Животные анализируют мир

Симаков Юрий Георгиевич

Автор книги занимается исследованием «живых индикаторов» — одним из направлений в науке, которое появилось сравнительно недавно на стыке биологии и техники. Он также проводит полевые исследования мест посадки НЛО с помощью микроорганизмов.

Можно надеяться, что изложенный в книге уникальный материал, раздумья автора, связанные с раскрытием тайн работы биологических индикаторов, будут с большим интересом восприняты читателями.

 

От редактора

Дорогой читатель! Задумывался ли ты, что в наш техногенный век самые совершенные и точные приборы, созданные человеком, являются всего лишь копией миниатюрных живых организмов, созданных самой природой?

Такими приборами обладают представители животного мира. Человек, «подсматривая», строит миниатюрные датчики, а в природе уже миллионы лет живут их обладатели: рыбы, птицы, насекомые.

Живые организмы обладают фантастической чувствительностью — они за несколько дней чувствуют приближение землетрясения: теряют ориентацию птицы, скулят собаки, ящерицы покидают свои норы, канарейки бьются в клетках, муравьи спасают свое будущее потомство. Сейсмоанализаторы «живых индикаторов» воспринимают даже самые незначительные колебания, которые не могут фиксировать современные приборы.

Где находятся сейсмоанализаторы и как они работают? Как глубоководные обитатели пользуются приборами «ночного видения»? Почему у кальмара на хвосте расположены телескопические глаза? Какие насекомые и ракообразные могут видеть ультрафиолетовые лучи? Как происходят разнообразные формообразования в природе, если развитие всех начинается с одной клетки? Почему рыбы «кашляют» и какой прибор изобрели ученые на основе «приступов кашля» рыб? Это лишь малая часть вопросов, которые рассматривает в своей книге Симаков Юрий Георгиевич, доктор биологических наук, профессор, специалист в области эмбриологии и гидрологии.

Часто к окружающей нас природе и ее обитателям мы относимся как к обыденному явлению: все это было, есть и будет. Для нас — это известная картина мира и привычное мироздание, а вот автор настоящей книги помогает проникнуть в малоизвестный и удивительный мир «живых индикаторов» — простейших животных, которые помогают ученым познать единство законов природы и раскрыть тайны мироздания.

Итак, «Животные анализируют мир» — это очередная книга в серии «Мироздание», а издательство «РИПОЛ КЛАССИК» продолжает бороться за интеллектуального читателя.

Зинаида Львова

 

Глава первая

ХИМИКИ-АНАЛИТИКИ ЖДУТ ИХ

 

Муху странную бери

Однажды в детстве я оказался на пустыре. Все поросло травой на разрушенной войной стройке. Оборвался путь железнодорожной ветки, не дойдя до корпусов, зияющих пустыми окнами. И вдруг на насыпи у рельсов, где надолго застыли колеса грузовой железнодорожной платформы, я увидел знакомое мне растение, нагнулся и сорвал его — это был чесночок, созревший, но совсем крошечный, в десять раз уменьшенная копия того, что растет на огороде. У него была головка величиной с горошину, но зубчики в ней — как у настоящего чеснока. Тогда мне показалось, что кто-то сделал игрушечное растение, а на самом деле я столкнулся с загадочной проблемой нашей земной жизни — проблемой формообразования. Какие «приборы» следят за формой живого и где они скрыты?

Здесь же, у рельсов, в траве, бегали, стрекотали и прыгали другие живые существа. Они были вооружены миниатюрными локаторами, дальномерами и светофильтрами, дающими им возможность по-своему воспринимать окружающий мир. Падающая от меня тень заставляла их отскакивать и прятаться между травинок.

Биологи считают, что муравей глазами отличает только свет от тени. Но почему же тогда он принимает оборонительную позу, если протянуть к нему руку, будто он видит наши пальцы и ладонь и точно определяет расстояние до руки? Может быть, он «видит» не нас, а электрическое поле от руки? Тогда какими же «приборами» муравей может ощущать это поле?

Достаточно присмотреться к живым существам, чтобы убедиться, какой необычайной способностью реагировать на присутствие веществ и различных полей наделены они. В безбрежном мире живых организмов можно найти рекордсменов, способных ощущать отдельные молекулы веществ и улавливать самые слабые известные нам, а возможно, и неизвестные поля. Но ведь у многих существ их удивительные приборы помещаются в объеме величиной с булавочную головку, а в некоторых случаях даже в световой микроскоп их не рассмотришь, нужен электронный.

Попробуем сравнить сделанный человеком прибор с тем, что создала природа.

В современной аналитической лаборатории целые полчища датчиков, индикаторов и различных анализаторов.

Например, сейчас часто применяют нейтронный активационный анализ. С помощью этого совершенного метода можно уловить незначительную разницу в составе микроэлементов в волосах двух людей. Мне приходилось использовать этот метод при исследовании состава микроэлементов в хрусталиках глаз лягушек, особенно у головастиков, когда и хрусталик-то на ладони выглядит как маковое зернышко, а ведь удалось обнаружить в такой крохе даже золото. Сколько же требуется приборов для такого сверхточного анализа? Нужен источник нейтронов — атомный реактор, сооружение достаточно внушительное. И еще — многоканальный анализатор гамма-спектра величиной с небольшой платяной шкаф.

Сама же природа подсказывает, как надо строить миниатюрные датчики и приборы, которыми снабжены различные насекомые, рыбы, птицы. Миллионы лет совершенствовались их анализаторы в процессе эволюции, и эту работу можно смоделировать. У электронщиков для этого большие возможности. Так, на плато (величиной с почтовую марку) они могут поместить схему телевизора. В будущем у пленочной электроники перспективы неограниченные.

Но есть и второй путь создания чувствительных приборов. Например, использовать датчики мух, пауков, крыс. Учитывая фантастическую чувствительность живых организмов к различным химическим соединениям, можно попытаться не моделировать их, а прямо, непосредственно подключить к электронным схемам. Как здесь не вспомнить стихотворение Н. Заболоцкого под названием «Царица мух»:

Муху странную бери, Муху в банку посади, С банкой по полю ходи, За приметами следи. Если муха чуть шумит — Под ногами медь лежит. Если усиком ведет ~ К серебру тебя зовет. Если хлопает крылом — Под ногами злата ком.

О высокой чувствительности насекомых знали уже средневековые схоласты и даже пытались использовать их при отыскании кладов или месторождений драгоценных металлов. Именно писания одного из них и вдохновили поэта Н. Заболоцкого к созданию подобного стихотворения. Звали его Агриппа Неттесгеймский, а жил он в начале XVI века. Каких только легенд не ходило об этой странной личности! Вплоть до того, что якобы он даже мог вызывать к себе дьявола. Он действительно отыскивал и клады, и месторождения драгоценных металлов и проводил необычайные алхимические опыты. Не исключено, что в его руках были секреты использования «живых приборов». Агриппа знал, что древние индусы отыскивают клады с помощью какой-то таинственной мухи, он назвал ее «царицей мух». Мало того, сам он, видимо, имел такую муху и даже оставил рецепт, как, обращаться с ней: «Когда будете иметь в своем распоряжении одну из таких мух, и посадите ее в прозрачный ящичек. Ее помещение надо освежать два раза в день и давать ей растение, на котором ее поймали. Она может жить при таких условиях почти месяц. Чтобы узнать направление скрытых на глубине сокровищ, надо, чтобы была хорошо установившаяся погода. Тогда, взяв ящичек с мухой, отправляйтесь в путь, постоянно подсматривая и подмечая ее движения. Если в недрах скрыты драгоценные камни, вы заметите содрогание в лапках и усиках. Если же будете находиться над местом, содержащим золото или серебро, муха замахает крыльями, и, чем ближе вы будете, тем сильнее будут ее движения. В том случае, если там находятся неблагородные металлы — медь, железо, свинец и прочие, — муха будет ходить спокойно, но тем быстрее, чем ближе к поверхности они находятся».

Поэт Н. Заболоцкий вспоминает, что подобные курьезные предания он слышал и в русских деревнях.

Может быть, можно по описаниям Агриппы определить вид мухи? Имея в руках такую муху, нетрудно проверить правдоподобность опытов схоласта. Пусть мало шансов, что «кладоискательный прибор» заработает. Но вдруг… Агриппа пишет, что таинственная муха величиной с крупного шмеля любит садиться на водные растения. Мало сведений, но какая-то нить в руках есть. Вся трудность в том, что мух и их родственников 80 ООО видов. Видимо, Агриппа ничего не знал еще о мимикрии: существуют, например, бабочки, принявшие вид мух. Где гарантия, что именно не одну из них содержал у себя средневековый ученый.

Современные ученые занялись исследованием «живых приборов» — их колоссальной чувствительности еще в двадцатые годы XX века. Известный уже в то время биолог Н. К. Кольцов даже организовал лабораторию физико-химической биологии. Вот один из опытов, проведенный в ней. В большой, на двести литров, аквариум, наполненный водой, помещались одноклеточные существа — сувойки. Их можно увидеть в микроскоп. Они похожи на колокольчики, сидящие на тонких ножках. При воздействии на сувоек неблагоприятных факторов ножки быстро сворачиваются в пружинки, а сам колокольчик закрывается. Кольцов добавлял в сосуд лишь одну каплю слабого раствора с ионами кальция. Через некоторое время (его всегда можно было рассчитать) первые ионы достигали сувоек. И их ножки тотчас же сворачивались. Значит, эти существа способны реагировать на отдельные заряженные атомы вещества.

В научных журналах того времени можно найти описание другого опыта Н. К. Кольцова. В банку с водой, где сидит лягушка, опущено золотое кольцо. И через некоторое время ее брюшко становится розовым. Кровеносные сосуды расширились и стали просвечивать сквозь тонкую кожицу. А много ли золота за это время растворилось в воде? Ничтожное количество.

Изучением чувствительности живого увлекся и фармаколог Н. П. Кравков. В 1926 году его труд о действии лекарственных препаратов посмертно был удостоен Ленинской премии. В опытах Н. П. Кравкова индикатором тоже были кровеносные сосуды, но только не лягушки, а кроличьего уха. В ухо, отрезанное от тела животного (точнее, в кровеносные сосуды), лаборант впрыскивал физиологический раствор. Пройдя по системе сосудов, жидкость вытекала через открытые концы вен, и ее капли падали на чашку очень точных весов.

Когда в раствор добавляли немного адреналина, сосуды сужались, скорость истечения капель уменьшалась. «Живой прибор» работал безукоризненно. Самое любопытное, что он сигнализировал о некоторых веществах даже на расстоянии.

Стоило поднести к уху свинцовую пластинку — и эффект был таким же, что и при введении раствора с адреналином.

Биолог А. Л. Чижевский сконструировал сверхчувствительный аппарат, который предупреждал о всплесках солнечной активности за неделю до их появления. Главной «деталью» прибора были бактерии, способные изменять свою окраску. На что они реагируют — на изменение электромагнитных полей или летящие от Солнца частицы, — до сих пор не выяснено.

Многие специалисты скептически относятся к созданию «живых» и «полуживых» приборов. Конечно же, инженеры не сомневаются в высокой чувствительности бактерий, мух, рыб и лягушек, их волнует другое — можно ли однозначно определить, что живой организм реагирует именно на изучаемое вещество? Сколько реакций у различных растений и животных на воздействие внешней среды? Ответ может получиться очень расплывчатым. А физический прибор всегда покажет правильный ответ, если он исправен и точно проградуирован.

Это вполне понятное сомнение. Конечно, прибор должен гарантировать воспроизводимость результатов при повторных измерениях. Биологи отдают себе в этом отчет и уже пытаются преодолеть данную трудность. Так, взят на вооружение условный рефлекс.

Скажем, у рыб условный рефлекс формируется на отдельные молекулы примеси веществ, попавших в воду. При попадании исследуемых концентраций веществ в воду рыбу можно научить уходить от сетки, через которую пропускается ток. А как доказать, что рыба реагирует именно на это вещество, а не на какой-либо другой раздражитель? Стереть память к этому веществу. Возможно ли это? Вполне. Определено, что, если карасю после обучения ввести антибиотик пуромицин, он забудет рефлекс на это вещество, хотя все другие рефлексы у него сохранятся.

Сейчас способы регистрации биопотенциалов достигли такого совершенства, о которых в двадцатые годы прошедшего века приходилось только мечтать. Теперь экспериментаторы научились отводить биотоки как от нервных ядер и узлов, так и от отдельных клеток. С помощью тончайших платиновых и золотых электродов можно снимать потенциалы с оболочек клеток и с нервных волокон. Так что подключиться к «живому прибору» или отдельному его датчику не представляет особого труда, хотя это — ювелирная работа, выполняемая под микроскопом. Современным электрофизиологам удается регистрировать разность потенциалов порядка десятых долей милливольта.

На службе биологов уже стоят микроскопические по размерам световоды, фотосопротивления и фотоэлементы, с помощью которых можно следить за изменением цвета бактерий и формы клеток. А их можно применять как отдельные узлы «живых» или «полуживых» приборов.

Возможно, применение электронных и живых узлов даст новое поколение измерительной аппаратуры, способной избавиться от посторонней информации и различных помех. Сколько приходится ставить различных фильтров в приборах, чтобы выделить, например, нужное вещество, а это все усложняет анализирующие устройства и удорожает их. В то же время живые организмы умеют с помощью своих «датчиков» отсеивать лишнюю информацию. Так, глаз лягушки, особенно сетчатка, выбирает только нужные для животного сведения. Подобные механизмы переработки информации найдены в анализаторах животных, занимающих другое систематическое положение. Например, насекомые и пауки прекрасно «понимают» показания своих органов чувств. Органы обоняния у паука находятся не на голове, а на ногощупальцах (педипадльпах) и кончике брюшка. Природный водоем паук обнаруживает на большом расстоянии. Но не находит банку с дистиллированной водой, поставленную почти рядом. По-видимому, пауки реагируют на ничтожные примеси солей в воде.

Говорят, что на вкус и цвет товарищей нет. Но ни одну муху не проведешь на сахарине. Она уверенно отличит его от сахара, прикоснувшись к порошку лапками. Оказывается, происходит пространственный анализ веществ, и их химический состав муха определяет одним только прикосновением лапок. Попробуем представить себе и биоприбор — отведем с помощью электродов потенциалы с нервных клеток мухи, а после усиления передадим на осциллограф, на экране которого каждому веществу будет соответствовать определенная осциллограмма. Имея набор кривых, полученных ранее от различных веществ, можно за одну минуту исследовать несколько веществ.

Недавно группа сотрудников кафедры энтомологии биологического факультета МГУ предложила способ, с помощью которого можно записывать на осциллографе сигналы, идущие от вкусовых щетинок самки комара-пискуна. Оказалось, что любому химическому соединению соответствует строго определенная последовательность электрических импульсов. И это при концентрации в сотые доли миллиграмма в одном литре воды! Ученые ищут ключи к расшифровке осциллограмм. Если поиски будут успешными, то можно надеяться на создание средства для эффективного экспресс-анализа, проводимого в химических лабораториях.

 

Анализаторы запахов и молекул

Как ни странно, но до сих пор точно неизвестно, почему «запахи» пахнут и почему люди по-разному ощущают их. Недавно физиологи установили, что мужчины и женщины неодинаково воспринимают запахи. Взять хотя бы экзальтолид — вещество, применяемое в парфюмерной промышленности в качестве фиксатора. Женщины его ощущают, а все лица мужского пола не знают, как пахнет это вещество. Девочки тоже его не ощущают до достижения половой зрелости.

Однако, если взрослому мужчине ввести женский половой гормон, он начинает чувствовать запах экзальтолида. А помимо этого, ему открывается целый ряд запахов, о которых он раньше не имел никакого представления. Запахи в жизни человека играют важную, но не первостепенную роль. А вот у ряда животных именно обоняние развито сильнее других органов чувств. Можно ли представить, как сложны их органы «химического чувства»?

Человек четко определяет вкусовые качества веществ, в то же время незнакомые запахи он сравнивает с уже известными. Таких запахов можно насчитать тысячи. У нас вкусовые и обонятельные ощущения разделяются, а у многих живых существ они выступают как единое чувство. Например, химические анализаторы у насекомых находятся во рту, на антеннах и на ногах. По мнению ряда ученых, некоторые насекомые, например термиты и муравьи, обладают даже объемным обонянием, которое людям трудно вообразить.

Бионикам пока еще далеко до создания совершенных анализаторов запахов, хотя они предпринимают попытки создать электронный искусственный нос и добились некоторых успехов. Но разве эти приборы можно сравнить с живыми анализаторами?

Биологи установили, что средством общения между насекомыми служит ряд веществ, которые называют феромонами. К феромонам относятся, например, пахучие вещества самки некоторых бабочек, которые привлекают самцов, находящихся иногда на расстоянии нескольких километров. Так, самец айлантовой сатурии обнаруживает самку, удаленную от него почти на два с половиной километра, и это далеко не рекорд. Непарный шелкопряд может обнаружить самку в радиусе четырех километров, а большой ночной павлиний глаз справился с этой задачей на расстоянии восьми километров. Возможно, не только обоняние используется для такого поиска. Во всяком случае, ученые пытались выяснить предельную границу, с которой самцы бабочек уже не находят самку. Они пометили самцов бабочки-глазчатки и выпускали их через окно движущегося поезда на разных расстояниях от места с клеткой, где находилась самка того же вида. Даже с расстояния одиннадцати километров вернулось двадцать шесть процентов выпущенных самцов.

Для подобной химической локации насекомые используют перистые антенны-усики, усаженные хеморецепторами, своеобразными миниатюрными биодатчиками.

Чувствительность биологических анализаторов насекомых просто поразительна — она не уступает самым совершенным методам анализа, применяемым физиками и химиками, самой совершенной аппаратуре. Так, например, у тутового шелкопряда (Bombix mori) ученые выделили вещество, которое назвали «бомбикол» (от латинского названия шелкопряда). Самки бабочек выделяют бомбикол из желез, и незначительные концентрации его приводят самцов в сильное половое возбуждение. Самцы начинают трепетать крыльями и совершать вращательные движения телом. Какие же минимальные концентрации бомби-кола может ощущать самец? Цифра эта очень мала. Самцу шелкопряда подносили стеклянную палочку, на которой содержалась миллионная доля пикограмма (один пикограмм равен миллионной доле грамма) раствора бомбикола. И этого количества оказалось достаточно, чтобы самец пришел в возбуждение и начал сильно трепетать крыльями. Трудно даже себе представить, что молекулы бомбикола взаимодействуют с анализаторами, расположенными на усиках и ножках шелкопряда!

Немецкий биохимик А. Бутенанд, изучив состав бомбикола, получил четыре стереоизомера этого соединения и показал, что самцы непарного шелкопряда не только улавливают своим анализатором минимальное количество бомбикола, но и различают стереоизомеры пахучих веществ, то есть конфигурацию молекул.

Так что же улавливают хеморецепторы — колебания атомов в исследуемой молекуле или ее конфигурацию?

На этот вопрос пока нет исчерпывающего ответа. Существует две теории. По одной из них, предложенной биологом Дж. Эймуром, анализируемые молекулы вещества и хеморецепторы подходят друг к другу, как «ключ к замку» (рис. 1).

Рис. 1. Схематическое изображение принципов работы обонятельных рецепторов по принципу «ключ к замку»: слева — молекулы пахучего вещества; справа — «ключ» хеморецептора

Дж. Эймур выделил семь основных обонятельных рецепторов, воспринимающих камфорные, эфирные, цветочные, мускусные, мятные, острые и гнилостные запахи. Причем «замки» и «ключи» имеют простую конфигурацию. Например, эфирные «ключи» — палочки, мускусные — диски, камфорные — шаровидные. Когда конфигурация молекулы одного вещества подходит к одному из семи видов химических анализаторов, происходит платный контакт, и на рецепторах возникает электрический заряд. Так же, как на экране цветного телевизора только три цвета — синий, красный и зеленый — создают всю гамму цветов, весь букет запахов создается семью составляющими, которые хеморецепторы воспринимают как отдельные компоненты действующего запаха. Вместе они дают полную картину запаха, поступающего в мозг в виде биотоков по нервным обонятельным волокнам, а мозг полностью анализирует его.

По другой теории, разработанной физиологом Р. Райтом, молекулы пахучего вещества совершают постоянные колебания, так как колеблются составляющие их атомы. Предполагается, что каждое вещество характеризуется определенным «дрожанием». Вот эти-то колебания при непосредственном контакте, а возможно, и дистанционно, улавливаются хеморецепторами и также анализируются мозгом.

Трудно пока отдать предпочтение какой-либо из этих теорий. Уж очень они обе заманчивы. Во всяком случае, легче изучать не дистанционное восприятие запаха, а контактное. Ранее уже упоминалось о таких контактных «анализах», которые может делать муха. Ведь у нее хеморецепторы находятся на лапках, и она всегда знает, что у нее под ногами: еда, питье или что-то несъедобное. Ученые подсоединили электроды к нервным волокнам синей мухи, усилили отведенные импульсы и записали их на осциллограмме. Оказалось, что на ее лапках четыре типа рецепторов: одни анализируют состав воды, другие определяют вид сахара, третьи исследуют различные соли, четвертые указывают на наличие белковой пищи. Но самое интересное, что анализаторы химических веществ у мухи находятся и в хоботке, причем хоботок автоматически отвечает на показания ножных хеморецепторов: он вытягивается, и муха начинает пить или есть. Поэтому экспериментаторы наносят на лапку мухи исследуемое вещество и по выпрямлению хоботка судят, какие концентрации и какие вещества улавливает насекомое. Такой химический анализ занимает несколько секунд, и его вполне могут использовать химики-аналитики в некоторых своих работах.

Но есть животные, которые самым настоящим образом «щупают» конфигурацию молекул. Да, да, именно конфигурацию молекул!

Среди водных организмов довольно широко распространены морские желуди, или балянусы. Их можно увидеть на камнях прибрежных скал, а иногда и на живой раковине моллюска. Да что там моллюск — они и к китам ухитряются прикрепиться. На кораблях и гидротехнических сооружениях морские желуди — основной компонент обрастания.

Морские желуди — это усоногие ракообразные. Конечно, они не похожи на речного рака и даже на морского краба, но все же это их родственники. Личинки у бапянусов, как и у всех ракообразных, свободноплавающие и похожи на личинок других раков (рис. 2а). В раннем «детстве» морские желуди выдают свое происхождение, что они ракообразные, а во взрослом состоянии рака в них не узнать (рис. 2б).

Рис. 2. Балянусы и их личинки:

а — личинки рачков балянусов на различных стадиях развития; б — взрослые балянусы, или морские желуди

Поставим под микроскоп личинку баляпуса. На ее антеннах можно увидеть своеобразные диски, а если внимательнее присмотреться, то и волоски, окружающие диск. Это и есть прибор, «ощупывающий» конфигурацию белковых молекул. Ведь личинка, проплавав какое-то время, должна прикрепиться к твердой поверхности и сделать вокруг себя своеобразный домик со створками. Но как найти хорошее место для прикрепления? Очень просто: использовать опыт предшественника, если он сумел выжить и оставить след после себя, то и последующему жильцу, вероятно, на этом месте будет неплохо. А какой же след оставил после себя живущий на этом месте балянус? Белок, причем нерастворимый в воде. Этот белок по составу напоминает тот, который встречается в твердом покрове ракообразных и даже насекомых. Но личинка морского желудя не только не путает его с белком других животных, а, наоборот, узнает место, где ранее сидели балянусы именно ее вида. Значит, своим анализатором, на ощупь, она определяет те незначительные отличия в молекуле белка, которые по конфигурации соответствуют ее виду. Ни химики, ни физики такого прибора еще не имеют. Как тут не вспомнить теорию химического анализа, основанную на принципе «ключа и замка», когда форма молекул исследуется рецепторами, подходящими комплементарно к структуре исследуемых белков?

Ну а теперь отправимся в мир мигрирующих рыб, например лососей. До настоящего времени способность лососей находить путь вверх по реке к своим родным водоемам даже ихтиологам, которые их изучают, кажется сверхъестественной. Каждый год эти рыбы из океана возвращаются к родным рекам, а затем плывут вверх по реке, преодолевая пороги, камни и сильные встречные течения. Как будто им кто-то точно поставил задачу — вернуться в то место, где они родились сами, и только там провести нерест. Все это невероятно: в огромном океане, где кормились лососи, они должны найти устье родной реки, а затем уже в реке — место вы клева из икринок. Однако здесь ученые преуспели и многое раскрыли.

Так, они установили, что миграция лососей состоит из двух этапов. На первом этапе они отыскивают устье родной реки. И делают это примерно, как птицы, ориентируясь по Солнцу. Путь от «морских пастбищ» до устья реки может составлять сотни, а иногда и тысячи километров. Например, шотландский лосось, который кормится у берегов Гренландии, для возвращения в устье реки преодолевает четыре тысячи километров. Но ориентация по Солнцу, как у птиц, так и у лососей, пока только предполагается. Действительно, выпущенные на волю лососи при солнечной погоде быстро находят пути своего следования, а если небо покрыто облаками, они теряют ориентацию. В лабораториях пробовали сделать искусственное «Солнце», его вращали, и лососи меняли траекторию своего движения. Следовательно, Солнце для их ориентации что-то значит.

С расстояния ста километров от своей реки лососи определяют направление движения с помощью обоняния. В проведенных экспериментах десять тысяч помеченных лососей возвращались в то же место, где они вылупились из икры. Что же за прибор у лососей улавливает запах родного водоема? Установлено, что у рыб есть У-образные трубочки с хеморецепторами. Вода прогоняется через эти трубочки микроресничками или течением, создаваемым при движении рыбы. Американские исследователи заткнули лососям ноздри ватными тампонами, и рыбы уже не могли найти путь к нерестилищам.

Электрофизиологи проводили эксперименты другого рода. Они выловили лососей в местах нерестилищ и подключили им электроды к обонятельной луковице, а далее биотоки подавались на усилитель и к записывающей аппаратуре. Когда через ноздри лосося пропускали воду с его родной реки, в обонятельной луковице отмечалась повышенная электрическая активность. Достаточно было сменить воду, взять ее из чужого нерестилища — никакого электрического ответа не было. В то же время вода, взятая ниже по течению реки, куда попадала часть воды с нерестилища подопытного лосося, вызывала слабый всплеск биотоков в обонятельной луковице. Значит, вода из родной реки обладает определенным запахом который лососи отличают от всех других. Но чувствительность к этим веществам у рыб так высока, что самые тонкие и точные анализы не позволили установить, какие именно вещества привлекают рыб. Видимо, это соединения растительного или животного происхождения, составляющие целый комплекс знакомого запаха для лососей, которые они помнят несколько лет.

Может показаться, что мы уже близки к разгадке механизма ориентации лососей во время миграции. Но как тогда объяснить опыты с выключением ноздрей? Оказалось, что с открытыми ноздрями лососи находят свое нерестилище не только, если они идут вверх по течению, когда потоки воды приносят им знакомый запах, но и, если их выпустить вниз по течению, то есть выше родного «дома». Навстречу им движутся лососи, стремящиеся к своим нерестилищам, они не обращают на них никакого внимания, нарушают все законы и доходят до своего притока. Если же подопытным лососям «отключить» ноздри с помощью тампонов, они не находят дорогу. Возникает вопрос: какую функцию выполняют ноздри?

Ведь запах их родной реки сносится только вниз по течению, и даже электрофизиологи не отмечали у лососей никакой реакции обонятельной луковицы на речную воду, взятую выше нерестилища. На этот вопрос ихтиологи ответить пока не могут, хотя и тут полностью нельзя исключить сверхчувствительного обоняния этих рыб.

Сухопутный «живой прибор», анализирующий запах, известен всем — это собака. Ни у кого не вызывает удивления, что собак используют в качестве следопытов, хотя это как раз удивительно. Собака живет миром запахов, на втором плане у нее острый слух, а затем зрение. Первые эксперименты были проведены Д. Романесом еще в 1885 году. Исследователь возглавил цепочку людей из двадцати человек, которые шли за ним и ступали след в след. Затем группа разделилась на две части и каждая направилась к своему укрытию. Когда пустили собаку Романеса, она легко отыскала место, где укрылся ее хозяин.

Задача по отысканию однояйцевых близнецов оказалась для собаки посложнее. Ведь близнецы имеют совершенно одинаковый состав белков, разница лишь в том, что один из них образовался из правой, а другой из левой половины общего зародыша на ранних стадиях развития. Перед опытом собаку познакомили с одним из близнецов. Затем оба близнеца прошли в группе людей по полю и разделились: один пошел с половиной людей вправо, другой — влево. Собака нашла знакомого ей близнеца. А что, если собаку познакомить с одним близнецом, а в опыте будет участвовать другой? В этом случае собака пошла по следу незнакомого ей близнеца. Значит, если близнецы вместе, собака их различает, а в отдельности отличить их друг от друга не может: уж очень сходны запахи, и только сравнительный анализ помогает ей решить задачу.

Таким чувствительным прибором не прочь воспользоваться многие специалисты: криминалисты, газовщики, геологи. В Варшаве группа из нескольких собак следит за исправностью газовой сети. Никакие приборы не могут обнаружить утечку газа глубоко под землей, а собаки точно находят место нарушения газопровода. И практически никогда не ошибаются. В Карелии тренируют собак-геологов. Собаку по кличке Байкал брала с собой агитбригада биофака МГУ, и во время лекции собака демонстрировала свои способности находить различные образцы полезных ископаемых, спрятанные в зрительном зале. Она распознавала больше десяти минералов и по приказу своей хозяйки находила спрятанный в зале образец, оповещая лаем, у кого из зрителей он находится. Все образцы минеральных пород раздавались зрителям перед лекцией и перепрятывались по всему залу. Байкал находил то, что ему приказывали, и ни разу не ошибся. Раньше эта собака служила на границе, но из-за катаракты ее списали, и она продолжила свою службу на мирном поприще.

Наконец, хотелось бы рассказать, какой необычайный дистанционный химический анализ проводят крысы. Если химические соединения растворены в воде, крысы распознают их с расстояния нескольких метров. Те же вещества в сухом виде они дистанционно не определяют, поэтому сухим ядом крысу можно отравить, растворенным в воде — почти невозможно. Проводили такой эксперимент. В камере для испытаний ставили две чашки. В одной каша с витаминами, в другой — без витаминов. Пускали крысу с расстояния пяти метров. Она сразу без предварительных проб выбирает путь к витаминизированной каше. Значит, крысиный «прибор» можно использовать для анализа содержания витаминов в продуктах питания, но и не только витаминов. Токсикологи определяют с его помощью безвредные концентрации веществ. Подобный анализ занимает не более минуты, а иногда несколько секунд, время, за которое крыса пробегает несколько метров.

Предположим, надо установить, при каких концентрациях безвредны растворы вещества, не имеющие ни цвета, ни запаха, скажем хлористого свинца. Крыса, которой долго не дают пить, стоит на «старте» в испытательном стенде. Выставляем ей раствор с концентрацией один миллиграмм на литр воды, крыса не идет. Уменьшаем концентрацию в два, три… десять раз — крыса к поилке не подходит. Когда концентрацию уменьшили в сто раз, крыса побежала к сосуду и начала пить. Анализы на других организмах показывают, что крыса не ошибается. Питьевая реакция крыс — удобный «живой прибор», с помощью которого найдены предельные концентрации для десятков вредных соединений, попадающих в водоемы с промышленными стоками и ухудшающих качество воды. Следовательно, ограничительные нормы для промышленности и для работы очистных сооружений могут быть определены «крысиным анализатором».

Проверить биологическое действие химического вещества можно и другим способом — понаблюдать за теми сооружениями, которые создает животное.

Каждому в лесу встречалась красиво сплетенная паутина, прикрепленная между ветками растений. Особенно отчетливо она видна, если на ней осели бусинки-росинки, сверкающие на солнце всеми цветами радуги. Оказывается, тенеты паука — паутину — можно использовать для анализа действия стимуляторов — веществ, повышающих внимание или же, наоборот, рассеивающих его. Достаточно дать каплю исследуемого вещества пауку, и он начинает плести паутину и всю свою ловчую сеть с повышенным вниманием. Сеть получается гораздо красивее и более тщательно выполненной, чем сеть паука, которому не давали тонизатора.

Получается совершенно другой эффект, если пауку дают каплю жидкости, содержащую наркотик. Внимание паука рассеивается, он несколько раз принимается за работу, снова разбирает свое творение и наконец плетет что-то отдаленно напоминающее обычную ловчую сеть. При воздействии сильных наркотиков паук вообще не способен сплести сеть, хотя и принимается за работу. Остается только удивляться сходству механизмов, которые использует природа в деятельности мозга у таких разных существ, как паук и человек. Исследователям это на руку: на «живых приборах» можно испытывать ряд лекарственных веществ, синтезируемых в фармацевтических лабораториях. А самое главное — паучий прибор быстро отбирает те изомеры в сложных молекулах психогенных веществ, которые не оказывают действия на нервную высшую деятельность. Как это было бы трудно делать с помощью химического анализа! Остается только пожелать, чтобы крысы, рыбы, паучки и другие «живые приборы» как можно скорее появились в лабораториях химиков-аналитиков и «работали» как самостоятельно, так и в сочетании с электронными установками.

 

Глава вторая

СЕЙСМОГРАФЫ ПЛАВАЮЩИХ, БЕГАЮЩИХ, ПОЛЗАЮЩИХ

 

Рыбы предупреждают о землетрясении

Землетрясения происходят чаще всего в Средней Азии, и местные жители, старики — туркмены или узбеки — давно замечали, что перед катастрофой змеи и ящерицы покидают свои норы. Да и не только пресмыкающиеся чувствуют приближающееся несчастье. Птицы и млекопитающие не уступают в этом пресмыкающимся. Птицы становятся беспокойными, теряют ориентацию, залетают в открытые окна домов. Домашние животные — козы, овцы, свиньи, коровы и лошади — предчувствуют приближение землетрясения за два дня. К сожалению, человек в процессе эволюции утратил эту полезную способность. В то время как муравьи тащат свои белые куколки из подземелий, пещерные кузнечики выбегают из норок. и подальше отбегают от обрывистых откосов, змеи выползают на открытые поляны, собаки скулят и жмутся к хозяевам, закрытые в стойле лошади лягают перегородки, люди спокойно работают, читают, спят или смотрят телевизоры — живут повседневной жизнью. Современные физические приборы фиксируют малейшие сейсмические толчки, но прогнозировать их так, как живые существа, они не могут.

Не только наземные животные могут прогнозировать землетрясения, такой способностью наделены и рыбы. Подобных наблюдений много сделано в Японии. Профессор Токийского университета Ясуо Суэхиро в основу своих предсказаний положил появление глубоководных рыб, обитающих в океане, в поверхностных слоях воды или в прибрежной зоне. Его прогноз подтвержден фактами.

Первый такой факт зафиксирован в 1923 году на японском пляже Хаяма. Пляж был расположен недалеко от Токио и поэтому очень многолюден. Бельгийский ихтиолог-любитель увидел, как люди собрались у раздувшейся рыбы. Это была усатая треска, которая водится только на очень больших глубинах. Появление глубоководной гостьи не было случайным — через два дня произошло сильнейшее землетрясение, которое унесло 143 000 человеческих жизней и вызвало разрушения в Токио. Спустя десять лет в районе Одавара рыбак поймал необычного угря и показал его ихтиологу, так как в своей жизни никогда не встречал «подобное чудовище». Да он и не мог его встретить — пойманный вид угря водится на глубине четырех-пяти тысяч метров. И опять совпадение: в тот же день на Тихоокеанском побережье Японии произошло землетрясение, в результате которого погибли три тысячи человек.

Даже после собранных фактов Ясуо Суэхиро сомневался в способности глубоководных рыб предсказывать землетрясение. Однажды, когда ему предложили осмотреть глубоководную рыбу длиной шесть метров, выловленную на одном из островов к югу от Токио, он сказал в шутку, что скоро будет землетрясение. А землетрясение действительно произошло через два дня, что окончательно убедило Суэхиро в способности глубоководных рыб предсказывать надвигающуюся катастрофу.

Не только морские глубоководные рыбы, но и рыбы, разводимые в прудах, чувствуют приближение землетрясения. За два дня до подземных толчков рыбы начинают проявлять беспокойство, собираются на поверхности пруда, сильно плещутся. Опять же в Японии отмечены случаи, когда рыбы перед землетрясением выбрасывались на берег пруда. До настоящего времени у рыб не найдено «прибора», которым они воспринимают сигналы о приближающихся колебаниях земной тверди или же подводных толчках. Однако можно предположительно попытаться определить в организме рыб сейсмоанализаторы, прогнозирующие землетрясение. Какими же органами рыбы могли бы воспринимать даже незначительные колебания, предшествующие сильным толчкам?

Во-первых, это плавательный пузырь, который может играть роль резонатора колебаний. Изучение поверхности плавательного пузыря рыб показывает, что стенки его имеют кривизну, способствующую наибольшему резонированию инфразвуковых волн, которые человек не слышит. Физики отмечают, что перед грядущим бедствием появляются инфразвуковые волны, действующие на нервную систему животных и даже человека. Вот почему непосредственно перед землетрясением воцаряется странная тишина, когда бурная реакция насекомых, птиц и зверей сменяется общей подавленностью: крика животных и пения птиц уже не слышно. Может быть, эти инфразвуки рыбы воспринимают в глубинах и стремятся как можно быстрее их покинуть.

Во-вторых, боковая линия рыб буквально усеяна электрорецепторами, способными принимать окружающее их внешнее или же генерируемое ими самими электрическое поле. Помимо этого, боковая линия настроена на прием низкочастотных колебаний воды. Благодаря боковой линии рыбы обходят подводные препятствия, воспринимая отраженную волну от камней и берега. Возможно, эта линия способствует восприятию низкочастотных колебаний дна и инфразвуков как предвестников землетрясения.

Однако инфразвуки и низкочастотные колебания дна и берегов наблюдаются непосредственно перед землетрясением, а рыбы, как мы уже говорили, способны прогнозировать толчки за несколько дней до их появления. Да что там рыбы, звери и птицы! Даже некоторые растения могут прогнозировать приближение этого опаснейшего природного явления. О возможных механизмах этого прогноза мы поговорим позднее. Во всяком случае, группа ученых еще десять лет назад открыла новое «чувство» у рыб, названное сейсмическим слухом. Эти работы продолжаются и в настоящее время. В то время как бионики еще только думают над созданием нового типа прибора — сейсмоприемника, в основу которого будет положен тот же принцип прогнозирования землетрясений, которым пользуются животные, «живые приборы» уже действуют и в любой момент могут быть использованы для прогнозирования надвигающихся катастроф.

 

Прыгающие сейсмографы

Многие, наверное, смотрели кинофильмы, в которых передающую радиостанцию пеленгуют с помощью вращающейся антенны. Сходный поиск источника волн, только не по радиоволнам, а по звуку, выполняет кузнечик, когда определяет, откуда исходит звук. Уши у него расположены в голенях передних ног. При движении по направлению к источнику звука ноги кузнечика совершают дугообразные движения. Сами же слуховые органы, называемые тимпанальными, как бы сканируют пространство по обе стороны от насекомого, нервная система анализирует получаемую информацию и направляет кузнечика точно в сторону звука, или от него, посылая импульсы-команды в мышцы ног.

По своему строению орган слуха у кузнечика отличается от нашего уха. У нас это закрытая камера с мембраной, где звуковые волны воспринимаются барабанной перепонкой, передаются в среднее ухо, затем во внутреннее и там анализируются. У кузнечика, наоборот, мембрана колеблется, и клетки у ее основания сразу переводят улавливаемые мембраной звуковые колебания в электрические импульсы. По строению ухо насекомого больше напоминает чувствительный волосок, вибриссу, где сам волосок заменен мембраной, есть еще дополнительные структуры, усиливающие прием звуковых волн и предохраняющие тонкую мембрану от механических воздействий. Поперечный срез слухового органа кузнечика, расположенного в ноге, представлен на рисунке 3. В воздушной трубке, имеющей щели, натянуты две мембраны, контактирующие в основании непосредственно со слуховыми клетками.

Рис. 3. Упрощенное и увеличенное изображение уха кузнечика, расположенного в передней ноге:

1 — рецепторы; 2 — мембрана; 3 — воздушная трубочка

Чувствительность уха кузнечика и его родственников очень высока. Используя точную акустическую аппаратуру, энтомологи установили, что саранча воспринимает колебания звуковых волн с амплитудой, равной диаметру атома водорода. Но и это не рекорд. Кузнечик из семейства титигония воспринимает механические колебания с амплитудой, равной половине диаметра атома водорода! Необычайная чувствительность!

Как уже отмечалось, не всегда целесообразно моделировать живые системы к создавать «железные» приборы по тому принципу, как они действуют в природе. Тем более что воспроизвести работу тончайших «живых приборов», которыми наделила природа наших земных собратьев, подчас просто невозможно. Ведь модель мозга муравья, например, даже на самых современных транзисторах и печатных микросхемах получилась величиной с тумбочку под телевизор, а выполнял этот мозг только часть функций нервной деятельности, свойственной муравью. Какой же величины должны быть сейсмические анализаторы, если учесть, что помимо биодатчиков в их работе принимает участие и мозг насекомого? По этой причине, возможно, имеет смысл не «воспроизводить» в металле «конструкции» животных, анализирующие механические колебания, а непосредственно подключать их к физическим приборам или же заставлять работать параллельно с «железными» датчиками.

Вот один из примеров использования «прыгающих сейсмографов» для предсказания землетрясения. Пещерные кузнечики, живущие в норках обрывов, очень чувствительны к колебаниям почвы, а может быть, и к изменениям других физических параметров перед землетрясением. Двигательная активность кузнечиков перед землетрясением увеличивается, они покидают свои домики. Американские исследователи поставили перед норками приборы — актографы, которые отмечают двигательную активность пещерных кузнечиков. Как только кузнечик прыгнет на площадку, приборы переводят создаваемое им давление в электрические импульсы, которые подаются на записывающие и регистрирующие устройства. В простейшем случае это может быть осциллограф, дающий всплеск кривой на экране. При обычной жизни движение кузнечиков равномерное, число особей, выходящих из норки и возвращающихся домой, примерно одинаковое. Другое дело перед землетрясением, когда почти все кузнечики выпрыгивают из норок, резко повышается количество импульсов, идущих от актографов. Следовательно, в ближайшие часы можно ждать землетрясения.

Преимущество «живых приборов» в том, что они всегда имеются в природе и на их изготовление не затрачиваются средства. В качестве «живых приборов» можно использовать и лабораторных животных, получая саморазмножающиеся датчики. Об их функционировании будет заботиться не человек, а генетические механизмы самого организма. Однако на долю бионики остаются не менее важные проблемы: моделирование шагающих устройств и создание хорошо обтекаемых подводных кораблей по типу рыб и дельфинов, архитектурная бионика, моделирование локационных установок и, наконец, проблема создания искусственного разума.

 

Что еще непонятно

Существуют страны, где землетрясения происходят очень часто. Подсчитано, что сорок процентов всех землетрясений на нашей планете приходится на западное побережье Америки. В Чили или Перу землетрясения наблюдаются почти каждый третий день, чаще всего они слабые, и дома не рушатся. Однако с начала нашего века в Южной Америке в указанной зоне было, по крайней мере, семнадцать значительных катастроф силой до девяти баллов, когда целые дома вдруг исчезали в глубоких трещинах земли. Глубина таких трещин, поглотивших людей и строения, иногда достигала нескольких километров. И на всей территории бывшего Советского Союза встречается достаточное количество зон, где возможны землетрясения. Площадь таких зон составляет примерно двадцать процентов всей территории.

Ущерб, причиняемый этим грозным явлением природы, огромен. Вот почему важно прогнозировать землетрясение не только за несколько часов до толчков, хорошо знать о его приближении за несколько дней, лучше даже — за неделю или месяц.

Каков же механизм воздействия предвестников землетрясений на сейсмические анализаторы живых существ?

В начале главы речь уже шла о странном поведении зверей, птиц и насекомых, чувствующих приближение катастрофы. Однако более детальное изучение поведения животных показывает, что они не только предчувствуют катастрофу, но и точно знают, когда начнется землетрясение. Вот один из случаев, рассказанный очевидцем известному журналисту В. Пескову: «Мы с женой работали в Ашхабаде. В ту ночь поздно вернулись домой. Спать легли не сразу. Я копался в бумагах. Жена читала. Дочка в коляске спала. Вдруг — чего не бывало ни разу — собака рванулась с места и, схватив девочку за рубашку, кинулась в дверь. Взбесилась! Я — за ружье. Выскочили с женой. И тут же сзади все рухнуло». Это произошло в 1948 году в ночь с 5 на 6 октября, как раз в то время, когда большинство жителей спали крепким сном или готовились ко сну, никакой тревоги не проявляли, хотя животные предчувствовали начало землетрясения. Поражает удивительное поведение собаки, точно определившей тот момент, когда нужно схватить ребенка, чтобы люди успели выбежать из дома до его разрушения.

Другой случай, описанный И. Литинецким в книге «Беседы о бионике», тоже показывает, что животные точно предчувствуют время начала землетрясения. Рассказывается о необычайном беспокойстве животных зоопарка в городе Скопле (бывшей Югославии) приблизительно за пять часов до землетрясения. «Первым начал завывать испуганным и каким-то трагическим глухим голосом одичавший, завезенный когда-то в Австралию потомок домашней собаки — динго. На его голос тут же откликнулся сенбернар. К их дуэту присоединились грозные голоса десятков других зверей. Испуганный бегемот выскочил из воды и перепрыгнул через стену высотой 170 сантиметров. Жалобно кричал слон, высоко поднимая хобот. Громко завыла гиена, очень неспокойно вели себя тигр, лев и леопард. К жуткому „концерту“ зверей присоединились птицы. Взволнованные сторожа различными способами старались успокоить своих подопечных, но желаемого результата не достигли. Прошло еще немного времени, и как будто по чьей-то властной команде звери внезапно умолкли, скрылись в глубине своих клеток и, притаившись в темноте, стали чего-то ожидать. Теперь панический страх охватил обслуживающий персонал. Хотелось бежать…»

Это землетрясение произошло в городе Скопле 26 июля 1963 года, в результате которого погибли полторы тысячи жителей, а город превратился в груды камней.

Какой же механизм позволяет животным прогнозировать землетрясение?

Рассказывая о «сейсмических приборах» рыб, ученые предположили, что ими воспринимаются самые незначительные колебания дна как предвестники землетрясения, скорее всего, в инфразвуковом диапазоне. Однако за несколько дней до землетрясения никаких колебаний не происходит, а животные все-таки предчувствуют приближение катастрофы. Что же меняется в окружающей среде?

Геофизики считают, что выделяется газ радон. Его концентрация перед землетрясением будто бы возрастает в десятки раз, так как он устремляется с больших глубин к поверхностным слоям земли. Возможно, животные способны улавливать повышение концентрации радона в атмосфере и в воде. Вспомним собак и рыб с необычайной чувствительностью их «газовых анализаторов» — они ведь первые возвещают о возможном несчастье.

Физики думают, что важнее другое: живые существа улавливают флуктуации в электромагнитном поле, вызванные напряжением земной коры перед землетрясением. Не исключено, что подземные, наземные и плавающие «жители» ощущают изменения электропроводности в горных породах и в верхних слоях грунта. Перед землетрясением появляются блуждающие токи. Возможно, их нарастание и воспринимается животными, особенно рыбами, обладающими электрочувствительностью.

Не только электромагнитные поля и изменение электропроводности горных пород подсказывают живым существам приближающееся землетрясение, уверяют биологи. Живые организмы способны каким-то еще не изученным до конца способом определять на расстоянии механическое напряжение в том или ином материале. Возможно, воздействие на межатомные и межмолекулярные силы сцепления в материале создает вокруг напряженной структуры особое поле, назовем его полем напряжения. Пока это только предположение. Но как иначе можно объяснить действия термитов, которые могут съесть целый деревянный дом, но так съесть, что конструкция дома не рушится? Значит, у них есть датчики, которые позволяют определять несущие конструкции. С их помощью выявляется напряжение в древесине и находятся те части, которые можно выедать. Самое примечательное то, что они каким-то образом умеют оценить дом как целую конструкцию. Происходит пространственная передача информации о наиболее «горячих точках», где может произойти разрушение, и термиты не только не выедают эти места, а, наоборот, укрепляют их своим «картоном», из которого они создают термитники (смесь древесных опилок, слюны и экскрементов).

В этом отношении термитам не уступают муравьи, они тоже при сооружении своих «домов» четко определяют напряжение в строительном материале. Можно представить, каким грандиозным им кажется напряжение земной коры перед землетрясением, если они чувствуют напряжение в отдельных древесных волокнах. Скорее всего поэтому перед землетрясением и термиты, и муравьи покидают свои жилища.

Есть и другие способы предсказания землетрясений или извержения вулканов, которые пока не нашли никакого объяснения. Здесь имеется в виду растение — примула королевская. На острове Ява, где она растет на склонах вулканов, ее называют цветком землетрясений. Расцветает примула королевская только перед извержением вулкана. Местные жители знают об этом и стараются уйти из домов, расположенных близко к подножию вулкана. Прогноз в этом случае цветок дает намного раньше, чем раскроется его бутон — ведь его тоже надо заранее подготовить.

Сейчас еще нельзя сказать, какая точка зрения из перечисленных выше истинна. Однако можно предположить, что механизм восприятия сейсмической опасности животными и растениями — комплексный.

 

Глава третья

БАРОМЕТРЫ НА СУШЕ, В ВОДЕ И В ВОЗДУХЕ

 

Какая будет погода завтра?

Едва ли найдется человек, который не интересуется прогнозами погоды. Многие несколько раз в день слушают сводку погоды по радио, хотя и знают, что синоптики часто ошибаются. Краткосрочные прогнозы оправдываются в лучшем случае на восемьдесят процентов. И это уже хорошо — ведь доходы от правильно сделанных прогнозов перекрывают сумму, затраченную на метеослужбу, а более долгосрочные прогнозы, например за месяц вперед, дают экономический эффект, в двадцать раз превышающий расходы на строительство метеостанций, приобретение приборов и организацию всей работы метеорологов. Однако месячные прогнозы сбываются в меньшей степени, чем краткосрочные. Метеостанции расположены на специально оборудованных кораблях, на научных судах и, наконец, на спутниках и пилотируемых космических станциях.

Метеорологи много внимания уделяют развитию и совершенствованию приборов и аппаратов, работающих на принципах физики и механики, они широко используют ЭВМ, применяют на спутниках разнообразную оптическую аппаратуру. И хотя по радио и телевидению мы часто слышим прогноз погоды, на самом деле это скорее расчет или вычисление погоды. А ведь на Земле есть животные и растения, которые, используя свою интуицию, прогнозируют погоду без всяких расчетов.

Ученые насчитывают сейчас около шестисот видов животных и четырехсот видов растений, которые могут выполнять роль барометров, индикаторов влажности и температуры, предсказателей штормов, бурь и самой хорошей безоблачной погоды, а это только незначительная часть из полутора миллионов известных нам видов животных и полумиллиона видов растений. И список биоиндикаторов погоды пополняется новыми представителями, реагирующими на изменения погоды не хуже уже известных видов.

А какие из известных нам видов животных лучше предсказывают погоду — высшие или низшие? Давайте посмотрим, кто на что способен.

Начнем с одноклеточных организмов. Пока что накоплено не так уж много сведений о том, как ведут себя одноклеточные организмы перед изменением погоды. Например, известно, что бактерии реагируют на солнечную активность: чем активнее Солнце, тем быстрее размножаются бактерии.

Перед сменой погоды, особенно перед грозой, отмечаются изменения электромагнитных колебаний в атмосфере либо увеличивается электрический потенциал. На эти изменения реагируют некоторые простейшие организмы, например хламидомонады, которые занимают промежуточное положение между растениями и животными. У них есть хлорофилл, и ряд биологов относят их к водорослям, в то же время они могут питаться органическими веществами через поверхность клетки, как это делают животные. Ботаники и зоологи не решили спора между собой, к какому царству отнести хламидомонад, одна- ко это не умаляет их способности реагировать на радиоволны и изменение электромагнитных колебаний в атмосфере. Перед приближением грозы, видимо, еще улавливая и радиоволны от электрических разрядов, хламидомонады ориентируются перпендикулярно к идущим волнам. Так что, посмотрев на них в микроскоп, можно не только узнать о приближении грозы, но и примерно определить, откуда движутся грозовые тучи, хотя небо может быть еще чистым.

Интересно понаблюдать за поведением хламидомонад. В ясную солнечную погоду хламидомонады заполняют всю толщу воды, в которой они культивируются, а за два дня до наступления ненастья могут осесть на дно колбы. Правда, на другой день, несмотря на то, что ненастье продолжается, они снова поднимаются со дна. Может быть, эти микроскопические жгутиконосцы «регистрируют» повышение электрических потенциалов в атмосфере?

Поднимаясь по эволюционной лестнице, мы столкнемся еще с одним примитивным, но уже многоклеточным организмом — медузой, представляющей собой половую особь морских сцифоидных полипов. Тело медузы имеет вид колокола или зонта. По краям зонтика — щупальца, вокруг рта на нижней стороне колокола — выросты-лопасти (рис. 4). На краю колокола расположены примитивные глаза и органы равновесия, слуховые колбочки величиной с булавочную головку. Это и есть «ухо» медузы. Однако «слышит» оно не просто звуковые колебания, доступные нашему уху, а инфразвуки частотой восемь- тринадцать герц. Сильные звуки с такой частотой вызывают у человека страх и нервное напряжение.

Рис. 4. Медуза — приемник инфразвуковых сигналов

Перед штормом усиливающийся ветер срывает гребни волн и захлестывает их. Каждое захлопывание воды на гребне волны порождает акустический удар. При этом создается инфразвук, который и улавливает своим куполом медуза. Инфразвук, как рупором, усиливается колоколом медузы и передается на слуховые колбочки. Шторм разыгрывается еще за сотни километров от берега, а медузы уже слышат его. Эти слабые инфразвуки, как правило, не воспринимаются человеком. Медузы прогнозируют начало шторма, приближение огромных водяных валов, готовых разбить их студенистое тело о камни, примерно за двадцать часов. Нужно отдать должное бионикам, которые создали электронный автоматический аппарат — предсказатель бурь, работа которого основана на принципе «инфрауха» медузы. Этот прибор за пятнадцать часов до шторма может предупредить капитана корабля о приближающейся буре и даже показать, откуда она надвигается (обычный морской барометр предупреждает о шторме всего лишь за два часа). Людям, конечно, не победить шторма, но, вовремя узнав о его приближении, можно обойти стороной либо переждать в ближайшем порту.

Кольчатые черви устроены сложнее, чем медузы, они также могут оказать неоценимую помощь как животные синоптики. Известно, что за несколько часов до бури морские черви в прибрежной зоне глубже закапываются в песок.

Лучше изучено поведение дождевых червей перед ненастьем. Если в сухой теплый вечер из земли выползают дождевые черви, то это сигнал к резкому изменению погоды, скорее всего, она будет дождливой, возможно, с грозами.

Пиявки, относящиеся к кольчатым червям, тоже могут служить чуткими барометрами. Понаблюдайте за медицинской пиявкой. Хорошая погода — она на дне стеклянной банки. Перед дождем пиявки присасываются к стеклу ближе к поверхности, а иногда даже немного высовываются из воды. Перед грозой или бурей пиявки неспокойны, много плавают, а уж если присасываются к стенкам, то стараются вылезти из воды. Ряд биологов высказывают предположение, что кольчатые черви очень чувствительны к изменению атмосферного электричества, поэтому они и способны дать прогноз погоды.

Везде, где бы мы ни находились: в лесу, в поле, у моря или на берегу озера — везде есть живые барометры, например членистоногие — ракообразные, пауки и насекомые.

В пресных водоемах перед дождем раки выползают на берег. Сходную картину можно увидеть и в море: перед штормом маленькие крабики или передвигающие по мелководью свои домики-раковины раки-отшельники, а также бокоплавы выходят на берег.

Сухопутными раками можно назвать мокриц, относящихся к отряду равноногих. Мокрицы нуждаются во влажной окружающей среде, и поэтому они постоянно контролируют содержание в ней паров воды. Более ста датчиков влажности находится на их теле. Каждый датчик — это бугорок с тонкой хитиновой оболочкой, к которому подходят нервные окончания. Влага без труда проникает через хитиновую пленку и доходит до нервных окончаний, а дальше, как обычно, сигналы поступают в нервную систему, где они анализируются, и мокрица решает, передвигаться ли в сторону повышенной влажности или же оставаться на месте. Лучшего «гигрометра», чем мокрицы, не найдешь: там, где они держатся, влажность всегда близка к абсолютной.

Среди многочисленного мира насекомых можно найти также разнообразных чувствительных синоптиков. Мухи, бабочки, осы и пчелы могут предупредить нас о приближающемся ненастье и дожде. Мухи и осы перед дождем стремятся укрыться и залетают в закрытые помещения и в окна домов. Еще при ясном небе муравьи начинают закрывать все входы в муравейник. Пчелы перестают летать за нектаром, они сидят в улье и гудят. Стараются укрыться перед грозой и бабочки-крапивницы: если их не видно над цветами или на лугах, значит, возможно, через несколько часов начнется дождь.

Многое о состоянии природы может сказать полет стрекоз. Вот, например, высоко над кустами, плавно перелетая или останавливаясь на месте, движется стрекоза. Можно быть спокойным — погода будет хорошая. Сравним показание на барометре: стрелка показывает «ясно». Если летают не одиночные стрекозы, а небольшие стайки, летают нервно, скачками и значительно ниже, то и стрелка прибора остановится у надписи «переменно». Если же небо почти чистое, а стайки стрекоз увеличились, при полете у них сильно шуршат крылья и летают они совсем низко, то даже смотреть на барометр не надо — скорее всего, через час-два будет дождь. Стрекозы могут предупредить и об урагане: они собираются большими стаями и, как перепуганные, мечутся во все стороны. Пастухи в некоторых странах Южной Америки знают эту примету и, завидев мечущуюся стаю стрекоз, стараются как можно быстрее угнать скот с пастбища.

О хорошей погоде на следующий день могут сообщить кузнечики: если они вечером сильно стрекочут, утро будет солнечное. О том, что ненастные дни сменятся хорошей погодой, можно узнать по поведению комаров-толкунцов: перед ясной погодой они вьются в воздухе столбами, за это и прозваны толкунцами.

Но самые интересные ближайшие прогнозы, особенно относительно ливней и наводнений, могут дать насекомые — муравьи и термиты. Известный этнограф Хосе Мария Лима, изучающий жизнь индейских племен в джунглях Бразилии, обратил внимание на то, что перед наводнением индейцы бросают свои поселения. Каким же образом они узнают о будущем наводнении? Оказывается, индейцы внимательно наблюдают за поведением черных муравьев. Перед наводнением муравьи приходят в сильное возбуждение, начинают бегать вверх и вниз по стволам деревьев, а затем все вместе снимаются с обжитого места и, захватив с собой запасы продовольствия и куколок, свое будущее потомство, движутся в то место, куда вода не дойдет. Местное население тоже передвигается за лесными синоптиками.

Прогнозировать наводнение могут и термиты, которые перед его началом покидают свои причудливые баш ни-дома и направляются к ближайшим деревьям, поднимаясь на высоту ожидаемого паводка, и пережидают, когда схлынут ревущие мутные потоки, несущиеся под ними с такой силой, что деревья падают под их напором. Но вот загадка из загадок — термиты никогда не располагаются на том дереве, которое будет снесено бурными потоками разлившейся реки.

Бионики могут моделировать принцип работы органов чувств простейших и животных, основанных на физических законах, например «инфраухо» медузы, но построить модель, прогнозирующую наводнение, как это делают муравьи и термиты, едва ли когда-либо удастся, ибо эта модель не должна отличаться от истинного организма. Да и нужно ли моделировать? Не проще ли для предсказания, грозного явления природы использовать «живой прибор» — как он есть. Мы еще вернемся к загадочной и непонятной нам способности живых существ прогнозировать приближение того или иного явления.

Пауки также исключительно чувствуют приближение дождя или наступление сухой погоды. При сухой погоде или же перед ее наступлением они начинают плести паутину. Тонкое наблюдение сделал Л. Н. Толстой о прогнозирующем поведении пауков: «Паук делает паутину по погоде, какая есть и какая будет. Глядя на паутину, можно узнать, какая будет погода: если паук сидит, забившись в середину паутины, и не выходит — это к дождю. Если он выходит из гнезда и делает новые паутины, то это к погоде.

Как может паук знать вперед, какая будет погода?

Чувства у паука так тонки, что, когда в воздухе начинает собираться только сырость, и мы этой сырости не слышим, и для нас погода еще ясная, — для паука уже идет дождь». Сейчас мы знаем, что паук не только реагирует на повышение влажности перед дождем, но несколько ранее этого он ощущает изменение давления атмосферы и увеличение электростатического атмосферного электричества перед грозой. А может быть, паутина принимает грозовые разряды и сеть паука заменяет антенну грозоотметчика?

Оставим царство беспозвоночных животных — оно безгранично, и синоптиков в нем более чем достаточно. Перейдем к рыбам, ведь эти «живые приборы» можно держать в аквариумах и наблюдать за ними даже в домашних условиях. И в природе их поведение может служить надежным предвестником изменения погоды. Плещется рыба в водоемах — к дождю. Причина, видимо, в том, что насекомые перед ненастьем летают ниже, ведь в воздухе повышается влажность и пар конденсируется на крыльях насекомых, они снижают высоту полета над водой, и рыбы начинают выпрыгивать за ними из воды и хватать их.

Перед дождем или непогодой сомы тоже поднимаются на поверхность воды. Известный знаток рыб средней полосы Л. П. Сабанеев писал: «Особенное беспокойство сом выказывает во время грозы и перед ее началом. В это время он уже не может лежать спокойно на дне, держится верхних слоев, совершенно бесцельно плавая взад и вперед по своей яме; в ночную грозу он плавает всю ночь, и в такую пору поднимаются со дна омута даже самые древние его обитатели, самые крупные великаны сомовьего царства, олицетворяющие водяных. Действительно, они поднимают такую возню, что трудно приписать ее рыбе».

А в аквариуме голец выполнит службу не хуже любого барометра. При хорошей погоде он лежит спокойно на дне, не шелохнется. Но если он, лентообразно извиваясь, начал плавать вдоль стенок аквариума, через некоторое время облака затянут небо. Перед самым дождем он мечется вниз и вверх по аквариуму. Голец редко ошибается, его прогноз может быть неверным только в трех процентах случаев. Вспомним, что «железные приборы» ошибаются значительно чаще — в двадцати — тридцати процентах случаев.

Безошибочно определяют наступление шторма несколько видов рыбок, обитающих у берегов Японии. Беспокойное поведение в аквариуме подобных рыбок лучше барометра и раньше его предскажет капитану большого лайнера надвигающуюся бурю, поэтому он чаще предпочитает смотреть не на барометр, а на аквариум с маленькими рыбками.

Очень чувствительны к перемене погоды лягушки. Кто не встречал их в лесу в сырое время’ Это травяные лягушки — они не только реагируют на сырую погоду, но и предсказывают ее. Из водоемов на сушу они выходят значительно раньше, чем пойдет дождь. А уж кваканьем своим могут сказать многое. Если вечером от небольшого болота или прудика несется громкое кваканье, самый настоящий лягушачий концерт, — на следующий день будет хорошая погода. К непогоде лягушки тоже квакают, но не заливистой трелью, а глухо. Если же лягушки сначала громко квакали, а потом вдруг замолчали, то надо ждать холодной погоды. Некоторые ученые отмечали, что у лягушек даже цвет кожи меняется согласно изменяющейся погодной ситуации: перед дождем они приобретают сероватый оттенок, а перед тем, как установиться вёдру (хорошей погоде), они немного желтеют. Вполне объяснимая примета — лягушки заранее готовятся к непогоде или солнечным дням, и соответственно будущему световому спектру в клетках кожи появляются необходимые пигментные зерна. Как они узнают об изменении погоды за несколько часов вперед, тоже пока остается загадкой. