Живые локаторы океана

Сергеев Борис

Плененная волна

 

 

Умейте задавать вопросы

Каждый, кому приходится постоянно общаться с животными, может много интересного рассказать о своих четвероногих друзьях. Жаль только, что животные не говорят. Владей они даром речи, мы узнали бы о них гораздо больше. А так о самых обычных вещах – о том, что видят, слышат или какие запахи ощущают звери, – нам приходится только гадать.

Ученые, естественно, не берут в расчет догадки. Им нужны точные сведения, и они умеют их получать. Ученые давно научились задавать животным вопросы и получать на них ответы.

Современная наука располагает целым арсеналом средств, с помощью которых можно изучить функцию органов чувств, или, как называют их физиологи, анализаторов животных.

Самый непосредственный и самый наглядный способ – наблюдение за ориентировочным рефлексом. Внешние анализаторы – глаза, уши, нос – непрерывно сообщают мозгу обо всем, что происходит вокруг. Мозг всю полученную информацию анализирует, взвешивает и некоторое время хранит в памяти.

Пока вблизи ничего существенного не происходит, животное спокойно занимается своими делами, разыскивает корм, греется на солнце или просто спит. Но вот впереди что-то мелькнуло, донесся незнакомый звук или запах. Мозг не терпит неопределенной информации. Он тотчас посылает указание внешним анализаторам провести ориентировку, т. е. собрать дополнительные сведения,чтобы выяснить, что это такое было. Недаром ориентировочный рефлекс называют рефлексом «Что такое?» Получив от мозга распоряжение, глаза, уши, нос немедленно поворачиваются в ту сторону, откуда пришел незнакомый сигнал. Подобную реакцию у животных наблюдал каждый.

Ориентировочный рефлекс не исчерпывается перечисленными выше реакциями. Незнакомый раздражитель может быть предвестником опасности или, что не менее важно, явиться сигналом о приближении добычи. В том и другом случае следует быть начеку, привести свой организм в боевую готовность. Вот почему ориентировочный рефлекс сопровождается увеличением секреции некоторых гормонов, изменением работы сердца, органов дыхания, тонуса кровеносных сосудов. Организм подготавливается к срочным действиям.

Все менее срочные дела, например работа органов пищеварения, притормаживаются. В руках ученых много показателей, позволяющих следить за ориентировочным рефлексом, но не все их удобно использовать.

Ученые не очень полагаются на движения ушей животного: ведь можно прислушиваться, не шевеля ушами.

У ориентировочного рефлекса есть крупный недостаток: он быстро угасает. Раздастся какой-то новый звук, насторожит уши лисица. Станет принюхиваться, присматриваться, прислушиваться. Нет, кажется, ничего неожиданного звук не предвещает – ни опасности, ни пищи. Если тот же звук раздастся во второй, третий, четвертый раз и по-прежнему ничего особенного вслед за ним не произойдет, лисица перестает волноваться. С каждым разом ее уши настораживаются более лениво, менее активно работают нос, глаза. Смотришь – на пятый, восьмой, десятый звук лисица перестала реагировать совсем. К чему зря тратить энергию, если раздражитель никакой полезной информации не сообщает. Вот почему в лаборатории редко пользуются показаниями ориентировочного рефлекса. Слишком уж неустойчивы получаемые с его помощью результаты.

Итак, ориентировочный рефлекс не годится для серьезной обстоятельной беседы с животным. Наиболее удобный вид диалога – образование у животного условного рефлекса. Чтобы выяснить, какие звуки собака слышит и как тонко их различает, у нее вырабатывают условный рефлекс на звуковой раздражитель. Скажем, поставлена задача узнать, способна ли собака услышать звук с частотой 500 Гц. Поместив подопытное животное в звуконепроницаемую камеру, чтобы его не отвлекали посторонние раздражители, экспериментатор время от времени включает на 20–30 с нужный звук, а затем позволяет животному съесть небольшую порцию мясосухарного порошка. Пока собака вылизывает чашку из-под быстро исчезнувшего лакомства, специальный приборчик скрупулезно регистрирует на бумажной ленте каждую каплю слюны, выделившейся из околоушной железы. Уже через несколько повторений данной процедуры одно только действие звукового сигнала, задолго до появления пищи станет вызывать у собаки интенсивное слюноотделение. Это убедительно доказывает, что она слышит звуковой сигнал. Теперь можно постепенно уменьшить силу звука (не забывая подкармливать пса), и мы узнаем, сколь слабые звуки способно улавливать ухо собаки.

Если поставлена задача выяснить, как тонко различаются звуковые раздражители, приступают к выработке дифференцировки. Продолжая подкармливать собаку, всякий раз, когда звучит уже знакомый ей тон с частотой 500 Гц, время от времени включают и другой звук, довольно далекий от первого, например тон с частотой 800 Гц, – но никогда не сопровождают его пищей.

Очень скоро собака заметит, что более высокий звук не сопровождается пищей, и выделение слюны при его звучании прекратится. Сомнений быть не может – собака способна различать звуки с частотой 500 и 800 Гц. Теперь можно испытать действие более близкого раздражителя – тона с частотой 700 Гц, также не сопровождая его дачей мяса. Не беда, если при первых предъявлениях он будет вызывать выделение слюны. Немножко терпения, собака разберется и просто так, за здорово живешь слюну выделять не будет. Таким же образом можно испробовать звук с частотой 600 Гц, затем, 550, 520 Гц.

Не у каждого зверя удобно и легко собирать слюну. Тогда применяют другую методику. Крыса, добежав до разветвления узкого коридора, свернет в ту сторону, откуда будет доноситься звук 500 Гц, если он сулит ей завтрак, и даже не заглянет в коридор, откуда будет доноситься звук с частотой 600 Гц.

Чтобы получить от животного ответ на вопрос, его надо уметь поставить. Бессмысленно спрашивать, какие звуки слышит животное. Нужно спросить, слышит ли оно данный звук, способно ли отличить его от другого, вполне определенного звука. Вопросы следует задавать так, чтобы на них можно было ответить «да» или «нет». Вырабатывая условные рефлексы, иногда целые системы условных рефлексов, ученые и добиваются от животных ответа на интересующие их вопросы.

Если у животного вырабатывается условный рефлекс на какой-нибудь определенный звук, а близкие звуки рефлекса не вызывают, можно быть уверенным, что животное слышит этот звук и отличает его от всех остальных раздражителей. Итак, выработка условных рефлексов – наиболее распространенный вид диалога с животными, в том числе с обитателями океанариумов и испытательных полигонов.

 

Все, что творится в мире...

Многое из происходящего вокруг нас недоступно нашему взору, слуху, обонянию. Человеческий глаз не видит рентгеновские лучи, а какая-то бесчувственная фотопластинка их «замечает». Мы не ощущаем радиоактивных излучений, не имеем рецепторов, позволяющих оценить величину атмосферного давления, поляризацию световых лучей. Давным-давно люди заметили, что, собаки и слышат несравненно лучше человека, и ощущают запахи, нам совершенно недоступные, а острота зрения большинства хищных птиц намного превосходит человеческую. Подумать только, человек, венец творения природы, весьма далек от совершенства!

Имея весьма чувствительные рецепторы, животные не извлекают всеобъемлющей информации об окружающей среде.

Они видят, слышат и обоняют лишь то, что для них имеет смысл ощущать. Акустический рецептор в крыльях ночных бабочек воспринимает лишь ультразвуковые сигналы охотящихся за ними летучих мышей, а более низкочастотные колебания им совершенно недоступны. Кролик способен ощущать 24 первичных запаха, собака, видимо, – 35, а человек – всего 7–14. Однако это дает возможность человеку с наиболее изощренным обонянием запомнить и узнать около 10 000 сложных запахов. Сколько сложных запахов помнят кролик и собака, пока ученым неизвестно. Может быть, животные используют свои возможности лишь частично.

Изучение анализаторных систем животных – сложное и трудоемкое дело. Особенно если речь идет о таких явлениях, которые недоступны непосредственному восприятию наших органов чувств. Отсюда и проистекают многочисленные неудачи. Нередко выводы отдельных исследователей не удается согласовать между собой. Каждый надеется, что именно ему удастся окончательно решить затронутые в исследовании вопросы. Однако заранее почти невозможно предсказать, кто из ученых сможет добиться успеха, сколько это будет стоить и сколько потребуется времени, чтобы получить исчерпывающий ответ. Чаще всего не представляется возможным и предсказать результаты исследования, даже приблизительно.

Оказалось, что нелегко разобраться даже в таком простом вопросе, как слух дельфина. Еще не забылось время, когда ученые спорили, слышат ли вообще дельфины, и если слышат, то где – под водой или когда высовывают голову наружу.

Теперь широко известно, что животные воспринимают акустические колебания и в воде, и в воздухе. Появление эхолотов подтвердило, что животные слышат и ультразвуки: они уходят от судна, как только начинает работать эхолот.

Первые специальные исследования слуха дельфинов были осуществлены в США вскоре после окончания войны. В бассейн, где жили десять афалин и два длиннорылых дельфина, опустили гидрофон. Ученые время от времени включали на 2–3 с звук, внимательно наблюдая за проявлением ориентировочного рефлекса. Если хоть кто-нибудь из животных в момент излучения звука вздрагивал, останавливался, поворачивался в сторону гидрофона или стремился поскорее отплыть от него подальше, значит, дельфины слышали звук. В результате систематических наблюдений исследователи пришли к выводу, что дельфины хорошо слышат звуки в диапазоне от 100 Гц до 80 кГц.

Через несколько лет две группы американских ученых решили проверить полученный результат. Экспериментируя на афалинах, они применили метод условных рефлексов.

Дельфинов приучили на любой звук подплывать к экспериментатору и каждый раз награждали за усердие рыбкой.

Одна группа обнаружила, что звуки от 150 Гц до 120 кГц их животное не пропускало никогда. Звуки немногим выше 120 кГц оно слышало значительно хуже, а сигналы с частотой 150 кГц замечало лишь иногда. Другая группа пришла к выводу, что животные реагируют на звуки с частотой 20–100 кГц, а сигналы с частотой 150 кГц замечают только, если увеличить их интенсивность.

Четвертая группа американских исследователей, тоже занимавшихся изучением слуха дельфинов, введя в мозг афалин и полосатых стенелл электроды, наблюдала за электрическими реакциями в их мозгу, возникающими под воздействием акустических раздражителей. Оказалось, что звуки в интервале между 10 и 20 кГц животные слышат плохо. Звуки с частотой от 20 до 70 кГц воспринимались хорошо. Затем чувствительность слуха значительно ухудшалась. Самыми высокими звуками, которые дельфины могли еще ощущать, были сигналы с частотой 120–140 кГц.

Знакомство с полученными результатами показывает, что границы наилучшей чувствительности слуха дельфинов лежат где-то посредине воспринимаемого диапазона частот. А каковы верхние границы, пока сказать трудно.

Отдельные ученые называли цифру 300 и даже 500 кГц, но скорее всего это погрешности исследования.

У белобочек и азовок слух изучали советские исследователи. Белобочка оказалась в числе рекордсменов. Предполагается, что этот дельфин слышит звуки в диапазоне от 10 Гц до 320 кГц! Азовки же слышат звуки лишь от 3 до 190 кГц, а лучше всего воспринимают ультразвуковые колебания с частотой в 128 кГц.

Кое-что известно и о слухе других дельфинов. Амазонские инии воспринимают звуки от 1 до 105 кГц. Лучше всего они слышат сигналы с частотой 75–90 кГц. У косатки более узкий диапазон звукового восприятия – между 15 и 32 кГц. По-видимому, это связано с их охотничьими повадками. Более низкие звуки меньше затухают, позволяя вечно голодной косатке обнаруживать добычу издалека. О слухе кашалотов и крупных усатых китов практически ничего достоверного не известно. Имеются лишь свидетельства китобоев об изменении их поведения под воздействием каких-либо звуков, пугающих исполинов. Полагаться на эти сведения не приходится, хотя бы потому, что точная оценка характеристик подобных звуков никем не проводилась. Как ни кажется этот вопрос простым, однако приходится констатировать, что ученые пока еще не придумали способ, как заставить гигантов океана – блювала, финвала и других китов открыть свои секреты.

 

Зачем зайцу длинные уши?

Кому хватило терпенья понаблюдать, как настораживает уши собака, услышав незнакомый звук, или тревожно поводит ушами лошадь, вопрос о заячьих ушах покажется наивным.

Многие животные, обладающие изощренным слухом, имеют большие подвижные ушные раковины. Даже чемпионы по слуху среди птиц – совы и филины вынуждены были обзавестись специальным сооружением из перьев и пуха, имитирующим ушную раковину.

Природа – экономный конструктор. Создав рупор для улавливания звуковых волн, она постаралась извлечь из него как можно больше пользы. Для живущих в тропиках животных остро стоит вопрос о перегревании организма – и ушные раковины заодно приняли на себя функцию охладительных устройств.

В центральных районах Сахары и в Аравийских пустынях обитают маленькие симпатичные лисички – феннеки. Ранней весной в их норах появляются четыре-пять щенят. Жители оазисов, если им посчастливится выследить феннеков, раскапывают нору и приносят домой очаровательных малышей с крохотным хвостиком и маленькими круглыми ушами. Зверята быстро прибывают в весе, но еще быстрее растут их уши.

Когда животные подрастут настолько, что уже годятся в суп (выращивают феннеков отнюдь не для забавы), они, как остроумно заметил американский физиолог К. Шмидт-Нильсен, состоят главным образом из ушей.

Многие относительно небольшие животные пустынь имеют большие уши. Это сразу бросается в глаза, особенно при сравнении с их родичами из умеренных или северных районов планеты. Ушастый еж, обитающий на юге нашей родины (от Ставропольского края до пустынь Средней Азии), обладает необычайно крупными ушными раковинами с точки зрения его северных собратьев. У рыжебокого зайца, широко распространенного в Африке от мыса Доброй Надежды до Алжира, уши несравненно более длинные, чем у нашего беляка или русака. Еще крупнее уши у другого африканца – капского зайца. Весьма длинноухи зайцы из Северной Америки – чернобурый мексиканский. Уши калифорнийского зайца, распространенного не ахти в каких жарких районах планеты, не очень длинны, зато чрезвычайно широки. Но особенно длинноух американский заяц, или, как его называют по-английски, кожаный кролик. Уши кролика больше самого хозяина.

Среди исполинов наиболее большеухи слоны. Африканские слоны любят бродить в сухих жарких саваннах и не меньше мелюзги заинтересованы в подручных средствах для охлаждения.

Ученые долго не понимали причин большеухости пустынных животных. Логично предположить, что большие уши, значительно увеличивая площадь кожной поверхности, должны способствовать перегреву животных. На деле же оказалось, что это не так. Все перечисленные выше существа, за исключением слонов, могут обходиться совершенно без воды.

Необходимую влагу они получают с кормом, с зелеными растениями, их корневищами и плодами, с поедаемыми насекомыми, ящерицами, мелкими птицами и млекопитающими. Поэтому им приходится быть с водой особенно экономными. Они не могут позволить себе потеть, охлаждая тело с помощью испарения воды, как это делает подавляющее большинство млекопитающих нашей планеты. Как же спасаются они от жары? Днем животные держатся в тени высохших пучков травы, кустов, камней и скал. Если нет ветра, температура воздуха и почвы в тени несколько меньше, чем на солнце.

Уши, богато снабженные сосудами и благодаря достаточно редкому волосяному покрову, особенно с внутренней стороны, не имеющие надежной теплоизоляции, отдают путем радиации в первую очередь нёбу, а также окружающим предметам накапливающееся в организме тепло. Как-никак температура северного сектора неба над пустыней даже в полдень не бывает больше +13°. Радиационный обмен позволяет легко освободиться от излишков тепла, а ушные раковины выполняют функцию излучателей. Вот, оказывается, почему уши бывают такими длинными.

