невооруженным глазом выщербинки, образовавшиеся от давления на край обрабатываемого орудия. Увеличенное изображение их дано на микрофото (рис. 10, Б, В). Они слегка вытянуты и собраны в короткие цепочки, отражая протяженность ретушируемого края. Длина их колеблется от 0.2 до 1.3 мм, глубина не превышает 0.2—0.3 мм. Основные функции орудия (нож, скобель) отражены менее отчетливо. Лишь некоторые ориентиры заставляют предполагать, что правое лезвие (если смотреть с брюшка) употреблялось в качестве ножа, левое — скобеля.

Основное назначение третьего орудия недостаточно ясно. Следы затупливания края и повторного ретуширования говорят о функциях скобления. Отбивной бугорок на брюшке орудия отсутствует. Следы ретуширования рассеяны но большой площади брюшка. Всего здесь насчитывается около 35 точек, но с более слабой силой давления. Для их обнаружения и подсчета потребовалась лупа с малым увеличением.

В мустьерскую же эпоху очень широко применялись и костяные ретушеры но тем же техническим принципам давления, как и ретушеры каменные. Г. А. Бонч-Осмоловский в свае время убедительно опроверг мнение А. Мартена о костяных «наковаленках», якобы служивших подкладками при отесывании деревянных острий. На материалах Киик-Кобы он доказал, что все известные в Европе костяные ретушеры эпохи мустье применялись как отжимники, без использования удара. Наши исследования подтверждают его интерпретацию костяных ретушеров. Теперь такие работы производятся за рубежом. Все эти ретушеры имеют следы работы на концах, а не в центре (рис. 15, А—В). Ориентировка этих следов ясно показывает положение их в руке.

Исследование кремневых ретушеров привело к предположению, что мустьерский человек, оставивший нам следы такой деятельности, обладал физической силой кистей рук, намного превышавшей среднюю силу современного человека. Чтобы проверить это, ставились опыты по воспроизведению аналогичных следов на экспериментальных ретушерах. Выяснилось, что современный человек со средней силой кисти руки, способной выжимать на ручном динамометре Коллена 55—60 кг, не может произвести такое давление кремневым ретушером на край обрабатываемого орудия, которое оставляет на поверхности ретушера следы, равные но объему следам, сохранившимся на мустьерских орудиях. Здесь следует иметь в виду, что при ретушировании давлением расходуется не вся сапа кисти руки в 55—60 кг, а лишь меньшая часть ее. Это происходит истому, что при давлении ретушером на край обрабатываемого орудия сила пальцев работает в такой комбинации (синергии), при которой нельзя выдавить больше 20—25 кг.

Какая сила требовалась для получения нужного эффекта? С помощью динамометра Матье-Коллена и рычажного приспособления было найдено, что следы в форме выщербин; аналогичные мустьерским, были получены при давлении в 140—150 кг. Это значит, что мустьерский человек, производивший такую работу, обладал силой сжатия пальцев, превосходившей среднюю силу кисти современного человека в 6—7 раз.

После экспериментов с каменными ретушерами были проведены серии опытов с ретушерами из трубчатой кости и оленьего рога. Твердость кости и рога значительно ниже твердости кремня. Она близка к 3 по шкале Мооса. Опытные работы с костяными ретушерами показали, что человек средней силы способен воспроизвести слабо обозначенные следы—вдавленности на их поверхности, употребляя усилие в 20—25 кг. Эти экспериментально полученные следы при сравнении со следами на мустьерских ретушерах представляли 1/5 или 1/6 объема вторых. На свежей, более мягкой кости, содержащей влагу и жировые вещества, следы от давления были резче выражены, на сухой кости — были мало заметны.

Физическая мощь кисти неандертальца подтверждается костной основой клети киик-кобинского человека, которая отличается массивностью, хотя по общей длине эта кисть близка к средним размерам руки современного человека. Кости запястья, пясти и концевые фаланги шире и толще, высокие гребни на суставах (места прикрепления сухожилий) указывают на очень сильный мышечно-связочный аппарат. Анатомические признаки костей кисти киик-кобинца заставили Г. А. Бонч-Осмоловского выдвинуть гипотезу о «лапообразности» руки этого человека, неспособности свободно противопоставлять большой палец, плотно сжимать кисть в кулак. Причиной большой силы и недостаточной двигательной дифференцирован руки киик-кобинца он считал еще не преодоленные им остатки опорных функций, унаследованных у животных. Руку киик-кобинца Г. А. Бонч-Осмоловский сближал с передними конечностями горной гориллы и бабуина. Как известно, рука крупного шимпанзе превосходит среднюю силу руки человека в 3—4 раза, а рука горной гориллы — в 5—6 раз.

Найденный метод для измерения физической силы киста руки человека древнего палеолита имеет значение для оценки всего жизненного потенциала гоминид, для более правильного понимания антропогенеза. Естественно, что мощные кисти рук не составляли исключения среди других сегментов костно-мышечного аппарата. Им, вероятно, соответствовали остальные биомеханические звенья как верхних, так и нижних конечностей, лицевых, шейных, поясных и тазовых сочленений. Неандертальский человек, оставивший нам следы физической крепости на стоянках Волгоградская, Рожок I, Киик-Коба и других, стоял на том уровне развития, при котором он мог еще конкурировать с животным миром и в биологическом плане. Он очень медленно и постепенно расставался со своим биоэнергетическим потенциалом, и лишь в той степени, в какой эти потерн возмещались прогрессом его охотничьего оружия и организации хозяйства.

В позднем палеолите сохраняются почти все приемы отжимной ретуши, существовавшие в мустьерскую эпоху. Например, в Костенках I обнаружен ретушер, сделанный из части бивня мамонта, продольно расчлененного резцом. Костяные ретушеры известны на палеолитических стоянках Франции и других стран Западной Европы. Встречаются в качестве ретушеров обломки трубчатых костей и клыки волков, пещерных медведей и крупных кошек — Feli spelaca (рис. 15, Б, В). В ряде стоянок в районе Костенок и других местонахождений Советского Союза найдено большое число кремневых ретушеров со следами работы. Сюда могут быть отнесены использованные нуклеусы, сломанные орудия, призматические пластинки. Все они свидетельствуют, что приемы ретуширования, основанные на использовании мышечной силы кистей рук, принадлежащие к безопорным способам, применялись очень широко и играли важную роль. Вместе с тем в позднем палеолите возникают и способы опорного ретуширования, когда обрабатываемый предмет укладывался на деревянную или костяную опору, что позволяло мастеру употребить давление посредством использования не только силы мышц, но и веса своего тела. Следы на кремневых поделках из Большой Аккаржи, обнаруженные Г. В. Григорьевой, свидетельствуют именно о таком способе. Эти линейные следы, оставленные концом кремневого ретушера, скользящего под сильным давлением по поверхности поделки. Их трудно назвать царапинами или бороздами, которые тоже встречаются довольно часто. Следы эти скорее напоминают линейные вмятины, проложенные но направлению к краю очень твердым ретушером, поставленным на пластинку под прямым углом. Они имеют блеск, указывающий на то, что рабочий конец ретушера не царапал, а как бы выглаживал, выравнивал шероховатую поверхность кремня. Это значит, что конец сам был заглажен и выровнен в процессе употребления.

Чем было вызвано появление способа ретуширования на опоре? Микролитизацией орудий в позднем палеолите, большими трудностями ретуширования мелких пластинок, тем более сегментов, зажатых только между пальцами. При давлении ретушером на мелкую поделку требуется огромное усилие, чтобы удержать ее в руке. Опора принимает на себя всю силу давления, освобождает руку от излишнего усилия, возлагая на нее только фиксацию изделия в неподвижности в момент надавливания. В качестве опорного приспособления могли быть использованы камни, древесные стволы, очищенные от коры, столбы, вкопанные в землю, крупные кости мамонтов, носорогов, черепах, мягкие горные породы и другие предметы, занимающие устойчивое положение. На практике ударные и отжимные способы работы в развитой форме всегда сочетались, дополняясь другими приемами.

Выделка наконечников для дротиков и стрел была основным занятием охотников, за которым их всегда можно было застать в часы домашней работы. Это объясняется ломкостью каменных наконечников. Этнографы неоднократно указывали, что у австралийцев эти наконечники ломались после каждого броска копья независимо от того, попало ли оно в цель или нет. «Едва ли будет преувеличением сказать, — отмечает Лав, — что главное занятие мужчин ворора — пение и выделка наконечников, в то время как женщин — поиски пищи и топлива».

Ломкость каменных наконечников для стрел и копий искупалась возможностью быстро возмещать эти потери нередко даже в походных условиях. Об одном из таких случаев рассказывает Д. Ф. Снидер, наблюдавший в Калифорнии за действиями индейца-охотника, который сломал наконечник стрелы, охотясь за зайцем.

Разыскав в ложе потока кусок кварца, он сел на валун и размотал сухожильную нить, державшую черенок на древке. Эту нить он положил себе в рот, чтобы размочить ее слюной, а куском кварца стал ударять по гальке, лежавшей на левой руке. Когда заготовка была доведена до желаемого размера, охотник отвязал от своего колчана отросток оленьего рога, висевший на козьем ремешке, и стал им работать. Он надавливал узким концом отростка, на котором была сделана выемка, на край заготовки и отламывал частицы кварца. Затем индеец положил заготовку на ладонь, прикрытую кожаным отворотом колчана, и стал ретушировать тем же концом отростка. Минутами он прерывал работу, чтобы оценить ее результаты. Когда заготовка приняла обычную для наконечника листовидную форму, охотник доделал ее другим концом отростка, заточенным наподобие резца но дереву. Закончив наконечник, он привязал его к древку вынутой изо рта нитью. Весь процесс от выбора камня до привязывания готового наконечника занял не более 25 мин.

Каменные наконечники для копий и дротиков австралийцы делали из горного хрусталя, белого кварцита, кремнистого сланца, роговика и других материалов. На листовидные наконечники, напоминающие солютрейские, но с зазубренными краями, первым обратил внимание в Кимберли Ф. Кинг. Позднее наконечники для копий австралийцы научились обрабатывать из бутылочного стекла, применяя те же приемы работы. Вначале они делали заготовку каменным отбойником, а затем начинали оформлять наконечник с помощью ретушера из кости ому или ребер кенгуру, снимая тонкие чешуйки надавливанием этого инструмента на край заготовки.

А. П. Элькин, подробно описавший технику выделки наконечников, сообщает, что кусок необходимого для этой цели кварцита подбирался но форме и весил около 1 кг. Мастер брал материал в левую руку, а правой рукой начинал оббивать его сначала отбойником покрупнее, затем легкой галькой. Эта была первая стадия обработки, ставящая цель довести кусок кварцита до формы заготовки намеченной длины, но имеющей еще большую толщину и ширину. Затем боковые края заготовки пришлифовывались на абразивном камне, чтобы получить на них отжимные площадки для дальнейшей обработки. После этого снова начиналась оббивка ударами легкого отбойника, пока толщина и ширина заготовки не достигала тех масштабов, когда можно было начать окончательное оформление при помощи костяного отжимника. А. П. Элькин отмечает, что пришлифовка острого края заготовки для получения необходимой отбивной площадки иногда повторялась несколько раз.

Заготовка, окончательно подготовленная для отжимных операций, ставилась с упором на каменную наковальню, покрытую корой. Придерживая ее левой рукой в таком положении, мастер правой рукой начинал надавливать костяным ретушером на край, применяя большую силу и ловкость. Благодаря скалыванию тонких чешуй с тела заготовки наконечник приобретал плоскую форму и нужную прямизну. По желанию лезвие можно было сделать ровным или зазубренным. Законченный наконечник весил от 10 до 60 г, и на его изготовление тратили несколько часов работы.

