Коннектом. Как мозг делает нас тем, что мы есть

Сеунг Себастьян

Часть пятая

По ту сторону человеческой природы

 

 

Глава 14

Морозить или мариновать?

Дважды в жизни мне довелось посетить странный город, расположенный в пустыне и именуемый Лас-Вегасом. Каждое утро я нежился в мягких простынях гостиничной кровати. Каждую ночь блеск развлечений захватывал меня в плен. Я смаковал виски и выпускал сигарный дым в высокий потолок казино. Однако столик для блэк-джека и колесо рулетки казались мне очень скучными вещами, оставляя меня равнодушным и безучастным.

Игры, основанные на чистом везении, никогда меня не занимали. Но есть одно исключение. Одна рискованная игра действительно стоит свеч. Это так называемое пари Паскаля. В 1654 году французский гений положил начало новой области математики – теории вероятностей. В том же году он отыскал Бога. После ярчайшего религиозного видения фокус его жизни сместился с науки и математики к философии и теологии. Его самой важной работой этого периода стал трактат в защиту христианства, который он не завершил, безвременно скончавшись в тридцать девять лет. Его заметки опубликованы посмертно, под заглавием «Мысли». Мы уже встречались с выдержками из них в начале этой книги. Теперь мы приближаемся к ее финалу и вновь обратимся к бессмертному труду Паскаля.

Как вы могли догадаться по фрагменту, который я цитировал выше, «Мысли» проникнуты страхом. Для Паскаля страх – это не нигилистическое всеотвержение, это преддверие религиозной веры. Паскаль отлично сознавал, что самое большое несчастье для верующего – сомнение. Как убедиться, что Господь существует? Многие философы и теологи заявляли, что существование Бога можно доказать с помощью логики и разума. Паскаля их натянутые доказательства не убеждали.

И тогда он применил кардинально иной подход. Он отказался бороться со скептицизмом и во всеуслышание объявил, что разумный и рациональный человек никогда не может быть уверен в существовании Всевышнего. Можно лишь оценить вероятность того, что Бог существует. Но при этом, добавлял Паскаль, все равно имеет смысл верить в Бога. В сущности, Паскаль пришел к оригинальному воззрению: он отнесся к вере как к азартной игре. У тебя есть выбор из двух вариантов – верить или не верить. При этом есть две возможные реальности: либо Господь существует, либо нет. Таблица на рис. 52 демонстрирует четыре возможных следствия.

Рис. 52. Пари Паскаля: если ты веришь, что Бог существует, и он на самом деле есть, то… (и еще три варианта)

Если вы, о мой читатель, не верите в Бога, то можете спокойно предаваться греховным удовольствиям. Но при этом вы рискуете после смерти попасть в ад и вечно там гореть. Теперь представим себе, что вы все-таки верите в Бога. За это приходится платить свою цену: к примеру, вам придется каждое воскресное утро идти в церковь на службу, хотя вы предпочли бы подольше поспать или отправиться играть в теннис. Однако не исключено, что верить в Бога всё же стоит: ведь если Он существует, то после смерти вы получите невероятно ценный приз – вечную жизнь на небесах.

В таблице указаны награды или наказания при каждом из четырех возможных результатов. Если вы увлекаетесь математикой, можете заполнить таблицу числами, которые будут отражать, насколько сильно вы не любите церковь или же насколько адским, по вашему представлению, окажется ад. Вам придется также оценить вероятность существования Бога, тем самым количественно выразив свой скептицизм или веру. Затем вы подсчитаете возможную выгоду от веры и неверия – и сделаете соответствующий выбор.

Впрочем, Паскаль избавил нас от необходимости заниматься слишком уж тщательными подсчетами. Он заметил, что результат очевиден и без математических выкладок. Ценность рая беспредельна, поскольку вечная жизнь не кончается никогда. Умножение бесконечности на любое число все равно дает бесконечность. А следовательно, ожидаемая выгода от веры в Бога бесконечна, если только вероятность существования Господа выше нуля. Точные значения других параметров здесь неважны. Короче говоря, посещение церкви – это как покупка лотерейного билета. За билет можно заплатить любую цену, если выигрыш бесконечно велик.

После эпохи Паскаля прошли века. Времена переменились, и новое тысячелетие породило новое пари. Чтобы увидеть современных игроков, которые им увлекаются, отправимся в Скоттсдейл, штат Аризона. Там расположен странный склад. Войдя в него, мы увидим ряды металлических контейнеров. Каждый контейнер – чуть выше человеческого роста. Такие емкости называют сосудами Дьюара. Подобно гигантским термосам, они изолируют содержимое от внешней среды. Но в них не освежающие напитки для летних походов. В них жидкий азот, а вместо кубиков льда в каждой из таких емкостей покоятся либо четыре человеческих трупа, либо шесть человеческих голов.

Мы в штаб-квартире фонда «Алькор – продление жизни» (The Alcor Life Extension Foundation). В этой организации состоит около тысячи живых людей и сотня мертвецов. Вы тоже можете вступить в клуб, гарантировав уплату фонду двухсот тысяч долларов после того, как будет официально констатирована ваша смерть. Фонд, в свою очередь, обязуется вечно хранить ваше тело при –196 °C. Можете попросить хранить лишь вашу голову, тогда цена упадет до жалких восьмидесяти тысяч долларов. В фонде приняты свои термины. Скажем, люди в дьюарах – не мертвые, а «деанимированные». Замороженные головы – «нейроконсервы», а сама практика подобной заморозки именуется «крионикой».

Учредители и клиенты «Алькора» – явные оптимисты, что явствует из 28-минутного рекламного видеоролика под названием «Безграничное будущее». В далекой перспективе грядущие достижения науки и технологии, вероятно, позволят людям достичь того, что ныне кажется нам несбыточным. Способность человечества управлять материей будет столь велика, что в конце концов станет возможным оживлять («реанимировать») трупы. Воскреснут замороженные покойники с алькоровского склада. Более того, их недуги и их старость удастся победить. Реанимированные вновь обретут юную силу.

Первым идею крионики вынес на суд общественности физик Роберт Эттингер. Благодаря своим появлениям на телеэкране и своему бестселлеру «Перспективы бессмертия» (1967) он даже стал в некотором роде знаменитостью. Однако прошло довольно много лет, пока, после нескольких фальстартов, крионика не стала реальностью. В первые годы ее развития не обходилось без неприятных казусов – скажем, замороженные тела случайно оттаивали, и их приходилось хоронить наравне с обыкновенными покойниками. И наконец, в 1993 году «Алькор» выстроил в Скоттсдейле достаточно надежное хранилище, где, как представляется, тела могут пролежать в замороженном виде много лет.

Эттингер успешно пропагандировал свои идеи, но при этом над ним немало потешались. Конечно, легко обозвать алькоровцев жуликами, вымогающими деньги у доверчивых обывателей. Однако не станем торопиться с выводами. Может ли кто-нибудь по-настоящему доказать, что такое воскрешение (именуемое у алькоровцев реанимацией) всегда будет неосуществимо? Наверное, лучше сказать, что вероятность такой реанимации невелика, но все же выше нуля. А это дает возможность применить паскалевское рассуждение. Ожидаемая ценность членства в «Алькоре» равна вероятности грядущей реанимации, умноженной на ценность вечной жизни. А поскольку вечная жизнь обладает бесконечной ценностью, ожидаемая ценность членства в «Алькоре» также бесконечна, а следовательно, вполне стоит двухсот тысяч долларов. Подобно христианству, крионика представляет собой, в сущности, пари, заключаемое на гигантский приз – вечную жизнь. Пари Паскаля предлагает вам поверить в Бога; пари Эттингера – поверить в технологию.

* * *

Альбер Камю начинает свой «Миф о Сизифе» с провокационного заявления: «Существует лишь одна по-настоящему серьезная философская проблема – самоубийство». В ответ я замечу, что в науке и технике существует лишь одна по-настоящему серьезная проблема – бессмертие. Посредством решительного вступления Камю заводит разговор о том, стоит ли жизнь того, чтобы жить, имеет ли жизнь смысл. Следует подчеркнуть, что суицид – чисто философская проблема, ибо практических препятствий для него в общем-то нет. Если вы хотите покончить с собой, вам повезло, поскольку у вас есть широкий выбор – нетрудно найти пистолет, веревку, небоскреб, яд. Однако бессмертие – проблема еще и технологическая. Даже если вы хотите жить вечно, вам пока никто не может предоставить такую возможность.

Поиски вечной юности стары, как само человечество. В школе учителя рассказывали нам, как испанский путешественник Понсе де Леон, мечтая найти Фонтан Юности, открыл Флориду. Увы, ныне эту чудесную историю считают легендой. Впрочем, историки до сих пор, кажется, доверяют запискам о двух экспедициях, которые еще в III в. до н. э. китайский император Цинь Шихуанди отправил на поиски мифического эликсира жизни. Во главе целого флота с командой из трех тысяч мальчиков и девочек придворный гадатель Сюй Фу несколько лет бороздил восточные моря, но не добился успеха. Из своей второй экспедиции он так и не вернулся.

Сегодня поиски бессмертия по-прежнему активно ведутся. Коммивояжеры нахваливают всякого рода витамины, антиоксиданты, кремы, задерживающие старение. Все эти (и многие другие) современные эликсиры жизни имеют отношение скорее к мечтам, чем к реальности. Однако некоторые полагают, что наука наконец-то подошла к настоящему прорыву в области продления жизни. В своей книге «Конец старению» Обри де Грей выдвигает концепцию «Стратегии управляемого старения» (СУС). Он перечисляет семь типов молекулярных и клеточных повреждений, которые происходят при старении организма, и предсказывает, что наука рано или поздно сумеет предотвращать или устранять их. Де Грей – соучредитель фонда «Мафусаил», (Methuselah), обещающего денежное вознаграждение тем исследователям, которые сумеют продлить жизнь лабораторных мышей до рекордных сроков.

С одной стороны, в наши дни ведутся серьезные научные исследования старения и долгожительства, и было бы глупо порицать такого рода изыскания. Хотя в области продления жизни подвизается немало шарлатанов, она всё же требует научного осмысления. Старение и смерть – проблемы, с давних пор занимающие внимание человека, и ничего, что в ближайшем будущем решения этих проблем не предвидится. А дальше – кто знает? Может быть, когда-нибудь человек сумеет обрести бессмертие.

С другой стороны, я скептически отношусь к проявлениям чрезмерного оптимизма в этих вопросах. В своей книге «Живите долго, чтобы жить вечно» изобретатель и футуролог Рэй Курцвайль предсказывает, что бессмертия удастся достигнуть уже в ближайшие несколько десятилетий. И если вы сумеете дотянуть до этого времени, то потом будете жить вечно. Я-то лично почти уверен, что вы, дорогой читатель, когда-нибудь умрете. И что сам я тоже когда-нибудь умру.

Если вы оптимист в том, что касается долгосрочной перспективы обретения бессмертия, но с пессимизмом относитесь к вероятности его обретения в ближайшем будущем, как вам лучше поступить? Может быть, готовиться к уходу в мир иной, вступив в клуб «Алькор»? Погрузите свой труп в капсулу времени, наполненную жидким азотом, чтобы ваше тело могло пролежать там века и эпохи, которые понадобятся человечеству, дабы добиться не только бессмертия, но и возможности воскрешать мертвых. Крионика – мера временная, к ней прибегают предусмотрительные члены общества, достаточно высокоразвитого, чтобы сжижать азот, но еще не настолько высокоразвитого, чтобы достигнуть вечной жизни.

Теперь уже, кажется, все слышали о крионике. (Некоторые называют ее «криогеникой», однако на самом деле этот термин относится к генетическим исследованиям при низких температурах, а не к поискам бессмертия.) Поворотный момент, привлекший к этой отрасли внимание общественности, наступил, по-видимому, в 2002 году, когда умер знаменитый бейсболист Тэд Уильямс. Его сын и дочь от третьего брака отправили тело на хранение в «Алькор». В свою очередь, дочь спортсмена от первого брака подала на них в суд, опираясь на завещание Уильямса, в котором тот просил кремировать свое тело после смерти. Последовали весьма необычные судебные баталии. «Алькор» с понятным интересом ожидал вердикта, а отрезанная голова Уильямса и его тело, замороженные, но еще не до температуры жидкого азота, ожидали своей участи на алькоровском складе. В конце концов фирма получила остаток причитающегося ей взноса и отправила останки бейсболиста на упокоение в жидкий азот.

Насколько могу судить, сейчас общественное мнение склоняется к тому, чтобы поверить заявлениям криоников – пусть даже просто для развлечения. Члены клуба «Алькор» пошли еще дальше: они верят в эту теорию столь истово, что даже вкладывают деньги в такую заморозку. Религии долго удавалось убедить людей поверить в невероятное. В 1917 году толпа в семьдесят тысяч человек собралась близ португальской деревеньки Фатима, чтобы увидеть, как солнце меняет цвета и пляшет в небесах, пока три ребенка, дети пастухов, во всеуслышание рассказывают о своих видениях Девы Марии и других членов Святого Семейства. Даже теперь миллионы паломников каждый год отправляются на место, где некогда случилось это «Солнечное чудо», официально признанное Римской католической церковью в 1930 году.

По данным социологических опросов, 80 % американцев верят в чудеса. Мне доводилось слышать, как некоторые христиане презрительно посмеиваются над такими историями, считая веру в чудеса чем-то примитивным и вульгарным. Но не будем забывать, что христианство немало шумит по поводу самого знаменитого из чудес – воскрешения Иисуса Христа. Согласно католической доктрине пресуществления, чудеса продолжают происходить каждое воскресенье в каждом храме, когда вода и вино превращаются в тело и кровь Христовы. Если вы религиозны, верить в чудеса для вас логично и разумно. Потому что где же еще найти доказательства существования сверхъестественных сил?

Сегодня нас привлекают чудеса иного рода. В дни накануне 29 июня 2007 года по всей Америке тысячи энтузиастов собрались перед храмами технологии – магазинами компании Apple. За первые полтора дня после запуска айфона в широкую продажу 270 тысяч покупателей обратились в новую веру. До конца года за ними последовали миллионы других. Этот аппарат вызвал настоящий ажиотаж. Гаджет называли самым ожидаемым новым товаром десятилетия, а некоторые даже окрестили его «телефоном Иисуса».

Судя по восторгам, которые он вызвал, айфон – это что-то необычное. Можно даже назвать его современным чудом. И это не преувеличение. Представьте, как бы отнеслись к айфону люди XIX века. Третий закон прогнозирования, сформулированный Артуром Кларком, гласит: «Любая достаточно развитая технология неотличима от магии». Извергая непрерывный поток чудес, технология убеждает нас в своих потрясающих возможностях. Дух времени проникнут новой религией – технологическим оптимизмом.

Иоанн Креститель уверял нас, что Спаситель явится во второй раз и что вот-вот наступит Царство Божие на земле. Пророк технологии – Рэй Курцвайль, и его евангелие – написанная им книга «На пороге сингулярности» (2005). Я уже говорил о законе Мура, описывающем экспоненциальный рост вычислительных мощностей, так поразивший нас в эти сорок лет. Экстраполируя это славное прошлое в будущее и на другие (не только компьютерные) технологии, Курцвайль изображает грядущее, которое не знает границ.

Его во всех смыслах бескрайний оптимизм напоминает мне о Лейбнице, чьи взгляды на восприятие я обсуждал выше. Как учил Лейбниц, мы живем в лучшем из возможных миров. Эту концепцию он вывел из простого рассуждения: поскольку Господь совершенен и всемогущ, Он никогда бы не стал создавать мира, который не был бы лучшим, а оказался бы хуже. В основном эту гипотезу Лейбница помнят благодаря Вольтеру, который язвительно высмеял ее в своем сатирическом романе «Кандид», где высокоученый доктор Панглосс пытается убедить других персонажей в совершенстве мира, как будто не осознавая те злоключения и несчастья, что встречают их на каждом шагу.

Разумеется, мы живем не в лучшем из возможных миров. Но дайте срок, и технологии приведут нас туда. Такое обещание, вполне в духе Панглосса, дает нам Курцвайль. Проблеск подобной вероятности привлекает людей к крионике. Мне-то кажется, что такая готовность принять неведомое на веру является свидетельством их приверженности механицизму, философской доктрине, согласно которой тело человека (а следовательно, и его мозг) является всего лишь машиной, механизмом. По счастью, наши тела значительно сложнее, чем машины, которые мы производим. Но в конечном счете, уверяют механицисты, между нами и машинами нет принципиальных различий.

Мы долго сопротивлялись этой доктрине. Даже в XIX веке некоторые биологи цеплялись за концепцию «витальной силы», якобы присутствующей во всех живых организмах и не подчиняющейся законам физики и химии. В XX столетии достижения молекулярной биологии отодвинули витализм на обочину науки. Однако многие и сейчас упорно придерживаются доктрины дуализма, согласно которой умственно-психические явления зависят от чего-то нематериального – скажем, души. Но при этом многих все-таки убедили достижения нейронауки, показывающие, что в этой машине нет никакого «духа».

Если тело – машина, можно ли ее чинить? Такая возможность как будто не противоречит законам логики или физики (если, конечно, вы принимаете доктрину механицизма). В своем пересказе легенд о короле Артуре под названием «Меч в камне» Теренс Уайт высмеял тоталитарное общество, описывая колонию муравьев, живущих в муравейнике, где над каждым входом висит плакат: «Всё, что не запрещено, обязательно». Курцвайль, в свою очередь, подправил Лейбница, заявив: «Всё, что возможно, неизбежно».

Впрочем, каждый мечтатель ненавидит, когда ему напоминают о том, что есть масса возможностей, которые мы никогда не осуществим. Принимая решение, мы взвешиваем затраты и выгоды. Может быть, крионическая реанимация и возможна, но какой ценой? Ну да, человеческая жизнь вообще-то бесценна, но что будет, если ни в одном банке не окажется денег на то, чтобы заплатить за воскрешение? Представьте, к примеру, что реанимация в принципе реализуема, но на практике потребует больше энергии, чем существует во всей известной нам Вселенной. На каком-то этапе исчерпаемость или дороговизна ресурсов начинает иметь значение.

Трудность реанимации имеет значение и для клиентов «Алькора», поскольку она определяет их временной горизонт. Одно из широко рекламируемых преимуществ крионики – в том, что вы, покоясь в жидком азоте, можете ждать вечно и при этом не соскучитесь. Но можете ли вы рассчитывать, что место вашего упокоения останется в неприкосновенности? Какова вероятность того, что компания «Алькор» будет по-прежнему существовать к тому времени, когда воскрешение станет осуществимо, если техническому прогрессу понадобится для этого еще миллион лет?

Некоторые адепты крионики предпочитают закрывать глаза на подобные практические вопросы. А вот прирожденным скептикам все-таки придется заключить пари по Эттингеру. Как мы помним, Паскаль замечал, что в таких случаях незачем вести подсчеты, ибо выигрыш безмерен. Однако на самом деле в нашей Вселенной нет ничего по-настоящему бесконечного. И человек, склонный к рациональным решениям, все-таки должен рано или поздно произвести вероятностные расчеты. Хотя никто не знает точных цифр, приблизительную оценку все-таки можно дать. Но для этого нужно провести кое-какие изыскания по ряду научных и врачебных проблем.

Любая машина в принципе действительно способна работать неограниченно долго, если вовремя заменять износившиеся или сломанные детали. В 2007 году продали с аукциона самый старый действующий автомобиль в мире. «Маркизу» (паровую коляску, а не авто с двигателем внутреннего сгорания) сконструировала в 1884 году компания De Dion, Bouton et Trépardoux, в то время – крупнейший автопроизводитель планеты. Однако цена, за которую в конце концов продали это чудо техники, – 3 миллиона 200 тысяч долларов, – показывает, насколько редко случается так, что очень старый автомобиль до сих пор находится в рабочем состоянии. Обычно автомобиль делают с таким расчетом, чтобы он прослужил лет десять. Машина старше двадцати пяти лет уже считается старинной. Поддерживать ее в рабочем состоянии дольше этого срока уже неэффективно, если ваша единственная цель – использовать ее как транспортное средство: слишком дорого выпускать запчасти в небольших количествах, чтобы при необходимости ставить их на место изношенных. Если автолюбитель прилагает массу усилий для того, чтобы его четырехколесный любимец вечно оставался на ходу, это делается лишь из эстетических или сентиментальных побуждений.

Разумеется, для того чтобы человек протянул как можно дольше, существуют более веские причины. Иногда тело можно подремонтировать с помощью весьма дорогостоящих запчастей. Пересадка органов стала возможной благодаря лекарственным препаратам, которые подавляют иммунную систему пациента, подвергающегося трансплантации, чтобы эта система не отторгла донорский орган как чужеродный. Куда лучше было бы научиться вообще избавляться от такой иммунной реакции, используя органы, выращенные из клеток, которые генетически идентичны клеткам пациента. Пока это возможно лишь при пересадке органов одного из идентичных близнецов другому. Однако биоинженеры лелеют мечту научиться выращивать человеческие органы in vitro, разводя культуры клеток на искусственно созданном субстрате. Если они добьются успеха, можно будет брать клетки у пациента, выращивать из этих клеток нужный орган и затем пересаживать его в организм больного. Больше не понадобятся доноры органов.

Но при всем оптимизме касательно грядущего прогресса трансплантации органов у таких методов есть принципиальное ограничение: мозг нельзя заменить другим. И речь не идет о технических трудностях пересадки мозга. Я говорю об уникальных чертах личности. Хорошая иллюстрация здесь – история Сонни и Терри.

В 1995 году Сонни Грэм получил в дар сердце Терри Коттла, совершившего самоубийство. События повернулись неожиданным образом: Черил, вдова Коттла, девять лет спустя вышла замуж за Сонни. Однако через четыре года после свадьбы Сонни покончил с собой точно так же, как это сделал Терри, – выстрелив себе в голову. Желтая пресса запестрела броскими заголовками вроде такого: «Два мужчины с одним сердцем сводят счеты с жизнью».

Журналисты и блогеры, конечно, тут же стали фонтанировать самыми дикими предположениями, догадками и вопросами. Может быть, пересаженное сердце содержало в себе воспоминания, благодаря которым Сонни влюбился в Черил? Может быть, именно оно подтолкнуло Сонни к самоубийству, как некогда подтолкнуло Терри? История стала казаться менее таинственной, когда в ходе расследования полиция обнаружила, что Черил выходила замуж пять раз – по слухам, доводя каждого из своих мужей до отчаяния. Получив сердце Терри, Сонни остался собой, черты его личности не изменились. Сомнительно, чтобы пересаженное сердце заставило бедного Сонни полюбить коварную Черил. Более вероятно, что его влекло к Черил просто из-за ее внешней привлекательности. (В конце концов, она ведь как-то ухитрилась заполучить пятерых мужей.)

Рассмотрим теперь гипотетическую пересадку мозга. Сегодня такая процедура невозможна, однако давайте проведем мысленный эксперимент, он обещает быть интересным. Допустим, мозг Терри пересадили в тело Сонни. Бессмысленно будет говорить, что Сонни получил мозг Терри, ибо Сонни после трансплантации уже не будет тем Сонни, которого знали его друзья. Если кто-нибудь из них спросит: «Сонни, а помнишь, как мы..?», в ответ они получат лишь непонимающий взгляд. Так что будет точнее сказать, что Терри получил тело Сонни. Иными словами, здесь, в сущности, происходит скорее пересадка тела, чем пересадка мозга. Тогда тот факт, что уже второй муж Черил кончает с собой, получил бы иное возможное объяснение.

Странная история Сонни и Терри показывает, что важнейшая проблема для крионики – сохранение мозга. Большинство клиентов «Алькора» выбрали эконом-вариант и предпочли, чтобы после смерти сохранилась лишь их голова: возможно, они убеждены, что высокоразвитая цивилизация будущего, сумев их воскресить, уж как-нибудь сумеет и подобрать им новое тело. Но сумеет ли эта грядущая цивилизация оживить их замороженные мозги?

