#i_040.png
Системы передачи информации на нашей планете появились задолго до изобретения человеком телеграфа, телефона, радио. Более того, они существовали за несколько миллиардов лет до появления самого человека. Материальными носителями этих первых систем связи были, конечно же, первые живые существа, возникшие в далеком архее.
В самом деле, характерным признаком любой формы живой материи является воспроизведение себе подобных и способность к саморегуляции при изменении свойств окружающей среды. Эти два процесса абсолютно немыслимы без передачи информации. Размножение требует передачи наследственной информации от родителей к детям, саморегуляция требует получения информации об изменении свойств среды и на ее основе передачи команд организму для приспособления его к изменившимся условиям существования.
Позднее, когда в процессе эволюции образовались сообщества живых существ, появились системы биологической связи между отдельными особями этих сообществ, без которых немыслимо их существование. Кроме того, живые существа в процессе эволюции отлично освоили в тех или иных видах принципы локации и навигации и широко используют их и для поиска пищи, и для ориентации.
Какое разнообразие идей и методов передачи информации во всех этих системах, найденных эволюцией в слепом поиске только методом «проб и ошибок»! Муравьи успешно пользуются «языком» запахов. Пчелы поставили на службу передачи информации изящные балетные па. Дельфины и летучие мыши для ориентировки в пространстве и охоты используют ультразвуковые локаторы. В отличие от них змеи находят жертву с помощью собственного теплового локатора. В мире животных широко используются также звуковые системы связи; например, сурки выставляют наблюдательные посты и характерным свистом предупреждают собратьев о приближении опасности. Рыбы, обитающие на большой глубине и почти во мраке, имеют свои биологические источники света с линзами, рефлекторами и диафрагмами. Они сигналят световыми импульсами разной длительности и разной частоты следования. Их азбуку еще предстоит разгадать.
Но вот около миллиона лет назад на планете появилось некое существо с проблесками разума. Впоследствии оно присвоило себе, правда не без некоторых оснований, звания «Человек Разумный», «Венец творения Природы», «Вершина эволюции»… Это, однако, случилось значительно позже, а в начале своего пути оно почти не отличалось от животных. Передачу информации оно осуществляло теми же средствами, что и животное: ласковое или грубое прикосновение, мимика и жест и небольшое количество нечленораздельных звуков. Все это и составляло бедный язык стада, или, говоря менее обидно, первобытного сообщества наших далеких предков.
Борьба за существование в таких сообществах — коллективная охота, коллективная оборона, коллективный труд — требовала обмена информацией между отдельными его особями. Гримас и нечленораздельных звуков было явно недостаточно. На помощь им в конце концов пришла сначала устная, а затем и письменная речь.
На это ушла ни много ни мало добрая сотня тысячелетий.
Население земного шара быстро увеличивалось. Заселялись почти все земли планеты. Появилась острая необходимость передавать информацию на большие расстояния, в тысячи раз большие, чем перекрываемые человеческим голосом.
Что тут только не применялось! Неутомимый бегун или гонец на лихом скакуне мчал срочные донесения; индейцы условной комбинацией костров объявляли войну соседнему племени; звук гигантского барабана пронзал африканские джунгли; почтовый голубь, ориентируясь непонятным до сих пор образом, нес письмо.
Но всего этого было недостаточно. Жизнь требовала более быстрой передачи информации и значительно большего объема.
Революцию совершило электричество. Появился телеграф — связь по проводам. Впервые открылась возможность мгновенно передавать сообщение на большие расстояния, значительно превышающие пределы прямой видимости. Сначала это были условные значки типа азбуки Морзе. Потом человеческий гений нашел способы сразу передавать буквенный текст, не требующий зашифровки на передаче и расшифровки его на приеме.
Следующим шагом было изобретение телефона. Появилась возможность поговорить с человеком, находящимся за тридевять земель. Сегодня это тривиально, а на всемирной Парижской выставке тысячи людей стояли в очереди, чтобы первый раз поговорить с другими посетителями по телефону и убедиться в реальности изобретения.
Но для телеграфной и телефонной связи нужны были дорогостоящие провода, кабели. И разве мыслимо опутать ими весь земной шар, соединив многие точки планеты. А подвижные объекты так и вовсе невозможно связать с землей и между собой проводами. Проблема оставалась нерешенной.
Но вот были переданы первые сигналы из одной точки пространства в другую без всяких проводов. Это был известный опыт А. Попова. Так появилась радиосвязь. Основное свойство ее, к которому мы также все привыкли и не замечаем, — отсутствие соединительных проводов между корреспондентами. Был открыт новый, не зримый глазом носитель информации, движущийся, как и световой луч, с колоссальной скоростью — почти 300 000 километров в секунду — и легко пронзающий почти любые препятствия.
Изобретение радио разорвало цепи, которые приковывали информацию к проводам и кабелям, и дало ей полную свободу. Она полетела не только к неподвижным земным корреспондентам, но и к кораблям, поездам, самолетам, космическим станциям, к планетам солнечной системы. Продолжая дело А. Попова, советские люди создали первые космические линии связи. По ним первый в истории человечества искусственный спутник Земли (ИСЗ) сообщил свои координаты, по ним пионер космоса Юрий Гагарин беседовал с землянами.
И все-таки даже совместное использование проводной связи и радиосвязи не в состоянии сегодня удовлетворить непрерывно растущие потребности в передаче информации. Особенно остро эта проблема стоит для дальней связи. Здесь природа пошутила над нами. Участок волн, который может нести информацию в любую точку планеты (это так называемые короткие волны), вмещает ее очень мало и не обеспечивает надежной связи в любое время. Участки же волн, вмещающие гигантское количество информации (ультракоротковолновый диапазон — УКВ — и световой), дают связь только в пределах прямой видимости.
Выход из этого тупика принесли ИСЗ. Они расширили в тысячи раз пределы прямой видимости. Ведь ИСЗ высоко парят над Землей, «оглядывают» очень большую территорию планеты, и с ними можно держать связь на УКВ и световых волнах. Если «разбросать» несколько таких ИСЗ вокруг земного шара, то они благодаря прямой видимости могут иметь связь и друг с другом, и с Землей в этих диапазонах. Остается только снабдить их ретрансляторами, и получится всемирная система связи, способная принципиально передавать колоссальную информацию из любых одних точек планеты в другие. Такую систему связи называют глобальной, или всемирной.
Одновременно с развитием средств передачи информации шло развитие средств ее запоминания. Эти два процесса неразрывно связаны друг с другом. Ведь запоминание информации есть накопление опыта, накопление знаний, то есть то, что люди, поколения, народы передают друг другу на протяжении всей истории человечества.
Зафиксировав или запомнив так или иначе информацию, мы тем самым делаем ее достоянием близкого или далекого будущего (в зависимости от типа запоминающего устройства), то есть мы начинаем передавать ее в будущее.
Следовательно, если средства связи передают информацию в пространстве, то запоминающие устройства передают ее во времени. Совместное их использование и обеспечивает накопление и обмен знаний и опыта человечеством, обеспечивает непрерывное развитие нашей цивилизации.
Первым запоминающим устройством, или первым таким передатчиком, был, конечно, мозг животных, возникший в процессе многих миллионов лет эволюции. Выживал и побеждал тот, кто лучше помнил места добычи пищи, опасности, хорошие укрытия, водопои.
Человек, вырвавшись из царства животных благодаря труду, стал быстро совершенствовать свой мозг, свою память.
Но борьба за существование и трудовая деятельность требовали и других — внешних по отношению к мозгу — способов запоминания информации. Индейцы использовали для этого разноцветные раковины, инки — узловое письмо — кипу. Каждая кипу состояла из длинного основного шнура, к которому прикреплялись другие шнуры с различными узлами и сплетениями в виде бахромы, да еще разного цвета.
Далее следуют высеченные на камне изображения, многие из которых дошли до наших дней. Это были первые прообразы графического способа хранения и передачи информации.
В четвертом тысячелетии до нашей эры появились древнеегипетские письмена, составленные из изобразительно-образных знаков — иероглифов. Они обозначали целые понятия или отдельные слоги и звуки речи.
Революция в развитии письма как способа фиксации речи, позволившего передавать ее на расстояния и закреплять во времени, связана с появлением и развитием буквенно-звукового (алфавитного) письма. Материальный носитель письма менялся: глиняные плитки, кожа, папирус, пергамент, береста и, наконец, бумага.
Следующим не менее революционным шагом было изобретение книгопечатания. Человечество получило возможность накапливать свой опыт и передавать его от поколения к поколению. Это было куда надежней, чем изустные предания, песни и легенды.
На помощь книгам пришла фотография, а затем и кино. Когда смотришь документальный звуковой, цветной стереофильм, то эта богатая информация переносит тебя за тридевять земель, кажется, что ты сам охотишься на тигров, что ты сам в Антарктике и сам играешь с уморительными пингвинятами…
Запоминание голоса и звуков музыки решалось по-разному: фонограф — граммофон — патефон — магнитофон.