Для ретуширования австралийцы пользовались камнем, костью и твердым деревом (мульга).

В. Олчин допускает, что высокий уровень техники обработки каменных орудий был достигнут под влиянием спроса со стороны коллекционеров, покупавших изделия туземцев. В действительности аборигены владели этим мастерством до колонизации.

Какими техническими приемами достигалась плоская ретушь в крупных листовидных наконечниках копий палеолита и неолита, иногда называемых «солютрейскими» по месту и времени их появления? Приемы работы австралийских аборигенов этот вопрос не освещают полностью. Солютрейские и неолитические листовидные наконечники в отдельных случаях имели 30 и даже 40 см длины при ширине 5—6 см, величина фасов на их поверхности соответствовала этим масштабам. Из отечественных палеолитических наконечников укажем на экземпляр из Костенок IV: длина его 20 см, найден в сломанном виде. Прекрасные неолитические образцы открыты в Волосове (на р. Оке), в поселениях беломорской культуры, в Серовском погребении (Прибайкалье) (рис, 11, В).

Рис. 10 . Каменные ретушеры мустьерской эпохи.

А — кремневый ретушер-отжимник из мустьерской стоянки Рожок I; Б — микрофотография следов работы на поверхности отжимника-ретушера. ×40; В — микрофотография тех же следов, ×200; Г — ретушер, нож, скобель, прополка — в одном орудии.

Рис. 11 . Неолитические кремневые наконечники копий. Образцы плоской ретуши.

А — наконечник из Серовского могильника (сделан на плитчатого кремня: на одной стороне наконечника сохранилась корка плитчатой конкреции); Б — тот же наконечник с крупными фасами на обратной стороне; В — наконечники с черенками из Волосовского клада.

Исследованием выяснена важная деталь во всех этих предметах: они изготовлены не из крупных пластин, отщепленных от гигантских нуклеусов, а из плитчатого кремня. Только плитчатый кремень может дать прямолинейные заготовки, необходимые для таких наконечников. Самые крупные призматические пластины не могут служить заготовками вследствие криволинейности их профиля. Разумеется, применяя к ним выравнивающую ретушь, можно сделать прямые наконечники, но неизбежно укороченных пропорций. В таких наконечниках, а их немало в позднем палеолите, всегда остается в средней части гладкая поверхность пластины, не снятая ретушью. Мы таких участков в крупных солютрейских и неолитических наконечниках не наблюдаем. Наоборот, на поверхности последних можно иногда видеть остаточные участки плитчатой корки. Часто эта остаточная корка, сохранившаяся полоской в средней части наконечника, бывает пришлифована на абразивной плите, чтобы устранить ее шероховатость. Такие наконечники известны в неолитическом погребении Серово в Прибайкалье (рис. 11, А, Б).

Экспериментами Крымской экспедиции удалось получить лишь некоторое приближение к археологическим образцам. Были испытаны два способа: 1) ретуширование с посредником и 2) древнеегипетский способ. При первом способе отщепление производилось ударом колотушки по посреднику, наставленному на край заготовки. Последняя была зажата между колен или в щемилке. При втором, как сказано выше, ретушируемое орудие краем приставлялось к верхнему концу длинного рогового ретушера и оба предмета вместе с силой опускались на торец чурбана (рис. 12, Б). От удара возникал импульс, который передавался вверх через посредник-ретушер к орудию. В результате со звоном отщеплялась крупная чешуя и летела в сторону. Этот способ ретуширования кремневых ножей был изображен на гробнице Амени в Бени-Гасан, построенной в эпоху XII династии, за 1700 лет до н. э. (рис. 12, А). Некоторые существенные детали способа остались неизвестными; качество изделий древних мастеров, особенно «струйчатая» ретушь, экспериментами пока еще полностью не воспроизведена. Есть основание думать, что секрет получения длинного плоского фаса заключается в таких механических предпосылках, которые определяют наиболее упругий импульс, осуществляемый и особым движением руки, и гибким ретушером. Древние создатели фольсомскнх наконечников Северной Америки тоже владели этим секретом. Длинным серединным фасом, нанесенным от основания к острию с двух сторон, они завершали изготовление своих наконечников. Благодаря такому усовершенствованию наконечник идеально укладывался в расщеп древка стрелы или копья, повышая проникающий аффект охотничьего оружия и обеспечивая меньшую ломкость хрупкого материала (рис. 13).

Рис. 12 . Обработка кремневых ножей в Древнем Египте.

А — изображение на гробнице Бени-Гасан (1900 г. до н. э.); Б — ретуширование кремневого ножа древнеегипетским способом (эксперимент).

Рис. 13 . Кремневый наконечник копья типа фольсом (Северная Америка).

Высшим достижением отжимной ретуши и финалом ее пластических возможностей следует считать предметы изобразительного творчества, найденные в Советском Союзе, ОАР, Мексике и других странах. Это изображения млекопитающих, змей, птиц, человека и т. д.

Каменные и костяные ретушеры прошли три стадии своего совершенствования. В мустьерскую эпоху в качестве каменных ретушеров служили мелкие гальки, отбивные бугорки на отщепах или готовых орудиях, а иногда и все брюшко отщепов или орудий. В качестве костяных ретушеров употреблялись фрагменты диафизов трубчатой кости. Работа ретушерами осуществлялась без опоры, в руках, с большим расходом мускульной энергии, при главной нагрузке на мышцы пальцев: большого и указательного со слабым участием остальных. Давление на край обрабатываемого отщепа производилось главным образом боковой частью ретушера. Торцовые участки отжимников еще мало участвовали в работе.

В позднем палеолите человек пользовался более широким набором каменных ретушеров, куда входили сработанные нуклеусы, сланцевые гальке, плитки и даже, как исключение, сланцевые линзы (Костенки IV), специально отшлифованные для этих целей. Костяные ретушеры пополнялись отжимниками из бивня мамонта, рога оленя. В эту эпоху уже наметилась тенденция к удлинению ретушеров и использованию торцовых участков их поверхности.

В мезолите в связи с обработкой микролитов эта тенденция проявилась в полной мере. Установлены на концах узкоовальных сланцевых галек следы отжимного ретуширования, иногда сочетающиеся со следами ударного ретуширования (Шан-Коба). Самыми характерными ретушерами крымского мезолита и других стран являются узкие кремневые предметы, имеющие микроследы на концах и интенсивную залощенность на всей поверхности от длительного трения о кожу руки.

Рис. 14 . Кремневые ретушеры торцового типа неолитической эпохи Дании.

 При работе торцом или концом узкого каменного ретушера внимание фиксировалось на очень малых участках обрабатываемого предмета. Здесь мы уже имеем дело с тонкой «пунктирной» ретушью, рассчитанной на малые усилия, но точно фиксированные. Иногда эти орудия имели форму кремневых стержней или пуансонов (flint Punches) длиной около 6–7 см, со следами работы на обоих концах. Можно указать на серию таких орудий из мезолитического поселения в Уорене, открытого в графстве Гэмпшир (Англия). Здесь они найдены вместе с кремневыми нуклеусами, пилками из пластинок, топорами, концевыми скребками и микролитами.

В эпоху неолита и ранних металлов, когда обработка кремня достигает виртуозности, каменные и костяные ретушеры превращаются в усовершенствованные инструменты. Кремневые стержни торцового типа в лучших образцах приобретают тщательно отретушированные грани, моноконическую или биконическую форму, прямоугольное и даже квадратное сечение. Характерными для таких ретушеров являются датские экземпляры, опубликованные С. Мюллером (рис. 14).

Рис. 15 . Костяные и роговые ретушеры.

А — ретушеры из обломков трубчатой кости; мустье (Зиргенштейн VII и Фогельхерд VII), ФРГ; Б — клык пещерного медведя — ретушер, поздний палеолит (Фогельхерд IV); В — клык пещерного льва — ретушер (Фогельхерд IV); Г — роговые наконечники для торцовых ретушеров, неолит Приамурья (раскопки А. П. Окладникова); Д — следы боковой работы роговым наконечником торцового ретушера из Приамурья, ×2;  Е — эскимосский роговой ретушер-отжимник торцового типа в роговой рукоятке и ременной обвязке, по А. Крагу.

Среди костяных ретушеров технически отработанными следует считать роговые отжимники неолита Приамурья (раскопки А. П. Окладникова) и эскимосские. От первых к нам дошли только рабочие части отжимников, наконечники последних, ретушеры без рукояток. Это прямоугольные в поперечнике стержни 6–7 см длины, с размерами в сечении: 13 мм ширины, 7–8 мм толщины. На их боках и торцах сохранились следы работы в форме неровных, угловатых вмятин от надавливания на зубчатый край кремневого изделия (рис. 15, Г, Д), Они представляли только один тип из многих ретушеров, созданных в неолите. Другим типом, известным в неолите Прибайкалья, являлись прямые или слегка изогнутые стержни из рога оленя, круглого или овального сечения, от 9 до 20 см длиной, открытые в могильниках Фофашово, Ленковка, Нохай, Буреть и др. Возможно, наиболее короткие из них имели деревянные рукоятки. Длинные, чуть дугообразные стержни, вероятно, слегка изгибались в процессе надавливания.

Представление об отжимниках в рукоятках дают эскимосские орудия, говорящие о разветвленной системе обработки кремня давлением. Для мелкой ретуши эскимосы имели тонкие шилообразные стерженьки, связанные с помощью ремешка рабочими концами врозь и привязанные к небольшим деревянным рукояткам. Отжимники, предназначенные для больших усилий, отличались более массивными крупными рукоятками определенной формы, позволяющей участвовать в работе всей кисти руки и плеча, производя выработанные опытом движения на опоре (рис. 15, Е). К некоторым из них привязывались короткие, четырехгранные стерженьки, наподобие прибайкальских, не сгибающиеся в процессе работы. Эскимосам были известны каменные стержни-ретушеры с четырехгранным сечением и других типов.

В целом развитие отжимников-ретушеров шло от случайных предметов, бывших под руками, и намеренно выработанным инструментам в рукоятках с калиброванными типами, все более приобретающими строгие геометрические формы и специализацию.

В отличие от того, что. мы видим в развитии орудия для отжимной ретуши, средства ударной ретуши мало прогрессируют. На протяжении палеолита, мезолита и неолита продолжает играть существенную роль речная галька, подбираемая по форме, весу и степени плотности структуры. С позднего палеолита функции ударной ретуши наряду с функциями ретуши отжимной начинают выполнять старые нуклеусы. В первом случае на старых нуклеусах от ударов образуется крестчатая поверхность — сеть мелких пересекающихся трещин и шероховатость фактуры на всех выступающих участках, во втором — истертость и заглаженность этих участков при заполированности остальной поверхности. Во многих случаях ударная и отжимная функции сочетаются в одном ретушере.

Роговые, костяные и деревянные орудия для ударной ретуши по археологическим данным нам почти неизвестны. Они восстанавливаются экспериментально. Отростки оленьих и лосевых рогов, короткие обрезки очищенных от коры веток кизила, дуба, самшита, бакаута и других твердых пород древесины исчерпывают все потребности в такого рода орудиях. Однако деревянные ретушеры значительно уступают по своим качествам тем же орудиям из рога и кости.

 

Обработка огнем

В практике первобытного человека существовали и способы обработки камня посредством огня. Часто пользовались огнем при ломке плитчатого кремня и кремнистого сланца в шахтах, при раскалывании крупных глыб на части. Обычно огнем нагревалась часть породы, а другая часть трескалась от разности температур. По словам Т. Фрезера, индейцы племени сэри (Сонора) изготовляли кремневые наконечники путем нагревания заготовки на раскаленных углях и капания водой в определенные точки. У островитян Новой Британии (Меланезия) таким способом делалось сквозное отверстие в каменной булаве.