Этот вопрос стоит перед всеми, кто размышляет, обратиться ли к услугам «Алькора». Впрочем, мне кажется, он весьма интересен даже для тех, кому вообще наплевать на «Алькор». Что ни говори, а возможное воскрешение умерших – самый грозный вызов для доктрины механицизма. Философы могут до хрипоты выкрикивать свои аргументы, ученые могут добывать какие угодно доказательства, однако ни те, ни другие никогда не убедят нас, что наше тело и мозг – лишь машины. Окончательное доказательство появится лишь тогда, когда инженерам удастся сконструировать такие же сложные и чудесные машины. Ну, или когда они смогут возвращать к жизни умершее тело и мозг, ремонтируя их, словно механизм.

Рассуждая в более практической плоскости, можно рассматривать алькоровский вопрос как предельный вариант того вопроса, который часто задают в больницах. Друзья и близкие пациента, лежащего в коме, хотят знать: очнется ли он когда-нибудь? Подобно мозгу коматозника, мозг клиента «Алькора» тоже поврежден. И тот, и другой случай размывают грань между жизнью и смертью. Каковы же принципиальные ограничения, мешающие вернуть жизнь поврежденному мозгу? И снова для корректного ответа на вопрос нам нужно будет обратиться к коннектомам.

* * *

Процедуры, используемые в «Алькоре», основаны на методиках криобиологии. Возможно, вам известно, что врачи, занимающиеся проблемами бесплодия, замораживают сперму, яйцеклетки и эмбрионы для последующего использования. Банк крови порой годами хранит кровь редких групп для грядущего переливания. Классический метод такой заморозки – медленное и постепенное понижение температуры (скажем, на градус в минуту). Охлаждаемые клетки предварительно погружают в глицерин или какой-нибудь другой криозащитный агент, чтобы увеличить долю клеток, которые переживут заморозку. Метод далек от совершенства. Сперматозоиды выживают лучше всего; яйцеклетки и эмбрионы справляются с такими условиями хуже. Криобиологи не прочь научиться замораживать органы целиком, ведь это расточительство – выбрасывать донорский орган лишь из-за того, что в данный момент трансплантация почему-либо невозможна.

К методу медленной заморозки специалисты пришли, по большому счету, путем ряда проб и ошибок. Чтобы усовершенствовать метод, криобиологи с давних пор пытаются выяснить, почему он вообще действует. Не так-то просто разобраться в сложном комплексе явлений, происходящих внутри клеток при охлаждении. Но в одном ученые убеждены: образование льда в клетке ведет к ее гибели. Неизвестно, почему внутриклеточный лед убивает, но криобиологи знают, что нужно всеми силами избегать его возникновения. Медленная заморозка должна охлаждать клетки так, чтобы вода снаружи них замерзала, превращаясь в лед, а вода внутри них – нет.

Как такое возможно? Если вы живете в холодном климате, то наверняка видели, как на тротуары сыплют соль во время зимних снегопадов. Благодаря этому не образуется лед (и люди не падают, поскользнувшись на нем), так как соленая вода замерзает при более низкой температуре, нежели вода чистая. Чем выше концентрация соли, тем ниже точка замерзания получающегося раствора. Когда клетки охлаждают медленно, вода постепенно высасывается из них под действием силы, именуемой осмотическим давлением. Вода, остающаяся в клетке, становится при этом всё солонее и солонее, а значит, всё лучше сопротивляется оледенению. Однако если температуру понижать чересчур быстро, содержимое клеток не успевает стать достаточно соленым и замерзает – с гибельными последствиями.

Медленная заморозка – не такая уж безвредная процедура, ведь она заменяет лед повышенной соленостью. Последняя не смертельна, однако все равно наносит ущерб клеткам, и добавки вроде глицерина дают лишь частичную защиту. Поэтому некоторые исследователи отказались от медленной заморозки. Вместо этого они охлаждают клетки при особых условиях, когда жидкая вода обращается в довольно экзотическое – витрифицированное (стеклянистое) состояние. Вещество в таком состоянии является твердым, но при этом не кристаллическим. Молекулы воды остаются неупорядоченными, они не уложены в кристаллическую решетку, свойственную льду.

Обычно витрификация требует сверхбыстрого охлаждения. Это осуществимо для отдельных клеток, но не для целых органов. Впрочем, можно заставить воду витрифицироваться даже при низких темпах охлаждения, если добавить в нее раствор с чрезвычайно высокой концентрацией криозащитных веществ. Специалисты, изучающие процессы оплодотворения, уже применяют такую процедуру для яйцеклеток и эмбрионов. Их работа дает обнадеживающие результаты.

Грег Фахи из компании «Медицина XXI века» (21st Century Medicine) уже не первое десятилетие занимается проблемой криоконсервации органов. С помощью электронного микроскопа Фахи исследовал витрифицированные биологические ткани. Судя по всему, процесс витрификации защищает клеточные структуры, почти не нанося ущерба мембранам. Но, к сожалению, витрифицированные органы уже который год не выдерживают главное испытание: после нагрева до нормальной температуры и пересадки они не оживают и не функционируют. Недавно группа, возглавляемая Фахи, продемонстрировала впечатляющее достижение: предварительно витрифицированная почка, пересаженная подопытному кролику, прослужила несколько недель. Вдохновленная успехами Фахи, компания «Алькор» теперь начала применять витрификацию для консервирования трупов своих клиентов.

Но сколько же может храниться такой труп, не портясь? Вы наверняка замечали, что продукты в вашем холодильнике могут лежать лишь ограниченное время. Это не имеет отношения к крионике, поскольку температура жидкого азота в дьюаре (–196 °C) куда ниже, чем у вас в морозилке. Скорее уж температура в таком сосуде ближе к минимальной достижимой в природе температуре, составляющей –273 °C (это так называемый «абсолютный ноль»). Низкая температура консервирует, поскольку замедляет химические реакции – превращения, меняющие атомную структуру молекул. Экстремальный холод, обеспечиваемый жидкий азотом, почти полностью останавливает химические реакции. Молекулы покойника не меняются, если только на них не попадут космические лучи или какое-то другое ионизирующее излучение. Но такие столкновения редки. По оценке физика Петера Мазура, клетки могут продержаться в жидком азоте тысячи лет. Да, часы для клиентов «Алькора» по-прежнему тикают, но у этих покойников есть по меньшей мере несколько тысячелетий в запасе, прежде чем их время истечет.

Впрочем, существует более глубинная проблема. Все клиенты «Алькора» перед витрификацией уже были мертвы в течение нескольких часов или даже дней. Но ведь такая смерть по определению необратима? Как же тогда удастся их воскресить?

Необратимость действительно является основной частью нашего определения смерти. Поэтому само определение становится несколько шатким. Понятие необратимости привязано ко времени, оно зависит от доступных на данный момент технологий. То, что сегодня необратимо, в будущем может стать обратимым. На протяжении почти всей истории человечества человек считался умершим, когда прекращалось его дыхание и сердцебиение. Но теперь такие изменения иногда оказываются обратимыми. Сейчас можно возвращать дыхание, вновь запускать сердце или даже заменять больное сердце здоровым.

Однако даже если сердцебиение и дыхание продолжаются, но мозг больного понес достаточно сильный ущерб, человек сейчас официально считается умершим. Такое определение возникло с появлением в 1960-х годах механических систем принудительной вентиляции легких. Благодаря таким системам жертвы несчастных случаев продолжали жить и их сердце не останавливалось, даже если несчастный так и не приходил в сознание. В конце концов сердце все-таки прекращало работать – или же родные больного требовали отключить жертву от искусственной вентиляции. Вскрытие в таких случаях зачастую показывало, что внутренние органы совершенно нормальны – и при рассмотрении невооруженным глазом, и при изучении под микроскопом. Но при этом обнаруживалось, что мозг обесцветился, размягчился или же частично превратился в жидкость; часто он распадался на части при извлечении из черепа. Патологоанатомы называют такие мозги «респираторными»; в подобных случаях они заключают, что мозг умер задолго до того, как умерло остальное тело.

В семидесятые годы США и Великобритания начали разрабатывать новые законы о констатации смерти. К рациональному критерию прекращения дыхания и кровообращения в США добавили еще один: гибель всего мозга, в том числе и его ствола. В Великобритании сочли достаточным добавить лишь критерий гибели ствола мозга. Американское определение часто называют «общемозговой смертью», а британское – «стволовой смертью».

Ствол мозга играет жизненно важную роль и для процесса дыхания, и для сознания. Его нейроны генерируют сигналы, контролирующие дыхательные мышцы. Если эти нейроны потеряют активность, дыхание остановится, и пациент не сможет жить без системы принудительной вентиляции. Именно особая роль ствола в дыхании позволяет тесно увязать стволовую смерть с традиционной концепцией респираторно-циркуляторной смерти. Но ствол играет еще одну роль – возможно, даже более важную: он пробуждает и поддерживает сознание в остальных частях мозга. Уровень возбужденности сознания постоянно меняется, наиболее резко – в рамках цикла сон/бодрствование. Несколько групп нейронов ствола мозга – система ретикулярной активации – устремляют по всему мозгу несметное количество аксонов. Эти нейроны вырабатывают особые нейротрансмиттеры – так называемые нейромодуляторы, вещества, «пробуждающие» таламус и кору головного мозга. Без них пациент не придет в сознание, даже если остальная часть мозга осталась неповрежденной.

Ситуацию можно кратко описать так: «Если ствол мертв, то мертв и мозг, а если мертв мозг, то мертв и его обладатель». Такова суть британского определения стволовой смерти, и оно имеет смысл, поскольку обычно ствол функционирует дольше каких бы то ни было других частей мозга. Повреждение мозга ведет к его отеку – аномально высокому притоку жидкости. Это увеличивает внутричерепное давление, и кровь в мозгу начинает застаиваться. В результате погибает еще больше клеток, отек расширяется и еще сильнее перекрывает кровоток. Получается порочный круг, и в конце концов возросшее давление сокрушает ствол. Так что если ствол мозга больше не работает, то, скорее всего, остальные части мозга уже разрушены.

Таково обычное течение событий. Но иногда – редко – весь ствол мозга разрушается, тогда как прочие части мозга остаются в неприкосновенности. Пациент больше не сможет дышать самостоятельно, без системы искусственной вентиляции, и больше никогда не придет в сознание. Однако некоторые могут заявить, что больной все еще жив, поскольку в конечном мозге по-прежнему хранятся его воспоминания, черты личности и ум, а все эти вещи кажутся гораздо более фундаментальными для человеческого Я, чем дыхание, кровообращение или работа ствола мозга.

Сегодня это разграничение носит исключительно теоретический характер, ибо еще никакой пациент с полностью разрушенным стволом мозга так никогда и не пришел в сознание. Но вообразите себе, что в будущем, благодаря достижениям медицины, врачи сумеют заставлять нейроны ствола мозга регенерироваться, тем самым ликвидируя повреждения. Тогда, быть может, пациент сумеет опять прийти в сознание, и организм его будет функционировать, как раньше, а заключение о смерти на основании отказа ствола мозга будет казаться таким же устаревшим, как констатация летального исхода после отказа систем дыхания и кровообращения: теперь-то мы знаем, что эти системы иногда можно вновь заставить работать.

Может быть, такие достижения покажутся вам несбыточной фантазией, но наша цель сейчас не в том, чтобы дать точный прогноз. Эти мысленные эксперименты призваны помочь нам отыскать более фундаментальное определение смерти. В идеале такое определение должно оставаться верным вне зависимости от грядущего прогресса медицины. В этой книге я обсуждал различные пути проверки гипотезы «Вы – это ваш коннектом». Если гипотеза верна, из нее можно легко вывести фундаментальное определение смерти: «Смерть – это разрушение коннектома». Конечно, мы пока не знаем, содержит ли коннектом воспоминания, черты личности или особенности ума. Проверка этих идей закончится еще очень нескоро.

Пока же мы можем лишь предаваться умозрительным рассуждениям. Вполне вероятно, что коннектом содержит основную часть информации, которая заключена в воспоминаниях человека. Но даже если это так, коннектом может содержать в себе не всю информацию. Подобно всякому резюме, коннектом оставляет за кадром некоторые подробности. А ведь кое-что из этих отвергнутых данных может иметь значение для личностных характеристик. Я предполагаю, что коннектомная смерть подразумевает и потерю воспоминаний. Но обратное утверждение, возможно, несправедливо: часть информации из воспоминаний человека может оказаться утраченной, даже если коннектом находится в полнейшей сохранности. (Проблему полноты я намерен обсудить в следующей главе.)

