#i_011.png

Понятие «производство» имеет буквально всеобъемлющий характер. Оно охватывает взаимоотношения людей, взаимоотношения между людьми, природными ресурсами и машинами, взаимоотношение между машинами.

Возделывание земли и добыча полезных ископаемых, обработка изделий и их сборка, создание новых машин, материалов и технологии, технический контроль и стандартизация, складирование и снабжение, подготовка квалифицированных кадров и техника безопасности, восстановление и сохранение природных ресурсов — каждая из бесчисленных граней производства по-своему преломляет его особенности. Для социалистического производства все его грани обращены к единой цели — максимальному удовлетворению непрерывно возрастающих материальных и духовных потребностей членов общества. На это направлены планы народного хозяйства, отраслей и предприятий. Стратегия развития нашей экономики, фундаментом которой является производство, воплощена в перспективных прогнозах и планах, тактика — в повседневном оперативном управлении каждой его ячейкой, создающей окружающий нас мир вещественных богатств.

Без устали, днем и ночью, работает производство, порождая гигантские потоки вещей — предметов и орудий труда, потребительские блага. Изо дня в день нарастает скорость этого потока все новых вещей, и этот непрерывно ускоряющийся и расширяющийся кругооборот — отличительная особенность социалистического расширенного производства.

Открывая в кухне кран, мы «добываем» воду, поворачивая рукоятку — «добываем» газ для приготовления пищи. По трубам текут вода и газ, нефть и бензин, фруктовые соки и минеральные воды, из труб собираются строительные конструкции, нет буквально ни одной машины, в которой не применяются в том или ином виде трубы и трубочки.

Сколько же надо таких разных труб и трубочек, чтобы их использовать непосредственно или для изготовления других изделий? Сотни, тысячи, десятки тысяч?!

Нет! Тот «минимум-миниморум», без которого современному производству никак не обойтись, составляет около миллиона. Вдумайтесь в это число! Миллион разных труб, из разного материала, разного диаметра, с разной толщиной стенок, и каждый сорт, говоря словами Козьмы Пруткова, «необходимо причиняет пользу, употребленный на своем месте».

Доброй славой пользуются в нашей стране магазины «Тысяча мелочей». Название это явно рассчитано на то, чтобы поразить покупателей внушительностью ассортимента товаров. Но изобретатели этого названия ошиблись по меньшей мере в сто раз: не тысяча, а более ста тысяч — таково действительное число разных мелочей в магазине «Тысяча мелочей». Но и это лишь малая часть многомиллионного набора материальных благ, создаваемых производством для удовлетворения потребностей нашего современника.

Язык цифр скуп и непригоден для описания красот природы и эмоций человека. Согласитесь, однако, что вряд ли можно найти более впечатляющий образ того мира вещей, которые человек поставил себе на службу, чем многоразрядные числа, характеризующие меру его богатства. Для нашего социалистического производства 70-х годов этой мерой является около двух десятков миллионов разных вещей, разных в полном смысле этого слова, ибо нет среди них двух совершенно одинаковых по своим свойствам, назначению, технологии производства и применения, способностям удовлетворять многообразные общественные потребности. Говоря профессиональным языком экономиста, плановика, технолога, инженера, такова номенклатура производимой и потребляемой у нас продукции. И в создании каждой из этих вещей — консервной банки и турбогенератора, газеты и телевизора, велосипеда и сверхзвукового лайнера — участвуют мозг и руки человека.

А ведь были далекие времена, когда человек даже и представить себе не мог, что он когда-либо изобретет металлическую трубу; менее далекие времена, когда у него и мысли не возникало о ежедневной газете; и сравнительно недавние времена, когда он не подозревал, что научится консервировать пищу.

Почему мы вспоминаем обо всем этом в статье, которая должна быть обращена в будущее, должна быть взглядом вперед, а не оглядкой на далекое прошлое?

Мы сделали это с единственной целью — вскрыть те движущие силы, зная которые можно строить прогнозы о будущем производства с минимальным риском попасть впросак, фантазировать на реальной основе. Эту основу составляют прогнозы и программы социально-экономического развития народного хозяйства СССР до 2000 года, разрабатываемые многочисленными коллективами специалистов, снабженных современным арсеналом научных методов и технических средств. Прогнозы строятся в соответствии с направлениями технической политики, выработанной XXIV съездом КПСС, и зиждутся не только на реальной основе, но и на конкретных прогнозных расчетах развития отдельных отраслей, характеризующих движение нашей экономики к целям, которые перед ней поставлены на предстоящие 25 лет.

Но каким будет производство, скажем, через 50 лет? Останутся ли незыблемы те движущие силы, которые определяют его развитие сегодня, те общие тенденции, которые лежат в основе прогнозов до 2000 года? Или с наступлением XXI века они претерпят коренные изменения? Какими будут его техника и технология?

Эти вопросы отнюдь не плод простого любопытства или любознательности.

Какой бы конкретный период будущего ни охватывали разрабатываемые прогнозы и программы, всегда необходимо считаться с тем, что этим периодом существование общества не завершается и условия его дальнейшего развития во многом определяются в прогнозируемом отрезке времени. Иными словами, реализация прогнозов и планов, намечаемых на ближайшую четверть века, имеет огромное значение для развития производства и в следующую четверть века. Вот почему поставленные вопросы уже сегодня требуют ответа.

Ясно, что речь идет не о том, чтобы определить технико-экономические характеристики производственных процессов, методы и технические средства управления ими, номенклатуру продукции. Но представить себе производство XXI века в самых общих чертах, пусть даже чуть-чуть фантазируя, безусловно, необходимо и возможно! Для этого нужно прежде всего довести до логического конца начатый нами разговор о движущих силах развития социалистического производства, имея в виду, что цель его столь же незыблема, как и сами принципы социалистического общества.

Одну из этих движущих сил мы уже фактически вскрыли — это непрерывное стремление каждого человека и общества в целом ко все большему разнообразию благ. Но можно задаться вопросом: так ли уж неизбежен и вечен этот принцип? Нельзя ли принудительно ограничить это «ужасное», казалось бы, расточительное разнообразие, свести его до некоторого узаконенного, жесткого и неизменного минимума, годного на много лет вперед, ну хотя бы до 2050 года?

Каждому понятно, что такое ограничение противоестественно, противоречит природе людей, их общественной организации. Мысль человека работает непрерывно, исследуя все вокруг себя и обращаясь внутрь. Стремясь продлить жизнь человека, врачи, биологи, биохимики изучают причины все новых болезней, изобретают все новые лекарства. Так что же, до 2050 года не изготавливать новые лекарства, не создавать и не синтезировать новые вещества для их производства, новые машины и аппараты для их массового выпуска?

Миллионы автомашин отравляют воздух городов! Так что же, прекратить разработку новых транспортных средств, не загрязняющих атмосферу? До 2050 года не создавать новые виды материальных и духовных благ и не подготавливать заблаговременно необходимые условия для их производства?

Конечно, основной закон социализма — всемерное удовлетворение непрерывно растущих потребностей человека — отнюдь не исключает определенные, разумные ограничения на ассортимент потребительских благ, особенно таких, которые можно называть благами только в кавычках. Вопрос заключается в том, что является критерием разумности ограничений. Ясно, что на него не существует раз навсегда заданного ответа. Можно, однако, утверждать, что в социалистическом обществе такие «блага», как наркотики и порнографические фильмы, никогда не будут считаться разумными. Мы убеждены также в том, что наше общество всегда сумеет выбрать критерий для оценки разумности тех или иных ограничений. Но в своей основе принцип непрерывно расширяющегося разнообразия благ всегда будет одной из главных движущих сил в экономической жизни общества.