Контрольные опыты по проверке этил способов не дали результатов. Кремень покрывался от нагревания мелкими трещинами, постепенно распадаясь на части, отличался угловато-раковистой поверхностью, не похожей на обработанную обычными приемами. Гранит от перекаливания становился более хрупким и терял свойства монолитного тела.

 

Сверление

Изделия из сверленого камня в позднем палеолите — это в основном бусы и подвески. В Костенках XVII П. И. Борисковским были найдены подвески из мелких галек и обломков белемнитов, просверленных биконическим способом. Форма отверстий и линейные следы внутри их показывают применение двуручного способа сверления путем вращения между ладонями деревянного стержня с кремневым сверлом (рис. 16, 4). Двуручному способу сверления предшествовал одноручный (рис. 16, 1—3). Одним из лучших образцов сверления в палеолите служит плоская галька, открытая в гроте Истюриц (Франция). Она просверлена крупным сверлом, до 8—10 им в диаметре. Галька, имеющая, по мнению авторов, некоторое сходство с головой лошади, очевидно, служила амулетом. Отверстие сделано в той части «морды», которая должна соответствовать ноздрям. Сверлилась галька двуручным способом. Чуть менее крупным сверлом сделаны отверстия в сланцевых шлифованных дисках из Костенок IV. Отверстия биконические. На двуручном уровне оказалась техника сверления в Кокореве (Красноярский край). Серия мелких плоскоовальных галек была биконически просверлена у края узкого конца сверлом в 5—6 мм. Стоянка раскопана З. А. Абрамовой. Сверлом малого диаметра обработаны многочисленные бусины и подвески из погребения на берегу Ушковского озера (Камчатка), открытого в 1964 г. Н. Н. Диковым. Материалом здесь для бус и подвесок служил стеатит, отверстия были очень мелкие. Сверла изготовлялись из кристаллов альбита, Однако в мезолите и раннем неолите мы еще не наблюдаем существенных сдвигов в сверлении. Отверстия на сланцевых ножках Оленеостровского могильника малы по диаметру, имеют биконическую форму.

На продолжительное господство двуручного сверления указывает и этнография. Многочисленная группа папуасских племен не знала лучкового или дискового сверла. То же мы наблюдаем и у населения лесной зоны Южной Америки. Сверление у индейцев бассейна р. Шингу, которых по технике обработки камня можно отнести к раннему неолиту, производилось двуручным способом при помощи деревянного стержня около 0.5 и длины. Сверлом служил треугольный осколок твердого камня, которым были оснащены оба конца стержня. Это двойное сверло являлось известным шагом вперед но сравнению с одиночным сверлом, применявшимся у папуасов мбовамб (рис. 16, б). Оно позволяло поочередно пользоваться то одним, то другим концом но мере затупления каменных наконечников. Сверлились с двух сторон главным образом каменные и раковинные украшения. Благодаря треугольной форме сверла на изделии получилось биконическое отверстие. Кроме камня и раковин, индейцы шингу сверлили панцирь броненосца и черепахи, кость и твердое дерево. Иногда к стержню сверла привязывался вместо осколка камня зуб млекопитающего или рыбы.

Сверление мастер производил сидя на земле. Просверливаемый предмет зажимался ступнями ног, игравших роль тисков.

Сдвиги в сверлении камня мы имеем в неолитическую эпоху, когда появляется лучковый способ. Но здесь есть своя промежуточная стадия «перфорирования» камня, когда отверстия получали пробиванием (пикетажем) с последующим развертыванием полученного отверстия (рис. 16, б). В качестве пикетирующего инструмента мог служить заостренный обломок более твердого камня, которым наносились легкие частые удары по камню более мягкому, а разверткой — тот же инструмент или узкий конец удлиненной гальки. Иногда развертка была из части кремневой пластинки (рис. 16,6). На севере Европы примеры такой перфорации даны на стоянке Вой-Наволок 9, раскопанной Н. Н. Гуриной (рис. 16,7). В Африке эта техника применялась при изготовлении каменных утяжелителей к землекопалкам или наверший к палицам. Получаемые скважины еще сохраняли биконическую форму. Эти изделия в Южной Африке возникли в смитфилдскую эпоху в форме груш, дисков, шаров, граненых фигур. До сих нор они сохранились у местных банту и бушменов («цве» или «никое»). Изготовляли их из песчаниковых, известковых или диабазовых галек. Диаметр их колебался в пределах 6—15 см, отверстия — 20—30 мм. На перфорацию среднего утяжелителя из диабаза, по свидетельству очевидцев, бушмены затрачивали 10 дней. В опытах Карельской экспедиции (1960 г.) на получение отверстия диаметром 20 мм и глубиной 40 мм в гранитной гальке потребовалось 5 часов. В процессе работы скважина, но методу бушменов, поливалась водой для удаления порошка и размягчения породы.

В Северной Африке перфорированные камни дает неолит Магриба и ОАР. На материалах алжирских стоянок процесс сверления камня и раковинных бус раскрыт в работе Г. Камл-Фабрин.

Требованиям прочной насадки неолитических ударных орудий (булав, топоров, кайл, молотков и др.) на деревянные рукоятки не удовлетворяли биконические отверстия, подготавливаемые пикетажем. Надежное крепление могли обеспечить только цилиндрические отверстия, которые приобрели доминирующее значение в неолитической технике Европы. Особенно важную роль они сыграли в развитии боевых топоров, образцом которых являются топоры фатьяновской культуры.

Рис. 16 . Развитие техники сверления камня.

1 — одноручное сверление (без рукоятки);  2, 3  — сверло с рукоятками; 4 — двуручное сверление (сверло на стержне); 5 — сверло мбовамбов (Новая Гвинея);  6 —пикетаж — пробивание отверстия в камне мелкими ударами; 7 — развертывание отверстия (Вой-Наволок); 8 — кремневая развертка из Нарвы I;  9 — сверление булавы коловоротом (эксперимент);  10 — сверление лучковым сверлом раковинных бус и подвесок; 11 — лучковое приспособление к циркулярному станку для нарезки нефритовых височных колец (эксперимент); 12 — упрощенная модель циркульного станка для нарезки височных колец (эксперимент); 13 — трубчатое сверление с грузом на стержне (полый бур из трубчатой кости, эксперимент); 14 — станок для цилиндрического сверления каменных пронизок (эксперимент) , 15 — дисковое сверло; 16 — лучковое сверло для цилиндрического сверления Северная Азия); 17 — сверление каменных сосудов в Древнем Египте (а — форма кремневых буров); 18 — станок для цилиндрического сверления каменных топоров, по Фореру.

Переход к цилиндрическому отверстию потребовал применения трубчатого (полого) сверления, что было достигнуто посредством использования диафиза трубчатых костей животных или бамбука и кварцевого песка. Как показывают этнографические источники и эксперименты, трубчатое сверление могло производиться двумя способами: буровым и лучковым. Первый осуществлялся при помощи короткого шеста (оси) до 1.5 м длины, на нижнем конце которого был укреплен полый костяной бур, а на верхнем — крестовина для рук. Кварцевый песок, игравший роль абразива, насыпался внутрь бура. Человек работал стоя, надавливая обеими руками на крестовину и вращая ось в 0.3—0.5 возвратно-поступательного оборота. Песок, постепенно просыпающийся из полости бура под края ее коронки, медленно истирал просверливаемый камень, превращаясь в порошок. Так как скорость вращения бура при такой позиции не могла быть увеличена, эффект работы зависел от силы давления на крестовину. Экономия затраты мускульной энергии достигалась подвеской груза (30 кг) к оси бура (рис. 16, 13). Производительность бурового способа была невелика. В Каунасской экспедиции (1956 г.) за 10 часов работы была получена скважина в диоритовой заготовке глубиной 9—10 мм при 40 мм наружного и 34 мм внутреннего диаметров. За это время костяной бур укоротился на 2 см. Не выше была производительность при сверлении коловоротом (рис. 16, 3). В неолитической технике сверления камня были разработаны различные методы изготовления костяных буров и калиброванных втулок (коронок), насаживаемых на ось стержня.

Рис. 17. Сверление драгоценного камня в неолите.

А  — подвеска из лазурита в форме рыбьей головки (Ангарские погребения) н. в.; Б — сверленое отверстие и часть головки, ×8, видны следы пришлифовки.

Лучковое сверление, возникшее в неолите, первоначально служило для конического и биконического сверления каменных бус, подвесок, изделий из других материалов (кости, рога, раковин, янтаря) (рис. 16, 10). На подвеске из лазурита, открытого П. П. Хороших в погребении на р. Ангаре, отверстие имеет диаметр в 1 мм, глубину 1.5 мм. Такое сверление производилось очень тонким кремневым сверлом, не более 0.6 м, с весьма малым давлением на ось, что допустимо при работе малогабаритным лучковым прибором (рис. 17, А, Б).

Лучковый способ трубчатого сверления был применен в Ангарской экспедиции (1958 г.). Осью служил бамбуковый стержень, нижний конец которого выполнял рабочую функцию. Просверливалась скважина в круглой гальке вулканической породы. За 10 часов работы было получено отверстие в 34 мм глубины и 24 мм диаметром. Абразивный материал (песок) высушивался у огня и насыпался внутрь бамбуковой полости. Сухость его — одно из главных условий работы. Влажный песок спекался от нагрева в процессе трения и переставал поступать из полости оси. Производительность лучкового сверления оказалась немного выше бурового, хотя скорость вращения увеличилась более чем в 30 раз, что объясняется многократным снижением силы давления на ось. Дальнейшим шагом может служить реконструкция неолитического вертикального сверловочного станка, предложенная Форером, в которой скорость и давление сочетаются посредством соединения лука и тяжести подвесного груза (рис. 16, 18).

Слабой стороной трубчатого сверления при помощи кости или бамбука было изнашивание бура. Втулка не только быстро сокращалась, но в уменьшалась в диаметре. В результате диаметр входного отверстия скважины был больше диаметра выходного. Слегка конический профиль скважины можно было устранить лишь частой сменой втулок. Неолитические мастера на практике поступали так в редких случаях. Измерение скважин в каменных топорах, молотках, булавах показывает, что они и не стремились к получению вполне цилиндрической скважины, используя эту асимметрию при заклинивании верхнего торца рукояток.

Для получения мелких скважин конического профиля в Америке и Океании применялся дисковый прибор (рис. 16, 15), основанный на инерции и преобразовании вертикальных толчков в круговращательные движения. Преимущество его в том, что он позволял работать одной рукой. Именно это достоинство и сохранило до наших дней у ювелиров в городах многих стран дисковое сверло, выполненное из металла. Индейцы племени цуни продолжают обрабатывать дисковыми сверлами раковинные бусы. У океанийцев эта конструкция прибора была предельно усовершенствована в отношении числа оборотов и силы инерции, что позволяло сверлить не только малоразмерные предметы из раковин и камня, но и сухое дерево, например дощатые надстройки лодок, привязываемые бечевками.