Коннектомная смерть тесно связана со структурой мозга, поэтому расходится с традиционными определениями, в основе которых лежит функционирование мозга. Официальное определение смерти – необратимое прекращение функционирования всего мозга или его ствола. Однако, как мы уже видели, термин «необратимый» не так уж однозначен. Укусы змей и некоторые химические вещества могут имитировать гибель ствола мозга, но такое прекращение его работы обратимо: после кратковременной принудительной вентиляции легких пациент возвращается в нормальное состояние. Так что даже специалист может порой испытывать затруднения, пытаясь выяснить, навсегда ли прекратилось функционирование ствола мозга.

С другой стороны, понятие коннектомной смерти основано на структурном критерии, подразумевающем по-настоящему необратимое прекращение функционирования (в том числе и потерю памяти). Увы, на практике, в больнице, такое определение бесполезно. Сейчас мы можем количественно оценить функционирование мозга живого пациента через рефлексы, передаваемые стволом мозга, а также посредством электроэнцефалографии (фиксирующей «мозговые волны») или функциональной МРТ. Но пока нам неизвестен способ отыскать нейронный коннектом живого мозга.

Я могу придумать лишь одно практическое применение для идеи коннектомной смерти. Может, оно даже не очень практическое, но мне оно кажется очень многообещающим. Почему бы не использовать коннектомику для критического анализа амбициозных гипотез крионики? Я уже говорил, что мозг клиентов «Алькора» получает определенные повреждения при респираторно-циркуляторной смерти и витрификации. Есть ли возможность потом устранить эти повреждения, как уверяют в «Алькоре»? Чтобы проверить это, мы могли бы попытаться отыскать коннектом витрифицированного мозга. Если выяснится, что информация в этом коннектоме стерта, тогда можно констатировать коннектомную смерть. Высокоразвитая цивилизация будущего сумеет воскресить лишь тело такого покойника, но не его ум и сознание. Если же информация окажется нетронутой, то все-таки существует вероятность того, что воспоминания замороженного клиента удастся воскресить, а его личность – восстановить.

Полагаю, не следует проводить такой эксперимент на витрифицированном мозге человека. Но «Алькор» витрифицировал также мозг некоторых собак и кошек по просьбе ряда своих клиентов – любителей животных. Может быть, кто-нибудь из этих клиентов согласится пожертвовать мозгом своего любимца ряди науки?

А пока эти испытания не произведены, мы можем лишь гадать о том, каковы окажутся их результаты. Хорошо известно, что мозг чрезвычайно чувствителен к нехватке кислорода. При прекращении доступа кислорода потеря сознания наступает через какие-то секунды, а необратимые повреждения мозга происходят уже через несколько минут. Вот почему нарушение кровоснабжения мозга может оказаться настолько губительным – как это происходит при инсульте. На первый взгляд это скверная новость для клиентов «Алькора». Ведь к тому времени, как компания получает в свое распоряжение труп, в мозг уже как минимум несколько часов не поступает кислород, и в нем может вообще не остаться живых клеток. (Разумеется, иногда провести границу между жизнью и смертью для клетки так же трудно, как и для организма в целом.) Живые или мертвые, эти клетки значительно повреждены. Исследования, проведенные с помощью электронной микроскопии, выявили разные типы повреждений мозговой ткани на протяжении нескольких часов после респираторно-циркуляторной смерти. Среди прочих изменений – повреждения митохондрий. Кроме того, ДНК в ядре выглядит необычно скомканной.

Однако эти и другие клеточные аномалии не имеют отношения к коннектомной смерти. Для нее важна целостность синапсов и «проводов». Синапсы, похоже, в относительной безопасности: на снимках, полученных с помощью электронного микроскопа, они выглядят нетронутыми, так что, очевидно, сохраняют стабильность даже в умершем мозгу. О состоянии аксонов и дендритов судить сложнее. Их поперечное сечение на двух опубликованных плоскостных снимках выглядит почти нормально, однако поврежденные области всё же есть. Важный вопрос: нарушают ли эти повреждения «провода» в мозгу? Для ответа на этот вопрос можно проследить путь нейритов, изучая их трехмерные изображения. Даже при небольшом числе разрывов такое слежение все-таки возможно. Так, встретив отдельный, изолированный разрыв, мысленно соединим два конца цепочки, которые явно некогда соединялись друг с другом. Но если нам попадутся группы соседствующих разрывов, вряд ли можно разобраться, какие оборванные концы когда-то соединялись вместе. Не исключено, что это и есть реальная коннектомная смерть: безвозвратная утрата информации о схеме связей, невосполнимая даже с помощью самых совершенных технологий.

Пока крионика ближе к религии, чем к науке, ибо в ее основе – скорее вера, чем доказательства. Надежды клиентов фирмы на то, что цивилизация будущего сумеет воскресить их, основаны лишь на их вере в безграничность технического прогресса. Предлагаю проверку, которая поможет наконец-то внести немного научности в пари Эттингера. Если витрифицированные трупы содержат нетронутые коннектомы, это еще не доказывает, что воскрешение возможно. Но вот если коннектомная смерть в их телах уже произошла, воскресить клиентов «Алькора», скорее всего, будет уже нельзя.

Многим клиентам, вероятно, не так уж захочется узнать результат этого теста. Они предпочитают закрыть глаза на истину, это утешает их в предчувствии неминуемой кончины. Если научная проверка способна выявить факты, способные опровергнуть их верования, эти люди, возможно, не пожелают, чтобы такую проверку кто-нибудь провел. Но ведь могут найтись и другие клиенты «Алькора», которым недостаточно просто верить, которые захотят получить доказательства и которые потребуют, чтобы тесты на коннектомную целостность все-таки осуществили.

В результате такой проверки может оказаться, что у клиентов «Алькора», ожидающих своей участи в жидком азоте, уже произошла коннектомная смерть. Если так, то для «Алькора» это еще не конец. Они всегда могут использовать коннектомику для совершенствования своих методов подготовки и витрификации умершего мозга. Пожалуй, это единственная помощь, которую способна оказать им коннектомика, помочь «Алькору» по-настоящему воскресить своих клиентов она пока не силах. Но даже если их теперешние методы не предотвращают коннектомную смерть, алькоровцам, быть может, в конце концов удастся благодаря коннектомике отыскать способы ее предотвращения.

* * *

Крионика – не единственный вариант сохранения тела или мозга для будущего. В своем манифесте нанотехнологии «Машины творения» (1986) Эрик Дрекслер предложил консервировать мозги химически. А в статье, скромно озаглавленной «Возможное лекарство от смерти» (1988), Чарльз Олсон независимо от коллеги предложил аналогичный метод.

Процедура, о которой пишут Дрекслер и Олсон, не отличается новизной: это новое применение старой процедуры, именуемое пластинацией. Возможно, вам доводилось бывать на какой-нибудь из гастролирующих выставок человеческих трупов, законсервированных в пластмассовых контейнерах. Такие выставки нынче пользуются большой популярностью. Схожие методы уже давно используются для подготовки биологических тканей к исследованию под электронным микроскопом. Цель такой процедуры – не только сохранить особенности ткани, различимые невооруженным глазом. Специалисты пытаются оставить в неприкосновенности каждую деталь клетки, вплоть до структуры отдельных синапсов. Вначале в клетки вводится специальное вещество (скажем, формальдегид), прокачиваемое через кровеносные сосуды. Такое вещество называют фиксатором, ибо оно создает связи между молекулами, из которых состоят клетки, тем самым «фиксируя» эти молекулы на месте. Укрепленные таким способом клеточные структуры защищены от распада и разрушения. Затем воду в мозгу заменяют спиртом, который, в свою очередь, заменяют эпоксидной смолой, а она потом затвердевает при помещении объекта в печь. Конечный продукт – пластиковый блок, содержащий мозговую ткань (см. рис. 53, слева). Блок достаточно тверд, его можно резать алмазным ножом на тонкие слои, как мы делали, отыскивая коннектомы.

Рис. 53. Пластинация: ткань мозга, законсервированная в эпоксидной смоле (слева); насекомое в янтаре (справа)

Альдегидную фиксацию, первую стадию пластинации, используют также работники морга, предохраняя тела от преждевременного разложения. Такая практика именуется бальзамированием, ее применяют для подготовки покойника к кратковременному всеобщему обозрению на похоронах. В редких случаях всеобщее обозрение не заканчивается похоронами. Скажем, вождя русской революции В. И. Ленина забальзамировали после его смерти в 1924 году, и его труп по-прежнему можно лицезреть в московском мавзолее. Не совсем ясно, долго ли забальзамированное тело может избегать разложения. Даже если с виду оно выглядит нормально (насколько вообще может нормально выглядеть забальзамированный покойник), на микроскопическом уровне могут идти разрушительные процессы. Полномасштабная пластинация консервирует биологическую структуру на неопределенно долгое время. Результат напоминает кусок янтаря, в котором когда-то увязло насекомое (рис. 53, справа). Некоторым из таких насекомых миллионы лет.

Возможно, пластинация безопаснее крионики, потому что не зависит от регулярного добавления жидкого азота. Если «Алькор» обанкротится или его склад покойников разрушится в ходе какого-нибудь стихийного бедствия, тела и мозги, хранящиеся там, окажутся в большой опасности. А вот пластинированный мозг не нуждается в каких-то особых условиях хранения, требующих постоянного ухода. Чарльз Олсон предсказывал: «Стоимость химической консервации мозга может оказаться меньше стоимости обычных похорон». Но здесь есть немаловажное препятствие: пока пластинация осуществима лишь для очень небольших фрагментов мозга. По ряду технических причин никому еще не удалось законсервировать человеческий мозг целиком, с неповрежденным коннектомом.

Кен Хэйворт недавно решил сразиться с этой проблемой. Как вы помните, он изобрел АЛУМ, устройство, которое разрезает мозг на тоненькие ломтики и помещает их на пластиковую ленту для съемки и дальнейшего анализа. Многими нейробиологами движет не только научное любопытство, но и честолюбие. Одним хочется открыть в мозгу что-то такое, что поможет им опубликовать новую статью или добиться повышения по службе. Другие рвутся к Нобелевской премии. Однако по сравнению с хэйвортовскими их амбиции выглядят приземленными. Цель Хэйворта – жить вечно. Вуди Аллен говаривал: «Я не хочу остаться бессмертным в плодах моего труда. Я предпочитаю остаться бессмертным, просто не умирая».

Хэйворт с коллегами учредили премию «За консервацию мозга». Двести тысяч долларов обещаны любому научному коллективу, который сумеет законсервировать крупный мозг так, чтобы при этом полностью сохранился коннектом. Четверть призовой суммы можно получить, сохранив мышиный мозг. Это считается важной вехой на пути к консервации человеческого мозга, который по объему в тысячу раз больше.

Между прочим, Хэйворт намеревается подвергнуть пластинации и свой собственный мозг. Он хотел бы проделать это задолго до того, как умрет от естественных причин, то есть пока его мозг совершенно здоров. Ну да, это оптимальный способ сохранения мозга для будущего. Однако, мысля по-обывательски, можно сказать, что эта процедура его убьет. Вероятно, ему непросто будет подобрать себе помощников, ведь их действия, скорее всего, закон сочтет пособничеством в совершении самоубийства. Хэйворт возражает: пластинация мозга – не самоубийство, а спасение. Ведь это его единственный шанс на вечную жизнь.

Но как оживить пластинированный мозг? Повышение температуры возвращает замороженную сперму к жизни. Можно представить себе, как оттаивают тела на алькоровском складе. Но обращение вспять альдегидной фиксации и заливки эпоксидкой кажется гораздо более сложной процедурой. Впрочем, повторим наше недавнее рассуждение: если цивилизация будущего окажется достаточно высокоразвитой, чтобы воскрешать мертвецов, она уж как-нибудь сумеет депластинировать их. Эрик Дрекслер воображал армию «наноботов», крошечных роботов размером с молекулу: такую армию, по его представлениям, можно будет использовать для того, чтобы депластинировать тело и мозг, ликвидировав тот ущерб, который они могли понести во время хранения трупа. С тех пор прошло двадцать пять лет, и нанотехнология, похоже, так и не приблизилась к исполнению его мечтаний.