Столь же незыблема и вечна вторая движущая сила, диктующая научно-технический прогресс и определяющая развитие общественного производства, — всемерная экономия человеческого труда.

Когда первобытный человек, впервые взяв палку в руки, сшиб ею высоко висящий плод, он, наверное, сказал своей компании что-нибудь такое:

— Вот чудеса! То надо было лезть на дерево, обдирать живот и ноги, тратить столько времени да еще, чего доброго, рисковать сорваться с ветки. А палкой — раз, два — и готово дело. Какая огромная экономия труда и высокая эффективность процесса!

Может быть, он выражался не совсем так, но, во всяком случае, он именно это имел в виду, когда стал обзаводиться первыми орудиями труда. В последующие тысячелетия люди научились понимать, что разумно частично затрачивать труд и время на производство орудий труда, применение которых с лихвой компенсирует усилия, ранее затраченные на их изготовление. Много позже индустриализация показала, что еще выгоднее предварительно изготовлять машины, производящие средства труда. Теперь производство достигло такой стадии, когда сначала создаются машины для производства машин. Развитие все более косвенных и поэтому все более эффективных процессов производства — основа основ их интенсификации, обеспечивающей экономию труда. А это неизбежно приводит к росту разнообразия предметов и орудий труда.

Итак, мы определили две «вечные» движущие силы производства: рост его разнообразия, куда входит и потребление, и экономия затрачиваемого на него труда. Как же найти их «равнодействующую», совместить, казалось бы, столь же несовместимое, как огонь и вода?

Существует только один путь решения этой коренной социально-экономической проблемы — неуклонное повышение производительности общественного труда, достижение такой производительности, при которой каждая единица человеческого труда в максимальной степени увеличивает общественное богатство. Таков непреложный и вечный закон социалистической экономики.

Теперь мы вооружены достаточно надежным путеводителем и можем отправиться вперед, к XXI веку. Остается лишь выбрать отправные точки нашего маршрута, точнее — его начальный отрезок. Им будет та общая тенденция в развитии производства, которая уже наметилась сегодня и определена на ближайшие десятилетия Директивами XXIV съезда КПСС. Без особого риска можно утверждать, что она получит дальнейшее развитие и в последующие десятилетия.

* * *

Следует с самого начала сказать, что не только в одной статье, но и в целой книге невозможно охватить в сколько-нибудь полном объеме все то гигантское разнообразие идей, технических решений и технологических процессов, которые составляют содержание того, что в настоящее время включает понятие «производство». Тем сложнее становится такая задача, когда речь идет о прогнозе на будущее, охватывающее такой значительный промежуток времени, о котором идет речь в этой книге.

Любой прогноз — это в первую очередь процесс экстраполяции, базирующийся на компетентных и хладнокровных оценках того, что было в прошлом, и того, чем мы располагаем в настоящем. Но это процесс не простой, или, как говорят, линейной экстраполяции, позволяющий путем вычисления некоторых коэффициентов пропорциональности и прямого умножения определить, что нас ждет в будущем.

В начале нашего века к «чудесам» техники относили паровоз, проволочный телеграф, электромотор, пианолу (механическое пианино), простой арифмометр. Некоторые из подобных «чудес» уже сошли или сходят со сцены. В цехах заводов нет трансмиссионного привода, на железных дорогах уже редко встречается паровоз, а слово «пианола» требует дополнительного пояснения, хотя еще в начале века этот музыкальный автомат был распространен довольно широко.

Многие из «чудес» недавнего прошлого исправно служат людям до сих пор. При желании можно было бы, например, сосчитать, во сколько раз за прошедшую четверть века увеличились длина телеграфных линий, количество электродвигателей и арифмометров, и рассчитать, как они будут увеличиваться в дальнейшем. Эти цифры, быть может интересные сами по себе, не могут, однако, служить основными характеристиками научно-технического прогресса в настоящем и тем более в будущем.

Техника и технология прошлого явились тем культурным слоем, той почвой, на которой выросло наше современное производство. Процессы усовершенствования орудий труда, изобретения и внедрения новых машин и материалов, способов обработки шли и идут непрерывно со все возрастающей интенсивностью. Слой за слоем накапливается человеческий опыт в области научно-технического творчества. Ежедневно и ежечасно в различных сферах производства появляются ростки новых идей, методов и средств. Этим росткам предстоит пробить себе путь сквозь густые заросли приемов и решений, ставших сегодня уже традиционными и общепринятыми.

А тому, кто пытается ответить на вопрос, как будет выглядеть производство в будущем, надо уметь сегодня разглядеть новое, только еще нарождающееся, существующее в лабораторных разработках, первых макетах, неуклюжих опытных образцах, пока еще мало связанное с настоящим производством. И не только разглядеть это новое, но и оценить его значение и место, которое оно займет в ближайшем и более отдаленном будущем.

Фронт научно-технического прогресса сейчас имеет такую протяженность и продвигается с такой скоростью, что нет ни возможности, ни даже смысла пытаться побывать на всех его участках, даже если речь идет не обо всем производстве в целом, а только об отдельных его отраслях.

Единственный путь, который нам остается, — это выбрать одну из наиболее важных отраслей и попробовать охарактеризовать ближайшее будущее этой отрасли, определить главное направление, по которому идет ее развитие.

Марксизмом-ленинизмом научно доказано, что исторически исходным пунктом создания материально-технической базы социализма и коммунизма является крупное машинное производство.

Машиностроение — сердцевина такого производства, поставляющего ему необходимые орудия труда и обеспечивающего эффективное высокопроизводительное выполнение технологических процессов. Современные тенденции науки и техники показывают, что основным направлением в развитии орудий труда является последовательная замена машин, требующих ручного управления, автоматами.

Итак, автоматизированное машинное производство, автоматизация технологических процессов — вот та база, которая должна образовать прочный фундамент будущего коммунистического общества. Теперь мы добрались до одной из важнейших проблем научно-технического прогресса, на решение которой сейчас партия и правительство направляют большие средства и концентрируют усилия нашего общества.

Автоматизация — вот тот важнейший участок, на котором фронт научно-технического прогресса продвигается быстрыми темпами. Автоматизация уже глубоко проникла в самые различные отрасли производства. Сегодня существуют автоматизированные электростанции, нефтеперерабатывающие и химические заводы, автоматизированные участки. Только за первые два года девятой пятилетки в промышленности СССР внедрено более трех тысяч автоматических линий, проектируются, строятся и внедряются сотни и тысячи типоразмеров автоматических машин и оборудования, обрабатывающих металл, пластмассы, дерево, изготавливающих пищевые продукты, лекарства, папиросы, сигареты, спички, посуду — сотни, тысячи наименований изделий, которые во все расширяющемся ассортименте требуются в сферах производства и потребления.

Но для нас сейчас важно не столько убедить себя и читателя в том, что уровень автоматизации производства непрерывно возрастает. Главная наша задача состоит в том, чтобы вскрыть определенное противоречие, свойственное этому процессу, и указать пути его преодоления, по которым идет современное производство.

Десятки тысяч осин и елок поступают на лесопилки спичечных фабрик. И ежедневно вывозятся с фабрик вагоны ящиков, наполненных коробками спичек.

Автоматы делят бревна на чурки определенной длины, с помощью широких ножей «развертывают» чурку в бесконечную ленту, примерно так же, как раскручивают бинт, прессуют эту ленту стопками и рубят из нее так называемую соломку. Соломка должна быть пропитана специальным составом, чтобы спичка горела без тления; затем ее надо высушить, очистить, отполировать и отделить брак. Только после этого начинается процесс превращения соломки в спички.