Появление электронных быстродействующих вычислительных машин (ЭВМ) потребовало разработки принципиально новых методов запоминания информации. Для выполнения расчетов машина должна очень многое помнить: и правила выполнения операций, и входные данные задачи, и промежуточные результаты, и необходимые константы, и полученные результаты. Здесь используются различные устройства, способные хранить информацию во времени: бумажные перфокарты, электронные трубки с большим послесвечением, электромагнитные реле, электронные реле (триггеры), линии задержки из катушки конденсаторов, ртутные линии задержки, магнитофоны, катушки на ферритовых сердечниках с прямоугольной петлей гистерезиса. По некоторым параметрам эти устройства уже начинают успешно соревноваться с чудом творения природы — человеческим мозгом.
Итак, начав с нечленораздельных звуков и надлома веток для запоминания пути, сегодня человек владеет речью и письменностью, строит системы связи через искусственные спутники Земли, может запоминать и через некоторое время воспроизводить огромные массивы, почти любой информации. Иначе говоря, он научился передавать информацию как в пространстве, так и во времени.
Если принять тезис современной науки о множественности цивилизаций во вселенной, то степень развития той или иной цивилизации можно пытаться оценивать разными показателями. Одно из предложений — оценивать по количеству потребляемой энергии. По этой оценке наша земная цивилизация относится к цивилизациям энергетических бедняков. А вот цивилизации, которые потребляют количество энергии, близкое или даже большее энергии, излучаемой их звездой, являются энергетическими властелинами и могут быть отнесены к сверхцивилизациям.
Не менее, а мне кажется, даже более эффективным критерием оценки уровня развития цивилизаций может служить информация: например, количество информации, принимаемой и перерабатываемой одной особью данной цивилизации в течение суток. И по этому критерию, как и по энергетическому, земляне скорей всего находятся на первых ступеньках гигантской лестницы, ведущей в царство сверхцивилизаций и, наверно, полного раскрытия каждой личности.
Однако поток информации, который уже сегодня обрушивается на землянина, становится угрожающим. В этом потоке и быстронарастающий опыт человечества (копящийся со времен начала нашей цивилизации), то есть вся наука и техника, и текущая информация, приносимая газетами, журналами, телеграфом, телефоном, радио, телевидением, и огромный поток художественной литературы, кинокартин, театральных пьес, музыки, живописи… Этот поток информации стремительно нарастает. Зарубежные прогнозисты часто полагают, что все это кончится «информационным взрывом» — человек потеряет ориентировку в поступающей информации: земная цивилизация не сможет использовать всю добываемую информацию, и темп ее развития снизится.
Эти прогнозы и породили образ информационного вулкана, из кратера которого исторгается вся добываемая человечеством информация. Сегодня он только дышит, лишь небольшие потоки лавы изредка стекают с его склонов и выбрасывается немного пепла, горячих газов и прорываются гейзеры на склонах. Однако это еще не извержение; оно только зреет в глубинах кратера. Об этом напоминает и подземный гул, и легкие толчки землетрясений. Упомянутые прогнозисты предсказывают неизбежность извержения этого вулкана, рисуют картину, напоминающую бессмертное творение К. Брюллова «Последний день Помпеи».
Резонно спросить: а есть ли основания для столь пессимистических прогнозов? Чтобы ответить на этот вопрос, надо заглянуть в кратер этого вулкана. Но предварительно вооружимся инструментом для измерения информации.
* * *
Математики и физики сошлись на том, что за единицу информации и удобно и логично принять такую дозу информации, которая уменьшает наше незнание в каком-то вопросе вдвое. При этом, конечно, полностью игнорируется значимость этого выбора.
Вот несколько примеров получения информации, равной единице.
— В каком полушарии находится самая высокая горная вершина?
— В северном.
— В какой половине года планировать вам отпуск?
— В первой.
Студент в растерянности: долг обязывает идти на лекцию, неутоленная жажда приключений зовет в кино на новый детектив. Как сделать выбор из двух возможностей? Бросается монета. Ура! Детектив!
Все это ситуации, в которых информация получается при выборе одной из двух равноправных возможностей.
Перейдем теперь к более сложному случаю — к выбору из четырех возможных исходов. Так, если понадобилось планировать отпуск с точностью до квартала, то во втором примере надо задать еще один вопрос:
— В каком квартале первого полугодия?
— Во втором.
Еще один пример. Ваш приятель спрятал, под одной из четырех пиал монету. Как с помощью только двух заданных ему вопросов с ответами только «да» или «нет» найти ее?
— Монета находится под первой или второй пиалой?
— Нет.
— Монета находится под четвертой пиалой?
— Нет.
Монета найдена, она под третьей пиалой.
Из примеров следует, что при выборе из четырех равноправных исходов уже нужна не одна, а две единицы информации.
Если бы мы запрятали монету под восемь пиал, то для отгадки понадобилось бы не две, а три единицы информации. После первого вопроса: «Где монета: в первых четырех или последующих четырех пиалах?» — мы пришли бы к ситуации с четырьмя пиалами. Следовательно, нахождение монеты при восьми вариантах требует трех единиц информации. Не рискуя дальше наращивать число пиал, прошу читателя поверить такой табличке:
Выбор из двух — одна единица информации
Выбор из четырех — две единицы
Выбор из восьми — три
Выбор из шестнадцати — четыре единицы информации
Выбор из тридцати двух — пять единиц
Выбор из шестидесяти четырех — шесть
и так далее
Из этих данных усматривается любопытная зависимость между числом вариантов N, или исходов, и числом единиц информации I, необходимыми для принятия решения:
N = 2 1 .
Логарифмируя это выражение по основанию два, получаем:
I = log N.
Вот мы и вывели сообща формулу для вычисления необходимого количества информации, которую предложил американский ученый Р. Хартли еще в 1928 году. Она гласит: «Информация, необходимая для выбора из N равноправных вариантов, равна логарифму числа вариантов».
Логарифмическая функция, знакомая из школы, возрастает очень медленно с ростом числа. Значит, и потребное количество информации с ростом числа вариантов растет очень медленно. Так, продолжая нашу таблицу для большого числа исходов, легко находим, что при 512 вариантах необходимо только 9 единиц информации, чтобы принять решение, а при N = 4096 только на три единицы больше, то есть 12.
Иногда удивляются тому, как опытный следователь, получая от обвиняемого скупые ответы только в виде единиц информации — «да» или «нет», быстро распутывает дело. Ему, безусловно, помогает выведенная нами логарифмическая зависимость.
Единичная доза информации, которая получается из нашей формулы, если в ней положить N = 2 (log2 2 = 1), получила международное название «бит». Оно происходит от сокращения английских слов binary digit, что значит — двоичная единица.
В жизни мы на каждом шагу пользуемся этой минимальной дозой информации в один бит. Кто не подсказывал в школе товарищу движением головы, чтобы сообщить ему ровно один бит информации — «да» или «нет»? Не случайно жизнь выработала этот метод четкого вопроса — «да» или «нет»? Он требует принятия решения и четкого ответа в виде одного бита информации — «либо да, либо нет», он требует ухода из болота «ни да, ни нет», «скорей да, чем нет», «и да и нет».
Бит обладает ценными свойствами. Он наиболее прост и надежен при передаче информации на расстояние: кивок головой, взмах рукой, голос, выстрел, взрыв, световой зайчик, костер, ракета и т. д.
Для систем проводной и радиосвязи бит просто клад. В силу своей простоты — ведь надо передать только «да» или «нет» — он отлично сражается с помехами и обеспечивает наибольшую дальность и наименьшие ошибки.
В «жилах» ЭВМ тоже в большинстве случаев бегут биты — они наиболее надежны, они упрощают конструкцию, они подчиняются простейшей логике.
Наконец, самое главное — из этих простых дальнобойных посылок типа «да» — «нет» (в канале связи это может быть + и –, 0 и 1, излучение и отсутствие излучения) можно составить любую сложную информацию (как из простых кирпичей создают чудеса архитектуры). Даже, точнее сказать, наоборот: любую информацию — речь, музыку, изображение — можно разложить на простые биты типа «да» — «нет», передать их в таком надежном виде по каналам связи, а затем снова сложить из них исходную информацию.
Итак, если мы передаем из одной точки пространства в другую одну посылку, которая может принимать только одно из двух равновероятных значений — «да» или «нет», — то мы сообщаем ровно один бит информации.
При этом передаваемая информация, конечно, совершенно не зависит от вида переносчика и от длительности посылки. Это может быть звук, свет, электрический ток, радиоволна, луч лазера; а длительность любая — микросекунда, секунда, час, год и т. д.
Как же практически пересчитать объем информации, содержащийся в той или иной книге, например в Большой Советской Энциклопедии, в биты?
Русский алфавит состоит из 32 букв. Каждой букве можно поставить в соответствие комбинацию из пяти символов типа «да» — «нет» (25 = 32). Однако в тексте встречаются еще цифры, знаки препинания и другие вспомогательные знаки: скобки, кавычки, тире и т. д. Поэтому возьмем комбинацию не из пяти, а из шести символов.
Раскрываем наугад любой том БСЭ и считаем число букв, цифр и знаков, которое размещается на странице. Округленно подсчет дает 6000. Следовательно, если переписать эту страницу на двоичный алфавит, то есть покрыть ее унылым набором из «да» и «нет», а практически пишут 0 и 1, то общее их число будет 6 × 6000 = 36 000. (При том же шрифте и формате это потребует уже шести страниц.)