Терморегуляция – только вспомогательная функция ушей.

Главная же, безусловно, слуховая. Ушные раковины – первый аппарат в длинной цепи приспособлений для улавливания звуковой волны и анализа принесенной ею информации.

У млекопитающих они имеют форму воронки. Такая воронка ловушка обеспечивает лучшее восприятие звуковых волн, идущих с определенного направления. У кошек, собак, лошадей, антилоп уши обладают большой подвижностью – они способны повернуться навстречу звуковой волне, навстречу источнику звука. Благодаря этому животным удается избавиться от помех и даже слабые далекие звуки расслышать лучше, чем близкие и громкие.

При тепловом излучении, способном возникать даже при низких температурах, излучаются невидимые лучи большой длины. Измерение радиации часто производят с помощью приборов, превращающих лучистую энергию в тепловую. Лучистая энергия, излучаемая северным сектором неба над пустыней, переведенная в тепловую, не превышает 13°С.

Ухо человека потеряло способность активно двигаться в поисках источника звука. Даже у человекообразных обезьян уши относительно неподвижны. Однако было бы неправильно думать, что они совершенно бесполезны и являются лишь весьма сомнительным украшением человеческой головы. Хотя пока не совсем ясно, насколько ушная раковина эффективна как воронка, собирающая энергию звуковой волны, ее участие в определении направления звука не вызывает сомнений.

В этом можно убедиться самому. Попробуйте резко изменить форму ушной раковины – смять ее рукой, и вы сразу почувствуете, что определять направление звуков, особенно слабых, становится труднее. Хрящевые бугорки внутри ушных раковин задерживают звук. Величина этой задержки меняется в зависимости от того, с какой стороны он приходит. Мозг использует эту задержку, чтобы повысить точность локализации источника звука.

Наружное ухо выполняет и еще одну задачу – усиливает звук. Оно представляет собой резонатор. Если частота звука близка к собственной частоте колебаний резонатора, давление воздуха в слуховом проходе, воздействующее на барабанную перепонку, становится больше давления пришедшей звуковой волны. Для развитой эхолокации необходим изощренный слух.

Казалось бы, все звенья слуховой системы китообразных должны быть развиты лучше, чем у прочих обитателей планеты. В общем, это так и есть, но самое первое звено – улавливающий рупор – полностью отсутствует. Бесполезно искать на гладкой лоснящейся коже дельфинов каких-нибудь, пусть самых скромных, остатков ушей. Их нет. Внимательно рассмотрев голову афалины, можно заметить с каждой стороны по крохотной дырочке диаметром в 1–2 мм. Как и все на голове дельфина, эти отверстия расположены несимметрично.

Одно отверстие находится ближе к носу, чем другое. Они являются началом слуховых проходов.

У хорошо слышащих наземных животных слуховой проход никогда не бывает столь узким. Почти сразу же за наружным отверстием он резко сужается и приобретает вид тонюсенькой щелки с просветом 360x36 мкм, а у дельфина белобочки – 330x32 мкм. Чуть дальше слуховой канал полностью зарастает, превращаясь в тонкий шнурочек. Когда шнурок минует толстый жировой слой и добирается до мышц, в нем снова появляется просвет, заполненный воздухом и даже более широкий, чем был вначале: у афалин – 2250x1305 мкм, а у белобочки – 1620x810 мкм. И все-таки трудно поверить, что это устройство имеет какое-то отношение к восприятию звуков.

Отсутствие слухового прохода связано с жизнью в океане.

Если бы он соединил барабанную перепонку с наружной средой, как это обычно бывает у наземных животных, дельфины подвергались бы постоянной опасности. При погружении на каждые 10 м давление возрастает примерно на 1 ат. Все млекопитающие имеют приспособление для выравнивания давления за барабанной перепонкой, но аквалангисты отлично знают, как ненадежно оно работает, выходя из строя при малейшей простуде или легком насморке. В этом случае при первой же попытке нырнуть барабанная перепонка была бы прорвана водой. Огромное наружное давление, не встречая изнутри равного сопротивления, без особого труда сокрушило бы тонкую преграду. Итак, среднее ухо дельфина укрыто кожей, толстым слоем жира и мышц и никак не соединяется с внешней средой.

Проведено немало исследований для обнаружения звуковода, позволяющего акустическим волнам добираться до звуковоспринимающих рецепторов. Но по сей день вопрос о его местоположении окончательно не решен и продолжает вызывать жгучие дискуссии.

 

Вход лабиринта

Одним из семи чудес света был критский дворец-лабиринт царя Миноса. Все известные дворцы-лабиринты знамениты тем, что попасть в них значительно легче, чем выбраться наружу. Голова дельфина – это двойной лабиринт: одинаково трудно отыскать и вход, и выход. Многие маститые физиологи не допускали и мысли, что звуковые волны способны, преодолев кожу и жир, добраться до среднего уха, спрятанного в специальную кость буллю, отгороженную слоями акустической изоляции – мышцами, сосудами и синусами с белково-воздушной эмульсией.

Поиски акустической двери начались лишь после обнаружения у дельфинов эхолокации. Нож анатома не нашел ничего, похожего на тропинку для звуковых волн. Пришлось вернуться к идее слуховых проходов и проверить экспериментально, могут ли звуки пользоваться этой тропинкой. Дельфину закрыли присосками ушные отверстия и выпустили в бассейн с мутной водой. Экспериментаторам казалось, что присоска должна явиться серьезным препятствием для звуковых волн, но поведение бедолаги-дельфина практически не изменилось. Исследователи не знали, что звуковые волны способны добираться до слухового прохода со стороны, проходя через кожу за пределами звукозадерживающих присосок.

Кожа и жир для них не преграда, и звуковым волнам не обязательно пользоваться начальными отделами звукового прохода. Для них важна лишь внутренняя, самая последняя его часть, как единственная щель в антиакустической преграде, окружающей среднее и внутреннее ухо.

Позже способность звука обходиться без специальных дверей была подвергнута экспериментальной проверке. Исследователи, осуществив сложнейшую операцию, сумели вживить электроды в структуры внутреннего уха. Регистрация электрических реакций позволила судить о том, добираются ли туда звуковые волны. Прикладывая небольшой звукоизлучатель к различным участкам кожи на голове дельфина, ученые убедились, что звуковым волнам нет нужды протискиваться сквозь узкое наружное отверстие слухового прохода.

Они способны проникать сквозь кожу и, путешествуя по жировой и другим тканям, в конце концов добираться до внутреннего уха. Правда, не все частоты одинаково хорошо проводятся сквозь жир и мышцы.

Затем стали нащупывать тропинку, специально предназначенную для звуков. Подозрение пало на нижнюю челюсть.

Длинные изящные кости нижней челюсти дельфинов имеют вблизи места своего соединения, которое по аналогии с человеком можно условно назвать подбородком, три-четыре небольших отверстия, ведущих во внутренний костный канал, заполненный жиром. Предполагают, что по этому волноводу звуки без труда добираются до сустава, которым нижняя челюсть соединена с черепом. А отсюда до среднего и внутреннего уха рукой подать. Нашли и последний отрезок тропинки.

Семьдесят с лишним лет назад немецкий анатом Г. Бенингхауз обнаружил жировой тяж, идущий от нижней челюсти непосредственно к булле. Теперь оставалось только проверить, будут ли слышать дельфины, если воспрепятствовать проникновению звука внутрь нижнечелюстных костей. Для звукоизоляции использовали полиэтиленовые мешочки, наполненные воздухом. Ими укутывали или нижнюю челюсть, или боковые части головы, и проверяли, слышат ли после этого дельфины. Каждый звук сопровождали ударом электрического тока. От неожиданности, от боли, а может быть, просто от обиды сердечный ритм у дельфина мгновенно нарушался.

Вскоре образовался оборонительный условный рефлекс. Привыкнув каждый раз получать удар током, дельфин вздрагивал от любого звука, сердце сбивалось с ритма, уже не дожидаясь самого удара. Не возникало сомнений, что животные слышали звуки.

Просидев не один день возле ванны с дельфином, исследователи пришли к выводу, что звуковые волны добираются до среднего уха двумя путями – по каналу нижней челюсти и из района ушных отверстий. Для звуков до 30 кГц более удобным является обычный звуковой путь – наружные слуховые проходы. Высокие звуки предпочитают нижнюю челюсть.

Неравноценность пути для звуков разной частоты объясняется физическими особенностями звукопроведения на каждой из акустических тропинок.

 

Святая святых

Скорость и надежность движения зависит от состояния дорог. Другое дело – звук. Для его «транспортировки» не нужно иметь специальных звукопроводов с гладким, без ухабов и твердым покрытием. Ведь звуковые волны распространяются не на колесных тарантасах. Чем более упругими свойствами обладает среда, тем больше их скорость и тем меньше теряется энергии. Звуки вполне могут обходиться без специально созданных дорог, но зато им могут понадобиться двери, чтобы переходить из одного помещения в другое. На границе двух сред потери энергии громадны. Лишь часть энергии звуковых волн проникнет в новую среду, другая, не редко более значительная, может отразиться от ее поверхности. Вот почему наружное ухо наземных животных представляет собой воронку, заполненную воздухом. По воздушному конусу звуковая волна добирается до первого звена звуковоспринимающей системы – до барабанной перепонки. Многие ткани головы тоже отлично проводят звук. Воздушный волновод, ведущий к среднему уху, необходим лишь потому, что переход звуковых волн из воздуха в кожу затруднен. Иное дело – водные животные. Кожа и жир дельфинов по акустическим характеристикам близки к характеристикам воды.

Поэтому переход звуковых волн из воды в ткани головы происходит без значительных потерь. Жир акустически прозрачен.

Наружное ухо и специальный канал – волновод, являющийся дорогой для звука, дельфину не только не нужны, но даже могли бы ухудшить восприятие звуков. Изменения в первом звене звуковоспринимающего аппарата возникли при переселении предков дельфинов в воду, как того требовали новые условия существования.

У всех позвоночных животных звуковоспринимающие клетки надежно спрятаны в специальном образовании, названном лабиринтом. У млекопитающих он находится в глубине височной кости. Костная часть лабиринта состоит из трех соединенных между собой полукружных каналов, спирального канала улитки, делающего два с половиной оборота, и нескольких вздутий. Внутри находится святая святых слухового аппарата – перепончатый лабиринт. Он и является внутренним ухом и органом равновесия. Здесь колебания давления перекодируются в вереницы биоэлектрических импульсов, направляющихся в мозг по самому короткому нервному пути – по слуховому нерву.

Внутренний закрученный канал улитки разделяют две перегородки, протянувшиеся вдоль него, на три самостоятельных канала, заполненных жидкостью разного характера.

Одна из перегородок, названная основной мембраной, у входа в улитку плотна и узка, шириной всего 0,04 мм, а ближе к вершине становится эластичнее и в 10–12 раз шире. На ней лежит самая важная часть слухового аппарата – орган Корти.

Он включает несколько слоев чувствительных волосковых клеток. Кортиев орган следит за быстрыми, очень незначительными колебаниями давления. Сжатия среды и последующие мгновенные падения давления, возникающие в рупоре нашего наружного уха, воздействуют на барабанную перепонку. Ее колебания через цепь слуховых косточек передаются на овальное окно лабиринта, а следовательно, и на лабиринтную жидкость. Движение жидкости вызывает в основной мембране бегущую волну. По мере продвижения вдоль мембраны амплитуда волны увеличивается и, достигнув максимума, начинает быстро затухать. Чем ниже звук, вызвавший колебание мембраны, тем ближе к вершине улитки добежит волна.

Напротив, при высоких звуках волна пробежит небольшое расстояние и, достигнув максимума, быстро затухнет. Движения мембраны вызывают наклон волосков чувствительных клеток. Действуя как микрорычаги, волоски возбуждают собственную клетку, и она отвечает биоэлектрическими импульсами. Слуховая клетка возбуждается, когда колебания барабанной перепонки достигают в размахе 0,0000000006 мм. Это в полтора раза меньше диаметра самого крохотного атома – атома водорода.

Людям, далеким от изучения сенсорных систем, вряд ли пришло бы в голову искать у дельфинов какие-то новые, необычные приспособления для восприятия звука, заменяющие кортиев орган, а ученые заняты этими поисками всерьез. Отсутствие у китообразных наружного уха опорочило в глазах ученых всю слуховую систему дельфинов. Потребовались специальные исследования для реабилитации среднего и внутреннего уха животных. Ученые рассуждали так: если слуховой аппарат дельфинов претерпел упрощение, можно будет считать, что его функции ухудшились и он потерял прежнее значение. Напротив, если бы удалось обнаружить изменения прогрессивного характера, появление специальных приспособлений к восприятию звука в воде можно утверждать, что его функция по-прежнему находится на высоте. В этом смысле хорошим критерием оказалась приспособленность слуховой системы для анализа пространственной локализации источников звука. Слуховая система наземных млекопитающих к работе под водой не приспособлена, в чем нетрудно убедиться каждому, проведшему в подводном царстве Нептуна хотя бы около минуты. Под водой человек не в состоянии точно определить местоположение даже сильных источников звука. Эта операция осуществляется за счет совместной работы обоих наших ушей. Обычно звуковая волна сначала попадает в одно ухо, ближайшее к источнику звука, а немного позже добирается и до второго. Эта разница во времени и есть главный источник информации о местонахождении звука. Диаметр человеческой головы в среднем 18 см, окружность – 56–58 см.

Если в момент подхода звуковой волны человек стоит к ней боком, звук, обегая череп, чтобы достичь противоположного уха, должен покрыть расстояние в 28 см. Один сантиметр звуковая волна проходит за 30 мкс, а на весь путь потребуется 840 мкс. Кажется, очень немного, но мы замечаем и гораздо меньшую разницу. Когда источник звука находится всего лишь на 3° правее средней линии тела, звук до левого уха доберется с запозданием всего в 30 мкс. Мы способны оценить эту разницу и, оперируя ею, достаточно точно определить, откуда раздался звук.

К сожалению, этим способом можно определить местонахождение лишь низкочастотных источников звуков. Слуховой аппарат высчитывает не просто разницу во времени прихода звука, как такового, а разницу во времени прихода одинаковых фаз звуковой волны. Максимальное опоздание прихода звука ко второму уху может достигать 840 мкс. Поэтому нужно, чтобы время колебания звуковой волны (ее полный цикл от одного максимума давления до другого) было больше 840 мкс. При более высоких звуках, имеющих более короткие волны (и более короткий цикл), слуховые центры нашего мозга начинают путаться. Например, звуку с частотой 10000 Гц, идущему под углом 55°, чтобы обогнуть голову, нужно 450 мкс. Продолжительность цикла равна 100 мкс.

Следовательно, огибая голову, звуковая волна успеет сделать 4,5 цикла. Однако до слуховых центров мозга информация о 4 полных циклах звуковой волны просто не дойдет. Они будут оперировать разницей в 0,5 цикла и, естественно, не смогут правильно определить, где возник звук. Поэтому по времени прихода можно определить лишь местоположение звука с частотой до 1300 Гц.

Другим источником информации является интенсивность звука. При звуках низкой частоты длина звуковых волн не соизмеримо больше размера головы. При 100 Гц она равняется 3,3 м. Такая волна легко огибает голову. Другое дело, если волна маленькая. У звуков с частотой 10000 Гц длина волны всего 3,3 см. Такие звуки отражаются головой, и второе, более отдаленное ухо оказывается как бы в акустической «тени». Звук дойдет и до него, но дойдет значительно ослабленным. Если источник звука находится под углом 15°, то для звука с частотой 1000 Гц разница интенсивности составит 150%, а при частоте 15000 Гц – 900%. Уже для звуков с частотой 3000–4000 Гц разность интенсивности достаточно велика, чтобы с ее помощью определять, откуда они доносятся.

Природа наделила животных большим набором дополнительных приспособлений, чтобы легче было выяснять, откуда раздался звук. Подвижные уши антилопы и козы поворачиваются до тех пор, пока звук не будет слышаться наиболее громко. В этом случае положение ушей будет точно соответствовать направлению, откуда доносится звук. У некоторых животных одно ухо движется совершенно независимо от другого. Благодаря этому они могут одновременно определить местоположение двух источников звука и следить за их перемещениями. Для локализации слабых звуков приходится поворачивать голову и действовать двумя ушами сразу. Здесь срабатывает механизм конвергенции (сведения ушей), несколько напоминающий механизм конвергенции глазных яблок, с помощью которого мы судим об удаленности предмета. Он помогает уточнить, где находится возмутитель спокойствия, производящий шум. У многих насекомых для локализации звуков используются волоски и антенны. Звуковая волна отклоняет их в сторону, противоположную источнику звука.

Умение точно определить местоположение источника звука помогает в толпе или за шумным праздничным столом вести не слишком громкую беседу с человеком, находящимся далеко, так сказать, через головы своих соседей, и при этом слышать именно его голос, а не речь людей, находящихся в непосредственной близости. Оказывается, мы можем избрать источник звука, находящийся в определенном месте и, отключившись от всего остального, вслушиваться только в него. Запишите с помощью магнитофона речь друга в комнате, где разговаривает несколько человек, – и вам вряд ли ее удастся понять. Обычные микрофоны не умеют осуществлять избирательный прием. На магнитной пленке окажутся зафиксированными голоса всей компании, их кашель, шум от движения, и эти лишние посторонние звуки заглушат голос вашего друга.

При определении в воде направления звука первым осложнением для человека является возросшая в 4,5 раза скорость его распространения. Соответственно в 4,5 раза сократится разница времени прихода звука в одно ухо по сравнению с другим. Слуховые центры человеческого мозга вычисляют направление источника звука автоматически и не желают делать поправку на то, что их владелец перешел в другую среду. Не исключено, что они не получают об этом информации. Вероятно, она просто не предусмотрена. Наша жизнь очень тесно связана с воздушной средой, поэтому сравнение времени прихода звука в правое и левое ухо под водой оказывается непригодным для определения местонахождения его источника.

Ткани тела, даже кости, по звукопроводности гораздо ближе к воде, чем к воздуху. Звуковые волны, наткнувшись на человеческую голову, погруженную в воду, отражаются от нее слабее, чем в воздухе. Под водой звуковой волне нет необходимости огибать голову. По костям черепа она пробирается прямо в святая святых слухового анализатора – во внутреннее ухо. Заметного ослабления звука при этом не произойдет, эффект звукомаскировки будет отсутствовать. В воде голова для звука прозрачна и не отбрасывает акустическую тень. Таким образом, оба механизма, позволяющих наземным животным устанавливать местоположение источника звука, под водой не работают.

Китообразные не испытывают в подводном царстве подобных затруднений. Природа, тысячелетиями шлифуя и совершенствуя их слуховую систему, нашла блестящее решение вопроса. Среднее и внутреннее ухо дельфинов не вмонтировано в костный череп, как у всех наземных существ. Замурованные в особое, чрезвычайно твердое костное вещество звукоприемные устройства в виде отдельных образований, названных буллей, подвешены к черепу на специальной сухожильной связке.

Для большей надежности булля отделена от остального черепа специальными полостями, заполненными воздухом или пеной из белковой эмульсии. У усатых китов, в первую очередь у полосатиков, связь черепа со слуховой костью, хотя и незначительная, сохранилась, однако специальная звукоизоляция препятствует переходу звука с черепа на буллю. Полностью независимые друг от друга звукоприемники правого и левого уха превосходно приспособлены для определения местоположения источника звука. Если бы инженеров попросили переделать внутреннее ухо современных наземных позвоночных животных, чтобы им можно было пользоваться под водой, они несомненно поступили бы аналогичным образом.

Ученые специально исследовали способность дельфина определять направление звука. Афалины отлично определяют по всплеску, куда упала рыбка, крохотная дробинка или просто капля воды. С расстояния 11–15 м они безошибочно узнают, через какой из двух гидрофонов, расположенных друг от друга в 25 см, был подан звуковой сигнал. Местоположение источников шума животные способны определять с точностью до 1–1,5°, а чистых тонов – до 0,5°.

Для безупречной работы звукового анализатора дельфинов природе пришлось сделать достаточно точный расчет. Булля со спрятанным в ее толще внутренним ухом, как и каждое твердое тело, должна давать резонанс на звуки определенной частоты. На какие – зависит от ее величины и способа крепления. Чем больше масса предмета, тем более низкие звуки будут вызывать в нем резонансные колебания, но чем жестче он закреплен, тем на более высокие звуки будет отзываться. Несомненно, собственные колебания воспринимающего прибора будут вносить значительные помехи и серьезно затруднят восприятие звуков. Природа, видимо, долго взвешивала ушные кости дельфинов, пробовала их по-разному подвешивать, пока не нашла оптимальный вариант. У современных дельфинов вес булли и жесткость крепления так сбалансированы, что звуки, способные заинтересовать животных, не могут вызвать резонанс булли.

Устройство слухового аппарата дельфинов поставило перед учеными много загадок. Прозрачность для звуковых волн тканей тела, отсутствие ушных раковин, очень узкое входное отверстие ушного канала и полное его заращение где-то на полпути от звукоприемника породило еще одно ложное предположение, что среднее ухо дельфину совершенно не нужно.

Ученым казалось, что у дельфинов звук проникает прямо во внутреннее ухо, свободно проходя через стенки костного футляра, в отличие от наземных животных, у которых звуковые колебания передаются во внутреннее ухо только через овальное окно.

Решение научных вопросов требует времени. Сейчас очевидно, что в этом отношении дельфины ничем не отличаются от наземных животных и также пользуются услугами среднего уха. Оно имеет обычное строение. Разве что косточки рычажного устройства, передающие звуковое давление с барабанной перепонки на овальное окно внутреннего уха, срослись между собой. Но это не нарушает их работы. Видимо, звуковая волна попадает во внутреннее ухо через «дверь» барабанной перепонки. Другой путь был бы невыгоден, ведь среднее ухо выполняет функцию усилительного устройства. Благодаря тому, что площадь барабанной перепонки в 90 раз больше основания стремечка, надавливающего на овальное окно, обеспечивается усиление в 100–150 раз. Система косточек, передающих давление, тоже помогает усиливать звуковые колебания, правда, при этом в 60 раз уменьшается их амплитуда.

Внутреннее ухо у китообразных имеет такой же план строения, как и у других млекопитающих. Улитка у дельфинов крупная, она делает один-два оборота – сразу видно, что слух для них имеет важное значение. Малоэластичная жестко фиксированная мембрана кортиева органа свидетельствует, что ухо дельфина приспособлено к восприятию очень высоких звуков.

Звуковых детекторов – волосковых клеток – 17000–18000, примерно столько же их и у человека. Это позволяет тонко различать высоту звука. Ганглионарных же клеток у дельфинов в несколько раз больше, чем у человека. Это дает возможность тут же, на месте, осуществлять первичную обработку звуковой информации. Заканчивается обработка в мозгу, в подкорковых слуховых центрах. Они у китообразных крупные и развиты лучше, чем у других млекопитающих, чего нельзя сказать о конечном звене звукового анализатора – височной коре. Она у дельфинов ничем выдающимся себя не проявила. Природа, дав китообразным огромный и хорошо устроенный мозг, не позаботилась о самых главных, верховных его отделах. Видимо, большие полушария дельфинов еще окончательно не созрели для того, чтобы по-настоящему осмыслить информацию, поставляемую их эхолокатором.