Все это делают автоматы. А к моменту, когда спичка готова, другие автоматы изготавливают и подают к набивному автомату коробки. Можно сказать, что к коробку спичек на довольно долгом пути его изготовления не притрагивается рука человека, так же, как она не притрагивается к продукции хлебозавода-автомата, к пакету молока, коробке консервов.

Между сырьем и готовой продукцией выстраивается целый комплекс узкоспециализированных автоматов, автоматических линий, автоматического оборудования. Только благодаря этому вы можете в любом табачном киоске за одну копейку купить красивую коробочку довольно сложной конструкции (попробуйте присмотреться, как она устроена!), набитую пятьюдесятью спичками.

Но прежде чем воспользоваться преимуществами автоматизированного процесса, необходимо создать тот самый комплекс оборудования, который этот процесс обеспечивает. Конечно, можно представить себе узкоспециализированные заводы-автоматы, производящие только автоматы для производства спичек, и другие заводы-автоматы, которые выпускают только автоматы для изготовления сосисок, и третьи — только для конфетных автоматов и т. д.

Однако наивность такой картины машиностроительного производства очевидна с первого взгляда. Ведь спички и хлеб, газеты и книги, мануфактура, гвозди и электролампочки производятся ежегодно, ежедневно и ежечасно миллионами и миллиардами штук, экземпляров, метров и килограммов, причем конструкция этих изделий сравнительно проста и годами и десятилетиями остается неизменной либо меняется не очень существенно. В этих условиях строить для их производства автоматические линии, цехи, заводы-автоматы имеет прямой смысл. А машины и автоматическое оборудование, выпускающие подобную массовую продукцию, нужны в несоизмеримо меньших количествах, зачастую их приходится строить в единичных образцах или сериями в тысячи, сотни или десятки штук. И, кроме того, они, как правило, чрезвычайно сложны по конструкции, нередко состоят из тысяч и десятков тысяч деталей, «морально» очень быстро устаревают, в силу чего должны непрерывно совершенствоваться. Это, в свою очередь, неизбежно связано с изменениями их устройства, принципов действия и конструкции.

Чем шире внедряется в различные отрасли производства автоматизация, тем шире номенклатура необходимых для этого машин, автоматов и автоматических линий, устройств, приборов.

Ясно, что создавать для их производства узкоспециализированное оборудование бессмысленно. Если же для их проектирования, изготовления и модернизации пытаться использовать обычные универсальные методы, средства и технику, то производство автоматического оборудования потребует затрат таких средств, времени и квалифицированного человеческого труда, что «овчинка не будет стоить выделки».

В этом и состоит противоречие, свойственное широкому внедрению автоматизации. А разрешить его можно лишь единственным путем. Массовая продукция выпускается и будет выпускаться высокопроизводительными автоматическими и автоматизированными производствами, принципы создания которых уже становятся общепринятыми, традиционными. А оборудование для этих производств должно производиться с использованием новых, нетрадиционных методов и техники.

Эти методы и техника должны быть высокоэффективными, когда речь идет о производстве и обработке деталей и изделий, выпускаемых и единичными образцами, и малыми и большими сериями. Они должны быть готовы к быстрому переходу от производства одного вида продукции к другому виду, от деталей одного типа к деталям другого типа. Эти методы и техника должны совмещать в себе гибкость и приспосабливаемость обычного универсального оборудования, обычных токарных, фрезерных, расточных и других станков, требующих для своего обслуживания квалифицированных станочников, с точностью и производительностью автоматических машин, действующих без непосредственного участия человека.

За истекшую четверть века такие методы и техника также разработаны. Это методы цифровой автоматизации: машины, станки и оборудование с цифровым управлением.

Современный станок с цифровым управлением работает по программе, носителем которой обычно служат специальные магнитные ленты, примерно такие же, что используются в магнитофонах.

Невидимые глазу сигналы, записанные на эти ленты, управляют движением всех рабочих органов станка, движением резца, фрезы, заготовки. В результате этих движений производится обработка изделий.

Универсальные станки обычного типа можно сравнить с роялем. На нем можно исполнять самые различные произведения, но… нужен квалифицированный пианист. Станкам нужен токарь, фрезеровщик. Узкоспециализированный автомат можно сравнить с шарманкой, пусть самой высококлассной по исполнению. Она играет всегда одну и ту же мелодию. А станки с цифровым управлением — нечто вроде магнитофона. Чтобы его пустить в ход, нужна только программа — лента, несущая набор отметок. Станок «поймет» их и автоматически обработает соответствующее изделие. А если понадобится обработать другое изделие, то достаточно заменить ленту, установить новую заготовку, заменить инструмент.

Такой автомат действительно приобретает в значительной мере те свойства, которыми обладает система, состоящая из универсального станка и высококвалифицированного станочника, — приобретает универсальность. А производительность этого автомата несравненно выше — он не утомляется, не отвлекается, ему не надо «привыкать» или «переучиваться» при переходе от обработки одного изделия к обработке другого.

Цифровые методы автоматизации как нельзя лучше отвечают двум сформулированным ранее принципам. Они не только обеспечивают экономию дорогостоящего ручного труда, они обеспечивают удовлетворение все растущих требований к разнообразию продукции машиностроительного производства — разнообразию, которое, в свою очередь, диктуется все растущими потребностями в отношении разнообразия потребительских благ.

Станки и оборудование с цифровым управлением эффективно решают одну из важнейших задач автоматизации машиностроительного производства. Вот почему созданию этих систем уделяется такое внимание как у нас в стране, так и за рубежом.

У читателя может возникнуть естественный вопрос: а как быть с программами, откуда их брать?

Станки с цифровым управлением — детища электронных цифровых вычислительных машин ЭВМ. ЭВМ берут на себя львиную долю труда при подготовке программ, и только благодаря этому идея цифрового управления машинами могла быть воплощена в жизнь. Как участие человека в работе обычных станков сделало их универсальными, так «участие» электронных вычислительных машин сделало универсальными автоматы с цифровым управлением.

Четверть века назад была начата их разработка. Лет пятнадцать назад первый этап создания станков нового типа был более или менее завершен. В 1960 году во всем мире насчитывалось, вероятно, не больше 200–300 станков с цифровым управлением. В 1962 году в США находилось в эксплуатации 1500 станков с цифровым управлением, в 1964 — свыше 4000, в 1967 — 10 000, к настоящему времени свыше четверти всех выпускаемых станков оснащается системами цифрового управления. Эта картина широкого развертывания фронта работ в области цифровой автоматизации характерна не только для США и нашей страны, но и для ряда других высокоразвитых стран. Именно она и определила одно из важнейших направлений в области научно-технического прогресса за истекшую четверть века. Но, как ни много уже достигнуто в этой области, сделаны лишь первые шаги. Возможности методов и средств цифровой автоматизации не только не исчерпаны, их применение фактически только еще началось. Можно с уверенностью сказать, что в 2000 году инженеры и технологи на наше оборудование с цифровым управлением, на его современные возможности и широту использования будут смотреть примерно так же, как современные авто- и авиастроители смотрят на первые автомобили и аэроплан братьев Райт, то есть с доброй и насмешливой улыбкой.