Ювелирное цилиндрическое сверление, при котором дайна канала превосходила его диаметр в десятки раз, было достигнуто в финальные этапы неолита. Примером могут служить зеленокаменные цилиндрические бусы (пронизки), найденные на поселении п-ова Песчаный близ Владивостока, раскопанном А. Л. Окладниковым в 1956 и 1960 гг. (рис. 18, А). Их сверлили с двух сторон, и встречные каналы не всегда совпадали (рис. 18, Б). Рабочую роль, как показывает анализ, здесь играл тонкий абразивный песок, приводимый в движение сверлом из более мягкого материала, в тело которого частица песка врезалась, как в оправу. Такое сверление рациональнее было выполнять на простейшем горизонтальном станке, в котором лучше обеспечивалась центровка благодаря дополнительным средствам опоры (рис. 16, 14). Трудно воспроизвести все детали этого процесса. Находка заготовки в форме продолговатого шлифованного многогранника приводит к мысли, что порода сначала раскалывалась и шлифовалась, затем сверлилась и, наконец, доводилась шлифовкой до круглого сечения. Сверла могли изготовляться из шифера — материала пластинчатого, а потому более доступного для распиливания на квадратные в сечении стерженьки. Казалось бы, наилучшим материалом для сверл было железо, найденное в верхних слоях поселения. Кварцевый морской песок и железный стержень 2—2.5 мм — идеальное сочетание из возможных для того времени. Но для такого вывода нет пока достаточных оснований. Археология знает факты, указывающие на сверление твердого камня сверлами из более мягких пород.

Длинноосные бусы (до 50 мм) в Чанху-Даро (Инд) изготовлялись из карнеола (сердолика) — материала из группы халцедонов, твердость которого 7. Жеоды карнеола раскалывались на маленькие узкие призмы, которым затем с помощью ретуши, шлифовки и полировки придавалась форма тонких цилиндриков с небольшим утолщением в середине. Судя по наблюдениям Э. Маккея, сверление их было самой последней операцией. Э. Маккей считает, что сверлами служили сланцевые стерженьки, найденные в Чанху-Даро. Окончательный вывод можно сделать лишь на основе всестороннего трасологического анализа. Мы остаемся три мысли, что сверлами с большим эффектом могли служить медь или бронза, хорошо известные ювелирам на Инде. Поздним усовершенствованием вертикального лучкового сверла является прибор с цилиндрическим железным сверлом народов Северной Азии (рис. 16, 16).

Рис. 18. Сверление каменных бус.

А — каменные цилиндрические  бусы  из  поздненеолитического  поселения на п-ове Песчаный близ г. Владивостока;  Б — встречные  каналы  внутри бус; В — заготовка бусины.

Промежуточное положение между сверлением и резанием занимает техника изготовления каменных височных колец. В эпоху неолита и ранних металлов височные кольца из нефрита, жадеита, серпентина, агата и раковин были широко распространены по земному шару. В Юго-Восточной Азии небольшие кольца высверливали при помощи бамбука буровым способом, о чем можно заключить по диаметру и профилю скважин на незаконченных или разбитых экземплярах, по форме остаточных дисков, являющихся отходами. В Новой Гвинее сверление раковинных колец бамбуком производилось папуасами.

В неолите Европы, по мнению археологов, для этой цели служили кремневые и кварцитовые «циркули», в которые были превращены крупные отщепы, имеющие два выступающих угла. Но опытная проверка показывает, что такие инструменты позволяли вести работу по мягкому камню — стеатиту, некоторым разновидностям серпентина и малахита, глинистому сланцу и т. п. При обработке нефрита рабочие части быстро крошились и тупились. Подправка была трудна, а замена старых «циркулей» новыми кропотлива. Почти невозможен точный подбор расстояния между углами.

Рис. 19. Нефритовая плитка с вырезанными на ней кольцами.

Анализ поверхности нефритовых колец из коллекции Иркутского музея привел к выводу, что в Прибайкалье применялись по крайней мере два способа: 1) резание но шаблону и 2) обработка на станке. Резание производилось кремневым резцом круговыми движениями по предварительно отшлифованной плитке с двух сторон. На такую работу затрачивали много часов, так как кремень тверже нефрита лишь на одну единицу по шкале Мооса. Способ станковой обработки колец долгое время оставался неизвестным. Он был моделирован в Ангарской экспедиции (1957 г.). Работа слагалась из следующих операций: 1) двусторонней шлифовки нефритовой плитки; 2) сверления центрового отверстия; 3) изготовления циркульного станка, состоящего из 8 деталей — тонкой оси, оправы резца, первой (верхней) плашки; кремневого резца; двух прокладок (шайб), второй (нижней) плашки, ременной вязки, толстой оси. Нефритовая плитка помещалась на нижней плашке, одетая центровым отверстием на тонкую ось. Вращалась толстая ось при помощи лучка правой рукой (рис. 16, 11). Верхняя плашка вместе с тонкой осью и резцом, зажатая левой рукой, оставалась неподвижной. Все детали станка делались из дерева. Резание производилось с двух сторон плитки. В процессе работы нефритовая плитка постоянно смачивалась водой. На весь цикл по шлифовке плитки и вырезанию двух колец (рис. 19) было затрачено 55—60 часов работы, не включая труда на изготовление станка. Разумеется, наш эксперимент не объясняет технологии производства всех известных в археологии типов колец, например белонефритовых из Фофанова или Глазкова, достигающих 12—14 см в диаметре, с шестигранным сечением. Для выработки крупных колец более подходит конструкция станка с подвижным резцом (рис. 16, 12). При двустороннем резании и соответствующей заправке резца может быть получено шестигранное сечение кольца. Однако следует сказать, что кольца с геометрически правильный сечением могли изготовляться при помощи резца из кристалла корунда. Кремневый резец хотя и режет нефрит, но не дает таких чистых линий работы вследствие незначительного превосходства в твердости. Корунд имеет твердость 9, а в абсолютном выражении он тверже кремня в несколько раз.

Не вполне ясной представляется технология сверления древнеегипетских каменных сосудов. Форма полостей некоторых сосудов говорит о цилиндрическом сверлении. Изображение на рельефе гробницы У династии в Саккара (рис. 16, 17) и находки сверл-полумесяцев (рис. 16, 17, а) указывают на то, что сверлили при помощи коленчатого стержня (принцип коловорота) и подвески груза в виде двух мешков с песком для усиления давления на сверло. Сменные буры-полумесяцы, прикрепляемые к нижнему концу стержня-оси, растачивали полость сосуда по желаемой конфигурации и диаметру. В процессе расточки кремневыми полумесяцами полость сосуда наполнялась водой. Трубчатое бурение производилось сухим леском без воды. Расточка полостей каменных сосудов допустима и при использовании других пород, например песчаников, но в основе должно было лежать трубчатое бурение. Бели принять во внимание базальтовые сосуды, которые выделывали еще в додинастическую эпоху (Фаюм, Ассуан), то следует признать высокой технику неолита Нильской долины. Базальтовых сосудов этой эпохи, по подсчетам А. Лукаса, найдено около 65 экз. из общего числа в 302 штуки. В раннединастическую эпоху число выделываемых каменных сосудов резко возрастает, В ступенчатой пирамиде III династии в Саккара их найдено несколько десятков тысяч. Однако большинство сосудов эпохи пирамид изготовлялось из мягких пород.

В древнеегипетской каменной скульптуре наблюдается широкое использование сверления при производстве углублений: западин, пазов, просветов. Сохранялись не снятые последующей обработкой следы работы трубчатыми сверлами в ушах, глазах, ноздрях, углах рта алебастровой фигуры Менкаура, диоритовой фигуры Хафры и др.

Роль сверления в пластической обработке твердого камня постепенно возрастала. Сверлением древние ювелиры вчерне обрабатывали геммы (интальо), которые затем доводились другими средствами. Это ювелирное искусство возникло очень рано в Древнем Египте и Двуречье. Позднее оно было усовершенствовано. Геммы, носимые в золотых перстнях знатью Пенджикента (VIII в. н. э.) в Средней Азии (раскопки А. М. Беленицкого), вытачивались (ряс. 20, А—В, Д). Фактура рисунка мужского безбородого лица на одном камне и лошади — на другом показывает следы вытачивания краем быстровращающегося микродиска из твердого камня не более 2 мм в диаметре, насаженного на тонкую ось (рис. 20, Е). Есть и следы шаровидных микроинструментов, которыми вытачивались мелкие чашеобразные углубления на каине, пластически дополняя короткие линии, оставленные микродисками (рис. 20, Г). Такая работа могла производиться на горизонтальном станке с лучковым приводом, близким к станку для сверления цилиндрических бус. Для обработки шпинели или граната, к которым принадлежат интальо из Пенджикента (твердость 8), требовались инструменты из более твердого материала (корунда или алмаза). Однако не исключено и шлифование при помощи инструмента одинаковой твердости с обрабатываемым материалом.

Рис. 20. Ювелирная техника Средневековья.

А — золотое кольцо с резным камнем (интальо) из Пенджикента (XIII в. н. э.); Б — резной камень с изображением человеческого лица, ×5; В — резной камень с изображением лошади;  Г — деталь резьбы на изображении лица, ×30; Д — детали резьбы на изображении лошади, ×25.

Экспериментальное изучение сверления камня в эволюционном плане позволило прийти к следующему заключению.

Работа кремневым сверлом одноручным способом ввиду незначительной скорости вращения очень мало эффективна, особенно по твердому камню, в начальные этапы сверления, когда отверстие только намечается. Двуручное сверление при помощи кремневого сверла на деревянном стержне благодаря повышенным скоростям вращения более эффективно в начальных этапах сверления, но мало производительно в целом ввиду незначительной силы давления на предмет, по причине скольжения ладоней по дереву сверху вниз. Движения дискового сверла, зависящие от инерции, эффективны при неглубоком сверлении. Вместе с углублением сверла в материал и ростом фактора трения резко падает производительность. Лучший результат был получен в работе по твердому камню. Его преимущество перед другими способами — возможность работать одной рукой, так что вторая рука может выполнять вспомогательные функции. Эти достоинства привели к внедрению дискового сверла во многих странах, сохранили его в ювелирном деле до нашего времени. Наиболее широкое применение получило лучковое сверло. Оно фактически господствовало и в средние века. Относительно высокая скорость движения, значительное давление на предмет, малая подвижность оси — его достоинства. С появлением металлических сверл, способных производить глубокое цилиндрическое сверление, лучковый прибор был видоизменен. Тетива была намертво скреплена со стержнем, в результате чего полностью прекратилось скольжение ее по оси, а тем самым возросло и давление на ось до 10—15 кг.

Для определения производительности древних способов сверления в их развитии были поставлены опыты по сравнительному сверлению приборами с каменными, медными и железными сверлами, с одной стороны, и малогабаритной современной дрелью со стальным сверлом — с другой.

Примитивные орудия, построенные из дерева, кожи, кости и камня, неравномерны по своему движению, нестандартны по форме и размерам. Опыты дают грубые соотношения, которые следует считать правильными лишь в самых общих чертах, показывающих прогрессивное развитие при переходе от одной эпохи к другой.

Последовательность прогрессивной эволюции техники сверления камня рассматривается в следующем порядке.

1. Одноручный способ с зажимом каменного сверла между пальцами. Эффективен в работе ко мягкому камню, кости, рогу и дереву, а также по твердому камню при развертывании отверстий, полученных техникой пикетажа. Скорость —2—3 полоб./сек. Давление —1—10 кг. Возможно его применение в мустьерскую эпоху.

Существуют две разновидности этого способа:

а) сверло крепится в вертикальной рукоятке из дерева, рога, кости, зажинаемой всей кистью; скорость та же; давление —10—12 кг; допустимо применение в позднем палеолите;

б) сверло крепится в Т-образной рукоятке, обеспечивающей давление плоскостью ладони; скорость та же; давление —12—15 кг; неолит.

2. Двуручный способ с вращением сверла на вертикальном стержне между ладонями. Скорость — 12 об./сек. Давление — 4—5 кг. Возникает в позднем палеолите.

3. Буровой способ для цилиндрического трубчатого сверления на крестообразном стержне с подвеской груза для увеличения давления. Скорость — об./сек. Давление — 20—50 кг и более. Неолит.