 

Патентный поиск

Пожары – огромное бедствие. Человечество постоянно работает над совершенствованием противопожарной защиты. Существенный вклад в искусство тушения пожаров внес в свое время киевский полицмейстер Н. Ровинский. Он разработал собственную методу борьбы с возгоранием движимого и недвижимого имущества, требуя, чтобы пожарные приезжали к месту происшествия за 15 минут до начала пожара.

Долгие годы ученые нашей планеты выступали в роли подобных Ровинских. Им казалось, что человек, наделенный божественным разумом, способен такое изобрести, до чего природе и за миллионы лет не дойти. Они наивно думали, что всегда были впереди природы не меньше, чем на несколько миллионов лет, и разрыв этот в дальнейшем должен все увеличиваться.

За свою трехмиллиардную историю живая природа нашей планеты несметное количество раз выступала с изобретениями и рационализаторскими предложениями. Из ее патентного фонда человечество пока сумело использовать лишь малую толику.

Природа ревностно оберегает свои профессиональные тайны.

На протяжении многих столетий ученые и инженеры нашей планеты совершенно самостоятельно, независимо от уже выданных природой патентов, повторяли ее изобретения. Только применив для измерения морских глубин эхолокацию, они сумели заметить, что и живые организмы умеют ею пользоваться.

Процесс признания первенства природы был трудным. Ученые не могли поверить, что рожденное в муках изобретение, в которое они вложили весь свой талант, опыт и знания, накопленные столетиями, природа совершила путем простых проб и ошибок. Лишь постепенно мы свыклись с первенством природы. Вот тогда и родилась бионика – наука, призванная вести поиск патентов природы, чтобы уберечь ученых от траты сил, средств и времени на изобретение уже давно придуманных вещей. Биоников не надо убеждать в наличии талантов у природы. Зато они впадают в другую крайность: во всем видят ее первенство. Готовы для каждого изобретения подозревать наличие аналога у любого мало-мальски подходящего существа.

Одним из крупнейших изобретений в области оптики, сделанных в послевоенные годы, является голография. Этот термин имеет греческое происхождение. «Голос» – искаженное греческое слово «алое», означающее «весь, полный», «грамма» – «запись, описание». А все вместе это означает «полная запись, полное описание».

Еще на заре человечества люди мечтали найти способ запечатлеть для потомства окружающий мир. В результате несколько десятков тысяч лет назад появились наскальные рисунки, давшие начало современной живописи, а в начале прошлого века возникла фотография. Но ни один из этих способов не дает полного изображения предмета. И фотография, и картина – это хаос цветных черно-белых пятен. В них содержится так мало сведений о предмете, что наш мозг узнает его лишь с помощью фантазии и всей накопленной памятью информации об окружающем мире.

Мы видим вокруг совсем не то, что зафиксировано на фотопластинке. Окружающий мир трехмерен – фотография дает плоскостное изображение. Это происходит потому, что до нее доходит лишь небольшая часть отраженных от предмета лучей света. И в результате фотография дает лишь обедненную картину. В действительности все пространство вокруг предмета заполнено волнами отраженного им света. Чтобы получить исчерпывающее представление о предмете, необходимо эти световые волны, или, как говорят оптики, волновое поле, зафиксировать без значительных потерь.

Изобрел способ упростить и фотографировать волновое поле английский физик Д. Габор. Обычные источники света, от свечи и лучины и до люминесцентной лампы и солнца, дают хаос, мешанину из волн разной длины. Д. Габор подобрал для освещения фотографируемого предмета точечный источник монохроматического света, излучающего волны одинаковой длины. Затем, смешав отраженные от предмета лучи с лучами, идущими непосредственно от источника, он направил их на фотопленку. Изображения предмета на ней не возникло. Она запечатлела волновое поле, нечеткие расплывчатые линии неправильной формы. При совмещении двух пучков света их волны складывались. Там, где их фазы совпали, амплитуда суммарной волны возрастала (увеличивалась освещенность), на пластинке появлялись темные полосы, а там, где фазы оказались противоположными, амплитуда резко уменьшилась (уменьшилась освещенность), на пластинке оставались белые пятна.

Особого успеха Д. Габор не добился. Он не имел источников, дающих в достаточной степени упорядоченный монохроматический свет. Член-корреспондент Академии наук Ю. И. Денисюк (в 1970 году он получил за изобретение голографии Ленинскую премию) решил применить для создания волнового поля лазерный луч, а для фотографирования использовал фотопластинку с толстым слоем светочувствительной эмульсии. Теперь картина волнового поля фиксировалась не на плоскости, а в трехмерном пространстве. После проявления в толще эмульсии возникают полупрозрачные отражающие слои.

При освещении такой пластинки тем же лучом лазера какая-то часть световых лучей – в зависимости от плотности пластинки – застрянет в ней, а лучи, прошедшие сквозь пластинку, отклонятся в ту же сторону, откуда в свое время падали на нее. Иными словами, такая фотопластинка воссоздаст лучи, отраженные от предмета и за пластинкой возникает его изображение. Голографическая запись так полна, что, слегка поворачивая пластинку, можно повернуть и изображение и увидеть предмет сбоку.

Процесс голографирования напоминает работу эхолокатора. Интересующий исследователя объект освещается световыми лучами, а затем фиксируется изменение этих лучей, отразившихся от предмета. Подобным же образом поступают китообразные, только освещают исследуемый предмет звуковым лучом. Невольно возникает мысль об аналогии. Для полноты картины не хватает лишь одного штриха – наличия у дельфинов звукочувствительной пластинки. Бионики считали, что в случае обнаружения соответствующего рецептора голографический принцип анализа эха будет доказан достаточно убедительно.

Первым о дельфиньей голографии заговорил американский анатом Дж. Дреер. Изучая строение кожи дельфинов, он при сильном увеличении увидел в районе лобного выступа массу микроскопических сосочков, плотно прижатых друг к другу.

Дреер решил, что это непременно те самые рецепторы. Заранее скажу, что никаких оснований для этого не было. Однако, будь сосочки рецепторами, одного квадратного миллиметра рецепторной поверхности было бы достаточно, чтобы «увидеть» 100 линий. Это очень много. Разрешающая способность экранов лучших современных телевизоров значительно ниже. Не утруждая себя проверкой, Дреер объявил кожу лобного выступа голографической решеткой, а дельфину приписал способность голографически воспринимать отраженные от подводных предметов звуки и с их помощью строить в мозгу объемную картину окружающего мира. Должен сказать, что для этого необходимо, чтобы гипотетические кожные сосочки могли не только воспринимать звуковое давление, но и анализировать фазу его колебаний. Между тем даже само их существование многими исследователями ставится под сомнение. Как ни заманчиво найти среди придворных Нептуна дипломированного голографиста, теорию Дреера следует признать чистейшим вымыслом, хотя нашлись ученые, которым она понравилась. В последние годы не написано ни одной обстоятельной книги по эхолокации дельфинов, где бы не было упомянуто имя Дреера.

Причина создания западными биологами подобных легенд вполне понятна. Им хочется привлечь к себе всеобщее внимание, чтобы было легче выколачивать у промышленников и различных фондов средства на продолжение исследований.

Советские ученые уделяют большое внимание структуре кожи дельфинов. Зоологи тщательно изучали ее рецепторы, в том числе на лобном выступе. Кожных сосочков они не обнаружили, да, пожалуй, и не надеялись их найти, зато сумели выявить большое количество разных образовании, похожих на обычные механорецепторы наземных животных. Как известно, кожа человека и наших четвероногих братьев содержит во множестве холодовые, тепловые и тактильные рецепторы. У китообразных они образуют особенно большие скопления вокруг рта, дыхала и по бокам лобножирового выступа. В остальных отделах кожи таких скоплении не обнаружено.