Предстоящая четверть века будет характеризоваться в первую очередь гигантским количественным скачком в области производства станков и машин с цифровым управлением, расширением их типажа и номенклатуры. Станки типа так называемых «обрабатывающих центров», оснащенные целыми наборами режущего инструмента, включающими десятки резцов, сверл, метчиков, разверток и т. д., могущих без перестановки заготовки выполнить над ней по заданной программе десятки различных операций, высокоточные и высокопроизводительные станки для изготовления самых сложных деталей и изделий из легких сплавов и из высоколегированных сталей, для механической обработки, для газовой резки и штамповки. Подобное оборудование сейчас разрабатывается, уже имеется на производстве и будет строиться многими тысячами.

Но главное, конечно, не в этом количественном скачке, неизбежность которого очевидна сейчас.

Цифровая автоматизация, пусть пока очень робко, но уже захватывает самые различные звенья технологического процесса.

Технологический процесс машиностроительного производства — это не только обработка деталей. Это длинная цепь операций и действий, включающая самые различные этапы: и непосредственно разработку самого процесса, и выборы оптимальных режимов резания, и распределение припусков на обработку деталей, и контроль заготовок перед обработкой, и контроль обработанных деталей, и сборку изделий.

Сейчас выполнение многих из этих процедур требует применения человеческого труда — труда квалифицированного и в больших количествах. В ближайшей перспективе этот живой труд должен быть и будет заменен системами, действующими на «цифровых механизмах».

На нескольких примерах попытаемся показать читателю новые идеи, принципы их применения, которые сегодня разрабатываются и совершенствуются, а в недалеком будущем получат широкое применение в машиностроительном производстве.

* * *

Программу для станков с цифровым управлением считает ЭЦВМ. Все данные для подготовки программы сегодня задает человек. Первое, второе, третье, сотое изделие станок обрабатывает по одной и той же программе.

Хорошо, если человек может составить программу так, чтобы получить от станка максимум того, на что этот станок способен в отношении точности и производительности. Было бы хорошо, если бы программист и технолог знали, как будут деформироваться станок, инструмент и изделие в процессе обработки (а такие деформации происходят обязательно). Хорошо, если бы они смогли предсказать, как с течением времени будут изнашиваться резец, фреза или какой либо другой режущий инструмент (а износ инструмента происходит в процессе работы непрерывно). Хорошо, если бы им было известно, как по мере работы разогреваются узлы станка и каково в результате этого нагревания влияние температурных деформаций на результаты работы машины. Вот если бы они все это могли предвидеть и учесть в программе, тогда бы десятое и сотое изделие на станке было бы обработано оптимальным образом. Но ни технолог, ни программист всех этих подробностей не знают сегодня, не будут знать завтра, ни, вероятно, даже в отдаленном будущем. Да и особой необходимости в том, чтобы все это знать во всех подробностях, наверное, не будет.

Создающиеся сейчас так называемые самонастраивающиеся, или адаптивные, системы обеспечат работу станков в оптимальном режиме без вмешательства человека. Они будут уметь накапливать, обрабатывать и использовать информацию для достижения наилучших результатов. Системы специальных измерительных устройств и датчиков, собирающие данные о том, как протекает реальный технологический процесс, как деформируются станок, изделие, режущий инструмент, как изнашивается инструмент и как разогревается вся система, специальные вычислительные устройства, обрабатывающие эту информацию, дадут возможность автоматически корректировать ту исходную программу, которую автомат получил от технолога.

Другими словами, человек как бы задаст автомату цель. А как достичь этой цели, тот научится сам, с помощью искусственных органов чувств и цифровых механизмов. Только первое изделие из партии автомат обрабатывает по программе, заданной человеком. Потом, начиная с этого момента, он начнет накапливать и учитывать опыт работы, совершенствовать программу, обрабатывая второе, третье и последующие изделия с предельной точностью либо в максимальном темпе, либо с наивысшей экономичностью.

Естественно, что тот или иной из этих критериев, которым должен «руководствоваться» автомат в процессе работы, также задает человек. Но весь процесс поиска и настройки на оптимальную реализацию программы, вся та процедура, которая практически неосуществима традиционными методами, то есть на универсальных станках и с участием пусть даже высококвалифицированных операторов, будет выполняться в автоматическом режиме, обеспечивая высокие точности, производительность, экономичность.

Первые опыты по созданию и применению адаптивных систем цифрового управления станками уже проведены. Эти опыты показали высокую эффективность применения такого качественно нового вида оборудования. Несомненно, что в будущем оно получит широкое практическое внедрение.

Но вот изделие обработано по программе. Как убедиться в том, что оно обработано правильно, отвечает во всех подробностях чертежу, заданному конструктором?

Конечно, когда это изделие напоминает простой валик или шайбу, то задача может быть решена сравнительно просто. Если оно выпускается многотысячными, миллионными или миллиардными тиражами, то достаточно поставить специализированные высокопроизводительные контрольные автоматы; в других случаях выгодно обойтись универсальным измерительным инструментом.

Ну а как быть, если изделия обладают сложной конфигурацией, если они становятся все более разнообразными, требования к их точности все повышаются, а сроки изготовления сокращаются и если к тому же недостаточно измерить на этих изделиях 2–3 размера, а необходимо иметь картину точности обработки всех их поверхностей?

Применение традиционных методов контроля, предусматривающих изготовление специальных шаблонов, эталонов, привлечение высококвалифицированных контролеров сопряжены с большими затратами ручного труда, времени и средств, а строить специализированные автоматы для контроля таких изделий так же бессмысленно, как строить специализированные автоматы для их обработки.

Так наметилась еще одна качественно новая область применения техники цифрового управления — контрольные автоматы.

По принципу действия эти машины напоминают станки с цифровым управлением. Только вместо обрабатываемой заготовки на них устанавливаются измеряемые изделия, а вместо режущего инструмента — измерительный орган.

Технолог намечает на изделии все те участки, которые подлежат измерению; программист составляет соответствующую программу. Затем контролируемое изделие устанавливается в исходное положение, и автомат пускается в ход.

Измерительный орган скользит вдоль измеряемых поверхностей. Если эти поверхности выполнены неточно, измерительный орган, а за ним и приборы автомата регистрируют все отклонения. Как только вся программа «проиграна» — готов документ, зафиксировавший с высокой степенью точности всю картину обработки изделия.

Уже сейчас созданы и пришли на производство первые образцы контрольных автоматов с цифровым управлением. Они позволят значительно ускорить операции контроля самых сложных изделий и полностью исключить при этом субъективные ошибки человека, позволят обойтись без калибров, шаблонов и эталонов. Копии программ контроля можно будет рассылать по многим предприятиям, обеспечивая его единообразие и высокое качество.

Можно не сомневаться, что эти машины займут достойное место в области цифровой автоматизации машиностроительного производства.

Итак, самые различные станки, адаптивные системы, контрольные автоматы — агрегаты, оснащенные цифровым управлением. Но ведь их можно использовать не только порознь! Из них можно построить целые автоматические линии и комплексы. Такие автоматические линии будут качественно отличаться от автоматических линий традиционного типа, предназначенных для выпуска большими тиражами одних и тех же изделий. Линия станков, машин и другого оборудования с цифровым управлением, так же как и каждый отдельный ее агрегат, сочетает гибкость и приспосабливаемость универсального оборудования с точностью и производительностью специализированных автоматов.

Опытные линии станков с цифровым управлением уже построены. Представляется очевидной возможность включить в состав этих линий контрольные автоматы и адаптивные системы, значительно расширив тем самым уровень автоматизации машиностроительного производства и повысив его эффективность и качество. Перспективы внедрения линий и комплексов с цифровым управлением в различные отрасли машиностроения в ближайшую четверть века весьма широки и диктуются всем ходом научно-технического прогресса.