Хэйворт всё заранее тщательно обдумал. Если его пластинированный мозг не удастся оживить, тогда, быть может, существует вариант получше. Энтузиаст воображает будущую версию своей машины АЛУМ, только способную управляться с крупным мозгом – с его собственным. Мозг разрежут на сверхтонкие слои, получат их снимки, проанализируют и найдут коннектом. Эту информацию затем используют для создания компьютерной копии Хэйворта, которая будет мыслить и чувствовать, как реальный прототип. Это куда более фантастический план, чем любая крионика. Интересно, это вообще осуществимо?

 

Глава 15

Сохранить как…

Нам как-то до обидного мало рассказывают про рай. Правда, мы можем, по крайней мере, вообразить его врата. Они украшены жемчугами и стоят на облаке. Возле них дежурит апостол Петр, всегда готовый потерзать грешников каверзными вопросами. Но что же за этими вратами, внутри? Там все ходят в белом. (Даже не знаю, как к этому относиться.) У каждого при себе арфа, больше никаких вещей. И вокруг полно ангелов. Из этих обрывочных сведений трудно сделать какие-то далеко идущие выводы. Лишь недавно я осознал, почему религии предпочитают выражаться туманно: человек предпочитает выдумать собственный рай, а не иметь дело с тем образом, который ему навязывают.

На протяжении всей истории человечества в разных культурах и религиях мира идея рая медленно эволюционировала. В самом конце второго тысячелетия появился принципиально новый ее вариант:

Рай – по-настоящему мощный компьютер.

Здесь речь идет не о том экстатическом виде, с каким фанаты гаджетов ласкают свои планшеты. Не будем принимать такое поклонение за признак духовного просветления. И все-таки – почему эти люди, едва проснувшись, кидаются в Сеть и проводят в ней так много времени? Будет ли большой натяжкой предположить, что они жаждут трансцендентного, что они страстно желают вырваться из тех противоречий и несоответствий, которые несет с собой их здешнее тело и наш здешний мир? В онлайне подростки забывают о прыщах и недоразвитой мускулатуре, которые так смущают их в реале. Можно взять себе любой ник, поменять возраст, подсунуть в качестве аватарки фотографию своего пса. Граждане Всемирной Сети вольны быть теми, кем пожелают, и на время перестать быть теми, кто они есть на самом деле.

Тело приковано к компьютеру, остекленевший взгляд вперился в светящийся экран, пальцы бегают по клавиатуре. Да, существование такого человека словно бы делается чуть менее материальным, но я бы сказал, что он попал лишь в чистилище. Пока это еще не отвечает новой концепции рая. Некоторым хочется большего. Они хотели бы полностью отказаться от своего тела и переселить свое сознание в компьютер. Идею жизни в виде компьютерной модели радостно приняла фантастика, которая назвала этот процесс «оцифровкой сознания» («mind uploading») – или просто оцифровкой.

Сейчас такой процесс неосуществим, но нам, быть может, стоит лишь подождать, пока компьютеры станут помощнее. Видеоигры – ошеломляющее доказательство того, что компьютеры действительно способны имитировать реальный мир. С каждым годом игровой пейзаж делается всё детальнее и роскошнее; с каждом годом персонажи движутся всё более жизнеподобно. Если компьютеры могут всё это проделывать, почему они не могут имитировать и сознание?

Оцифровку можно сравнить с вознесением на небеса, и тут нет преувеличения. Само английское слово «uploading», как бы предполагающее загрузку сознания в Сеть, содержит в себе морфему «up», означающую «вверх». А ведь большинство согласится, что рай находится где-то в заоблачных высях. Некоторые энтузиасты предпочитают говорить о «загрузке сознания из Сети» («mind downloading»), но они в меньшинстве. И нетрудно понять причину: «down» буквально означает «вниз», а «downloading» как-то подозрительно напоминает о низвержении в ад.

Как и мысли о традиционном рае, вера в оцифровку помогает нам справиться со страхом смерти. Загрузив свое сознание куда полагается, мы обретем бессмертие. Но это лишь начало. В виртуальном мире мы станем красивее и сильнее, просто изменив программу этой компьютерной имитации. Больше незачем мучиться в фитнес-клубе, стараясь обрести хорошую физическую форму. А может, мы даже поднимемся над столь мирскими заботами и сосредоточимся на совершенствовании сознания. Мало нажать «upload» – давайте проведем апгрейд!

Вы вправе тут запротестовать: оцифровка не совсем освобождает нас от оков материального мира. Компьютер, создающий имитацию, все-таки может забарахлить или сломаться. Но христианское вероучение говорит нам, что бессмертные души в раю не испытывает недостатка в телах. (Лишь в промежутке между смертью и Страшным судом душа блуждает без тела.) После такой смерти тело у вас по-прежнему есть, но оно, по счастью, не подвержено разрушениям: улучшенная, усовершенствованная модель.

И потом, лучше бы жить в компьютере, нежели в привычном теле. Даже если клиентам «Алькора» повезет и их тела воскресят во плоти, дав им вкусить плодов вечной юности благодаря грядущим достижениям медицины, им все-таки придется опасаться дурацких несчастных случаев, которые могут разрушить их мозг так, что он уже не будет подлежать восстановлению. А вот оцифрованный будет всегда чувствовать себя в полной безопасности. Его всегда можно будет восстановить по резервным копиям, если информация сотрется из-за неполадок в компьютерном железе или багов в операционной системе (уж не знаю, какая ОС тогда будет в моде).

Кто-нибудь, несомненно, заметит: вся эта аргументация не учитывает главного. Вознесение на небеса подразумевает не только то, что мы оставляем за спиной нашу земную, телесную сущность. Речь идет и о единении с Богом. Видимо, оцифрованные вряд ли могут рассчитывать встретиться с христианским Богом, но они ожидают перехода в новую духовную плоскость («на новый духовный план», как они это называют). В гигантском небесном компьютере оцифрованные сплетут строки своего кода воедино, образуя «роевое (коллективное) сознание». Различие между Я и Другими наконец-то сгладится и исчезнет, а ведь именно это различие, согласно буддистскому вероучению, является первопричиной зла и страдания. Это новое сверхсущество завладеет всеми воспоминаниями человечества, однако будет лишено всех его недостатков. Оно будет обладать неземной премудростью, которую вполне можно уподобить божественной. Мы найдем духовную поддержку в сем союзе всех со всеми. В этом смысле оцифровка сознания превзойдет хипповские Лето любви и Эру Водолея, ненадолго расцветшие перед тем, как «дети цветов» выросли, обзавелись «BMW» и стали голосовать за снижение налогов.

Ладно, хватит о преимуществах оцифровки. Судя по всему, рай – отличная штука. Но как мне туда попасть? Да, это вопросик потруднее. Как станет ясно из данной главы, пока предложен лишь один мало-мальски осуществимый метод. Речь идет об имитации электрических сигналов, циркулирующих в нейронной сети вашего мозга. Компьютер, достаточно мощный, чтобы справиться с созданием такой имитации, может появиться уже к концу нынешнего столетия. Чтобы правильно подключить друг к другу имитации нейронов в этой модели, потребуется найти ваш коннектом. Пока мы не представляем себе, как это сделать, не разрушив попутно ваш мозг. Печально, да? Но ведь с христианским раем та же история: чтобы туда попасть, вам нужно сначала умереть. И потом, деструктивная оцифровка имеет важный плюс: не нужно мучительно решать, что же делать с вашим старым Я, остающимся там, в земной жизни.

Но давайте ради остроты дискуссии пока не обращать внимания на эти проблемы. Допустим, ваш коннектом все-таки удастся найти. И что же, сразу можно будет провести оцифровку вашего сознания? Сейчас имитация всего мозга делается лишь в научной фантастике, однако имитация части мозга стала наукой уже, по крайней мере, в 1930-е годы. Модели восприятия, мышления и памяти, описанные в части II, сведены к математическим уравнениям и успешно воссоздаются на компьютерах, хотя, конечно же, цели здесь не столь амбициозные, как оцифровка сознания: такие имитации призваны воспроизвести небольшой набор функций мозга и позволить измерять импульсы модельных нейронов, сопоставляя эти данные с результатами нейробиологических экспериментов.

Вырезание коннектомов, взлом их кода, а также их сравнение, – всё это, как я показывал в части четвертой, во многом зависит от способности компьютеров анализировать огромные массивы данных, но не требует имитации нервных импульсов. И это хорошо. Я сам не раз устраивал такие имитации и считаю, что анализ реальных данных позволяет не отвлекаться от главного. Из получаемой эмпирической информации мы извлекаем то знание, какое можем, делая при этом минимум допущений. Между тем имитация начинается с нашего стремления воспроизвести интересное явление и попытаться найти данные, необходимые для того, чтобы это проделать. Причем нередко случается так, что мы выдаем желаемое за действительное, а это опасная тенденция, если такие умозаключения не основаны на реальных фактах. В былые времена нам приходилось впихивать наши предположения и допущения в рамки моделей, не подкрепленных эмпирическими данными. Однако коннектомика и другие методы измерения параметров реального мозга становятся всё изощреннее. Чем больше данных и чем они точнее, тем более реалистичными будут становиться наши модели мозга. Не станем отрицать, компьютерная имитация – перспективный путь для развития нейронауки. Однако ее следует осуществлять правильно.

Я уже описывал, как в будущем мы, возможно, сумеем считывать воспоминания с коннектома, распутав его нейроны и отыскав синаптическую цепочку. Это позволит нам угадать, в каком порядке нейроны будут давать импульсы при последовательном всплывании воспоминаний. Есть и альтернативный подход: использовать коннектом, чтобы создать компьютерную модель сети нейронов, а затем запустить эту имитацию и наблюдать, в каком порядке модельные нейроны будут давать пики в процессе припоминания. Вполне естественно мечтать о том, чтобы такой подход удалось распространить и на весь мозг. Оцифровка могла бы стать окончательной проверкой гипотезы «Вы – это ваш коннектом».

Ученые ведут нескончаемые жаркие споры о том, как правильнее создать модель мозга. Такие же споры можно вести и о фундаментальных проблемах оцифровки сознания, неразрывно связанных с трудностями, возникающими при цифровой имитации мозга. Эти проблемы я намерен сейчас рассмотреть – хоть и, надеюсь, не в такой острой форме, в какой иногда ведутся научные дискуссии. Начнем с первого вопроса, на него должен ответить любой изготовитель моделей: что входит в понятие «хорошая модель»?

* * *

«Алькор» сулит своим клиентам воскресение и вечную юность. Это нетрудно себе вообразить. С оцифровкой дело обстоит иначе. На что это будет похоже – жизнь внутри компьютера в виде цифровой имитации? Не будет ли нам там скучно и одиноко?

Эта проблема обсуждается в рамках сценария «Мозги в чане», питающего собой фантастику и университетский курс философии. Представьте, что некий безумный ученый захватил вас в плен, удалил ваш мозг и ухитрился сохранить его живым и действующим в чане с химикатами. Нейронная активность по-прежнему будет то нарастать, то спадать, но без всякой связи с окружающим миром, поскольку ваш мозг будет находиться вне тела. Это куда более серьезная изоляция, чем та, которую вы привычно испытываете, ложась в постель и закрывая глаза. Насильственно разлученный со своими органами чувств и мышцами, вы окажетесь в самой темной и уединенной камере-одиночке из всех возможных.