Многие ткани морды дельфина тоже богаче рецепторами, чем остальное туловище. Надкостница костей передней и верхней части черепа имеет их гораздо больше, чем надкостница затылка. Ничего неожиданного в этом нет. Организация дыхательного акта требует участия чувствительных рецепторов.

Выныривая на короткое мгновение, животное должно точно уловить момент, когда его затылок, несущий дыхало, на миг появится над поверхностью воды, чтобы успеть сделать выдох и вдох. Рецепторы, рассеянные по краю челюсти, необходимы во время еды. Рыбу дельфин хватает поперек тела. Так ее проглотить нельзя, она в прямом смысле встанет зверю поперек горла. Пойманную рыбу дельфин подкидывает и вновь хватает, но уже с головы. Столь сложную процедуру можно осуществить лишь будучи достаточно хорошо информированным о ее положении в собственной пасти.

Чтобы эхолокатор китов работал безукоризненно, животные должны делать поправку на изменение температуры и солености воды, влияющих на ее плотность, а следовательно, на скорость и характер распространения звуковых волн. Для этого должны существовать соответствующие рецепторы. Может быть, этим и заняты рецепторы, расположенные по бокам лобножирового выступа?

При желании пофантазировать можно придумать немало и других причин для появления на дельфиньей морде дополнительного количества рецепторов. Их изучение подтвердило, что они способны воспринимать вибрацию и звуковые волны. Возможно, дельфинам необходимо иметь представление о лобовом сопротивлении воды или контролировать характер локационных посылок в момент перехода звуковой волны из жирового выступа в воду. Да мало ли что можно предположить, но в последние десять лет в моде голография. Она чудится исследователям везде. Вполне понятно, почему они решили, что имеют дело со своеобразной акустической «сетчаткой». Бионики выдвинули и другое предположение о существовании у дельфинов «акустического глаза». По их представлениям, дельфины, как легендарные циклопы, с которыми Одиссей имел пренеприятное знакомство, несут во лбу один огромный «глазище». Роль хрусталика выполняет в нем лобная жировая подушка, фокусирующая звуковые лучи на стенки воздушных мешков. Расположенные там рецепторы и образуют «сетчатку» «акустического глаза». С таким приемным устройством животным удобно рассматривать незнакомый объект сообща. Если одновременно лоцируют несколько дельфинов, объект должен восприниматься более отчетливо, ведь пень в ночном лесу виден лучше, если его одновременно освещают несколько фонариков.

Некоторые молодые бионики пошли дальше. Они объявили, что согласны с предположением о наличии у дельфинов «акустического глаза», но считают, что он работает по принципу голографии, а звукочувствительной «сетчаткой» ему служат не стенки воздушных мешков, а непосредственно сам мозг. Вот почему он у дельфинов такого большого размера.

Достаточно ли имелось оснований, чтобы предположить наличие у дельфинов «акустических глаз» и голографического принципа звуковидения? Я думаю, что бионики немного поторопились. Советские биоакустики, тщательно рассмотрев возможность голографического восприятия дельфином окружающего мира, полностью отвергли такую возможность. Для того чтобы «акустический глаз» был не слишком подслеповатым, его сетчатка должна иметь огромное количество рецепторов. Между тем и в коже, и в стенках воздушных мешков их приходится в среднем около 100 на 1 см². Чтобы осуществить достаточно тонкий анализ, сетчатка с подобной плотностью рецепторов должна иметь размер порядка 10 м²! «Акустический глаз» должен иметь гигантские размеры и по другой причине.

Локаторы китообразных в основном используют зондирующие посылки из акустических волн длиною 2–5 см. По сравнению со световыми это волны-гиганты. Чтобы ими пользоваться, нужно иметь глаз соизмеримой величины.

Приемная часть эхолокатора должна регистрировать не только сам факт прихода звуковой волны, но и частоту звуковых колебаний. Кожные рецепторы человека могут воспринимать колебания лишь в пределах 200–300 в секунду. Механорецепторы дельфинов, видимо, способны воспринимать и ультразвуки, но вряд ли могут осуществлять их анализ.

Следующее возражение против существования акустической «сетчатки» состоит в том, что место для нее выбрано весьма неудачно. Лобная часть головы – это район, где генерируются локационные посылки. Их интенсивность в миллион раз больше, чем сила ответного эха. Чтобы его улавливать, звуковые рецепторы должны быть очень чувствительными, настроенными на восприятие самых слабых звуков. Для них собственная локационная посылка должна звучать оглушительно громко, как для нас пушечный выстрел под самым ухом. От такого воздействия человек на некоторое время (пусть всего на несколько секунд), глохнет. Дельфины производят не менее 20–40 «пушечных» выстрелов в секунду. Беспрерывная канонада не позволит пользоваться звукоприемником. Он просто не будет успевать восстанавливать свою работоспособность. Ведь эхо тоже возвращается 20–40 раз в секунду. Звукогенератор и звукоприемник должны быть полностью друг от друга изолированы. Только в этом случае эхолокатор сможет надежно работать. Кроме того, эти рецепторы должны непрерывно «слышать» лишь лобовое сопротивление воды, разное при различной скорости движения животных. Звуковые приемники – те же механорецепторы, только неизмеримо более чувствительные.

Таким образом, ни кожа, ни воздушные мешки не способны быть приемниками эхолокатора. Может быть, как предполагают некоторые физиологи, сам мозг непосредственно вслушивается в беспрерывно доносящееся эхо? Но и эту теорию нельзя считать научно обоснованной. Она свидетельствует лишь о незнании ее авторами механизмов обработки мозгом поступающей в него информации. Мозговой анализ – процесс многоэтапный. В клетках коры больших полушарий, заподозренных в голографии, осуществляется последний этап анализа информации, поступившей в мозг. Сами они, как и остальные нервные клетки организма, на любое воздействие – электрическое, химическое, механическое – способны ответить лишь возбуждением. Дифференцированно воспринимать внешние воздействия они не могут. Все чувствительные клетки, что бы они ни воспринимали – свет, звук, запах, тепло, давление, растяжение – у всех животных нашей планеты, от самых примитивных до человека включительно, построены по одному типу.

Они имеют чувствительную ворсинку, состоящую из двух осевых фибрилл и девяти опорных. Ворсинка эта собственно и является чувствительным элементом. Ничего подобного клетки мозга не имеют и для восприятия эха не годятся. Итак, при всем желании поучиться у природы топографическому звуковидению приходится констатировать, что подобных изобретений она не запатентовала. Мы можем быть спокойны, плагиата с нашей стороны не было: топографический принцип обработки информации, изобретенный человеком, обладает патентной чистотой.

Возможно, читатель сочтет, что патентный поиск проведен недостаточно широко. Действительно, исследования только разворачиваются. Киевские ученые добрались наконец и до китов-гигантов. У кашалота было обнаружено огромное количество мелких пузырьков размерами от горошины до голубиного яйца, устилающих заднюю внутреннюю стенку вертикально расположенного воздушного мешка. Пузырьки чрезвычайно богато иннервированы. Сделав эту интересную находку, ученые первым делом вспомнили дрееровские кожные сосочки и посему нарекли открытую ими пузырьковую ткань «сетчаткой» кашалота.

Вероятно, подобное обилие пузырьков с большим количеством нервных клеток и может обеспечить необходимый минимум чувствительных элементов. Но все остальные сомнения, по-видимому, остаются в силе. Кроме того, нужно еще доказать, что пузырьковая ткань – не следствие воспалительного процесса, не посмертное изменение тканей и что она имеется у всех без исключения животных. До этого еще далеко, хотя бионики уже удовлетворенно потирают руки. В силу профессиональной направленности ума им трудно поверить, что человек что-то мог придумать совершенно самостоятельно, а не воспользовался готовой выдумкой природы.

 

Верхом на волне

Проводя рекогносцировку окружающего пространства, дельфины трудятся в поте лица. Им приходится следить за судьбой каждой локационной посылки, а это задача не из легких. Локационный импульс, отразившись от подводного объекта, так изменяется, что самому творцу импульса немудрено и ошибиться, не признав это эхо своим. Между тем именно изменения локационных посылок и рассказывают дельфину обо всем, что творится в мире.