Автоматический комплекс с цифровым управлением может охватить не только процессы обработки и контроля изделий машиностроения.

Представим себе сборочный цех. Пусть здесь идет поточная сборка автомобилей (или других машин). Эта картина впечатляет своей ритмичностью: столько-то минут — автомобиль, еще столько же — автомобиль, еще — автомобиль, автомобиль, автомобиль… Однако она бывает «смазана» однообразием — с конвейера сползают автомобиль за автомобилем, ничуть не отличающиеся один от другого, ни одним из своих многочисленных признаков, ни единой деталью, ни цветом, ну абсолютно ничем. Получается это потому, что вся программа сборки определена на продолжительный срок.

Но ведь это не обязательно. Определение программы сборки и выполнение заказов на автомобили можно поручить цифровой машине. Ей безразлично, запомнить ли заказ на тысячу автомобилей или на один. Кстати, ей нетрудно запомнить и все те особенности машины, на которых настаивает заказчик. И дальше весь процесс сборки направляется цифровыми механизмами. В соответствии с особенностями очередного заказа на конвейер подается то красный кузов, то синий, то обычная «обувь», то тропическая, то обычный радиоприемник, то повышенного класса… Одновременно с этими деталями и узлами идет номер заказа — собранная машина не обезличена, она уже имеет адрес назначения.

Вновь и вновь методами цифровой автоматизации реализуются тенденции, отвечающие закономерностям, требующим экономии живого труда и все расширяющегося разнообразия благ. Следующая четверть века будет наверняка знаменоваться еще более широким внедрением и развитием этих методов. И на этом дело не остановится.

* * *

«Вмешательство» цифровых механизмов в процессы сборки, о которых сейчас шла речь, касалось не основных операций, а вспомогательных, связанных с управлением скоростью главного конвейера, а также конвейеров, подающих на сборку узлы и детали: то синий, то красный кузов, простую или специальную резину и т. д. А непосредственно сборку автомобиля ведут люди. Поступает на сборку автомобиля кузов — они ставят его на шасси, выполняя при этом множество операций, разнообразных движений — быстрых и плавных, размашистых и мелких, сильных и мягких; поступают на сборку колеса — нужны наборы других движений.

Автомобили и самолеты, мотоциклы и велосипеды, радиоприемники и телевизоры, тысячи других машин, их узлов и агрегатов собирают люди. На процессах сборки заняты буквально миллионы людей. Эти процессы требуют, как кажется, чисто человеческих движений и до сих пор практически не автоматизированы. Вот где расходуется гигантское количество человеческого труда. На сборочных линиях и конвейерах этот труд узкодифференцирован. Сборщик может выполнять сложные движения, но, обслуживая одно и то же рабочее место, он от раза к разу их повторяет. Его труд поэтому однообразен и неинтересен. А кроме того, выполнение той или иной операции может быть сопряжено со значительными физическими напряжениями, и тогда труд сборщика оказывается не только неинтересным, но и утомительным.

Автоматизация сборочных работ — вот где резерв повышения производительности труда, необозримое поле приложения идей и методов автоматизации. Так что же, разве до сих пор специалисты не видели необходимости работать в этом направлении?

Конечно, видели! И настойчиво искали решения и средства, которые по своим возможностям и своей «квалификации» отвечали бы сложности и масштабам давно назревшей проблемы.

Токарь, фрезеровщик, шлифовщик — рабочие высокой квалификации; их главная задача — управление станком, обеспечение его точной и производительной работы. Но они должны также устанавливать на станок заготовку и снимать обработанное изделие. Многие изделия, детали и заготовки для них имеют значительный вес: 10–30–50 килограммов. Операции их обработки на станке могут занимать всего лишь несколько минут, и тогда загрузка и выгрузка перерастают в важную проблему.

Квалифицированный труд станочника можно сэкономить, заменив обычный станок станком с цифровым управлением. Об этом мы уже много говорили. Внедрение станков, адаптивных систем и контрольных автоматов с цифровым управлением, как мы уже знаем, — одно из генеральных направлений автоматизации машиностроительного производства. Становление этого направления заняло до сегодняшнего дня круглым счетом четверть века.

Но мы при этом ни одним словом не обмолвились о том, кто же будет обслуживать эти высококвалифицированные станки, контрольные автоматы, линии и комплексы? Кто будет устанавливать на них заготовки, снимать обработанные изделия, ставить и снимать их с контрольных автоматов, передавать со станка на станок? Одним словом, кто будет обслуживать оборудование, автоматизированное цифровыми механизмами по последнему слову техники. Сейчас это делают люди, и труд этих людей по мере того, как повышается уровень автоматизации, становится все менее интересным и более утомительным. А ведь универсальных станков с цифровым управлением, другого машиностроительного оборудования — миллионы, а в перспективе их число должно расти — удваиваться, удесятеряться.

Для автоматизации загрузки и выгрузки машин и автоматов, установки и съема изделий, так же как и для автоматизации процессов сборки, до последних лет было сделано очень мало. Почему?

Если внимательно присмотреться, то окажется, что внешне простые операции установки и съема заготовок и изделий, а также сборки требуют выполнения сложных пространственных движений, характер которых во многом зависит от формы и размеров изделий и существенно меняется при переходе от одного изделия к другому.

В кузнечных цехах изделия куются из раскаленных заготовок. Кузнецу и его подручному требуются, кроме квалификации, большая физическая сила и выносливость, даже при том условии, что сам процесс ковки выполняется машиной-молотом. Раскаленную тяжелую заготовку надо взять клещами, ввести в зону обработки, правильно там сориентировать, поворачивая после одного или нескольких ударов молота…

Окраска изделий обычно производится набрызгиванием. Чтобы предохранить рабочего от вредного действия распыляемой краски, нужна специальная маска; помещение или рабочая зона, где производится окраска, оборудуется специальными защитными устройствами — сложно, дорого, опасно для человека.

Так, если просмотреть все основные и вспомогательные процессы машиностроительного производства (а мы ведь договорились ограничиться только этой отраслью производства), то окажется, что, несмотря на относительно высокий уровень автоматизации этой отрасли, она до сих пор требует гигантских затрат человеческого труда. При этом четко намечается, если можно так выразиться, «квалификационное расслоение» этого труда. Меньшая его часть, связанная с созданием и поддержанием автоматизированного оборудования в работоспособном состоянии, требует высокой квалификации, больших знаний, творческого подхода. А для прямого обслуживания этого, казалось бы, уже высокомеханизированного и автоматизированного оборудования необходима, однако, бóльшая часть живого труда. И необходима для выполнения внешне простых однообразных операций, «беда» которых состоит в том, что они требуют «человеческих» движений, что для их выполнения лучше всего приспособлены руки человека. Автоматизацией типично человеческих движений можно назвать проблему автоматизации процессов обслуживания бесчисленного машиностроительного и немашиностроительного оборудования. Она давно уже стала чрезвычайно острой и нашла свое решение в развитии целой новой отрасли техники, которая получила почти официальное название — робототехника.

И если автоматизация и, в частности, цифровая автоматизация составляют один из краеугольных камней научно-технического прогресса XX века, то робототехника и роботизация становятся одним из генеральных направлений научно-технического прогресса на значительно больший промежуток времени.

Мы не будем здесь затрагивать всю проблему робототехники. Она призвана обслуживать не только машиностроительную и другие отрасли производства, но также атомную, космическую и глубоководную отрасли техники. Лишь коротко остановимся на тех представителях робототехники, которые уже появились на производстве и получили название промышленных роботов.