Картинка малопривлекательная. Но оцифрованным незачем волноваться. Будущая цивилизация, которая сумеет создать имитацию мозга, уж как-нибудь справится с его входящими и исходящими сигналами. Более того, работа с этими сигналами окажется даже сравнительно легкой, поскольку связи мозга с внешним миром куда малочисленней связей внутри мозга. Зрительный нерв, соединяющий глаз с мозгом, несет визуальные сигналы с помощью миллионов своих аксонов. Много? Но внутри мозга количество аксонов значительно выше. (Большинство из ста миллиардов нейронов мозга имеют аксоны.) Что касается исходящих сигналов, то, в частности, пирамидный тракт передает их от моторной зоны коры головного мозга к спинному: так головной мозг контролирует движения тела. Подобно зрительному нерву, пирамидный тракт состоит из миллионов аксонов. А значит, цивилизация будущего могла бы подключить эту имитацию к различным камерам, датчикам и сенсорам – или к искусственному телу. Если эта «периферия» хорошо сделана, оцифрованный сможет вдыхать аромат роз и наслаждаться всеми другими удовольствиями реального мира.

Но зачем останавливаться на имитации мозга? Почему бы заодно не имитировать и мир? Оцифрованный сумеет нюхать виртуальные розы и тусоваться с другими цифровыми мозгами. Все равно уже сейчас многие явно предпочитают виртуальный мир реальному – судя по тому, сколько времени и денег они просаживают на компьютерные игры. И потом, кто знает? Может, наш физический мир на самом деле – виртуальный. Если бы это было так, узнали бы мы об этом? Некоторые физики и философы (наряду с этими мудрецами современности и некоторые кинорежиссеры) полагают, что и мы, и вся Вселенная – лишь имитация, которая разворачивается в чреве некоего гигантского компьютера. Эта идея может показаться абсурдной, однако логика не позволяет совсем уж исключить ее из рассмотрения.

Если цифровая имитация дает абсолютно такие же ощущения, что и реальность, тогда и жить в качестве имитации будет точно так же приятно, как и в реальности. (А если кому-то не очень нравится жить в реальности, давайте сформулируем этот вывод так: жизнь в качестве цифровой копии будет не хуже жизни реальной.) Меломаны пытаются достичь высочайшего качества звука посредством электронных систем, с невероятной точностью воспроизводящих каждую ноту живого концерта. Оцифровщики одержимы куда более важной проблемой. Они могут надеяться получить лишь очень хорошее приближение, но не идеальную копию. Насколько точной вообще может быть такая копия? И как оценить эту точность?

Большинство проблем компьютерных наук нетрудно сформулировать. Если мы хотим перемножить два числа, заранее понятно, что станет для нас критерием успеха. Цель создателей искусственного интеллекта (ИИ) труднее выразить точно и однозначно. Математик Алан Тьюринг в 1950 году предложил предварительное, рабочее определение. Он придумал тест, в ходе которого экзаменатор задает вопросы человеку и машине. Задача экзаменатора – выявить, кто ему отвечает, человек или машина. Несложно? Но имейте в виду: вопросы и ответы даются в письменной форме, как в Интернет-чате. Это не позволяет экзаменатору догадаться, кто есть кто, по внешности, голосу или другим подобным свойствам, которые, как полагал Тьюринг, не имеют значения для уровня интеллекта. А теперь представьте, что тест будет проводить множество экзаменаторов. Если этот совет не придет к единому мнению (допускается небольшой процент ошибок), мы можем заключить, что испытуемая машина действительно обладает искусственным интеллектом.

Тьюринг разработал свой тест для «обобщенного» ИИ. Мы можем легко усовершенствовать тест, чтобы оценивать с его помощью успешность имитации конкретного человека. Нужно просто ограничить круг экзаменаторов родными и близкими этого человека, теми, кто знает его лучше всех. Если они не смогут отличить реальную личность от имитации, значит, оцифровка прошла успешно.

Нужно ли будет изолировать экзаменаторов от визуальных и звуковых характеристик испытуемых, как в более общем варианте теста Тьюринга? Может быть, вы этому воспротивитесь и заявите, что, когда любишь кого-то, важны голос и улыбка. Но люди сплошь и рядом влюбляются посредством чатов и электронной почты, еще до того, как встретятся вживую. Трахеотомия, хирургическая операция, при которой в дыхательном горле прорезают отверстие, чтобы облегчить затрудненное дыхание, оказывает побочный эффект, изменяя голос пациента, однако все согласятся, что после операции больной остается тем же человеком. И потом, оцифровщики сами хотят избавиться от своего тела. Они желают сохранить лишь свое сознание, а тело им безразлично. Так что в ходе проведения такого теста можно тоже отрешиться от плотских особенностей, это будет только логично.

Хватит ли наблюдательности у родных и близких оцифрованного, чтобы заметить все различия между имитацией и реальным человеком? Ведь история помнит немало самозванцев, успешно изображавших тех, кем они не являлись. Так, в XVI веке во французской деревне Артига объявился человек, назвавшийся Мартином Герром, жителем деревни, который бесследно исчез восемь лет назад. Он поселился вместе с женой Герра, у них родилось несколько детей. В конце концов его обвинили в том, что он выдает себя за другого. На первом судебном процессе «нового» Герра оправдали, однако на втором признали виновным. Он едва не выиграл апелляционный процесс, когда – драматический момент – появился еще один человек, объявивший, что он-то и есть настоящий Герр. Все родственники с внезапным единодушием признали подсудимого обманщиком. Ему вынесли обвинительный приговор, и незадолго до казни он сознался в своем преступлении.

Новый Герр преуспел в искусстве имитации, не выдержав лишь непосредственного сличения с оригиналом. Он мог бы пройти самый настоящий тест Тьюринга, осуществляемый без возможности видеть или слышать испытуемых, поскольку реальный Герр, как выяснилось, не так хорошо помнил годы своего брака.

Этот и многие другие случаи подобного самозванства показывают, что друзья и близкие – не самые лучшие судьи в том, что касается опознания личности. Но если эти различия настолько тонки, тогда, может быть, они вообще не имеют значения? Даже если они заметны, соответствующую имитацию все равно нельзя считать полным провалом. Жертвы черепно-мозговых травм меняются после того, как получили эти повреждения, хотя окружающие все равно считают, что имеют дело с тем же самым человеком. Если «клиенты» оцифровки – друзья и близкие оцифрованного, то важно удовлетворить лишь их ожидания.

А может быть, истинный клиент – это вы сами, тот человек, который хочет стать оцифрованным. Конечно же, это очень важно – чтобы ваши друзья и родные признали вас в цифровой копии. Но еще важнее, чтобы вы сами остались довольны. Здесь мы ступаем на зыбкую почву, однако эту проблему не обойти.

Допустим, вас загрузили в компьютер. Я в первый раз включаю машину, и модель запускается. Первым делом я наверняка спрошу вас: «Ну, как вы себя чувствуете?» Ведь вы приходите в себя после глубокого сна или выходите из комы. И что же вы ответите?

Тест Тьюринга стремится к объективности и для этого обращается к сторонним экзаменаторам. Но субъективную оценку игнорировать глупо. Разумеется, я спрошу вас: «Ну как, вы довольны этой имитацией?» Мы никогда не стали бы задавать такой вопрос уравнению, которое моделирует химическую реакцию или черную дыру, но для модели мозга такой вопрос представляется вполне уместным.

При этом не совсем понятно, стоит ли мне доверять вашим ответам. Если имитация мозга будет работать плохо, вы можете вести себя просто как жертва черепно-мозговой травмы или какого-нибудь заболевания мозга. Неврологи знают, что такие пациенты нередко отрицают собственные проблемы. К примеру, страдающие амнезией зачастую обвиняют окружающих в том, что те нарочно их обманывают, хотя на самом деле виновата память больного, в которой случаются провалы. Жертвы инсульта не всегда готовы признать, что частично парализованы, и подчас придумывают фантастические объяснения, почему они не в состоянии совершить то или иное простейшее действие. Так что на ваше субъективное мнение не всегда можно полагаться.

Однако мне возразят, что здесь имеет самое большое значение именно ваше личное мнение. Удовлетворенность ваших друзей и родных будет зависеть от того, насколько ваша имитация оправдала их ожидания, касающиеся вашего поведения. А эти ожидания тоже основаны на неких моделях вас, сконструированных родными и близкими за годы наблюдения ваших поступков. Но вы ведь и сами служите для себя моделью – и в ходе обдумывания своих поступков, и в ходе самонаблюдения. И такая модель основана, скажем прямо, на куда большем количестве данных, чем ваши модели, построенные кем бы то ни было еще.

Вероятно, иногда вы говорите себе: «Что-то я сегодня сам на себя не похож». Скажем, вы разозлились из-за какой-то ерунды или повели себя еще каким-то, как вам представляется, не свойственным вам образом. Но обычно-то вы ведете себя именно так, как ожидаете. Вашу собственную модель, вероятно, оцифруют вместе со всеми прочими воспоминаниями. И вы сможете проверять точность компьютерного воспроизведения вашей личности, постоянно сверяя свое поведение с теми предсказаниями, которые позволяет сделать ваша модель, построенная вами же. Чем меньше несовпадений, тем точнее имитация.

Представим теперь, что оцифровка сочтена удачной и по объективным, и по субъективным критериям. Ваши друзья и родные говорят, что удовлетворены. Вы (ну, то есть ваша цифровая копия) говорите, что удовлетворены. Можно ли сказать, что оцифровка действительно прошла успешно? Тут на нашем пути возникает последний подвох: у нас нет прямого доступа к вашим чувствам. Даже если вы сами утверждаете, что чувствуете себя прекрасно, как нам узнать, чувствуете ли вы что-нибудь вообще? Может, вы просто механически твердите эти слова. Что, если оцифровка превратила вас в зомби?

Некоторые философы убеждены, что имитировать сознание с помощью компьютера принципиально невозможно. Они говорят, что сколь угодно точная имитация воды все-таки не будет по-настоящему мокрой. Точно так же и ваша цифровая копия может казаться точной вашим друзьям и родным, она даже может сама выражать собственную удовлетворенность оцифровкой, однако у нее все равно будет слишком мало субъективного опыта – неотъемлемой части сознания. Может, это само по себе и неплохо, но както не похоже на путь к бессмертию.

Идею насчет зомби нельзя опровергнуть, ибо не существует объективного способа измерить субъективные ощущения. Собственно, эта идея настолько плодотворна, что ее даже можно применить к реальному мозгу, а не только к его имитации. Скажем, ваш пес вполне может оказаться зомби. Да, он иногда ведет себя так, словно проголодался, однако на самом деле никакого голода не ощущает. (Французский философ Рене Декарт уверял, что животные – это, по сути, зомби, ведь у них тоже нет души.) Обратное доказать невозможно, поскольку никто не в состоянии испытать те чувства, которые испытывает другое существо. Однако большинство людей, особенно любители животных, убеждены, что их питомцы способны, к примеру, чувствовать боль. А уж что касается людей, то практически все убеждены, что другим человеческим существам тоже бывает больно.

Не вижу способа разрешить этот философический спор. У вас могут быть одни интуитивные предположения, у меня – иные. Лично я считаю, что достаточно точная имитация мозга будет обладать сознанием. Реальная проблема здесь – уже не философская, а практическая: достижим ли подобный уровень точности?

* * *

Генри Маркрам прославился как создатель самой дорогостоящей в мире имитации мозга, однако нейробиологи больше знают Маркрама благодаря его пионерским экспериментам на синапсах. Он стал одним из первых, кто начал систематически изучать последовательный вариант правила Хебба – варьируя задержку времени между импульсами двух нейронов в системе с индуцированной синаптической пластичностью. Впервые я услышал Маркрама на одной научной конференции, где мне довелось встретить еще одного выдающегося нейробиолога – Алекс Томсон, заядлую курильщицу и очаровательную женщину. Она с огромным энтузиазмом делала доклад о синапсах, она была попросту влюблена в них и хотела, чтобы мы тоже их полюбили. Маркрам же выступал как почтенный епископ синаптической церкви, вселяя в нас трепет, восторг и уважение по отношению к их запутанным тайнам.