Ученых, изучающих эхолокацию животных, давно интересует вопрос, какую информацию несут на своих спинах звуковые волны, какую часть этой информации и с какой степенью точности может уловить дельфин. К числу основных параметров звуковых волн относится их частота колебаний, амплитуда и фаза. Чтобы составить представление о частоте колебаний, необходимо уметь оценивать время. Его измерение давно интересовало человечество. Вероятно, жрецы с незапамятных времен умели достаточно точно оценивать время. Первый специальный прибор для отсчета времени – солнечные часы – был изобретен в Египте, видимо, еще в 15 веке до нашей эры.

Для разовых измерений человек придумал песочные и водяные часы. Лишь двадцать с лишним веков спустя появились часы с зубчатыми колесами, приводимые в движение грузом.

Современный тип часов был создан благодаря открытию Галилеем изохронного эффекта маятника. Но сам Галилей вполне удовлетворялся водяными часами, которые так отрегулировал, что ему могли бы позавидовать владельцы современных хронометров. С развитием мореплавания нужда в точных часах сильно возросла. Определить долготу местности можно было только при наличии хронометра. Впервые достаточно надежный инструмент был сконструирован в Англии сравнительно недавно – в 1751 году. С тех пор часы, хронометры, секундомеры продолжали совершенствоваться и в настоящее время достигли удивительной точности.

У высших животных чувство времени развито очень хорошо. Китообразные не являются исключением. Имея где-то в «жилетном кармане» достаточно точный хронометр и обладая способностью проследить судьбу своих локационных посылок, дельфинов не может не «интересовать», сколько времени путешествуют они, прежде чем вернутся эхом обратно. Зная скорость распространения звука в воде нетрудно узнать расстояние до объекта, на который натолкнулась локационная посылка.

Чтобы выяснить, с какой точностью работает секундомер дельфина, ученые придумали десятки специальных приемов.

Чаще всего использовались косвенные методы. Один из них состоял в следующем. В бассейн к дельфину опустили две пластинки, расположив их параллельно друг другу. Из любопытства или по природной осторожности животное начинало их изучать, облучая потоком локационных импульсов. Каждый из них, наткнувшись на переднюю пластинку, частично от нее отражался, частично, пройдя насквозь и напоровшись на вторую, отражался и от нее. Таким образом, каждая локационная посылка возвращалась к дельфину в виде двойного эха. Чем больше было расстояние между пластинками, тем продолжительнее оказывался интервал между отраженными импульсами. Выработав условный рефлекс и понемножку меняя расстояние между пластинками, можно выяснить, с какой точностью животные оценивают величину интервалов. При расстоянии между пластинками, равном 10 см, после частичного отражения звука от первой пластинки вторая его часть, проникшая за пластину, должна покрыть еще 10 см. Только теперь возникает второе эхо. Однако, пока звук преодолевал расстояние между пластинками, первое эхо успеет убежать на те же 10 см.

Таким образом, при расстоянии между пластинками в 10 см расстояние между отраженными посылками будет равняться 20 см. Начнем сближать пластины. Допустим, что дельфин способен «заметить» разницу, если расстояние уменьшить на 1 см (т. е. сделать равным 9 см). В этом случае второе эхо будет отставать от первого на 18 см, т. е. станет на 2 см ближе.

В морской воде 2 см звук преодолевает приблизительно за 13 миллионных долей секунды. Основываясь на результатах подобных опытов, исследователь может сделать заключение, что животные пользуются секундомером, позволяющим измерять время с точностью до 0, 000 013 с. Эксперименты не требовали специальной аппаратуры. Не было нужды в обычном секундомере. Простота методики оказалась столь соблазнительной, что подобные исследования в различных вариантах были осуществлены во многих лабораториях мира. Я специально не останавливаюсь на результатах, так как сами авторы позже отказались от сделанных на их основе выводов. Дело в том, что локационная посылка, наткнувшись на пластины, не только отражается от них, но вызывает их собственные колебания. При изменении расстояния между пластинками характер колебаний существенно меняется. Дельфины, несомненно, замечают изменение расстояния между пластинами, но как они это делают, неясно. С одинаковой долей вероятности можно ожидать, что анализ осуществляется и путем оценки времени между приходом первого и второго эха, и благодаря изменению характера собственных колебаний лоцируемых пластин.

Другой способ определить точность работы секундомера дельфина – заставить его оценить величину интервала между двумя звуковыми сигналами. Осуществить подобный эксперимент достаточно сложно, так как при изменении интервала между звуковыми посылками очень трудно добиться, чтобы их параметры существенно не изменились. В ходе эксперимента было обнаружено удивительное явление. Оказалось, что дельфинам гораздо легче оценивать величину самых маленьких временных отрезков, порядка 0, 000 1 с – например отличить интервал длительностью 0, 000 05 с от интервала продолжительностью 0, 000 055 с. Гораздо хуже дается анализ более длинных интервалов, порядка 0, 000 3 с, а точность анализа отрезков времени длительностью более 0, 000 5 с весьма невелика. Проанализировав экспериментальный материал, ученые пришли к выводу, что часы у дельфина работают с точностью до 1–2 миллионных долей секунды.

Другой эксперимент показал, что дельфины способны реагировать на звуковые посылки только в том случае, если интервалы между ними больше 0, 000 5 с. Сведения об этом получены непосредственно «из первых рук» – из слуховых центров мозга дельфина. Если интервалы между короткими акустическими раздражителями были слишком малы, на второй сигнал электрические биопотенциалы мозга не возникали. Следовательно, дельфины его не замечали. Только когда интервал достиг 0, 000 5 с, второй раздражитель начал вызывать слабые электрические реакции.

Важнейшая характеристика звука – его частота. Очень важно установить, как тонко различают животные близкие звуки. И здесь дельфины удивили ученых. Афалины высокочастотные звуки различают с большей точностью, чем низкочастотные. Они замечали разницу между звуками, если их частота отличалась всего на 0,3–0,4%. Звуки ниже 5 кГц различались хуже. Еще более изощрен слух азовок. Некоторые ученые считают, что они способны заметить изменение частоты звуков всего на 0,02–0,2%.

Различить звуки, имеющие достаточно большую длительность, проще, чем короткие. Последние имеют сложную спектральную структуру, зависящую от частоты следования отдельных звуковых посылок. Дельфины отлично узнают звуки, повторяющиеся часто. Их спектр имеет меньшее число составляющих, и разобраться в нем легче, чем в спектре звуков, возникающих с большими интервалами и имеющих более десяти гармонических составляющих.

Существенной характеристикой звуковых колебаний является их фаза. Теоретические расчеты показали, что анализ фазы акустических сигналов может быть выгоден для животных, так как дает дополнительную информацию и может помочь воспринять сигнал, замаскированный другими звуками. Инженеры-акустики начали использовать фазовый анализ в технических устройствах задолго до того, как биологи задумались над значением фазы звуковой волны. Только недавно стало известно, что человек и многие животные могут различать фазу сигнала. Эта способность связана с тем, что понижение давления, т. е. отрицательная фаза звукового колебания, вызывает состояние невозбудимости волосковых клеток внутреннего уха.

Напротив, положительная фаза звуковой волны, отражающая момент повышения давления, вызывает их возбуждение.

Умеют ли дельфины распознавать начальную фазу сигнала, необходима ли им эта способность для успешной локации, пока неизвестно. При изучении этого вопроса экспериментаторы столкнулись с серьезными трудностями. Изменение фазы сигнала сопровождается существенным изменением его спектра. Это осложняет исследования. Все же попытки провести эксперимент, хотя и неудачные, уже предприняты. Если способности дельфина и здесь окажутся на высоте, изучение эхолокации китообразных может дать толчок к созданию радарных устройств принципиально нового типа. Жаль, что такие дружелюбные по отношению к человеку существа так неохотно посвящают нас в свои тайны.