4. Коловорот. Сверление при помощи криволинейного стержня (лучок без тетивы). Скорость—1—2 об./сек. Давление —14—20 кг.

Разновидность этого способа сверления — египетский. Для сверления каменных сосудов трубчатыми и полулунными бурами, с подвеской груза. Скорость — 1/2—1 об./сек. Давление — 20 кг и выше. Ранние металлы.

5. Лучковый способ. Вертикальный. Разных габаритов. Со сверлом для конического сверления по всем материалам. Скорость —20 об./сек. Давление — 6—10 кг. Неолит.

Встречаются следующие разновидности этого способа:

а) с трубчатым сверлом для цилиндрического сверления по камню, вертикальный; скорость — 10—15 об./сек.; давление — 8—10 кг;

б) с циркулярным сверлом; для резки височных колец и браслетов; вертикальный; скорость —8—10 об./сек.; давление — 6—7 кг;

в) с трубчатым сверлом; вертикальный: на стойках, с рычагом и грузом (по Форреру); скорость — 8—10 об./сек.; давление — 20—50 кг и более; неолит;

г) с закрепленной на оси тетивой, увеличивающей силу вращения; для глубоких скважин в мягких материалах с металлическим сверлом.

6. Горизонтальный. Для ювелирных работ по сверлению, расточке я фигурной шлифовке — 15—20 об./сек. Ранние металлы.

7. Дисковый. Основан на превращении вертикальных импульсов в круговращательные движения и силе инерции. Работа одной рукой. Скорость — 6—8 об./сек. Давление — 4—8 кг.

Сверление возникает как способ соединения отдельных предметов в комплексы и системы. В дальнейшем оно раздвигает свои возможности до функций формирования вещей. В процессе его развития прослеживаются следующие направления: 1) нарастание силового эффекта путем использования давления тела или подвешивания тяжести; 2) увеличение числа оборотов сверла на единицу времени; 3) совершенствование сверла изменение его формы — рабочей части и в целом; 4) увеличение объема полезной скважины путем перехода от конического и биконического сверления к цилиндрическому; 5) дифференциация размеров сверла через увеличение или уменьшение диаметра и длины; 6) экономия труда путем сокращения неоправданных отходов: а) сочетание прорезания и пробивания со сверлением (рассверливанием); б) переход от цилиндрического сверления к трубчатому и циркульному (резанию); 7) переход от сверления к расточке в производстве каменных сосудов (от цилиндрического к сферическому); 8) тенденция к универсализации сверления; использование сверл в пластической работе по камню (скульптуры Древнего Египта); 9) зачатки автоматизации. Освобождение одной, затем другой руки от силовой работы в ножном станке.

 

Пиление

Пиление камня развивалось постепенно. В палеолите и мезолите следы пиления и кремневые пилки встречаются в виде исключений. Можно указать на сланцевую пилку из Костенок I с неглубоким надпилом или на кремневую пластинку из Шан-Кобы (Крым) со следами использования ее в качестве пилки. На лезвии сохранились линейные следы, отражающие возвратно-поступательное движение с двусторонним изнашиванием лунок (рис. 21, А, Б).

Назначение кремневых пилок состояло в расчленении на части мягкого поделочного камня при изготовлении украшений. Заготовки стеатитовых подвесок и бусин из Ушковского погребения (Камчатка) производились распиливанием кусков породы на соответствующие доли. Распиловка стеатита требовалась и при изготовлении грузиков к составным крючкам в Прибайкалье. Стеатит нельзя раскалывать на доли, которые могли служить в качестве заготовок, предназначенных к шлифовке и сверлению. Выделка подвесок, особенно бус, требовала стандартных заготовок, что обеспечивалось пилением.

Рис. 21. Пиление камня.

А  — кремневая пилка дня пиления камня (мезолит);  Б — схематическое изображение следов изнашивания рабочего края пилки а результате  двустороннего (обратно-поступательного) движения.

О пилении в древнейшем ювелирном деле говорит и набор инструментов из неолитических и более поздних слоев пещеры Джебел (Туркм. ССР). Кремневые пилки сочетаются здесь с кремневыми сверлами, развертками, абразивными плитками для обтачивания поделок и самими изделиями из минерализованных раковин Didacna в виде подвесок и бусин.

Достижением в сравнении с пилками из призматических пластинок являются крупные листовидные пилы Древней Нубии и Древнего Египта, обычно включаемые в общую категорию «ножей». Одно из таких орудий было обнаружено на нубийском поселении Хор-Дауд эпохи ранних династий, раскопанном в 1961 г. археологической экспедицией Б. Б. Пиотровского. Оно имело 20.3 см длины, 5.2 см ширины и 0.4 см в сечении. Для его изготовления был взят плитчатый серо-коричневый кремень, обработанный плоской ретушью с обеих сторон. Передний конец был закруглен, а заднему придана скошенная форма (рис. 22, А). На употребление его в качестве пилы по камню указывают линейные следы на обоих лезвиях. Следы расположены на выступающих ребрах ретуши параллельно лезвиям и на обеих сторонах. Они перекрывают ребра в двух направлениях, что говорит о возвратно-поступательном движении орудия во время работы (рис. 22, Б, В).Обрабатывался не очень твердый камень,но способный производить абразивное действие. Его твердость не превосходила 4 по шкале Мооса, в противном случае микропластическая деформация лезвия была бы иначе выражена. Пила находилась очень долго в употреблении, о чем можно заключить но сработанности ее лезвий до 4—5 мм от края, по залощенности от руки всей поверхности. Орудие представляло специализированный инструмент, служивший для обработки камня в производстве мелких поделок, имевших различное назначение.

В додинастическую эпоху и позднее в Египте было развито производство мелких изделий (подвесок, фигурных амулетов, палеток, трубок, браслетов и т. п.) из граувакка, аргиллита, серпентина, стеатита, сланца и т. д. В Хор-Дауде была найдена шиферная палетка с отверстием для ношения. Функция пилы сводилась к получению стандартных заготовок (прямоугольных и треугольных), к пропиливанию канавок, желобков, пазов. Операции по расчленению камня на заготовки осуществлялись путем двустороннего надпиливания и раскалывания по надпилу. Судя по ряду признаков, пила из Хор-Дауда употреблялась непосредственно в руке с упором толстого скошенного конца в ладонь.

В Робенгаузенском свайном поселении встречаются серпентиновые гальки удлиненной формы с продольными пропилами, сделанными кремневыми пилками. В конце неолита робенгаузенцы распиливали получаемые из соседних областей нефрит и жадеит для топоров и тесел.

Пиление таких твердых пород камня, как диорит, нефрит и жадеит, было трудоемким процессом. Эксперимент, поставленный Каунасской экспедицией (1956 г.), показал время 8 часов, необходимое для получения желоба емкостью в 4000 мм3 (длина — 100 мм, ширина — 10 мм, глубина — 4 мм) на диоритовой заготовке. Работа производилась вручную при помощи песчаниковой плитки и воды. Этот минимальный результат объясняется неудачным выбором абразивной пилы (песчаниковой плитки), со слабым отделением зерен. В Ангарской экспедиции опыты с нефритом дали 10 000—15000 мм3 за тот же срок работы. Относительно эффективным оказалось и пиление нефрита кремневой пластинкой, смачиваемой водой,

В разделке нефрита на заготовки пиление играло существенную роль. Высокие технические свойства актинолитов, весьма ценные для топоров, тесел, долот, строгальных ножей, принуждали неолитического мастера беречь этот материал, расходовать его экономно и осмотрительно. В Прибайкалье распиливались конкреции весом до 10—15 «г. Пиление очень редко было сквозным. Обычно делались надпилы с двух сторон, по линии которых нефрит раскалывался ударами. Не исключена возможность, что при распиливании нефрита здесь уже знали абразивные свойства наждака, добывали его, размельчали в порошок для подсыпки в канавку. Эта тонкозернистая, почти землистая, разность корунда встречается в Сибири, на Урале, в КНР и Малой Азии. В Европе наждак еще недавно добывали на территории Саксонии, Далмации, Испании. Американский наждак известен из штата Массачузет. Лучшим считался наждак с о. Наксос (Греция), откуда он вывозился в другие страны.

Существовала ли обработка камня медными пилами? Открытые в гробницах вельмож I династии Древнего Египта медные пилы служили для обработки дерева, о чем говорят их зубья. Но среди изделий из камня египтологи установили следы пиления базальтовых шит нала в храме при пирамиде Хуфу, следы пиления на гранитных саркофагах. Ф. Петри считал, что пиление твердого камня возможно было пилами с «зубьями» из Корунда и наждака.

Рис. 22. Пиление камня.

А  — кремневая пила из Хор-Дауда (Судан) в рабочем положении;  Б — схематическое изображение следов работы на ретушированном крае пилы; В — микрофото следов работы на пиле, ×30.

Эксперимент убедил в эффективности медных пил в работе по нефриту с использованием кварцевого песка и воды. Медь благодаря своей вязкости достаточно прочно удерживала зерна кварца при движении пилы но камню. Зерна кварца вдавливались в мягкий металл и скользили по твердому нефриту, царапая его. Однако, срываясь, зерна кварца царапали и медь пилы. Под бинокуляром на кромке медной пилы видны два ряда следов: 1) царапины, идущие параллельно и двусторонне; 2) мелкие вдавлины (лунки), придающие кромке шероховатый вид. Внутри лунок сохранялась застывшая пульпа — результат размельчения кварцевых зерен, нефрита и меди. Вода, смачивавшая песок, удерживала зерна на месте работы. Сухой песок пила разбрасывала в моменты движения, особенно в первые фазы работы, когда канавка на камне еще была неглубока.

Распиливалась нефритовая плитка шириной 7 мм и толщиной 11 мм. За 30 мин. было сделано два встречных пропила: 1 и 2 мм глубины и

2.5 им ширины. Длина полотна пилы составляла 15 см, толщина — 1.1 мм, траектория — 10 см. Давление на пилу превосходило 5 кг. После пропилов плитка была сломана ударом деревянного молотка точно по их линии, хотя пропилы составляли лишь одну треть нераспиленной массы нефрита. Пиление камня медной пилой имело преимущества перед пилением песчаниковой плиткой. Пропил на камне от медной пилы был в 4—5 раз уже пропила, сделанного плиткой. Однако износ пилы от абразива в этой операции оказался почти равным потерям нефрита от распиливания его. Потери пилы составляли 1 г, а нефрита — 0.95 г. Такое соотношение не говорит в пользу очень широкого применения медных пил в распиловке камня мастерами Раннего царства в Древнем Египте. Очевидно, пиление медной пилой практиковалось лишь в отношении ценных пород камня и таких ответственных операций, где без этого нельзя было обойтись. В обычной работе пиление камня могло производиться посредством других, более дешевых материалов (кости, твердой древесины). Позднее для этих целей могло служить железо. Потери железа при пилении нефрита и диорита составляют 40—60% расхода камня.

Лабораторные испытания пилы из расщепленного бамбука показали резкое снижение эффекта работы в сравнении с медной пилой. Пропил на нефрите, сделанный за тот же период времени, был шире и менее глубок, объем потерянной древесины выше. Но в весовом отношении потери бамбуковой пилы оказались невысокими.

Весьма эффективным оказалось пиление с подсыпкой наждачного порошка. Известно, что корунд, имеющий твердость 9, в наждаке благодаря различным примесям частично утрачивает высокие абразивные свойства. Тем не менее результат испытания показал 3—5-кратное превосходство наждака над кварцевым песком. Это превосходство нашло выражение в резком возрастании потерь нефрита и уменьшении потерь веса медной и бамбуковой пилок. Острые зерна корунда дольше задерживались в полотне пилок, разрушая нефрит.