В своей лекции в 2009 году Маркрам пообещал, что компьютерная имитация всего человеческого мозга появится в течение ближайших десяти лет. Эта фраза облетела весь мир. Если вы найдете в Сети видеозапись той лекции, наверняка согласитесь со мной, что его изящно вылепленное лицо выглядит несколько свирепым, однако говорит он мягко и дружелюбно, с тихой убежденностью мечтателя. Впрочем, в том же году, позже, он имел случай выступить уже не так спокойно. Его научный конкурент, Дхармендра Модха из компании IBM, заявил о создании цифровой имитации кошачьего мозга – после того, как сам же сообщил об имитации мышиного в 2007 году. Маркрам ответил гневным письмом, адресованным главному технологу IBM:

Дорогой Берни, еще когда Мохда [ так! ] сделал свое идиотское заявление об имитации мышиного мозга, вы уверяли меня, что в следующий раз будете держать этого парня за руки и за ноги.
Генри

Я думал, что… даже журналисты сумеют понять: то, что показала IBM , являет собой просто подделку, которая не имеет ничего общего с цифровой имитацией мозга кошачьих размеров. Но каким-то неведомым образом всех репортеров ввели в заблуждение эти невероятные утверждения.

Меня в высшей степени шокировало сие сообщение…

Полагаю, в моей власти «выпустить кота из мешка» (во всех смыслах) касательно этого неприкрытого обмана общественности.

Конкуренция – великая вещь, но этот поступок позорит всю нашу область науки и чрезвычайно вредоносен для нее. Видимо, дальше Мохда заявит, что ему удалось сделать цифровую имитацию человеческого мозга. Надеюсь, кто-нибудь присмотрит за этим парнем и в научном, и в этическом отношении.

Всего наилучшего,

Маркрам не стал держать в тайне свое возмущение и раздражение. Он разослал копии письма многим журналистам. Один из них опубликовал в своем блоге рассказ об этой противоречивой истории, озаглавив его «Много мяуканья из-за кошачьих мозгов».

Письмо, в сущности, послужило своего рода поворотным пунктом в отношениях Маркрама с компанией IBM. В 2005 году они начинали эти отношения как союзники: тогда IBM подписала контракт с возглавляемым Маркрамом научно-учебным заведением – швейцарской École Polytechnique Fédérale (Федеральной политехнической школой), расположенной в Лозанне. Целью их совместного проекта являлась демонстрация возможностей Blue Gene/L – созданного IBM суперкомпьютера, на тот момент самого быстродействующего в мире. В рамках этого проекта компьютер должен был построить цифровую имитацию мозга. Маркрам обозвал этот проект Blue Brain («Синий мозг»), намекая на прозвище компании IBM – Big Blue («Синий великан»). Но в их отношениях произошло охлажд ение, когда Модха запустил конкурирующий проект по цифровой имитации мозга в исследовательском центре IBM, расположенном в калифорнийском Алмадене.

Маркрам пытался защитить собственные труды, обвиняя конкурента в мошенничестве. Но тем самым он бросил тень на всю затею. Всякий может сгенерировать несметное количество уравнений и объявить их подобием мозга. (В наши дни для этого даже не нужен суперкомпьютер.) Но где доказательства? Откуда нам знать – может, Маркрам тоже фальсификатор?

Его шикарный суперкомпьютер не должен отвлекать нас от недостатка его исследований – возможно, рокового: не существует четкого критерия для оценки успешности такой работы. В будущем «Синий мозг» можно будет оценить с помощью специальных разновидностей текста Тьюринга, описанных выше, но такой тест имеет смысл применять, лишь когда имитация близка к реальности. А эти якобы удавшиеся модели мышиного и кошачьего мозга еще очень далеки от своих прототипов. В обозримом будущем никакой самозванец, прикинувшись мышиным Мартином Герром, не сможет надуть своих собратьев. Тест Тьюринга подскажет нам, когда мы достигнем цели. Но пока этот день не настал, нам все-таки не помешает отыскать какой-то метод оценки, который даст нам понять, продвигаемся ли мы в нужном направлении.

Да и потом, продвигаются ли вообще эти исследователи вперед? Письмо Маркрама чересчур длинное, чтобы приводить его здесь полностью, так что я лишь перескажу его суть, отфильтровав науку от сарказма.

«Синий мозг» состоит из моделей нейронов, сложнейшим образом обрабатывающих электрические и химические сигналы. Они ближе к реальным нейронам, чем модельные нейроны в имитации Модхи, которая, в свою очередь, более реалистична, чем модель неравноценного голосования, которую мы обсуждали выше.

Существует масса эмпирических доказательств в пользу того, что модель неравноценного голосования описывает многие нейроны с неплохим приближением. Но мы знаем, что эта модель несовершенна и может даже оказаться совершенно неприменимой к некоторым нейронам. Маркрам прав, когда подчеркивает, что у реальных нейронов есть немало тонких особенностей, которые не учитываются простыми моделями. Один-единственный нейрон – сам по себе целый мир. Как и любая клетка, он представляет собой чрезвычайно сложный ансамбль многочисленных и разнообразных молекул, машину, собранную из молекулярных деталей. А каждая из этих молекул, в свою очередь, является миниатюрной машинкой, сделанной из атомов.

Как я уже упоминал, ионные каналы относятся к одному из важнейших классов молекул, поскольку они ответственны за передачу электрических сигналов в нейронах. Аксоны, дендриты и синапсы содержат различные типы ионных каналов – или, по крайней мере, содержат разное их количество. Вот почему у этих частей нейронов разные электрические характеристики. В принципе каждый нейрон уникален по своему поведению благодаря уникальной конфигурации своих ионных каналов. Всё это очень далеко от модели неравноценного голосования, согласно которой все нейроны, в сущности, одинаковы. Плохая новость для имитаторов мозга? Если нейроны так бесконечно разнообразны, как же мы добьемся хоть какого-то успеха в их моделировании? Измеряя характеристики одного нейрона, мы ничего не выясним о другом.

Как вырваться из этой трясины бесконечного разнообразия? Есть одна надежда: типы нейронов. Может быть, вы помните, как Кахаль разделил нейроны на типы, основываясь на их месторасположении и форме. Эти свойства можно сравнить с местом обитания животного и его внешним видом. Когда нейробиолог говорит о «двойной букетной клетке неокортекса», он напоминает мне натуралиста, рассказывающего о полярном медведе, обитающем в Арктике. Натуралист может подчеркнуть, что белые медведи, в отличие от бурых, все охотятся на тюленей. Точно так же и нейроны одного типа, как правило, ведут себя сходным образом, когда речь идет о передаче электрического сигнала. Вероятно, это происходит благодаря тому, что ионные каналы в них распределены похоже.

Если это так, то в действительности нейронное разнообразие конечно. Можно составить каталог всех типов нейронов, «список запчастей» для мозга, и затем сконструировать модель для каждого типа. Мы предполагаем, что каждая такая модель будет правомочна для всех нейронов данного типа во всяком нормальном мозгу, подобно тому как мы предполагаем, что все однотипные резисторы ведут себя сходным образом в любом электронном приборе. А создав модели для всех нейронных типов, мы будем готовы к цифровой имитации мозга.

Специалисты из лаборатории Маркрама охарактеризовали электрические свойства многих типов неокортикальных нейронов – путем экспериментов in vitro. Основываясь на этих данных, они смоделировали каждый нейронный тип в виде сотен взаимодействующих электрических ячеек, что может служить промежуточным шагом на пути к имитации миллионов ионных каналов нейрона. Маркрам заслуживает благодарности за реалистичность многоячеечных модельных нейронов, задействованных в «Синем мозге».

Однако у «Синего мозга» имеется один серьезный недостаток. Поскольку ни одного кортикального коннектома мы пока не выявили, не совсем понятно, каким образом соединять эти модели нейронов друг с другом. Маркрам следует в этом правилу Питерса, теоретическому принципу, согласно которому схема связей в мозгу выстраивается случайным образом. Случайные столкновения аксонов и дендритов в спутанных «макаронах» мозга приводят к возникновению точек контакта. В каждой из таких точек с определенной вероятностью может образоваться синапс. По сути, мы словно бы наблюдаем за результатами подбрасывания искривленной монеты.

Правило Питерса концептуально связано с идеей, о которой мы уже говорили: речь идет о нейронном дарвинизме, предполагающем случайный процесс образования синапсов. Однако эти две идеи не равнозначны. Нейронный дарвинизм подразумевает самоуничтожение синапсов, регулируемое уровнем их активности, а значит, остающиеся связи не будут случайными. Специалисты уже обнаружили примеры нарушения правила Питерса. И я подозреваю, что такие примеры будут только множиться. Судя по всему, это правило так долго продержалось в науке лишь из-за того, что мы слишком мало знали о коннектомах.

Как выражаются ученые-компьютерщики, «мусор на входе – мусор на выходе». Если схема нейронных связей «Синего мозга» выстроена неверно, то и соответствующая модель тоже неверна. Однако не будем слишком уж придирчивы. В будущем Маркрам всегда сможет включить в свой «Синий мозг» информацию, почерпнутую из коннектомов. И тогда его имитация приблизится к реальности, не так ли?

Чтобы ответить на этот вопрос, давайте снова обратимся к круглому червю C. elegans. Его коннектом уже известен в отличие от коннектома человеческого неокортекса. Даже удивительно, что лишь небольшие части нервной системы червя удалось смоделировать цифровым способом. Эти модели помогают лучше понять некоторые простые картины поведения животного, однако все эти работы носят фрагментарный характер. Никто пока и близко не подошел к тому, чтобы смоделировать нервную систему червя целиком.

К сожалению, нам не хватает хороших моделей нейронов C. elegans. Как я уже говорил, большинство этих нейронов даже не дают импульсы, так что модель неравноценного голосования здесь неприменима. Чтобы построить модель для нейронов, нужно измерить какие-то их параметры. Но, как выясняется, для C. elegans это сделать труднее, чем для мышиных или даже человеческих нейронов. Кроме того, нам не хватает информации о синапсах этого червя. Существующий коннектом даже не позволяет уточнить, какие это синапсы – возбуждающие или ингибирующие.

Итак, «Синему мозгу» не хватает коннектома, а червю C. elegans не хватает моделей нейронных типов. А ведь для успешной цифровой имитации мозга или целой нервной системы нужны оба элемента. Значит, наше первоначальное утверждение следует переформулировать так: «Вы – это ваш коннектом плюс модели нейронных типов». (Будем предполагать, что коннектом точно описывает тип каждого нейрона.) Однако модели нейронных типов, скорее всего, будут содержать значительно меньше информации, чем коннектом, поскольку большинство ученых полагает, что нейронных типов гораздо меньше, чем самих нейронов. В этом смысле максима «Вы – это ваш коннектом» остается весьма близкой к истине. Более того, выше мы уже сделали допущение, что все однотипные нейроны должны вести себя сходным образом в любом нормальном мозгу, подобно тому как все белые медведи в нормальных условиях охотятся на тюленей. Если мы оцифруем множество людей, все эти имитации будут иметь одни и те же модели нейронных типов. Уникальную информацию о данной личности по-прежнему будет нести ее коннектом.

Следует отметить, что у червя C. elegans несколько иной баланс распределения информации. Его три сотни нейронов разбиты на сотню типов, а это ненамного меньше, чем количество нейронов. В сущности, каждый нейрон (вместе со своим симметричным двойников на другой стороне червиного тела) составляет отдельный тип. Если каждый нейрон потребует создания отдельной модели, суммарная информация, содержащаяся во всех моделях, превысит по объему информацию, содержащуюся в коннектоме. Так что для червя утверждение «Вы – это ваш коннектом» является ужасной натяжкой, хотя к нам оно, по-видимому, подходит едва ли не идеально.

Иными словами, нервная система червя C. elegans напоминает машину, собранную из деталей, каждая из которых уникальна. Работа отдельной детали при этом так же важна, как и их организация. Противоположная крайность – машина, сделанная лишь из деталей одного-единственного типа. (Если вам уже достаточно много лет, не исключено, что вы помните первые конструкторы «Лего», состоявшие из одинаковых блоков.) Работа подобной машины будет почти целиком зависеть от того, как организованы ее части.

Электронные приборы ближе к этой второй крайности, поскольку содержат детали не слишком многочисленных типов: резисторы, конденсаторы, транзисторы – это почти всё. Вот почему схема радиоприемника в такой большой степени определяет то, как он будет работать. Список деталей человеческого мозга длиннее, так что уйдет немало лет, чтобы смоделировать все нейронные типы нашего мозга. Однако типов деталей гораздо меньше, чем самих деталей. Вот почему очень важно, как организованы эти части. Вот почему утверждение «Вы – это ваш коннектом» все-таки может оказаться весьма хорошим приближением.