Если бы все буквы, цифры и другие знаки встречались в тексте одинаково часто, то количество информации на одной странице БСЭ было бы равно числу двоичных знаков, то есть составляло 36 000 бит. Но, как показал Клод Шеннон, если одни символы встречаются чаще, а другие реже, то количество информации в таком тексте падает. Учет этого обстоятельства для русского языка уменьшает количество информации на нашей странице, испещренной только нулями и единицами, приблизительно в три раза.
Таким образом, одна страница БСЭ содержит лишь 12 000 бит информации. Считая среднее число страниц равным 650, получаем объем информации в одном томе 7 800 000 бит, а во всех 51 томах округленно 400 миллионов бит (4 · 108 бит).
О достоинствах бита мы говорили: это простота и надежность; и в этом смысле он друг человека (а возможно, и других разумных существ, если они есть) Но этот друг может стать, и частично уже стал, врагом человека. Об этом красноречиво свидетельствует экспонента, по которой растет армия бит во времени.
Их становится так много, что в этих джунглях из бит можно заблудиться. Ведь в общую копилку человеческих знаний непрерывно вносят свою долю миллионы людей, и ее «золотой фонд» растет с колоссальной скоростью. Число бит в копилке достигло астрономической величины. И ориентироваться даже на небольшом участке этой копилки становится все труднее и труднее.
Ситуация напоминает сказку К. Чуковского, когда девочка Женя пожелала иметь все-все игрушки мира и чуть-чуть не стала жертвой их нашествия.
* * *
Анализ роста основных показателей земной цивилизации — потребляемая энергия и вещество, народонаселение, объем научной и технической информации и т. д. — за ряд последних столетий показывает, что он происходит по так называемой экспоненте. Что это значит?
Снег подтаивает. Вы находитесь на верху крутого склона. Слепили снежок, пустили его вниз и наблюдаете, как он катится. Снежок быстро облипает снегом и растет, как на дрожжах: чем больше его масса, тем больше на него налипает снега и тем быстрее он разрастается. В этом и есть вся премудрость экспоненты, ее закон.
Сам закон получается вот откуда. Обозначим нарастающую массу нашего снежного кома буквой игрек (у), тогда скорость ее нарастания есть производная массы по времени, то есть dy/dt. Если обходиться без высшей математики, то можно эту же скорость вычислить, деля прирост массы кома Δу на время Δt, за которое он произошел: dy/dt.
Экспоненциальная зависимость требует прямой пропорциональности в каждый момент времени между растущей массой кома у и скоростью налипания на ком снега
Δy / Δt (точнее dy / dt ) .
Следовательно, общее условие прямой пропорциональности запишется так:
Δy / Δt = Const у .
Если такая зависимость справедлива, например, для народонаселения планеты, то с увеличением его, скажем, в три раза скорость его прироста тоже должна возрасти в три раза. Это, в свою очередь, ускорит дальнейшее нарастание численности населения и, соответственно, пропорциональное нарастание скорости его прироста и т. д.
Если ничто не нарушит прогресса с такой прямой пропорциональностью, то у может достичь сколь угодно больших величин.
В примере со снежным комом естественным ограничением явится длина снежного склона.
Если склон очень длинен, например, вы пустили снежок с вершины или седловины Эльбруса, то при больших значениях у сильно возрастет сопротивление воздуха, его движение замедлится, скорость налипания Δy/Δt упадет, нарастание кома замедлится, прямая пропорциональность нарушится.
Теперь естественно спросить, по какому же закону во времени должна нарастать масса нашего снежного кома у, чтобы была прямая пропорциональность между y и Δy/Δt?
Оказывается, есть только одна удивительная функция, которая при всех значениях пропорциональна своей производной, удовлетворяющая нашему уравнению. Вот она:
y = y 0 Е ατ ,
где у0 — начальная масса нашего кома (снежка) в момент t = 0, а α — постоянный коэффициент, зависящий в нашем примере от крутизны склона и состояния снега.
Графическое изображение этой зависимости и получило название экспоненты.
Для нее характерно: при малых значениях величины у она нарастает очень медленно и ползет вверх, как черепаха, но по мере увеличения у кривая все круче забирает вверх и при больших у, как ракета, уходит ввысь.
Нарастание какой-либо величины по такому закону и получило название экспоненциального.
Кривая эта, спокойно занимая свое скромное место в гигантском арсенале математических функций, и не подозревала, что ей уготована великая честь — определять развитие основных показателей земной цивилизации (в том числе и самой математики).
Теперь эта роль вскрыта и ее загадочное «имя» — экспонента — стало очень популярно и замелькало в книгах, журналах, докладах.
Рядом с двумя гигантами, на которых стоял ньютоновский классический мир, — Массой и Энергией — в последние десятилетия был обнаружен третий, не менее могучий, — Информация. Кибернетика и теория информации открыли глаза людям на этого гиганта. Нет живого организма, в котором не бежали бы по внутренним каналам биты информации, нельзя построить умную машину, в которой не сновали бы те же биты, несущие команды управления и информацию о ее состоянии, нельзя представить себе сообщества разумных (людское, некоторые относят сюда и дельфинье) и неразумных (муравьи, пчелы и др.) существ без своих систем связи. Можно даже всю нашу земную цивилизацию рассматривать как единую кибернетическую систему, как систему регулирования с огромным числом элементов (например, каждый человек — один элемент) и сложной обратной связью.
Отсюда и вытекает определение цивилизации как системы, стремящейся получить максимум информации об окружающей среде и о себе самой, абстрактно анализирующей эту информацию и использующей ее для выработки реакций, сохраняющих и укрепляющих саму систему.
Такие явления, как войны, эпидемии и т. п., можно считать временными внутренними помехами в системе, которые, несомненно, будут в конце концов навсегда устранены в процессе ее регулирования по цепи обратной связи.
Можно спорить с этим определением, но нельзя отрицать факт — в основе развития человечества лежит непрерывный процесс получения, накопления, передачи и использования информации.
Безусловно, если бы удалось застопорить этот процесс хотя бы временно, то загнивание цивилизации было бы неизбежным. Но миллионы лет жестокой борьбы человека за свое существование выработали в нем непобедимое стремление к новому, к неизведанному, к совершенствованию орудий труда и самого себя. Вот почему процесс накопления информации принципиально остановить невозможно. Он непрерывно нарастает. И нарастает по экспоненте!
Это значит, что с некоторого момента, выйдя на крутую часть экспоненты, объем информации начнет лавинообразно нарастать и может превысить любую сколь угодно большую величину. Это и будет извержение нашего вулкана. Это и будет пресловутый «информационный взрыв».
Есть ли реальная опасность наступления такой ситуации?
Для ответа на этот вопрос обратимся к фактам.
* * *
Какая информация уже сегодня обрушивается на обитателей планеты Земля, мы уже говорили. Это сотни миллионов экземпляров газет в день, это сотни тысяч научных и художественных книг и журналов в месяц, это более полумиллиарда радиоприемников, это сотни миллионов телевизоров и т. д. И количество этих источников информации растет значительно быстрее, чем население земного шара (последнее тоже растет по экспоненте, но имеет большой период удвоения).
Человеческая психика имеет определенные границы в восприятии информации. С одной стороны, она (разумеется, не очень переутомленная) плохо реагирует на замедление потока поступающей информации: при этом возникает ощущение скуки и угнетения. С другой — имеется и верхний предел восприятия информации человеком: эта величина порядка 25 бит в секунду, или одного слова в секунду.
Количество книг, например, которое может прочесть человек за всю свою жизнь, не превышает 2–3 тысяч. И это довольно высокая норма. Ее можно выполнить, читая ежедневно приблизительно по 50 страниц. За время «читающей» части жизни будет издано более 20 миллионов книг. Значит, в среднем можно прочесть только одну из 10 000 книг.
Но ведь все мы любим классиков. У каждого есть свои любимцы, к беседе с которыми иногда непреодолимо тянет, и мы не раз и не два возвращаемся к ним. Значит, полученную нами оценку надо еще уменьшить.
Гигантская диспропорция между возможностями человека и потоком информации, который обрушивает на него современная цивилизация, требует больших ухищрений в «упаковке» информации, чтобы именно эта информация пролезла через узкую щель человеческого восприятия в сознание индивида.
Как выбрать из книг, журналов, радио- и телевизионных передач и всякой другой информации то, что отражает вкусы, желания, настроения, устремления именно данной конкретной личности? Кто-то, махнув рукой на вулкан, идет по случайному пути: «что попалось под руку, то и ладно». Другие вырабатывают некие свои принципы и в соответствии с ними собирают сведения о книгах, картинах, постановках у знакомых и только потом решают, какую информацию «вводить» в себя. Иные следят за всеми рецензиями и по ним решают эту проблему (часть берет то, что хвалят, а часть то, что ругают).
Но мы сейчас обсудим вопросы накопления и использования только научной информации. Ибо именно она наиболее сильно влияет на прогресс человечества, определяя основной фактор исторического развития — совершенствование средств производства.
Характерным признаком современного этапа развития нашей цивилизации является быстрый рост числа ученых. Удвоение населения Советского Союза произошло за 70 лет: с 124 миллионов в 1897 году до 236,7 миллиона в 1968 году. Число ученых в СССР удвоилось всего лишь за 10 лет — с 1950 по 1960 год. Но следующее удвоение произошло еще быстрее, за 5 лет — с 1960 по 1965 год. Если распространить такие же темпы роста числа ученых на будущее, то мы придем к парадоксу — через 80 лет все взрослое население страны превратится в ученых.
Удвоение новых результатов мировой науки происходит приблизительно за 10 лет. Однако сопровождающая данное удвоение научно-техническая информация за это время не удваивается, а увеличивается значительно быстрее — в 8–10 раз. Такая «плодовитость» информации и породила жупел огнедышащего вулкана, угрожающего информационным взрывом. Ведь информационный поток удваивается каждые 3–4 года!
В настоящее время в 100 тысячах журналов, издаваемых в разных странах, публикуется ежегодно более 4 миллионов статей.
Сюда нужно добавить десятки тысяч выходящих книг, сотни тысяч патентов и авторских свидетельств. Кстати, общий фонд изобретений достиг астрономической цифры — 13 миллионов!
Если все это просуммировать, то «на душу» каждого специалиста в данной узкой области еженедельно издается до 100 печатных листов. Если эта бедная «душа» будет тратить даже все свободное время на чтение литературы по своей специальности, отбросив надежду на свои собственные исследования и свои новые результаты, то и тогда она сможет осилить не более 10 процентов чужих мыслей.
Такая диспропорция уже привела к большой потере информации и к большей потере времени при хаотическом поиске в надежде «наткнуться» именно на нужную информацию. Так, подсчитано, что в США и Англии из-за того, что не удалось разыскать вовремя информацию об уже выполненных научно-исследовательских и опытно-конструкторских работах, 10–20 процентов разработок дублируют старые работы. В СССР, например, удельный вес повторных «изобретений» в области угольного комбайностроения возрос с 40 процентов в 1946 году до 85 процентов в 1961 году.
Такое положение сложилось к сегодняшнему дню. Но экспонента продолжает круто возрастать. Если ее ход продолжить по закону прошедших десятилетий, то к 2000 году информационный поток должен возрасти еще в 30 раз! Это неизбежно привело бы к колоссальной потере информации. Такая ситуация получила название «информационной насыщенности». Если допустить, что самой лакомой пищей человека является информация, то в этой ситуации он будет напоминать муху, пытающуюся съесть… слона.
Надвигающееся насыщение специалистов информацией, ее обесценивание (а она имеет ценность только, если используется) и привело некоторых западных футурологов к выводу о приближающемся застое в развитии нашей цивилизации, снижении темпов технического прогресса.
* * *
Настало время оценить возможности человека по накоплению (запоминанию) информации. Так как мозг только-только начал процесс самопознания и надежной модели работы его пока нет, то это можно сделать лишь весьма приближенно.
Оценки различных ученых емкости нашей памяти колеблются в широких пределах. Средняя величина, которой часто пользуются, лежит в пределах 1012–1015 бит. Много это или мало? Как мы уже подсчитали, информация, содержащаяся во всей БСЭ, равна примерно 4 · 108 бит, что составляет ничтожную часть от этой величины. Во всем книжном фонде библиотеки имени В. И. Ленина информации около 1013 бит, то есть она могла бы уместиться в памяти одного (просто одного!) человека. Но в жизни мы таких ходячих и компактных «библиотек» не встречаем. Почему?
Все дело в том, что скорость восприятия человеком информации, или скорость ее ввода в память, составляет в среднем около 25 бит в секунду, или около одного слова в секунду Представим себе индивидуума, решившего вобрать в себя максимум информации и в течение 70 лет ежедневно поглощающего различные сведения по 10 часов в сутки со скоростью 25 бит в секунду. Легко подсчитать, что даже такой потребитель информаций воспримет ее (если даже он ничего не забывает) не более 3 · 109 бит. А это составляет не более одной тысячной имеющихся возможностей, если принять емкость памяти 1012 бит, и не более одной миллионной, если принять емкость 1015 бит. Следовательно, реально человек использует ничтожнейшую долю природных возможностей мозга.
Почему эволюция заложила такой большой «запас прочности», пока остается тайной. Но коль скоро есть такие резервы, то в конце концов человек найдет способ их реализации. Уже сейчас наметились некоторые пути. Один из них — так называемое скорочтение.
Как мы уже отмечали, люди читают довольно медленно. Но эта скорость не одинакова. Одни буквально проглатывают книги, пробегая взглядом по сотне и более слов в минуту, другие растягивают это удовольствие на недели. При этом нет оснований утверждать, что читающий медленно лучше понимает и запоминает прочитанное.
Опыты показали, что скорость чтения можно повышать путем специальных упражнений. Во время второй мировой войны английские психологи разработали методику обучения населения искусству мгновенного опознания вражеских самолетов. Тысячи англичан могли в мгновение ока «читать» едва заметные очертания самолетов. Это натолкнуло исследователей на мысль разработки методов быстрого чтения. Первая такая методика была разработана в Гарвардском университете в послевоенное время. Там же были открыты курсы для бизнесменов по овладению техникой скорочтения. Сейчас подобные курсы действуют на многих предприятиях, фирмах и учреждениях зарубежных стран.
Многие считают, что глаза читающего плавно скользят по строчкам текста. На самом деле за час непрерывного чтения в среднем 57 минут глаза читающего находятся в полном покое и только 3 минуты уходят на движение зрачков. Чем больше слов охватывает глаз во время остановки и чем быстрее все эти слова воспринимаются, тем быстрее чтение. Тренировка в скорочтении и сводится к тому, чтобы видеть сразу не одно-два слова, а значительно больше и быстро переходить к следующему куску текста. Опыт показывает, что, используя правильную методику и простые технические устройства (например, «фразоскоп»), можно повысить скорость чтения в 5–10 и более раз.
По-видимому, скорочтению надо обучать еще в школе, когда еще не сложилась привычка читать обычным способом (особенно замедляет чтение привычка повторять слова про себя или шепотом).
Хорошо известно, что часто чертеж, график, рисунок или фотография может содержать значительно больше информации, чем печатный текст, занимающий ту же площадь. При этом человек такую «графическую» информацию воспринимает всю сразу, в целом. Эта особенность изображения используется в основном в технической литературе, и то далеко не полностью. По-видимому, есть некое оптимальное сочетание текста и графики для данной информации и данной категории читателей, которое обеспечит максимальную скорость ввода информации в мозг человека. В сочетании со скорочтением это может дать увеличение скорости ввода информации в десятки, а может, и сотни раз.
На смену привычным нам книгам и журналам придут, как мне кажется, новые типы изданий, сочетающие буквенный текст и изображения, которые наши потомки будут мгновенно проглатывать, быстро обогащаясь информацией. Над ними будут совместно трудиться и писатель и художник. Возможно, возникнет новая категория авторов, сочетающих в себе оба таланта.
Но далеко не вся вводимая в мозг информация прочно там оседает. Хорошо запоминается то, что вызывает живой интерес, эмоциональный подъем, осознание важности запоминаемого. Из опыта мы знаем, что если впечатление сильное, то оно оставляет глубокий и прочный след в памяти. Процесс забывания фактически приводит к дополнительному снижению скорости вводимой в мозг информации.
Разработано много методов тренировки памяти для лучшего запоминания, но они мало используются. Им тоже надо обучать в школе.
Говоря об улучшении запоминания, нельзя не затронуть так называемую гипнопедию — запоминание информации во время естественного сна. Идея эта не новая. Так, еще в Древней Греции учителя нашептывали спящим ученикам то, что трудно усваивалось днем. В наше время хорошие результаты были получены при обучении во сне телеграфному коду в военно-морской школе во Флориде и летчиков во Франции. Затем эти методы стали применяться при обучении иностранным языкам. Казалось, что появился новый эффективный способ введения информации, даже не требующий расхода времени, так как используется время сна. Однако более глубокие исследования показали, что запоминание возможно лишь в наиболее поверхностные фазы сна, в период дремотного состояния. По мере углубления сна возможности введения информации резко снижаются. Таким образом, гипнопедия применима в течение довольно короткого отрезка ночи и составляет ту ее часть, когда, по существу, сна еще нет, когда Морфей только протянул свои руки, но еще не обнял нас.
Итак, узкое место в системе связи «источники информации — человек», то есть медленность ввода информации в мозг человека, будет в ближайшие десятилетия в десятки, а может, и сотни раз расширено, и человек более полно использует свои природные возможности, предусмотрительно заложенные эволюцией.
Но только этот путь, конечно, не может предотвратить угрозу взрыва. Рассмотрим другие возможности.
* * *
Итак, если допустить, что рост научной информации в предстоящие десятки лет будет продолжаться по экспоненте, это может привести к нежелательным последствиям. Наступит перепроизводство информации. Ученые уже не будут знать, что известно науке, а что нет и какие проблемы надо решать. Замедлится прогресс.
Какие же пути предотвращения «информационного взрыва» уже сегодня вырисовываются?
Может быть, окружающий мир обладает ограниченной информацией и рост наших знаний не будет следовать экспоненте и наступит естественный спад добываемой человечеством информации?
Однако это не так. По экспоненте растут не только знания, но и новые проблемы, которые порождаются этими знаниями. Сейчас эти проблемы, при решении которых обязательно возникает ряд новых, называют фундаментальными.
Природа бесконечно разнообразна. Исаак Ньютон эту мысль выразил очень красиво: «Природа неистощима в своих выдумках». И действительно, заглянув ли в бездонный атом или в бескрайние просторы вселенной, мы всюду находим этому подтверждение.
Поэтому надежду на естественное затухание информационного потока следует оставить.
Может ли современная наука и техника помочь ученому или инженеру найти в нарастающем «информационном потоке» нужную журнальную статью или другую публикацию? Ведь, грубо говоря, именно в этом проблема — «Как найти?».
Как мы уже отмечали, человек способен воспринимать и усваивать информацию со скоростью, не превышающей заметно предел в 25 бит в секунду. Но ведь кибернетика «не даром ест хлеб»! Один из ее главных плодов — быстродействующие электронные вычислительные машины (ЭВМ). Скорость их работы перешагнула рубеж в 1 миллион бит в секунду. Они и должны принять на себя основную лавину информации, а человеку выдать только то, что ему нужно. (Конечно, все это может осуществить только союз ЭВМ с «глобальной» системой связи.) Как будто все очень просто, но…
Одна из основных трудностей, заключена в том, что люди и машины разговаривают на разных языках — у нас буквы, у них цифры, наш алфавит содержит 32 буквы, их алфавит содержит только 2 буквы, точнее, только две цифры: 0 и 1.
Все наши источники информации — статьи, книги, отчеты — написаны и пишутся «человеческим» языком, а не машинным. Поэтому, чтобы использовать колоссальную память ЭВМ и их способность почти молниеносно находить то, что нужно, следует перевести информацию на язык машин. И это только полдела. Ведь информацию потребителю надо выдать снова на человеческом языке.
Ближайший шаг в реализации этих возможностей состоит в оснащении наших библиотек ЭВМ и в замене существующих каталогов электронно-справочными машинами, которые смогут и полнее и быстрее помочь читателю.
На меня обычно нападает безысходная тоска и усталость, когда мечешься в течение нескольких часов от систематического каталога к алфавитному, от него к предметному, затем к генеральному и еще двум-трем вспомогательным каталогам, перебираешь сотни карточек в полумраке (такова странная традиция библиотек) и так и не находишь нужной статьи. Скорей бы электроника шагнула в наши библиотеки!
Первые шаги уже сделаны и у нас, и за рубежом. Вот один из примеров. Библиотека конгресса США проводит частичную автоматизацию каталога.
Комплекс цифровых вычислительных машин будет подбирать и вести учет литературы, осуществлять ее каталогизацию, следить за ее использованием и, главное, отвечать на запросы читателей более полно, чем традиционный каталог. Читательский пульт будет иметь клавиатуру для кодирования запроса, ответное выходное устройство типа телевизионного экрана и устройство для получения копии ответа с экрана. Читатель не только прочтет на экране необходимые ему сведения о разыскиваемой публикации, но и может взять с собой их копии. Таких пультов проектируется 200. Значит, автомат-каталог «спокойно» (кавычки оттеняют тот факт, что много миллионов бит будет при этом вихрем проноситься по «жилам» ЭВМ) может одновременно вести беседу с 200 читателями.
Директивы девятой пятилетки предусматривают разработку целого комплекса технических средств на базе интегральных схем для автоматизации процессов регистрации, сбора, хранения и обработки информации. Плановость социалистического хозяйства позволяет реализовать эти средства в широком масштабе.
В мировой печати усиленно обсуждаются и более дальние шаги в борьбе с информационным взрывом.
Один из них ставит под сомнение традиционный метод накопления и запоминания информации с помощью журналов, книг и других печатных документов. Согласно этой идее вся информация, записанная электронными запоминающими устройствами, микрофильмами и другими экономными средствами, хранится в библиотеках нового типа, где нет читателей и почти нет людей вообще. Послав запрос, скажем, по видеотелефону, вы сможете у себя дома на экране читать интересующую вас статью и даже книгу. Оперативное запоминающее устройство позволит повторять текст и снимать с него копию.
А как же жить без книг? — спросит читатель. Любимую книгу иногда просто хочется полистать еще раз, положить под подушку, взять с собой в командировку или засунуть в рюкзак, отправляясь в горы.
Согласен, что сейчас нам это кажется невозможным и кощунственным. По-видимому, в будущем будет найдено некое сочетание новых и старых методов хранения и передачи информации, и книге в нем все же будет отведено заслуженно почетное место.
Таким образом, опасность приближения «смутного времени» в земной науке, когда из-за избытка информации будет потеряна связь между отдельными учеными и коллективами, явно преувеличена.
Во-первых, на помощь человеку уверенно шагает армия быстродействующих и даже сверхбыстродействующих ЭВМ.
Во-вторых, как учит нас история, экспоненциальный рост каких-то показателей обычно нарушается при изменении условий, в которых он происходил. Так, например, рост числа лошадей на земном шаре происходил в прошлом веке по экспоненте. Это грозило в XX столетии превратить все население в «конюшенные кадры», так как число животных должно было превысить 10 миллиардов. Но этого не случилось, к счастью: железная дорога, автомобиль и самолет спасли нас.
Сейчас аналогичная ситуация складывается в некоторых больших городах Запада с автомобилями. Если число автомашин будет расти по экспоненте, то это приведет к полному закупориванию транспортных магистралей городов и бесславной гибели их жителей от выхлопных газов. Очевидно, скоро экспонента начнет переходить в более плавную кривую. Например, на днях в газете промелькнуло сообщение, что в Нью-Йорке усиленно рекламируется и стало очень модным ездить на… велосипедах (маленькие габариты и никаких газов, скорость с учетом «пробок» почти та же плюс полезная физическая нагрузка!).
Для успешного развития земной науки, по-видимому, не обязателен экспоненциальный рост информации. Даже простое линейное ее возрастание не так уж плохо. Особенно если применить жесткую предварительную фильтрацию информационного потока и исключить многие повторения, компиляции и всякие публикации, не несущие новых результатов, и т. д.
Подведем итоги. Надвигающийся «информационный взрыв» пока выражается в непрерывном увеличении информационного потока. В будущем он тоже будет расти, но, вероятно, не столь резко, не по экспоненте, а по более плавной кривой. Широкое внедрение ЭВМ в информационно-справочную службу, фильтрация информации и ряд других мероприятий позволит справиться с таким нарастанием информации и не допустить извержения информационного вулкана, хотя клокотать он будет все время, пока будет существовать наша цивилизация.
Теперь разберем, какую роль будут играть системы передачи информации в гашении или ослаблении «информационного взрыва».
* * *
Увеличение глобального потока сообщений, разговоров, публикаций неизбежно требует увеличения пропускной способности средств связи и увеличения достоверности передаваемой информации (повторять текст нет времени!). Но это еще не все. Средства связи позволят активно «бороться» с нарастающим потоком информации и высвободят дополнительное время и силы человека для творческого труда.
Сейчас научный работник в поисках нужной статьи или других материалов тратит изрядное время: роется в каталогах одной, а чаще нескольких библиотек, перерывает собственную библиотеку, опрашивает специалистов, работающих в той же области (по телефону или путем визитов), запрашивает патентную службу и т. д. Один исследователь так описал свои информационные муки: «Работаю китом, добывая из моря воды всякую питательную мелочь, планктон». Обессилев на этом пути, часто ищущий пытается сам, пренебрегая результатами своих собратьев по оружию, решить задачу или даже проблему.
Теперь представим себе картину будущего. На своем рабочем месте (и даже дома) вы имеете телевизионную установку для просмотра интересующих вас материалов. Позвонив по видеотелефону (то есть используя не только голос, но и мимику, и жесты, и показывая некие материалы) в Центральную информационную службу и объяснив, что вас интересует (без всякого заполнения листков запроса в трех экземплярах), или просто набрав по телефону код интересующего вас вопроса, вы почти тотчас благодаря сверхбыстроногим битам в ЭВМ и отличной системе связи получаете на экране исчерпывающую справку и по желанию тут же просматриваете выбранные из нее материалы. Вот и получилась экономия времени, сил и, конечно, государственных средств на решение научного или технического вопроса.
Для неискаженной передачи большого потока информации предприятиям, институтам, заводам, частным домам нужны очень широкополосные, быстродействующие (десятки и сотни миллионов бит в секунду) каналы связи. Если говорить о передаче в пределах одного города — в пределах прямой видимости, — то тут могут быть использованы метровые, сантиметровые и даже миллиметровые волны и оптическая связь. Как мы уже отмечали, эти диапазоны чрезвычайно емки, и в них можно разместить тысячи и сотни тысяч даже телевизионных каналов.
Эти волны (мы об этом говорили) не хотят огибать Землю и бежать за пределы прямой видимости. На выручку пришли спутники. Пределы прямой видимости со спутника гигантские, они охватывают до трети поверхности земного шара. Поэтому, разместив УКВ-передатчик на спутнике, мы можем слать через него большие потоки информации на всю видимую с ИСЗ поверхность.
Для охвата системой передачи всей планеты нужно несколько таких спутников: минимум три. Снабдив их ретрансляторами и наладив каналы связи «Земля — спутник», «Спутник — Земля» и «Спутник — спутник», мы получим всемирную систему связи, способную передавать гигантский поток информации. Она может решать задачи и связи, и вещания.
Построение такой системы требует решения ряда задач. Так, для приема сигналов спутника типа «Молния» требуется параболическая антенна диаметром более 20 метров, следящая за движением спутника по орбите. Приемная установка с такой антенной принимает сигнал со спутника и через обычную местную систему связи ретранслирует его потребителям.
Ясно, что массовым средством связи такая система служить не может. Для ее упрощения и удешевления, чтобы каждый потребитель мог непосредственно принимать информацию со спутника, необходимо увеличить мощность передатчика на спутнике. Сейчас она составляет для «Молнии» 40 ватт. Чтобы принять сигналы со спутника на простую домашнюю антенну, необходимо увеличение мощности бортового передатчика в добрую сотню раз. Поэтому на смену солнечным батареям, от которых питается «Молния» и другие ИСЗ, должны прийти новые, более мощные источники питания.
Наиболее перспективными, по-видимому, являются ядерные бортовые источники электроэнергии.
Но даже при мощности бортового передатчика в несколько киловатт потребуется некоторая модернизация домашнего телевизора и его антенны, чтобы он мог успешно принимать сигналы с ИСЗ, парящего высоко в небе, на расстоянии от приемника в тысячи и десятки тысяч километров. Дело в том, что для возможно лучшего использования мощности бортовых источников или, что то же самое, для создания максимального превышения сигнала над помехами в месте приема, передачу с ИСЗ надо вести на более высоких частотах, чем в обычной сети телевизионного вещания, и применять более эффективные методы погрузки сигнала на радиоволну. Поэтому приемная антенна должна быть настроена на другие частоты, а на вход приемника включена приставка для преобразования сигнала ИСЗ в обычный.
Исследования и разработки, связанные с созданием системы такого прямого телевизионного вещания, ведутся в ряде стран. Так, по данным ЮНЕСКО, в США предполагается запуск спутника АТС-Ф, на котором будет установлена аппаратура прямого цветного телевизионного вещания. Для приема этих экспериментальных передач будет выпущено несколько сот специальных приемников. В отличие от систем вещания в системах связи немалые трудности вызывает проблема кодирования сообщений. Ведь надо, чтобы сообщение, пропутешествовав в космосе, нашло своего корреспондента за тридевять земель. Это легко сделать, когда отправителей и получателей мало… А когда их тысячи или сотни тысяч, когда они размещены по всей планете и хаотически «разбросаны» по времени работы, то решение проблемы вызывает большие трудности. Однако методы теории информации и кибернетики позволят решить и эту проблему.
Таким образом, имеется принципиальная возможность организовать информационно-справочную службу не только для отдельных стран, но и единую службу для всей планеты. Применяя все те средства, о которых мы говорили выше, и располагая спутниковыми глобальными системами связи, можно успешно бороться с грозной экспонентой.
Но не только научным работникам эти системы связи сослужат службу. Каждый житель планеты получит возможность легко и быстро устанавливать связь друг с другом. Видеотелефон (городской, междугородный, международный, космический) позволит легко общаться людям, исключив многие поездки, визиты, переписку и т. д. Всемирное телевидение даст полноценную информацию о событиях на планете, поможет быстро изучать языки, улучшит понимание культуры других народов. Всемирная библиотека позволит…
Широкое развитие получит так называемая персональная связь. Карманный приемопередатчик размером со спичечную коробку, а то и меньше позволит держать связь между сотрудниками предприятий, заводов, участниками экспедиций, не требуя привязки к телефону. Одновременно эти спичечные коробки позволят через ближайший пункт связи подключаться буквально на ходу к глобальной системе связи. В свою очередь, глобальная система связи, разыскивая нужного абонента, подаст сигнал вызова на карманный приемник и пригласит его владельца к ближайшему телефону или будет держать с ним связь через ближайший наземный узел радиосвязи. Все это тоже даст экономию времени и будет способствовать повышению эффективности труда.
Таким образом, в ближайшие десятилетия на базе глобальной спутниковой системы связи и местных локальных систем возникнет, по-видимому, единое информационное поле вокруг нашей планеты. В отличие от природного магнитного поля, неподвластного (пока!) человеку, оно будет послушно его творцу и будет успешно «расфасовывать» вулканический поток информации на мелкие дозы и выдавать ее каждому по желанию и потребности. Большой вклад в это дело внесет уже разрабатываемая в Советском Союзе единая автоматизированная система связи страны, намеченная Директивами XXIV съезда КПСС.
* * *
Систему связи нашей планеты в будущем можно наглядно себе представить в виде системы гигантских рек, по которым текут потоки информации из одной страны в другую, из одного города в другой. Разветвляясь, рукава этих рек будут охватывать все населенные пункты, а отдельные ручьи будут заходить в каждый дом, в жилище каждого человека планеты. Это будут достаточно мощные информационные потоки. Но самое главное — хозяин жилища сможет легко регулировать их силу и их содержание.
Сейчас, въезжая в новый дом, новоселы тут же проверяют подачу электроэнергии, воды, газа (телефон, радио и телевизор появляются обычно позже). В будущем на одном из первых планов будет обеспечение жилища… информацией. Может быть, это будет отдельная комната, оснащенная встроенными в стены большими телевизионными экранами, размер изображения на которых можно будет по желанию делать и больше и меньше натурального. На них с помощью объемного, цветного и ароматического изображения вместе с стереофоническим звучанием будет воспроизводиться желаемая информация (не исключено и воздействие на остальные два чувства человека — осязание и вкус). Таким образом, будет достигнут эффект присутствия и высокоэффективное восприятие информации.
Информация в эти узлы связи будет поступать по волноводам и световодам, которые способны будут пропускать колоссальный поток различных сведений. Эти ручьи информации, обильно текущие в жилища, очень помогут человеку: они избавят его от траты времени и сил на поиск нужной информации, исключат значительную часть поездок внутри города, в другие города и страны.
Но наиболее существенное влияние, как мне кажется, они окажут на систему обучения.
Во-первых, укрепятся и усилятся позиции заочного образования. Появится возможность дома, не тратя времени на переезды, прослушивать лекции весьма квалифицированных специалистов по любому предмету и в любое время, да еще с эффектом присутствия на лекции. Эти лекции будут заранее записаны и готовы к воспроизведению по запросу. Первые шаги в этом направлении уже сделаны — наша промышленность осваивает выпуск приставки к телевизорам для «проигрывания» пластинок с видеозаписями. Следовательно, если на эти пластинки записать курс лекций, то это будет отличное пособие для заочников и самостоятельно изучающих тот или иной предмет.
Во-вторых, число «неконсервированных» лекций, то есть лекций обычного типа, в очных учебных заведениях заметно уменьшится, так как будут широко использоваться «консервы» — записи лекторов самой высокой квалификации.
Но это все, конечно, не самое главное. Подлинная революция наступит при подключении к информационным рекам и ручейкам обучающих ЭВМ.
Хорошо известно, что наилучший эффект обучения имеет место, если квалифицированный педагог занимается индивидуально с обучаемым. Тут и индивидуальный выбор темпа обучения в зависимости от способностей обучаемого, и непрерывный контроль за усвоением материала, и подбор наиболее подходящей методики для данного ученика. Реализовать эти преимущества при современной системе и массовости обучения молодых обитателей планеты нет возможностей. Наш «конвейер» обучения вынужден ориентироваться на пресловутого «среднего» по способностям учащегося. Поэтому часто видишь скучающего на лекции способного студента, который вполне успевает и записывать, и усваивать материал, и одновременно читать детективный роман, и растерянного слабого студента, который, махнув на понимание материала рукой, едва успевает его записывать.
При чтении лекции большой аудитории практически теряется двусторонняя связь в системе «преподаватель — студент». Редкие практические занятия и экзамены не позволяют непрерывно контролировать степень усвоения материала студентами, а на лекции это и подавно нельзя осуществить.
Некоторым шагом вперед явилось введение автоматических экзаменаторов, на которых студент может проверять свои знания.
Специальным образом запрограммированная ЭВМ может вести индивидуальное, или так называемое адаптивное, обучение одновременно десятков и сотен студентов со значительно большим к.п.д. Сроки обучения при этом могут быть сокращены в два и более раз, высвобождая время для изучения последних достижений науки и, следовательно, сглаживая информационный взрыв.
Наблюдающееся в последнее время несколько прохладное отношение к идее использования ЭВМ для обучения связано, как мне кажется, с тем, что пока не создано машин, способных вести настоящее адаптивное обучение, и не разработаны удовлетворительные программы такого обучения. Но это все, несомненно, будет.
Не следует думать, что ЭВМ полностью заменят педагогов. Отнюдь нет! Общение живым, а не машинным словом, обучение умению передать свои знания другим — тут не обойтись без людей. Педагоги останутся, но будут выполнять более ответственную и более квалифицированную работу: составлять и совершенствовать программы адаптивного обучения, контролировать «плоды» своих программ, дополнять то, что не может дать никакая ЭВМ.
Таким образом, богатое информационное поле планеты, созданное с помощью спутников-ретрансляторов в обязательном союзе с наземными широкополосными системами связи и соединенное с электронными фабриками знаний, позволит заметно ускорить обучение, производить его в основном дома, без затраты времени и сил на переезды.
Самообразование станет очень популярным. Заинтересовавшись некой проблемой или вопросом, вы набираете на небольшом простом домашнем кнопочном пульте номер (код) этой проблемы и можете тут же увидеть и услышать на своем телевизоре вводно-обзорную лекцию-беседу на эту тему. Если вы пожелаете доскональнее изучить вопрос, то ЭВМ может также взять на себя обучение. Но тут уж вам придется интенсивно поработать, а не дремать, как это бывает иногда сейчас на лекциях. ЭВМ будет логично подавать материал и обучать вас, но усвоение каждой полученной дозы информации будет строго контролироваться. Машина будет безжалостно задавать вопросы и задачи, а вам придется отвечать и решать. Движение вперед будет только после усвоения предыдущего (сейчас это далеко не так!). Темп обучения будет зависеть от ваших успехов, от ваших способностей и, конечно, желания.
* * *
Триумфом техники передачи и приема сообщений, теории информации, кибернетики и радиоастрономии будет, несомненно, установление радиоконтакта с внеземными цивилизациями. Даже просто прием землянами «разумного» сигнала, то есть сигнала, который не может возникнуть естественным путем, даже без разгадки его смысла станет вехой в истории нашей цивилизации.
Человек узнает, что он не одинок, что человечество не уникально, что окружающий космос населен!
Если это сбудется, то молодежь лавиной хлынет в «контактные» науки. А ими окажутся не только передача сообщений, кибернетика, радиоастрономия, но и биология (зарождение и эволюция жизни), социология и прогностика (пути развития цивилизаций), лингвистика (расшифровка их посланий).
Если же по их сигналам и посылаемым ими упражнениям будет разгадан их язык, если будут прочтены их письмена и воспроизведен их облик и образ бытия на экране земного телевизора (хотя бы черно-белого), то это «окажет существенное влияние на дальнейшую судьбу нашей цивилизации».
Последняя строка просто переписана из решения первой советско-американской конференции по проблеме контакта, которая состоялась осенью 1971 года в Бюраканской астрофизической обсерватории (Армянская ССР).
Конференция констатировала, что успехи земной науки и техники за последние десятилетия создают достаточную базу для начала атаки на эту волнующую всех и каждого проблему.
Из всех возможных путей контакта реальным выглядит контакт путем передачи информации на одном из возможных носителей — радиоволна, луч лазера, рентгеновские колебания и т. д.
Сегодня земляне еще бедны энергией, поэтому громко заявить о себе миллионам звезд мы пока не можем. Наше «а-ууу!» сможет долететь только до ближайших звезд, и шансы напасть на разумную звезду очень малы, хотя и не равны нулю. Сегодня наш удел — шарить по небу радиотелескопами и искать сигналы, которые шлют в нашу галактическую глушь цивилизации, ушедшие далеко вперед. А может, этих сигналов нет и не будет? Может, некому их слать?
Современная наука твердо стоит на позиции неуникальности земной жизни. Сигналы должны быть!
Миллиарды миллиардов звезд окружают нас. Многие из них имеют планетные системы. Великое разнообразие условий на этих планетах исключает возможность возникновения и эволюции жизни до разумной (по нашим земным критериям, во всяком случае) только у одной счастливой звезды — Солнца и только на одной из ее счастливых планет — Земле. Большое разнообразие в судьбах звезд, в том числе и по времени длительного устойчивого состояния, наиболее благоприятного для длительной эволюции, должно приводить к одновременному существованию цивилизаций разного уровня. Наряду с цивилизациями нашего типа должны существовать сверхцивилизации, давно покончившие с нашими «пятнами»: войнами, эксплуатацией, болезнями, пьянством — и далеко ушедшие по пути прогресса. Естественно предположить, что они должны протянуть руку помощи своим братьям и сестрам по разуму. Эта рука и есть тот электромагнитный корабль, набитый информацией, который нам необходимо обнаружить и пришвартовать к своей планете.
Скептики, возможно, скажут, что толку нам в этой информации немного. Ведь мы ее не поймем, а если и поймем, то не сможем использовать!
Я считаю, что информация — это неизмеримо больше, чем, скажем, некие предметы, полученные из другой цивилизации.
Всемогущество информации хорошо проиллюстрировал А. Кларк в своей книге «Черты будущего». Он высказал возможность мгновенной передачи материальных предметов из одной точки пространства в другую с помощью только информации, да, да, только информации. Ведь любой предмет есть не что иное, как структурное объединение в определенном порядке определенного числа атомов и молекул. Следовательно, если удастся эту информацию «прочитать» в одной точке пространства и передать в другую, то остается только восстановить по этой информации исходную структуру — и материальный предмет окажется перемещен в пространстве. Такой восстановитель назван репликатором, то есть повторителем: он повторяет передаваемый предмет в точке приема. Можно не согласиться с А. Кларком в том, что широкое применение репликаторов когда-нибудь позволит заменить промышленное производство товаров, исключить их перевозки и т. д. (Ведь достаточно будет размножить первый экземпляр репликатора с помощью его самого и «разбросать» эти копии по всем потребителям, и проблема производства решена.) Но сама идея, безусловно, заслуживает внимания, особенно в случае обмена информацией между разными цивилизациями, где другие возможности передачи материальных предметов могут принципиально отсутствовать.
Разработка теории и аппаратуры таких систем связи хотя бы для самых примитивных случаев мне кажется чрезвычайно увлекательной задачей. Хочется обратить на нее внимание нашей молодежи, ищущей точку приложения своим дерзаниям, своим силам, еще не скованным традиционными методами решения задач.
Что касается возможности понять друг друга, то наличие разума на обоих концах информационного моста и единство физических законов во вселенной (хотя и с некоторыми оговорками, которые мы здесь опускаем) создают предпосылки и для обучения, и для понимания передаваемой информации.
В упомянутой книге А. Кларк делает прогнозы по основным этапам освоения космоса. Но жизнь уже внесла коррективы. Так, высадка на Луну людей осуществлена на несколько лет раньше, чем им было намечено. А. Кларк называет и примерную дату установления контакта с внеземными цивилизациями — 2030 год.
Мне кажется, что и эту дату жизнь также приблизит к нашим дням, особенно если иметь в виду начавшееся сотрудничество двух самых передовых в научном и техническом отношении стран — СССР и США.
Наряду с поиском сигналов других цивилизаций важное значение для всей проблемы «Жизнь и Разум во вселенной» имеет обследование планет солнечной Системы. Это позволит установить, есть ли какие-либо формы живой материи под Солнцем, кроме имеющихся на третьей планете.
На решение этой задачи и ряда других нацелены усилия по освоению космоса в СССР и США. Так, в американских планах говорится:
«Высадка на Марс: 1981–1983 гг.
1. Старт с околоземной орбиты 12.11.1981 г.
2. Прибытие на Марс 9.08.1982 г.
3. Вылазка на Марс.
4. Старт с Марса 28.10.1982 г.
5. Пролет мимо Венеры 28.02.1983 г.
6. Возвращение на Землю 14.08.1983 г.».
Записано кратко, но очень волнующе. Там же мы находим планы полета беспилотных космических кораблей к остальным планетам — Юпитеру, Сатурну, Урану, Нептуну, Плутону.
К концу текущего столетия будут обследованы все планеты нашей системы и будет дан ответ на вопрос о существовании или отсутствии жизни на них.
И эту фундаментальную информацию доставят нам в основном неутомимые биты. Для этого им придется преодолеть многие миллиарды километров космических дорог, пронизывать гигантские скопления космической пыли, пересекать радиационные пояса, вступать в единоборство с излучениями космических тел… Под силу ли это нашим битам? С уверенностью можно сказать — да, ибо их направляет разум.
* * *
Подведем некоторый итог всего рассмотренного.
Поток научной информации, и не только научной, действительно быстро нарастает во времени. Эта лавина стремительно увеличивается по экспоненте, и мы уже вышли на ее круто вздымающийся участок. Если научные результаты удваиваются за время порядка десяти лет, а в некоторых важных направлениях даже за два-три года, то поток научной информации удваивается значительно быстрее.
Все эти источники информации породили у некоторых прогнозистов Запада мрачный образ огнедышащего вулкана. Мы с вами, читатель, побывали там. Есть ли реальная угроза всесокрушающего извержения этого вулкана?
Надо прямо сказать — да, есть! Но с одной весьма существенной оговоркой: если лавина информации будет так же продолжать нарастать по экспоненте, или, как любят говорить математики, если экспонента будет продолжать работать, а земляне будут продолжать овладевать этой информацией теми же способами, что и сегодня.
Но пророки «последнего дня Помпеи» упускают одну существенную деталь — всякое сообщество живых существ, а тем более разумных, грубо говоря, являет собой сложную кибернетическую систему с обязательным саморегулированием, со способностью адаптироваться к новым условиям существования. В данном случае новым условием существования является все нарастающее клокотание информационного вулкана. Конечно, если кибернетическая система слишком медленно регулирует свои параметры по сравнению с темпом изменения условий и не успевает адаптироваться, то она выходит из строя, она перестает работать, она ломается.