Чтобы наглядно понять, в чем состоит основная особенность машин этого класса, еще раз подчеркнем, что главная цель их создания состояла в том, чтобы получить средство, автоматически воспроизводящее движение руки человека.

Рука человека — механизм, обладающий высокой подвижностью. Особенность этого механизма состоит в том, что он «спроектирован» для выполнения не какого-либо одного особого движения, а бесчисленного множества самых разнообразных движений. Она в этом смысле универсальный рабочий орган.

Промышленный робот также снабжен рабочим органом — механической рукой, — обладающим подвижностью хотя и несравнимо более низкой, чем рука человека, но вместе с тем достаточно высокой, чтобы выполнять довольно сложные «человекоподобные» движения.

Мозг человека — «вычислительная машина», умеющая управлять бесчисленным множеством движений его рук. Промышленный робот оснащается программным устройством — «искусственным мозгом», который, конечно, ни в какое сравнение с живым идти не может. Но его «мощности» достаточно, чтобы использовать возможности механической руки. В это программное устройство, как в программное устройство станка с цифровым управлением, можно ввести ту или иную программу, и в соответствии с этой программой механическая рука будет двигаться, устанавливая и снимая со станка заготовки и изделия, собирая узлы машин, выполняя сварку, ковку, окраску изделий, бесчисленное множество операций и работ, которые сейчас выполняет человек.

Около десяти лет назад началась разработка конструкции промышленных роботов. А сейчас в области их производства и внедрения начался резкий подъем. Миллиардные суммы в ближайшие годы предполагают затратить на развитие робототехники правительства, университеты и фирмы США, Японии и других высокоразвитых капиталистических стран. Широко развертываются аналогичные работы в Советском Союзе и странах социалистического лагеря.

Уже накоплен первый опыт применения роботов на производстве, свидетельствующий о широких возможностях и высокой эффективности этих машин.

Так, в качестве примера приведем опыт одной из автомобильных фирм США, где на линии сборки колес вместо 46 операторов (при двухсменной работе линии) было установлено 23 промышленных робота «Юнимейт». Годовая эксплуатация линии и выполненные на основе результатов ее работы экономические расчеты показали, что полученная прибыль при этом значительно превысила ту среднюю величину прибыли, при которой считается выгодным внедрять новую технику. Д-р Энгельбергер — президент фирмы «Юнимейшн», выпускающей эти роботы, — будучи в Советском Союзе, заявил в техническом докладе, что перспективы их внедрения весьма благоприятны. В качестве обоснований своей точки зрения наряду с тем фактом, что количество заказов на роботы растет, он приводил ряд других доводов, отражающих специфические условия капиталистического мира. Он говорил, что при оценке эффективности роботов надо учитывать, что им не нужна жилплощадь, они не требуют никаких социальных или культурных услуг, расходов на транспорт и т. д. и т. п.

Естественно, что в условиях социалистического общества в пользу широкой роботизации производственных процессов говорят другие доводы, и первый среди них тот, что использование роботов позволяет избавить человека от однообразной, утомительной, а подчас и вредной для здоровья работы, привлечь его к творческой высококвалифицированной деятельности, обеспечивающей большую отдачу всему обществу и высокое личное удовлетворение.

Экономисты и социологи уже давно изучают экономические и социальные вопросы автоматизации производственных процессов. В ближайшие годы они должны будут открыть новую главу, посвященную экономическим и социальным последствиям роботизации как высшей формы автоматизации. Но уже сейчас можно сказать, что широкое использование роботов различного назначения и различной «квалификации» в самых различных отраслях производства обещает не только резкий подъем производительности труда, но и многие качественно новые технические возможности.

Поскольку мы ограничиваемся машиностроительным производством, то коротко остановимся лишь на одной проблеме — комплексной автоматизации.

Роботы, управляемые программными устройствами, и следующие «поколения» роботов, оснащенные специальными «органами чувств» и управляемые электронными машинами, органически дополняют линии и комплексы станков, контрольных автоматов, адаптивных устройств и другого оборудования, оснащенных системами цифрового управления и управляющими машинами.

Такая комплексная система цифровой автоматизации может включать участки механической обработки, контроля, сборки изделия — множество производственных процессов, координируемых и управляемых центральной мощной вычислительной машиной. Эта машина может осуществлять функции прямого управления без посредства таких промежуточных носителей программ, как магнитные ленты или перфокарты.

Комплексная система цифровой автоматизации позволяет перевести на более высокий уровень не только чисто технологические стороны производственного процесса. Управляющей машине можно поручить решение всех вопросов учета и отчетности по данному комплексу. Наконец, открываются широкие возможности включения производственных подразделений в автоматизированные системы управления целыми комплексами и предприятиями. В этой области ученым и инженерам вполне хватит работы еще в XXI веке.

* * *

АСУ, АСУП, АСУС, ОАСУ, АСПР — эти и другие подобные буквосочетания все чаще встречаются в газетах, научных и популярных журналах, в солидных монографиях, многочисленных брошюрах. Им посвящаются многолюдные конференции и симпозиумы, на которых обсуждаются вопросы создания и применения автоматизированных систем управления (АСУ) отдельными предприятиями, отраслями промышленности и строительства, автоматизацией плановых расчетов на различных уровнях нашего народного хозяйства.

Исследовательские и проектные работы в области АСУ начались у нас сравнительно недавно, но сразу же получили широкий размах. Сегодня достигнуты определенные успехи в их практической реализации.

Директивами XXIV съезда КПСС определено строительство в текущей пятилетке 1600 автоматизированных систем управления технологическими и технико-экономическими процессами. Но это только начало грандиозной работы, которая имеет конечной целью создание единой государственной сети сбора и обработки информации, получившей название ОГАС (общегосударственная автоматизированная система), связывающей в единое целое автоматизированные системы управления всеми звеньями народного хозяйства. Совершенствование планирования и управления экономикой страны с применением автоматизированных систем управления и математических методов определено XXIV съездом нашей партии как важнейшая политическая и техническая задача на ближайшие десятилетия. И это закономерно, ибо методы и техника управления производством должны во всех отношениях соответствовать его технике и технологии.

Силой и палкой из автомата «пота не выжмешь», его нельзя премировать, нельзя объявить ему взыскание, моральные и экономические рычаги на него не действуют. Огромные возможности, обусловленные его внутренней организацией, могут быть в полной мере использованы лишь при высокой организации всего процесса производства. А в современном производстве, особенно машиностроительном, число компонентов и факторов: технических, технологических, экономических — необычайно велико, связи между ними сложны и разветвленны.

Сотни тысяч норм, десятки тысяч наименований материалов, деталей, узлов и изделий и тысячи единиц разнородного оборудования образуют многоэтажную систему факторов и связей, которая требует повседневной организации, контроля и управления.

Для всего этого нужна информация — технологическая, плановая, учетная, оперативная. В каждой ячейке производства, где создаются, потребляются и распределяются вещи, формируются данные, характеризующие эти процессы, необходимые непосредственно для управления ими и для согласования их между собою. Так производство порождает гигантские потоки информации, которая должна быть надежна и объективна, поступать своевременно туда, где она в данный момент необходима, и там обработана для решения задач планирования и оперативного управления производством.

Технический прогресс неизбежно повышает сложность технологии и организации производства, приводит к увеличению размеров предприятия и его специализации, усложняет производственные и хозяйственные связи между предприятиями, а внутри него — между его остальными подразделениями. Количество информации неуклонно возрастает, она становится все более разнообразной, и одновременно возрастают требования к ее качеству и оперативности ее обработки.