Модели мозга должны учитывать еще одну важную характеристику коннектомов – изменчивость. Без нее ваше цифровое Я не сможет накапливать новые воспоминания или приобретать новые навыки и умения. Маркрам и Модха включили в свои имитации фактор изменения синаптического веса, привлекая математические модели, построенные согласно правилу хеббовской синаптической пластичности. Но важно учесть также рекомбинацию связей, переподключение нейронов и регенерацию. Вообще наши модели четырех процессов коннектомных изменений куда грубее моделей процессов распространения электрических сигналов в нейронах. Возможно, эти модели удастся усовершенствовать, но для этого потребуется еще много лет научных изысканий.

Да, всё это серьезные препятствия на пути, однако модели нейронных типов и коннектомных изменений все-таки укладываются в общую концепцию цифрового моделирования мозга на основании коннектомов. Может быть, в мозгу есть что-то такое, что принципиально несовместимо с этой идеей? Одна из трудностей состоит в том, что нейроны могут взаимодействовать между собой и без помощи синапсов. К примеру, молекулы нейротрансмиттера способны вырваться из одного синапса и уплыть от него благодаря процессу диффузии, после чего их присутствие ощутит более отдаленный нейрон. В результате могут начать взаимодействовать нейроны, не связанные общим синапсом, или даже нейроны, вообще не контактирующие друг с другом. Такое внесинаптическое взаимодействие не описывается коннектомом. Возможно, мы сумеем без особых затруднений смоделировать какие-то из подобных внесинаптических взаимодействий. Однако может случиться так, что диффузия молекул нейротрансмиттера в тесные и извилистые межнейронные закоулки потребует создания весьма сложных моделей.

Если внесинаптические взаимодействия окажутся жизненно важными для функционирования мозга, тогда, быть может, все-таки придется отказаться от гипотезы «Вы – это ваш коннектом». Более общее утверждение «Вы – это ваш мозг», возможно, останется в силе, но его будет гораздо труднее использовать как теоретическую базу для оцифровки сознания. Не исключено, что на какой-то стадии нам придется отбросить коннектомные абстракции и спуститься еще ниже – на уровень отдельных атомов. Представьте, как на основании законов физики (уже не биологии) мы создаем компьютерную имитацию каждого атома мозга. Она будет чрезвычайно близка к реальности, куда ближе, чем модель, в основе которой лежит коннектом.

Однако для этого понадобится невероятное количество уравнений, ведь атомов так много. Нелепо даже пытаться прикинуть, какие же колоссальные вычислительные мощности для этого потребуются. Эта проблема не стоит на повестке дня – во всяком случае, до эпохи ваших отдаленнейших потомков, до того времени, когда истечет срок, вполне сравнимый с возрастом галактики. Сегодня нам трудно строить модели даже для скромных ансамблей атомов – для молекул. Цифровая имитация всех атомов мозга – это что-то почти невообразимое. И ограниченные вычислительные мощности – лишь одно из препятствий на этом пути. Нелегко будет получить исходную информацию для того, чтобы начать строить такую модель. Возможно, для этого понадобится определить местоположение и скорость каждого из атомов мозга, а это куда больший объем информации, чем тот, что содержится в коннектоме. Не совсем ясно, как собирать такую информацию и как сделать это за обозримое время.

Так что если вы намерены оцифровать свое сознание, выбирайте коннектомную стратегию, больше вам пока надеяться не на что. В ближайшие годы мы поймем, является максима «Вы – это ваш коннектом» истиной или только хорошим приближением. Нам помогут в этом методики исследования, описанные в части IV. Подобные научные изыскания будут направлены главным образом на более близкие цели, однако попутно они могут дать нам кое-какое представление о том, есть ли у оцифровки сознания реальные шансы на осуществление.

* * *

Мы, люди, с давних пор верим (ну, или нам хочется верить), что, помимо материального существования, в жизни имеется еще что-то: «Я не просто кусок мяса, у меня есть душа». Оцифровка сознания – всего лишь новейшая вариация неотступного желания человека покинуть собственное тело, но остаться живым.

За последние несколько веков наука сильно поколебала нашу веру в наличие души. Вначале нам говорили: «Вы – куча атомов». Согласно этой материалистической доктрине, Вселенная подобна гигантскому бильярдному столу, на котором атомы, словно бильярдные шары, движутся и сталкиваются, подчиняясь законам физики. Наши собственные атомы не являются исключением из этого правила и следуют тем же законам, что и все прочие атомы во Вселенной. Потом биология и нейронаука стали убежать нас: «Вы – машина». Согласно этой доктрине механицизма, детали такой машины – клетки или особые молекулы вроде ДНК. Наше тело и мозг не имеют принципиальных отличий от рукотворных машин, производимых человеком, просто тело и мозг более сложно устроены.

Однако появление компьютеров заставило нас пересмотреть положения материализма и механицизма. Оцифровщики верят: «Вы – массив данных». Мы – не машина и не материя, они служат лишь средством для того, чтобы хранить то, чем мы являемся на самом деле: информацию. При нашем повседневном обращении с компьютерами мы научились различать информацию и ее материальное воплощение. Представьте, что я схвачу ваш ноутбук и в порыве разрушительной ярости разрублю его на куски. Вы соберете их и сумеете извлечь жесткий диск, который окажется неповрежденным. Что ж, вам ни к чему долго скорбеть. Просто перенесите информацию с этого диска на другой ноутбук, и мы будем жить дальше, как будто ничего не случилось.

Оцифровщики не видят принципиальных различий между человеком и ноутбуком. Они полагают, что информацию о вашей личности можно перевести в какую-то иную материальную форму. Оцифровщик порицает материалиста: «Вы – не куча атомов, а схема, согласно которой они расположены». Оцифровщик ругает механициста: «Вы – не ваши нейроны, а схема, согласно которой они соединены». И хотя схема требует вещественного воплощения, сама она принадлежит к абстрактному миру информации, а не к конкретному миру материи.

Что ж, оцифровщик вправе сказать, что ваш новый ноутбук – реинкарнация старого. Переселение ноутбучьей души произошло, когда вы перенесли информацию с одного жесткого диска на другой. Так мы подходим к идее о том, что современная душа – это информация. Мы описали полный круг, вернувшись к мысли о том, что в основе нашего Я лежит нематериальная сущность, что-то более призрачное, чем вещество.

Аналогия несовершенна. В отличие от души, которую обычно считают бессмертной, информация может оказаться безвозвратно утраченной. Нанотехнолог Ральф Меркл сформулировал понятие теоретической информационной смерти как уничтожение хранящейся в мозгу информации о личности. Вернемся к нашему примеру с ноутбуком. Представьте, что из вашего изувеченного компьютера извлекли жесткий диск, однако в процессе рубки поврежден его мотор. Вы не настолько разбираетесь в технике, чтобы переписать информацию с этого диска на новый ноутбук. Однако некий специалист по компьютерному железу сумел починить мотор, так что теперь вы можете осуществить перенос данных. В то же время, если я окажусь совсем уж законченным негодяем, я не стану рубить ваш компьютер на куски, а просто проведу мощным магнитом над его жестким диском. Информация сотрется, ведь принцип ее хранения на жестком диске – магнитный. В таком случае никакая технология, даже самая совершенная, не восстановит утраченные данные. Это невозможно в принципе.

Определение смерти, которое предлагает Меркл, имеет скорее философское, чем практическое, значение. Чтобы применить его, нам нужно точно знать, каким образом воспоминания, характер и другие свойства и особенности вашей личности хранятся в мозгу. Если эта информация содержится в коннектоме, то теоретическая информационная смерть – не более чем коннектомная смерть.

Все усилия человека обрести бессмертие можно рассматривать как попытки сохранить информацию. Большинство людей предпочитают завести детей, прежде чем умереть. Некоторая часть данных их ДНК будет жить в ДНК их детей, а другие разновидности информации будут жить в памяти детей. Некоторые пытаются достичь бессмертия, сочиняя песни или книги, которые будут вспоминать будущие поколения. Это еще одна попытка запечатлеть информацию о себе в умах других.

Крионика и оцифровка сознания стремятся законсервировать информацию, содержащуюся в мозгу. Всё это можно рассматривать как часть более широкого движения, именуемого трансгуманизмом: оно ищет возможность изменить людей как вид. Трансгуманисты заявляют: больше не нужно ждать, пока нас продвинет вперед дарвиновская эволюция, ползущая медленно, словно ледник. Мы можем использовать технологию, чтобы трансформировать свое тело и свой мозг. Или же мы вовсе отвергнем их и переселимся в компьютеры.

Над трансгуманизмом посмеиваются, обзывая его «вознесением для гиков». Некоторым вообще кажется странным, когда кто-то фантазирует насчет будущей вечной жизни, когда уже сегодня миру всерьез угрожает столько острых и неотложных проблем. Но трансгуманизм – неизбежное и логичное развитие идей Просвещения, воспевавшего мощь человеческого разума. Ободренные успехами математики и естественных наук, европейские мыслители стремились положить в основу правовых законов и философии принципы, выведенные путем рациональных рассуждений, а не апеллировать к традициям или божественным откровениям. Философ Лейбниц даже полагал, что все разногласия проистекают из ошибок в рассуждениях, и предлагал разрешать эти противоречия, формализовав аргументацию с помощью символьной логики.

Однако в XX столетии ограниченность разума стала мучительно очевидна. Логик Курт Гёдель доказал, что математика неполна, поскольку существуют истинные утверждения, которые нельзя доказать. Физики, первыми вступившие в область квантовой механики, обнаружили, что некоторые события по-настоящему случайны, и их нельзя предсказать, даже обладая неограниченной информацией и вычислительными мощностями. Если разум пасует даже в сфере математики и естественных наук, как можно ожидать, что он будет всегда выручать нас в других областях? Многие философы убеждены, что нравственность и этика невыводимы из рационального; попытки это сделать они называют «натуралистической ошибкой».

Трансгуманисты больше не верят, что разум способен ответить на все вопросы. Однако они по-прежнему верят в его могущество, поскольку он способен постоянно создавать всё более совершенные технологии. Трансгуманизм решает важнейшую проблему Просвещения, состоявшую в том, что научный взгляд на мир лишал многих ощущения цели. Если физическая реальность – это лишь кучка пляшущих атомов или генов, конкурирующих между собой за то, какой из них скопируется, тогда жизнь кажется лишенной смысла. В своей книге о Большом взрыве, озаглавленной «Первые три минуты», физик-теоретик Стивен Вайнберг пишет: «Чем познаваемее кажется Вселенная, тем бессмысленнее и бесцельнее она представляется». Паскаль более поэтично выразил эту точку зрения в своих «Мыслях»:

Я вижу эти страшные пространства Вселенной, окружающей меня, и сам я затиснут в малый уголок этой безбрежности, не ведая, почему я помещен в это место, а не в иное, не ведая, почему то краткое время, что отпущено мне для жизни, поместило меня в этот, а не в иной промежуток вечности – той вечности, что длилась до меня и продлится после. Со всех сторон меня окружает бесконечность, словно я атом, словно я тень, которая возникает лишь на мгновение, чтобы потом больше никогда не возвратиться в мир. Я знаю лишь, что должен скоро умереть, но мне, по крайней мере, известно, что этой смерти я не сумею избежать.

Выражение «смысл жизни» имеет и универсальное, и личное значение. Можно спросить: «Есть ли причина для нашего бытия здесь?» или же: «Есть ли причина для моего бытия здесь?». Трансгуманизм отвечает на эти вопросы так: судьба человечества – выйти за границы человеческого. Это не просто случится, это должно случиться. Ну, а отдельный человек вполне может стремиться к членству в «Алькоре», мечтать об оцифровке сознания или пытаться использовать современные технологии, чтобы усовершенствовать себя каким-то иным образом. Так или иначе, трансгуманизм возвращает в жизнь смысл, отобранный наукой.

В Библии сказано, что Господь сотворил человека по Своему образу и подобию. Немецкий философ Людвиг Фейербах, в свою очередь, объявил, что это человек создал Бога по своему образу и подобию. А трансгуманисты говорят, что человечество само должно стать Богом.