Подводя итог сказанному, мы видим, что пиление возникает с обработки мягких пород камня, предназначенных главным образом для украшений, при помощи кремневых пластинок и ножей. Наблюдается некоторая тенденция к удлинению пилок в пределах, которые допустимы размерами конкреций этих пород. С переходом к пилению твердых минералов и горных пород человек обращается к помощи абразивных веществ: слоистым песчаникам и наждакам, кварцевому песку. Пиление кремневыми пилами стоит на втором месте. Важным условней пиления становится вода, смывающая каменный порошок и способствующая ослаблению молекулярных связей в обрабатываемом материале. С этого этапа развития список обрабатываемого камня резко возрастает. Поскольку режущая функция теперь возлагается на абразивное вещество, для полотна пилы начинают употребляться менее твердые вещества (медь, древесина, шиферные плитки и пр.), способные удерживать и передвигать острые зерна кварца по предмету обработки.

Благодаря пилению стали доступными правильные геометрические формы изделий, что было особенно существенным в орудиях труда для обработки дерева, в стандартизации их, в ювелирном производстве, в скульптуре и других видах изобразительного искусства.

 

Шлифование и полирование

Существенное отличие шлифования камня от прочих способов обработки заключалось в том, что абразивом можно было удалять материал с обрабатываемого предмета очень малыми и равными частицами одновременно на значительной поверхности. Благодаря этому открылась возможность создавать орудия правильных геометрических форы, с гладкой поверхностью. Шлифовка позволяла обрабатывать материал любой формы, строения и твердости, а также придавать ему желаемую конфигурацию. Но шлифовка твердых пород не давала быстрого эффекта в сравнении с оббивкой, скалыванием и ретушью, требовала выдержки я терпения.

Отдельные случаи шлифования камня появлялись еще в палеолите. Пришлифовка рабочего конца кремневой проколки обнаружена в Костенках I. Большая серия шлифованных сланцевых орудий была открыта А. Н. Рогачевым о Костенках IV. Иногда среди (палеолитических кремневых орудий можно заметить следы затупливания острого края легкой пришлифовкой.

Выделение шлифования камня в неолите в особую отрасль тесно связано с возросшей обработкой дерева. В конце каменного века благодаря зачаткам земледелия, животноводства и рыболовства жизнь общества приобрела некоторую устойчивость после продолжительного периода господства охотничьего хозяйства с кочевым бытом. Численное увеличение неолитических общин, оседлость и более высокий уровень трудовых навыков обеспечивали человеку условия для совершенствования орудий путем систематических, равномерных движений абразивного процесса.

Особым свойством абразива, будь то шлифовальная плита, фигурное точило или оселок, является способность к «самозатачиванию» в процессе работы, к выпадению затупившихся зерен и замещению их новыми, ниже лежащими. Самозатачивание абразива, возобновление его рабочих свойств особенно эффективно при мокром шлифовании, когда обработанные зерна и порошок смываются водой. Но мокрому шлифованию предшествовало шлифование сухое. На такой способ указывают факты шлифования на скалах, нередко имеющих вертикальную или наклонную плоскость, поливать которую затруднительно, особенно в местах, удаленных от источников воды.

Следы шлифования топоров о скалы открыты в разных точках Австралии. Племя камиларои шлифовало топоры на песчаниковых скалах северной части Нового Южного Уэлса. Сухое шлифование производилось и на горизонтальных плоскостях песчаниковых грунтов, а также на отдельных плитках. Если возникала необходимость, подсыпались горсти свежего песка. Порошок, забивавший поры абразива, смахивали рукой или сдували струей воздуха изо рта. Была известна ж мокрая шлифовка с поливом водой из корыта.

Шлифование о скалы было в практике неолитического населения многих стран. В Индии такие следы сохранились у холма Купгаллу в районе Беллари, где есть выходы диоритовых трапов, служивших материалом для топоров. Во Франции установлены многочисленные пункты и даже «центры» абразивной деятельности. Как правило, они находятся на месте выходов твердых третичных песчаников по соседству с отложениями кремня. Больше всего их в бассейне р. Луары и ее притоков. В этих местах следы абразивной работы открыты не только на отвесных скалах, по и на отдельных плитах разного размера, лежащих горизонтально. Встречаются и небольшие бруски со следами шлифования в виде «кюветок» и желобков.

Сухую шлифовку нельзя было совмещать с мокрой шлифовкой в едином процессе. Каждая из них имела свои технические особенности. Если поливка водой абразива прекращалась, пульпа затвердевала в порах, выпадение сработанных зерен прекращалось, работа теряла полезный эффект. Мокрая шлифовка всегда требовала обильного и непрерывного полива водой. Папуасы поливали плиты из бамбуковых сосудов, стоящих рядом. Австралийцы же, нередко испытывавшие недостаток даже в питьевой воде, часто вынуждены были шлифовать сухим способом. Контрольные опыты показали, что мокрое шлифование производительнее сухого в 2—3 раза, если поливка обильна и непрерывна. Для поддержания непрерывности требовалось участие в процессе работы двух человек.

Папуасы племени куку-куку обычно, хотя и не всегда, начинали шлифовку тесла с лезвия. Такой подход к делу объясняется намерением мастера проверить качество самой важной части заготовки. При мокром способе очень легко на пришлифованном лезвии увидеть трещины, нежелательные включения и другие дефекты. При сухом шлифовании этот контроль осуществлялся смачиванием места обработки слюной.

Ввиду неполноты этнографических наблюдений в науке не существовало установившегося представления о производительности труда при шлифовке каменных орудий первобытным человеком. Это дало основание многим ученым придерживаться мнения Ж. Ф. Лафито, который писал: «Индейцы шлифовали каменные топоры на песчанике в течение такого большого времени, что жизни дикаря было недостаточно, для выполнения этой работы. Поэтому, каким бы грубым и несовершенным ни было орудие, оно считалось драгоценностью, передаваемой от отцов к детям».

Все, кто вместе с Ж. Ф. Лафито так оценивали древнейший труд, вступали в противоречие со здравым смыслом. Если первобытный человек делал одну вещь в течение всей жизни или хотя бы многих месяцев, то ему не оставалось времени на изготовление других вещей, которые были необходимы.

Поводом к искаженной оценке первобытного труда служил ациклический его характер. Папуасы племени куку-куку, по сообщению Б. Блеквуд, работу по шлифовке тесла вели короткими периодами в течение нескольких дней. Весь цикл работы мог растягиваться на неопределенное время. Экспериментами под Каунасом и на Ангаре было, установлено, что на изготовление одного шлифованного топора из мягкого камня (сланца), вполне пригодного для рубки дерева, затрачивается 2.5 — 3 часа. Твердые породы (диорит, нефрит, базальт, кремень) требовали больше времени.

На диоритовый топор средних размеров (12×4×1.5 мм) тратилось 12—15 часов, на нефритовый — 10—15 часов, на кремневый — 30—35 часов при неполном шлифовании орудия. Если нефритовый топор или тесло шлифовались целиком, от лезвия до обуха, на работу уходило 20—25 часов. Эти цифры получены при мокром шлифовании с учетом предварительной оббивки, затрачиваемой на заготовку.

Абразивные плиты, использованные в экспериментах, принадлежали к известковым и глинистым песчаникам. Выходы этих плит находились на берегах р. Ангары. В процессе шлифования мокрым способом на поверхности абразива возникала пульпа — скользкая кашеобразная масса, состоящая на 95% из извести или глины и раздробленных зерен кварца и полевого шпата. Измельченный нефрит занимал только 5% этой массы.

Вследствие трения заготовкой топора по одному и тому же участку на абразиве возникали углубления или желобы (кюветы). Они облегчали получение ранних форм топоров и тесел, имеющих овальное (линзовидное) или круглое сечение. Вместе с тем при таком способе абразив быстро терял свою ценность, так как глубокие кюветы на его поверхности не позволяли продолжать работу. Плиту приходилось разбивать на части для мелких абразивных операций. Когда глубокие кюветы возникали на массиве скалы при сухом шлифовании, создавалась необходимость стесывать, выравнивать поверхность или разыскивать новую скалу, что не всегда было возможно.

Более экономным был второй способ шлифования, при котором движения обрабатываемого (предмета распределялись равномерно по всей плоскости абразивной плиты. При таком шлифовании было возможно придать топорам и теслам правильные геометрические формы и четырехгранное сечение, а сама абразивная плита изнашивалась постепенно во всех своих точках, сохраняя плоскую рабочую поверхность до конца ее эксплуатации.

Отмеченный прогресс в способах шлифования вместе с переходом к производству топоров и тесел более совершенных форм прослеживается во многих странах. Однако эта связь особенно наглядно выступает в неолите Юго-Восточной Азии и Океании. Ранние типы топоров и тесел здесь имеют овальное или линзовидное сечение, тупой или острый обух. Немецкие ученые называют их Walzenbeile ‛валиковые топоры’. Их тип во многом зависел от формы речных и морских галек, которые служили заготовками. Самые ранние топоры представляли продолговатые гальки, один конец которых был пришлифован. Затем наметились изменения и обушной части, но валиковая форма осталась и следы ее шлифования мы встречаем на скалах и отдельных плитах. Валиковый тип сохранился у папуасов. Позднее в Юго-Восточной Азии появились плечиковый и четырехгранный типы топоров, представляющие более прогрессивные формы в техническом отношении.

Плечиковые топоры и тесла обладали преимуществами перед валиковыми. Они имели уплощенную форму, более правильные очертания и специализированные типы. Благодаря плечикам и черенку на обушке был найден лучший способ крепления топоров и тесел к рукояткам при помощи бамбуковой муфты. Крепление Валиковых топоров к рукояткам отличалось меньшей надежностью.

Топоры и тесла с четырехгранным сечением представляли высший этап шлифованных орудий, достигнутый в неолите. Передовые способы шлифовки, сочетающиеся с пилением, привели к широкой дифференциации типов, форм рабочей части и размеров орудий. На этом уровне неолитическая техника полностью освободилась от сковывающих ее традиций и свойств сырьевых материалов. Основное сырье мастера начали получать не из речных галечников, а из шахт и карьеров. Подъему соответствовал расцвет обработки дерева, вызванный домостроительством и главный образом развитием судостроительного производства, потребовавшего гладкой отески, вырубки стандартных лазов, прямолинейных углов, надежных сопряжений и креплений.

На Гавайских островах базальтовые топоры и тесла, материал для которых добывался в карьере у вершины горы Мау-накеа, в процессе шлифования вымачивались в соке растения wai-Iaou, чтобы облегчить работу. Окончательная доводка лезвия и заточка его мелкозернистым абразивом (оселком) производилась после прикрепления орудия к рукоятке: прямой — для топора, коленчатой — для тесла. Об уровне абразивного мастерства гавайцев можно судить по каменным зеркалам, которые они изготовляли из базальта. Шлифованная поверхность каменного зеркала полировалась посредством тонкого пемзового порошка с добавлением различных компонентов. Для повышения отражательной способности каменного зеркала его поверхность смачивалась водой. Зеркала с высокой отражательной способностью выделывались в Мексике доколумбова периода из полированного обсидиана.

На территории Северной Европы в развитии неолитических топоров отмечаются четыре стадии.

На первой стадии каменные топоры изготовлялись с заостренным обухом. Шлифовка была неполной. На второй — топоры делались с тонким обухом и прямоугольным поперечным сечением. Шлифовка была сплошной. На третьей стадии топоры изготовлялись с толстым обухом — время «галлерейных могил» (passage graves) в Дании. Каменные орудия для обработки дерева специализировались. Появились немногие бронзовые инструменты, еще не конкурирующие с каменными. На четвертой — кремневые орудия имитировали металлические модели (топоры, кинжалы).

Полирование — это отделочная операция для придания блеска и высокой чистоты поверхности изделия. Поэтому в неолите она выполнялась больше при выделке украшений, оружия, знаков общественного положения, меньше — при изготовлении рядовых орудий. Многие неолитические топоры, тесла, долота, молотки, обращающие наше внимание своей гладкой и даже блестящей поверхностью, чаще всего заглажены в процессе их употребления, трения о руки (рис. 23, А, Б).

В производстве украшений и оружия шлифование и полирование камня поднялись до своего предела, став искусством. Классических форм это искусство достигло в боевых топорах Европы. Заготовки топоров фатьяновской культуры изготовлялись из вулканических пород техникой пикетажа. Им придавались различные формы, нередко копирующие литые образцы из меди и бронзы. По классификации В. А. Городцова, это были «ладьевидные», «лопастно-клевцовые», «лопастно-хордовые», «лопастные», «булавовидные» и другие топоры. Затейливые линии кривых, очерчивающие их формы, фактически были строго подчинены механике ударных функций, наиболее свободному преодолению воздушной среды при взмахе и падении. Этим требованиям отвечал и способ крепления к рукояткам посредством цилиндрического отверстия. Для полировки употреблялся пемзовый, кварцевый и наждачный порошок, которым работали при помощи куска кожи. Глянец наводился посредством толченого мела.

Для шлифовки каменных сосудов в Древнем Египте пользовались станками типа гончарных кругов с круговращательными движениями. Концентрические линии, указывающие на это, прослеживаются на многих сосудах, в том числе на донышках и других частях чаш из гробниц IV династии.

В Израиле производство сосудов из известняка и базальта возникло еще в докерамическом неолите (протонеолит) или позднем мезолите. Наружную поверхность стенок сосудов украшали рельефным орнаментом. Существование шлифовки, сверления, резьбы по камню и отсутствие шлифованных орудий представляет своеобразие натуфийской эпохи.

Таким образом, шлифование и полирование являлись последними звеньями в длинной цепи обработки камня, зародившейся в начале плейстоцена при оббивке речных галек.

Рис. 23 . Шлифование и полирование камня. Полированные  орудия из Волосовского клада. 

А — тесло; Б — долото желобчатого типа.

Шлифование как новый способ преобразования материала, оказало большое влияние на хозяйство в целом. Оно позволило человеку ввести в широкую эксплуатацию такие породы камня, как базальт, диорит, диабаз, глинистые и известковые сланцы, порфир, змеевик, нефрит, шифер и др., которые не играли существенной роли в предшествующие эпохи, когда главными способами были оббивка, скалывание, расщепление и ретуширование материалов с изотропными свойствами. Нешлифованными топорами, теслами, ножами, стругами из базальта, сланца, нефрита работать можно было с большим трудом; они не столько рубили и резали волокна древесины, сколько рвали их и размочаливали. Они являлись лишь заготовками (болванками) орудий. Нешлифованными топорами и теслами могли быть только кремневые, обсидиановые и кварцитовые, хотя их эффективность была значительно ниже шлифованных. Однако эти материалы встречаются далеко не везде. На некоторых обширных территориях, таких, как таежная половина Восточной Европы, очень бедная кремнистыми породами, отсутствуют полностью даже базальт, диорит, не говоря уже о нефрите. Здесь под руками человека находились в основном сланцы, часто довольно мягкие. Но шлифование превращало их в топоры, тесла, кайла, ножи, вполне пригодные для строительства жилищ, долбления лодок. Заселение областей, богатых рыбой и зверем, не прекращалось. Наиболее трудным было освоение лесных стран тропического пояса и океанических островов. Только благодаря подсечному земледелию человек способен был овладевать джунглями. Тесла из шлифованного базальта позволяли океанийцам строить суда.

 

Точечная техника (пикетаж)

Обработка камня легкими ударами ведет свое начало от затупляющей ретуши, необходимой при безрукояточном употреблении кремневых, кварцитовых, обсидиановых орудий древнего палеолита. В мустьерскую эпоху у человека уже был немалый опыт точечной обработки рога и бивня. В позднем палеолите точечная техника применялась для выдалбливания каменных ламп, ступок и других целей.

Исследования последних лет в Передней Азии говорят о существовании здесь глубоких базальтовых ступок в позднем палеолите, изготовленных техникой пикетажа. В мезолите здесь уже имеет место выделка настоящих каменных сосудов, украшенных резьбой.

Подъем техники мы видим лишь в неолитическую эпоху, когда развивается абразивная обработка камня. Главная роль точечной техники — оформление заготовки топора или тесла для шлифования, черновая работа по удалению лишнего материала на болванке. Эта вспомогательная работа нередко становилась основной и единственной в тех случаях, когда, например, выбивалась круговая канавка на каменном молотке, служившая для привязывания к рукоятке, или выдалбливалось углубление в каменной ступке и т. д.

Не все породы обрабатывались точечной техникой (пикетированием). Кремень, кварцит, обсидиан, роговик, кварц, халцедон и другие камни с раковистым изломом, очень чувствительные на удар, хрупкие, плохо поддавались пикетажу, если не считать затупляющей ретуши. Главными материалами, выдерживавшими технику мелкого удара, были вулканические зернистые породы: базальт, диорит, гранодиорит, сиенит, габбро, лабродорит, диабаз, порфир и др. Хорошо поддавались пикетажу и актинолиты (нефрит, жадеит), гнейс, сланцы, песчаники.

Особенность точечной обработки состояла в удалении с поверхности заготовки мелких частиц породы, раздробленных легким ударом. Зернистые породы, включающие частицы кварца, полевого пшата, биотита, мусковита, слюды и др., естественно должны легче обрабатываться, чем сланцы или диориты, имеющие более однородную структуру.

Опытным путем выяснено, что за 1 час работы при помощи отбойника весом в 250—300 г удалялось 30—45 г гранита, 30—35 г базальта, 25—30 г нефрита. Удары наносились часто, до 120 в минуту с очень короткой траекторией (5—10 см). Всего за час наносилось 7200 ударов и от каждого удара выпадало лишь 4—5 мг породы. При увеличении веса отбойника до 1.5—2 кг число ударов в минуту почти не уменьшалось, а весовая единица выпадающих частиц возрастала. При помощи диабазового отбойника в 5 кг ударами с высоты 10—15 см (60 ударов в минуту) за 1 час работы удалялось 400—500 г твердого известняка (бутового камня).

Отходы представляли собой светлый порошок, содержащий значительные крупицы породы, выпавшие под ударами отбойника. Увеличение веса отбойников в конечном счете повышало производительность труда, но увеличивало и затраты мускульной энергии. Прикрепление отбойников к рукояткам уменьшало отдачу удара на руку. Опыт показал и значение петрографических свойств отбойников. Последние должны были принадлежать к более твердым породам, иметь лучшее сопротивление на удар по ребрам и углам, что характерно для мелкозернистых пород. Не исключалась и работа, например, диабазовой галькой но диабазу, гранитной по граниту, хотя в этом случае износ орудия и предмета держался на одном уровне. Работа могла продолжаться даже и в том случае, если отбойник был немного более мягким, быстрее выкрашивался, чем обрабатываемый предмет. Крупнозернистые породы требовали осторожного удара (по касательной), чтобы не вызвать выпадения зерен на последних стадиях работы. Эти породы не применялись для изготовления топоров и тесел, а служили для зернотерок, курантов и других изделий.

Места, где происходило пикетирование заготовок для неолитических орудий, известны археологам в ряде стран. Весьма обширны мастерские в долине р. Потомака и в графстве Пейдж штата Виргиния (Северная Америка), где использовался галечный материал вулканических пород (диорит, мелафир и др.). Здесь, по-видимому происходила и шлифовка орудий, если судить по отходам.

При всей простоте техники пикетажа, требующей некоторых знаний свойств обрабатываемого материала и навыков нанесения легкого и частого удара, этот способ обработки камня играл выдающуюся роль в созидательной деятельности доклассового общества. И позднее, когда железо еще не внедрилось глубоко, дочти вся черновая обработка камня производилась посредством ударов другого камня. О масштабах и возможностях способа можно заключить уже но культовым сооружениям «аху» на о. Пасхи, сложенным из отесанных базальтовых глыб, исполинским статуям (маои), выбитым из туфа и других пород. Вся каменная архитектура, монументальная скульптура, барельефы майев (Тикаль, Копан), сапотеков (Оахака), толтеков (храм Кецалькоатля), ацтеков созданы без участия металла. До сих нор досконально не выяснен вопрос о том, какую степень участия в строительстве египетских пирамид и других сооружений, скульптур эпохи Раннего царства следует отвести металлическим орудиям. Медь для отески твердою камня не была пригодна. Формовку сравнительно мягких нуммулитовых блоков, служивших для кладки пирамид, еще можно было выполнять медными клиньями и скарпелями. Медная пила исключается по причине больших масштабов обрабатываемых блоков и плит, которые достигали 1 м3 и более. Бронзовые орудия были слишком дороги для массового использования в рабском труде. Медь и бронзу можно допустить в качестве бура при сверлении скважин для добыча строительного камня в карьерах, а также в качестве небольших пил.

Главная работа по отеске камня, no-видимому, производилась каменными орудиями техникой пикетажа. Так думать заставляют находки на местах обработки гранитных обелисков шаров из долерита (разновидность базальта), покрытых выщербинами от многочисленных ударов. Вес их в среднем достигал 5—6 кг, диаметр — от 12 до 30 см, поэтому работать таким «молотом» можно было только обеими руками.

На гробницах имеются изображения сцен работы по отделке каменных блоков и крупных изваяний — мастера с шаром в обеих руках. Однако эти изображения некоторые египтологи рассматривают как операции по шлифовке готовых изделий.

Показателен памятник первичного пикетажа в ОАР — обелиск, неполностью вырубленный в гранитной скале близ Ассуана. Обелиск не был закончен по причине обнаружения боковых трещин в монолите, не замеченных раньше. Длина его достигает 42 м, вес около 190 т. Поверхность горизонтальной скалы, на которой предстояло наметить контуры обелиска, выравнивалась ударами долеритовых шаров. Благодаря сферической форме орудие срабатывалось постепенно, равномерно теряя свой вес. На выровненной поверхности скалы ассуанского обелиска остались его основные очертания и траншея, представлявшая искусственно расширенную расщелину.

Как выдалбливалась эта траншея в гранитном массиве? На выработках не сохранилось следов от металлических долот и клиньев, которые обнаружены на местах работы в более поздние эпохи. По всем признакам, траншея выдалбливалась долеритовыми молотами. От методических ударов тяжелыми шарами на массиве скалы остались ряды чашеобразных углублений, расположенных одно от другого на небольшом расстоянии. Возможно, здесь применялся способ сочетания пикетажа со скалыванием. В таких случаях мастера продалбливали на камне параллельные канавки, а стенки между канавками скалывались сильными ударами отбойников, что значительно ускоряло и облегчало работу.

На ассуансних каменоломнях был произведен опыт обработки гранита долеритовыми шарами, высчитано необходимое число людей и время изготовления подобного обелиска. Выяснилось, что за 9 месяцев работы можно вырубить в гранитном массиве обелиск высотой 30 м, с основанием в 3 м2 и общим весом около 330 т. Количество одновременно работающих людей с точностью не установлено. Очевидно, люди размещались по обе стороны обелиска с интервалами, обозначенными чашеобразными углублениями. У каждого углубления стоял один человек.

Не меньшее внимание заслуживают и остатки крепостей, виадуков, мостов в Центральной Америке и Перу, сложенных из каменных блоков. Здесь, подобно тому как это было в Ранней и Среднем царствах Древнего Египта, важные функции закольников, скарпелей, бучард играли еще каменные орудия. При обработке твердых пород каменные орудия были незаменимы вплоть до введения в систему производства железа и стали.