Схема, которую мы здесь приводим, дает лишь самое упрощенное представление об информационных потоках, циркулирующих внутри предприятия и связывающих его с внешним миром. Слишком сложны информационные связи, характеризующие взаимодействия производственных цехов, технологических и конструкторских подразделений и вспомогательных служб и отделов, осуществляющих функции организации и управления, чтобы можно было сколько-нибудь полно описать, как живет и действует предприятие.

Мы представим предприятие в виде нескольких блоков (прямоугольников), объединенных в схему, указывающую направление информационных потоков. Хотя здесь далеко не всегда удается четко сформулировать и разграничить функции отдельных элементов такой схемы, тем не менее в весьма укрупненном виде можно наметить три функциональных блока, на которых зиждется сложная структура предприятия: 1) блок управления (БУ), 2) производственный блок (ПБ) и 3) конструкторско-технологический блок (КТБ).

В БУ поступает из внешнего мира информация, содержащая плановые задания органов управления отраслью, заказы по договорам, цены на продукцию, данные о материальных фондах и т. д. И в этот же блок по каналам обратной связи поступают данные анализа производственно-хозяйственной деятельности за прошлый период. Наконец, в БУ накапливается и хранится различная нормативная информация: технико-экономические нормы, нормы затрат труда, расхода материалов, использование оборудования и т. д. На основе всей этой внешней и внутренней информации строится техпромфинплан предприятия, определяющий стратегию управления его деятельностью на весь плановый период. Наконец, в том же БУ план детализируется, доводится до сведения исполнительных органов предприятия — ПБ, КТБ и вспомогательных служб и осуществляется оперативное управление его реализацией. Здесь за словами «детализируется, доводится и осуществляется» кроется многоэтажная и разветвленная система плановых расчетов и управленческих решений, в которых используется огромное количество разнообразной информации.

Потоки управляющей информации поступают из БУ в производственный и конструкторско-технологический блоки. В ПБ с помощью этой информации осуществляется организация и управление преобразованием энергии и материалов в готовую продукцию. В то же время в обратном направлении (по обратной связи) из ПБ в БУ течет информация — учетная и статистическая — о ходе производственного процесса, об отклонениях фактических значений его показателей от плановых.

Тактика оперативного управления ПБ должна быть направлена на то, чтобы наиболее эффективным путем устранить или свести к минимуму эти отклонения. И здесь важнейшее значение имеет не только достоверность информации, но и высокая оперативность ее поступления, ибо запаздывание делает ее не только бесполезной, но подчас ухудшает процесс управления.

Попробуйте надеть на человека наушники и заставить его говорить в микрофон, соединенный с ними через обратную связь, передающую речь без изменений, но с запаздыванием. Многочисленные опыты показали, что человек, слышащий свою запоздавшую речь, сбивается и не может говорить дальше. Примерно так же обстоит дело с запаздыванием передачи оперативной информации от ПБ к БУ с той лишь разницей, что аппарат управления не теряет при этом способности сколько угодно говорить о возникших неприятностях, но теряет возможность их предотвратить.

На схеме должна быть еще одна стрелка, идущая от БУ к органу управления отраслью. Это поток отчетной информации о деятельности предприятия, который служит для составления отраслевых планов и оперативного управления предприятием.

В отрасли, в свою очередь, формируется информация, поступающая в высшие органы управления народным хозяйством и необходимая для составления планов его развития и формирования плановых заданий отраслям.

Наконец, коротко о КТБ (конструкторско-технологический блок). Его специфическое отличие от ПБ заключается в том, что исходным продуктом являются не энергия и материалы, а научно-техническая информация, поступающая в него извне и накопленная внутри блока. Готовая продукция КТБ — это информация, заключенная в образцах новой техники и новой технологии.

Процесс преобразования исходных данных в такую готовую продукцию организуется с помощью информации, идущей от БУ по соответствующему замкнутому контуру, образованному прямыми и обратными информационными потоками. На схеме показаны связи между ПБ и КТБ. По одной из них в производство поступает информация (чертежи, технологическая документация и пр.), необходимая для изготовления экспериментальных и опытных образцов продукции, для организации и внедрения новой техники и технологии. В обратном направлении текут потоки информации о результатах изготовления и испытания новых конструкций и об эффективности новых машин, производительности разработанных технологических процессов. В КТБ эти фактические показатели сравниваются с проектными и принимаются необходимые решения по устранению возникающих разногласий.

Таковы в общих чертах структура и организация информационных потоков, связывающих три основных составляющих структуру предприятия и призванных обеспечить их согласованную работу.

Пока на большинстве наших заводов и фабрик преобладают примитивные ручные способы получения и обработки разнообразной управленческой информации, которые приводят к чрезмерной специализации и самого управленческого труда. Процессы планирования и управления дробятся на мелкие операции, выполняемые зачастую без взаимной увязки разными исполнителями, получающими данные из различных источников. Раздробленность аппарата управления, в свою очередь, отрицательно влияет на организацию потоков информации, которые часто дублируют друг друга. Одни и те же данные накапливаются и хранятся в разных отделах, обрабатываются независимо друг от друга. Это увеличивает количество документов, ведомостей, вносит путаницу и перегружает управленческий персонал черновой и излишней работой по многократному переписыванию и обработке одних и тех же показателей. В результате страдают качество и оперативность управления.

На смену этим отживающим свой век способам и технике обработки информации идут автоматизированные системы управления, знаменующие качественный скачок в совершенствовании управления производством. Схема, которую мы только что описали, поможет нам понять основные принципы построения и функционирования АСУ, ибо три составляющих производства и их взаимосвязи в том или ином виде будут присущи предприятиям, оснащенным такими системами.

* * *

Говоря об автоматизированной системе управления, обычно понимают комплекс методов и средств, составляющих информационно-техническую и математическую базу управления, и коллектив людей, осуществляющих управление. Это означает, что АСУ является системой «человек — машина», в которой главным звеном, принимающим управленческое решение, остается человек. Именно поэтому АСУ не автоматическая, а автоматизированная система управления.

Можно утверждать, что автоматизация производства никогда или, во всяком случае, в обозримом будущем не достигнет такого уровня, при котором человек будет полностью исключен из этой главной сферы его деятельности. Ведь творческий труд, — а управленческий труд, освобожденный от чисто технической работы, связанной со сбором и обработкой информации, является одним из наиболее сложных разновидностей творческого труда, — всегда останется прерогативой человека. Конечно, по мере совершенствования методов и средств управления, все более глубокого проникновения в закономерности процессов управления в нем все большую роль будут играть факты и все меньшую — интуиция. Наверное, многие управленческие решения будут даже приниматься не человеком, а машиной. Тем не менее опыт и квалификация человека, только ему присущие свойства оперировать с нечетко выраженными целями и понятиями, умение «заглядывать» в будущее останутся наиболее ценными факторами при выработке сложных управленческих решений.

В нашу задачу не входит обсуждение вопроса о границах между функциями человека и машины в АСУ — одного из важнейших вопросов создания кибернетических человеко-машинных систем. Да и возьмет ли на себя кто-либо смелость попытаться установить эти границы. Здесь мы ограничимся кратким рассказом об идеях и принципах, на основе которых создаются и будут развиваться автоматизированные системы управления производством. Многое из того, о чем будет здесь идти речь, существует пока только в проектах, кое-что еще вынашивается и обсуждается учеными и разработчиками. Но общие контуры всей иерархии автоматизированных систем управления нашим народным хозяйством уже вырисовываются, и это позволяет нам «чуть-чуть фантазировать» на реальной основе.

Вернемся к схеме, описывающей информационное взаимодействие трех основных блоков предприятия, и попытаемся представить себе, как оно будет осуществляться в условиях автоматизированного режима управления.

Здесь функции БУ принимает на себя автоматизированная система управления, главным звеном технической базы которой является электронная вычислительная машина.

Вряд ли в наше время найдется читатель, интересующийся достижениями современной науки и техники, который незнаком, хотя бы в самых общих чертах, с принципом действия и устройством ЭВМ. Трудно найти другую отрасль техники, которая могла бы гордиться столь же стремительным проникновением буквально во все сферы деятельности человека и поразительно быстрым скачкообразным развитием технических и эксплуатационных характеристик своей продукции. И не случайно наиболее подходящей единицей измерения прогресса электронных вычислительных машин служит «поколение». Не прошло еще и четверти века со дня появления первой серии этих машин, а на службу человеку пришло уже третье поколение, и недалеко время, когда появится четвертое.

За этот короткий период времени средняя производительность ЭВМ возросла более чем в 1000 раз; емкость оперативной памяти — более чем в 100. Емкость всего комплекса запоминающих устройств ЭВМ третьего поколения достигла сотен миллионов чисел. Это значит, что данные по всей номенклатуре продукции, выпускаемой в СССР, могут храниться в памяти одной машины.

ЭВМ третьего поколения — это, по существу, уже не машина, а система агрегатов, объединенных общим управлением. В них реализован многопрограммный принцип действия — машина способна одновременно решать ряд задач, координируемых автоматическим диспетчером, вести диалог с человеком в натуральном масштабе времени. Высокое быстродействие, огромная емкость памяти, разветвленная система внешних устройств, способных непосредственно взаимодействовать со многими периферийными потребителями, обеспечивает практически неограниченные возможности автоматизации всех процессов обработки информации при управлении предприятием.

ЕС ЭВМ — единая система электронных вычислительных машин третьего поколения. Она разработана коллективами ученых и инженеров стран социалистического лагеря, деятельность которых координировалась Советом Экономической Взаимопомощи. Система охватывает ряд ЭВМ, созданных на основе единой конструкторско-технологической базы, имеющих различную мощность и различное назначение. Наиболее мощными машинами этого ряда и их все более совершенными модификациями будут оснащаться в ближайшие десятилетия автоматизированные системы управления.

Информационно-технический комплекс АСУ, помимо ЭВМ, включает средства регистрации и подготовки данных и средства связи. Разнообразные устройства и приборы будут автоматически фиксировать количество произведенной продукции, время работы оборудования, количество отпущенного материала и т. д. непосредственно там, где реализуется производственный процесс. По каналам связи эта первичная информация, надлежащим образом подготовленная, будет поступать, храниться и обрабатываться электронной вычислительной машиной. Линии и стрелки, показанные на нашей схеме, воплотятся в разветвленную сеть автоматических линий связи, защищенных от помех и всяческих искажений.

Отличительной особенностью процессов обработки информации в АСУ является оптимальное использование первичной информации для получения на ее основе всех необходимых технико-экономических показателей. Будут исключены дублирование информационных потоков, многократная «перекачка» одних и тех же показателей из одних документов в другие, раздробленность и разобщенность вычислительных процедур. Интегрированная система обработки данных обеспечит необходимой информацией всех потребителей, информацией, полученной из первоисточников, — оперативной и достоверной.

И здесь при обработке потоков информации, как и в сфере материального производства (вспомните о главном направлении), автоматизация процесса с помощью ЭВМ, сочетающей универсальность и гибкость в его реализации, дает огромную экономию труда, тем большую, чем разнообразнее потребность в информации.

Каждому, однако, понятно, что информация представляет собою лишь питательную среду, которая необходима для управления. Главное же начинается только после получения пусть даже самой исчерпывающей и своевременной информации — выработка и принятие управленческого решения.

Мы подошли к наиболее сложной и наиболее важной проблеме функционирования АСУ — проблеме взаимодействия в ней человека и машины.

Управление — процесс целенаправленный, неизбежно связанный с необходимостью выбора одного решения из огромного множества возможных вариантов. Десятками способов можно налаживать автоматы, сотнями способов может быть организован процесс производства изделий, астрономическими цифрами выражается число возможных вариантов транспортировки продукции от поставщиков к потребителям. Среди этих вариантов есть плохие и хорошие, чуть-чуть получше и чуть-чуть похуже и есть один наилучший, обеспечивающий наиболее высокую эффективность производства — оптимальный вариант. Какую же роль будет играть АСУ в решении этой центральной проблемы совершенствования управления?

Выше мы уже отмечали, что в принятии решений — наиболее сложных и ответственных — последнее слово остается за человеком. Но в подготовке решения, оценке различных вариантов с учетом конкретных реальных условий производства АСУ способна оказать человеку неоценимую помощь. Если говорить точнее, то без помощи огромных вычислительных возможностей, которыми обладает ЭВМ, коллектив людей не может обеспечить оценку и выбор наилучшего варианта решения тех сложных задач, которые чаще всего возникают в процессах планирования и управления экономическими объектами. Способствовать максимальному увеличению общественного богатства, создаваемого каждой затраченной единицей человеческого труда, — в этом основное назначение автоматизированных систем управления, в которых квалификация и опыт человека наилучшим образом сочетаются с самым универсальным и гибким автоматом — электронной вычислительной машиной.

Однако для того чтобы в полной мере использовать возможности такого сотрудничества, приходится преодолевать большие трудности, и пока это далеко не всегда удается. Главная из них — необходимость формализации задачи управления, то есть ее описание в виде системы уравнений, формул и четких логических правил, которую обычно называют математической моделью. (Когда речь идет об экономических задачах, то эти модели называют экономико-математическими.) Только таким образом сформулированная задача может, быть воспринята ЭВМ — она в отличие от человека не способна оперировать со смутно очерченными понятиями.

Чтобы построить математическую модель технико-экономического процесса, необходимо глубокое проникновение в закономерности производства, нужно среди множества влияющих на него факторов выявить важнейшие, найти их взаимосвязи и выбрать наиболее эффективные способы целенаправленного воздействия на него.

Но и этого мало. Производство, как мы уже неоднократно говорили, многогранно, охватывает множество взаимосвязанных процессов, а это означает, что речь должна идти не об одной, а о целом комплексе математических моделей, взаимно согласованных и объективно отражающих все его стороны.

Разработка таких комплексов, охватывающих все уровни нашего общественного производства, ведется в Советском Союзе и других социалистических странах большими коллективами специалистов. Но она еще далека от завершения. В некоторые области управления производством математика только-только начинает проникать, и пройдет немало времени, пока она завоюет здесь прочные позиции.

Можно, однако, утверждать, что в ближайшие десятилетия в развитии и внедрении математических методов в сфере управления производством будут достигнуты большие успехи. Залогом тому является постоянное внимание, которое наша партия уделяет этой проблеме, все возрастающие темпы подготовки кадров по экономической кибернетике и автоматизированным системам управления, постоянное творческое развитие нашей экономической науки.

Все это будет способствовать расширению и обогащению комплексов экономико-математических моделей и программ для их реализации на ЭВМ, составляющих математическое обеспечение АСУ.

Создание и внедрение АСУ во все звенья нашего народного хозяйства и обеспечение их совместной согласованной работы — задача поистине грандиозная, не знающая себе равных в истории человеческого общества. Вероятно, решение этой задачи в полном объеме — одна из важнейших перспектив XXI века.

Главное здесь еще впереди. И вам, молодые читатели, и не только вам, но и следующим поколениям читателей предстоит сыграть основную роль в ее решении.