Как следует из всего нашего рассмотрения, у нас нет оснований считать, что люди будут слишком медлительны, слишком ленивы в обуздании вулкана. Эта борьба, эта работа уже начата. Она идет по нескольким направлениям, и намечен ряд путей, по которым она пойдет в ближайшем будущем.
Во-первых, это обуздание самого вулкана. Вполне понятно, что приостановить нарастание потока информации равносильно тем же сумеркам цивилизации, о которых мы говорили. Но ниоткуда не следует, что этот поток должен во все времена нарастать по экспоненте. История свидетельствует, что экспоненциальный рост того или иного показателя нарушается при изменении условий, в которых он происходил. Мы разбирали пример с «лошадиной» экспонентой. Нечто подобное скоро произойдет и с «автомобильной» экспонентой.
Некоторые пути сокращения излишней информации мы называли. Это публикация только действительно достойных материалов (новизна, четкость, краткость). Исключение всяческих повторений, пересказов, компиляций, плагиатов. Переход на публикацию не статей, а только их кратких резюме (с возможностью запроса полного текста желающими).
Все большее «гашение», или «стирание», информации, ставшей излишней, с помощью так называемой отрицательной информации, или, как ее называют, негоэнтропии. Последнее поясним примерами.
Открытие закона всемирного тяготения Ньютоном принесло колоссальное количество негоэнтропии — позволило пользоваться единым законом движения небесных тел, и к тому же очень простым, а не держать в голове и таблицах траектории их движения.
Открытие Д. Менделеевым периодического закона химических элементов устранило существовавшую до этого их разобщенность. Из таблицы Менделеева следовало, что свойства элементов находятся в периодической зависимости от величины атомных весов элементов. Эта простая таблица позволила легко определять свойства элементов и даже предсказать еще не открытые. Отпала необходимость хранить подробные описания свойств известных к тому времени 63 элементов и можно было забыть много вариантов классификации элементов, ставших ненужными после открытия Д. Менделеева.
Всякий раз, когда человек объединяет разрозненные предметы в один класс, находит между ними связи, унифицирует их, он уменьшает количество информации, связанное с этими объектами. Стремительное развитие науки, несомненно, будет открывать и устанавливать все новые и новые связи материального мира и тем самым сдерживать наш бушующий вулкан.
Во-вторых, на помощь человеку, потребителю информации, придут системы, состоящие из широкополосных каналов связи, с очень высокой достоверностью передачи и быстродействующих ЭВМ. Не надо будет просматривать сотни журналов, рыться в многочисленных каталогах, запрашивать десятки отчетов и тезисов конференций, симпозиумов и коллоквиумов. Все это сделают справочные машины по кодированному запросу, набранному по телефону, и по каналу связи доставят вам. Одновременно может быть сделан машинный перевод (надо признаться, что пока он «горбатый», плохой, но это только пока!) с одного языка на другой.
Не за горами время, когда на нашей планете будет создана глобальная система связи, включающая ретрансляторы, размещенные на ИСЗ. Такая система откроет колоссальные возможности быстрого контакта с нужной информацией: всемирный видеотелефон, всемирное телевидение, всемирная газета (с экрана своего телевизора вы сможете нажатием кнопки получить ее копию), всемирная справочная служба, в том числе и научная и т. д. Все это высвободит много времени для настоящей творческой работы, для лучшего освоения непрерывно накапливаемой человечеством информации.
В-третьих, это улучшение возможностей человека по усвоению информации. Здесь основная проблема в том, как разрешить противоречие между медленностью ввода информации в мозг человека и огромными резервами памяти, которые за всю его жизнь используются лишь в незначительной степени.
Первые попытки ускорить ввод уже делаются. Это так называемое скорочтение. Сюда же примыкает и гипнопедия, при которой ввод информации, правда, не ускоряется, зато увеличивается за счет сна время ввода. В печатных изданиях будут найдены, вероятно, новые сочетания текста, иллюстраций, схем и чертежей, которые значительно ускорят ввод информации.
Но, конечно, кардинально решить проблему удастся лишь в том случае, если будет найден способ ввода информации в мозг, минуя традиционные органы слуха и зрения. Перед людьми тогда откроются новые колоссальные возможности усвоения знаний и сведений о текущей жизни. Например, по некоторым подсчетам один человек может вместить все богатство библиотеки имени В. И. Ленина у себя в голове. Можно подумать: а зачем, мол, всю эту информацию таскать в голове. Это, может быть, даже вредно. Но ведь доказано, что раскрытие творческих способностей личности пропорционально накопленным до некоего предела знаниям.
И наконец, в-четвертых, нарастание информации требует коренной перестройки системы образования. Создание широкополосных систем связи с заходом в каждый дом сделает весьма популярным заочное образование и самообразование по любому вопросу. Огромные домашние экраны объемного, цветного, стереофонического телевидения с полным эффектом присутствия на лекции, с возможностью подключаться к любым лекционным залам мира либо проигрывать законсервированную на пластинке видеозапись лекций знаменитых ученых и педагогов обеспечат усвоение любых знаний с любой степенью глубины и прочности.
Но, как ни заманчивы эти методы обучения, на смену им придет адаптивное обучение. На помощь педагогам придут совершенные ЭВМ. Это будут идеальные индивидуальные учителя, которые не пойдут дальше, пока вы не усвоили предыдущее. Они будут контролировать вас вопросами, задачами и по ответам на них и просто по вашим эмоциям судить о готовности вашей усваивать новое. Первые такие контролеры — назовем их детекторами знаний — уже испытываются. Темп обучения учащихся будет определяться их способностями и желанием познать новое. Сегодня мы, к сожалению, не можем перейти к методу индивидуального обучения и вынуждены ориентироваться на пресловутого «среднего» ученика, студента, слушателя. Такая уравниловка резко снижает эффект обучения. Адаптивное обучение позволит, как показывают некоторые исследователи, сократить срок обучения почти вдвое. Это создает дополнительные резервы времени для освоения новых, нарастающих достижений науки.
Не нужно, конечно, думать, что студент будущего — это некий узник ЭВМ. Адаптивное обучение будет оптимально сочетать и живое слово, и упомянутые выше возможности глобальной системы связи, и четкий контроль знаний, и выдачу следующих порций их с помощью ЭВМ.
Эта же система адаптивного обучения поможет молодежи правильно выбрать профессию по своему призванию. Ведь сегодня это часто решается случайно. Я не раз задавал студентам вопрос: почему они поступили именно в данный вуз? Ответы разные: потому что приятель сюда поступал, потому что рядом живу, потому что здесь меньший конкурс и т. д. И очень небольшой процент абитуриентов идет потому, что увлеклись этой специальностью.
Адаптивная ЭВМ сумеет увлекательно рассказать о разных профессиях, и не только рассказать, но серией тестов и упражнений подсказать, в каких областях знаний способности данной личности максимальны и какое направление глубоко волнует ее.
Это в конечном счете тоже даст и дополнительное время, и способности для единоборства с наплывающим потоком информации.
Конечно, рассмотренные четыре направления укрощения вулкана далеко не исчерпывают всех возможностей (многое сегодня нельзя еще предвидеть).
Например, мы совершенно не касались обратного воздействия вулкана на устную и письменную речь людей. А такое воздействие, несомненно, будет. Признаки его уже появляются (ограничение объема статей и книг, ограничение времени докладов и выступлений по ним и др.), а в будущем это воздействие проявится в полную силу. Результатом его будет повышение информативности устной и письменной речи: ту же информацию можно будет сообщать в несколько раз меньшим количеством слов. Уже видны два пути к этому. Первый связан с увеличением общего запаса слов, которым пользуется говорящий или пишущий. Как показано К. Шенноном, чем больше ансамбль слов, из которого выбирается каждое слово, тем, оказывается, большую информацию несет это одно слово. А резервы здесь большие. Средний запас слов, которым сегодня пользуется землянин, по крайней мере, в 20 раз меньше, чем у В. Шекспира или А. Пушкина. Увеличив же его, мы сможем ту же информацию передавать меньшим в среднем числом слов.
Второй путь более элементарен: необходимо обучать каждого народившегося землянина краткой и ясной и, конечно, красивой устной и письменной речи. Формула М. Ломоносова — «словам тесно, а мыслям просторно» — получит в будущем повсеместное применение. Плоды ее, несомненно, подточат силы вулкана. Ведь сколько времени и сил будет сэкономлено у слушающих и читающих, не говоря уже об экономии бумаги!
Таким образом, пытаясь заглянуть в ближайшее будущее, во времена, прилежащие к рубежу XX и XXI столетий, нет оснований страшиться информационного взрыва, пугаться бомбежек мегабитовыми бомбами (информация в один миллион бит) и связанного с ним замедления развития цивилизации.
Прослеженные нами пути обуздания вулкана: машинный анализ информации, форсирование возможностей мозга, усовершенствование систем передачи информации и повышение эффективности образования вселяют уверенность, что коллективный гений человечества справится с этой задачей.
Более того, возможно, именно на рубеже этих столетий возникнет информационный мост с внеземными цивилизациями. К земным потокам информации добавится еще один — космический! Он поможет раскрыть великие тайны ушедших вперед цивилизаций, в том числе их опыт не только усмирения, но и оптимального управления своим информационным Везувием.