Па трахитовых каменоломнях близ Куцко, откуда инки брали материал для строительства своей столицы, неоднократно находили каменные диски с отверстием в центре. Их не без основания считают орудиями пикетажа строительных блоков. С точки зрения механической, каменные диски в 1 кг весом, насаженные на короткие рукоятки, были столь же эффективны, как и долеритовые шары древних египтян весом в 5—6 кг. Их удар обладал не меньшей мощью, зато малый вес облегчал труд, одна рука оставалась свободной для отдыха, а отдача на работающую руку уменьшалась.

 

Итоги

В камне древнейший предок человека нашел то вещество природы, при помощи которого можно было воздействовать на другие вещества и изменять их. Ни дерево, ни кость, ни рог, ни раковины — материалы органического происхождения, с которыми он тоже рано столкнулся и которые стал применять, не обладали важнейшими свойствами камня — твердостью и большим удельным весом. Благодаря этим достоинствам явилась возможность не только обрабатывать другие материалы, но и камень камнем.

Первым способом изменения естественной формы камня был удар. Этот динамический способ воздействия на твердые тела вытекал из физических свойств камня, был самой эффективной разрядкой мускульной энергии человека. И в дальнейшем удар сохранял свое первенствующее значение в обработке камня, но приобрел различные силовые выражения — от мощных актов при разбивании крупных конкреций горной породы до легчайшего постукивания при мелкой ударной ретуши. На базе ударной техники к середине ашельской эпохи возник леваллуазский способ скалывания плоских отщепов-пластин с устойчивым лезвием почти но всему краю, чем были намного улучшены функции охотничьих ножей.

Одновременно с развитием ударной техники совершенствовалась техника давления и импульса. Человек мустьерской эпохи в актах отжимной ретуши применял давление в очень широком диапазоне, с примерным силовым выражением от 5 до 150 кг. Использование импульсных приемов и роговых посредников дало начало расщеплению кремня на призматические пластинки, что явилось вторым крупным шагом палеолитической техники.

В поисках средств эффективного воздействия на тела природы древнейший человек делал попытки преодолеть свой энергетический потенциал, заключенный в рамки мускульной системы. С этой целью он монтировал каменные орудия в роговые, костяные, деревянные рукоятки, находил рациональную форму или увеличивал до предела их вес. Уникальными образцами увеличенного веса кремневых орудий служат «гигантолиты», открытые И. Г. Пидопличко близ Новгород-Северека в 1933 г. Вес крупного гигантолита достигал 8 кг. Вероятно, они предназначались для разрубания костей мамонта. К гигантолитам Франции относятся огромные бифасы из Сен-Жермен-ла-Ривьер (департ. Жиронды), гротов Лестрюк из Нижнего Ложери (департ. Дордони), де Фадет (департ. Шаранты) и др. Вес гигантолита из Сен-Жермен-ла-Ривьер достигает 7.75 кг. Там, где требовались проникающие свойства орудий (проколки, шипы-вкладыши, сегменты), человек делал микролиты, вес которых исчислялся граммами и даже милиграммами.

Несмотря на весьма широкую дифференциацию размера и веса, достигнутую уже в палеолите, наблюдается неизменный рост коэффициента использования технического камня, дошедший до своего предела в неолите. Вместе с тем видна тенденция к усилению эксплуатации инструментов, что прослеживается по возрастающему количеству изношенных орудий в неолитическую эпоху.

В историческом процессе развития древнейшей техники, от оббитых галек внллафранка и до металлов, трудоемкость производственного цикла изготовления орудий прогрессировала. Количество актов и операций увеличивалось. Шелльское ручное рубило было более трудоемко, чем кафуанское орудие; для выработки ашельского бифаса требовалось большее число ударных актов, чем для шелльского, нож из леваллуазского отщепа-пластины в отношении числа вспомогательных актов превосходил ашельский бифас, а нож из призматической пластины — нож леваллуазский, и т. д.

За счет увеличения числа актов и операций: 1) возросло количество однотипных заготовок, снимаемых с одного и того же объема материала; 2) облегчилась их дополнительная обработка при оформлении орудий и 3) повысилось качество орудий, их эффективность.

Увеличение числа однотипных заготовок порождает унификацию деталей вкладышевых орудий. На основе призматических микропластинок вкладывается производство трапеций, треугольников, полулуний и т. п., деталей нормализованного, типа, благодаря чему упростилась сборка вкладышевых ножей, кинжалов, гарпунов, наконечников. Из нестандартных мелких отщепов такой монтаж вкладышевых орудий был невозможен.

Материал использовался все более экономно и осмотрительно. Общество ставило своей целью, может быть не всегда ясно осознанной, ослабить по возможности постоянную зависимость от мест и условий залегания ценного сырья. Повышалось мастерство и улучшались методы получения максимума заготовок из добытого камня. Путем уменьшения размеров самих изделий (микролитизация) человек получил способы, позволяющие эксплуатировать всякий, даже случайный материал — в виде мелких речных галек разных горных пород и минералов, встречающихся на пути передвижения и заселения новых территорий. Он, кроме того, не терял возможности переделывать одно орудие на другое, подправлять и снова пускать в дело сломанные экземпляры и даже мелкие осколки. В конце неолита предельно экономили сырье в тех местах, куда технический камень доставлялся издалека.

Прослеживается тенденция к созданию орудий для обработки волокнистых веществ, особенно дерева, с гладкими (скользящими) поверхностями. Такие поверхности, примыкающие к лезвию или острию, уменьшали сопротивление материала, ослабляя фактор трения.

В палеолитический период они возникали на каждом отщепе или пластине вследствие особенностей раскалывания материалов изотропного строения. Гладкую поверхность имело прежде всего брюшко. На призматических пластинках спинка отличалась двух- или трехгранной формой. Ретуширование лезвия, как правило, деформировало поверхность. Орудием с двусторонне ретушированным лезвием трудно было строгать дерево с установкой лезвия на предмет обработки под малым углом. Первобытный мастер начиная с древнего палеолита соблюдал известные правила. Если он строгал этим способом дерево, кость, рог, бивень, то орудие всегда было обращено брюшком к материалу. Когда он строгал дерево (скоблил) под большим углом, брюшко орудия направлялось вперед, независимо от того, каким было движение: аддукционным или абдукционным. Поэтому ретушировалась в таких орудиях всегда спинка. Эта закономерность распространялась на другие орудия, в том числе на скребки для обработки кожи, на резчики, резцы и т. д.

В топорах типа транше рабочее лезвие выравнивалось боковыми сколами, удалявшими рельеф оббивки или ретуши. В неолитических топорах, теслах, долотах, ножах необходимая поверхность достигалась шлифовкой и полировкой. Металлические орудия получали нужную форму в скользящую поверхность ковкой и заточкой.

В противоположность отмеченной тенденции обращает на себя внимание и развитие каменных орудий в направлении увеличения фактора трения поверхностей. Палеолитические песты — краскотерки, зернотерки, абразивы для шлифования деревянных и костяных изделий, насечки для придания шероховатости рукояткам говорят о раннем появлении этой тенденции. В неолитическую и следующие за ней эпохи фактор трения возрос, превращаясь в одно из ведущих направлений техники обработки каменных, костяных, деревянных орудий и изделий. Увеличивались-рабочие поверхности абразивных инструментов, все более охватывающие форму обрабатываемого предмета, рос выбор зернистости песчаников;: искусственно насекались неровности на поверхности вулканических пород, чтобы повысить сопротивление трущихся поверхностей, как это наблюдается в зернотерках и рудотерках. Одновременно совершенствовались и орудия с зубчатыми и пилообразными краями, рассчитанными на увеличение захвата и разрыва волокнистых веществ, для членения которых они предназначались (серпы).

В совершенствовании орудий с режущим краем или острием наблюдается тенденция к уменьшению угла заострения, что было вызвано необходимостью ослабить сопротивление волокнистых веществ при их обработке. Резание мяса, кожи, связок, волос, мягких предметов растительного происхождения было затруднено, если лезвие в сечении намного превышало 30°. Такие операции начиная с древнего палеолита выполнялись отщепами, рабочий край которых тем более отличался эффективностью, чем он был тоньше. Однако слишком тонкий край был ломки» по причине хрупкости камня. Возникала необходимость обработки его ретушью, которой удалялись все неровности края и слишком тонкие, ломкие части. Небольшая зубчатость ретушированного края обеспечивала лучшее сцепление его с волокнами животных или растительных веществ, помогала разрывать их в процессе разрезания, несмотря на увеличение угла заострения.

Случайная форма отщепов, недостаточная протяженность их лезвия стояли на пути совершенствования охотничьих ножей, служивших для членения волокнистых веществ. Некоторым прогрессом в этом направлении были ашельские бифасы, но и они не разрешали технических требований, возникших в связи с охотой на крупных животных, отличавшихся толстой и крепкой кожей, мощными связками и объемом мягких частей тела.

Уменьшение угла заострения лезвия было успешно достигнуто леваллуазскими способами расщепления кремня. Леваллуазские отщепы-пластины в лучших образцах не нуждались даже в ретуши лезвия. Эти плоские, прямоосные пластины имели края, срезанные под сравнительно большим углом (35—40°), но выделялись очень тонким общин сечением, благодаря чему при ретушировании мало утолщалось их лезвие. Поэтому срок их службы возрастал.

Превосходство призматических пластин над леваллуазскими состояло в прямизне и длине лезвия. В мезолите и особенно в неолите угол заострения микро- и макропластинок несколько уменьшается за счет использования разностей кремня, отличающихся большей однородностью и усовершенствованными методами расщепления. Например, в микропластинках из неолитического погребения близ р. Амги в Якутии, предназначенных для вкладышевых орудий, этот угол равен 30° при толщине 0.8—1.5 мм.

Радикальное уменьшение угла заострения лезвия (10—15°) было достигнуто только в металлических ножах. Уменьшение угла заострения острия в проколках, в наконечниках, шильях является сопутствующей тенденцией.

Абразивная обработка топоров, тесел, долот, ножей позволила получить более высокую точность геометрической формы и чистоты поверхности, чем при ударной технике скалывания и пикетажа. Шлифованные и полированные орудия оказались не только более производительными вследствие уменьшения сопротивления обрабатываемого материала, но и более износоустойчивыми ввиду уменьшения фактора трения.

Появление металлов (меди, бронзы и железа) оказало двоякое влияние на развитие каменных орудий. С одной стороны, во многих областях Азии, Европы и Африки шлифованные топоры, тесла и долота почти полностью исчезли. Техника выработки кремневых орудий (наконечников, ножей и др.) стала регрессировать вследствие утраты традиционных способов. С другой — расширился круг использования камня в горном деле, в металлургии, металлообработке, строительстве и т. д. Вместе с тем в ряде стран появились некоторые признаки подражания в камне новым формам, созданным в металле. Боевые топоры, кинжалы, ножи, секиры, наконечники копий и стрел, которым литейная техника и ковка без особого труда и в короткие исторические сроки придала наиболее рациональные и механически эффективные очертания, пропорции, стали образцами для дальнейшего совершенствования мастерства по камню. Сюда относятся известные датские кремневые кинжалы, древнеегипетские свежевальные кремневые ножи, повторяющие формы медных. Таковы широкие и тонкие, великолепно отполированные топоры из берегов Марбиганского залива во Франции. Их делали из гагата, придавая лезвиям ширину бронзовых секир в культовых целях или как символ власти вождей. Из Франции их вывозили в Португалию и Англию.

Здесь мы вступаем уже в область изобразительного искусства, которым завершается обработка камня.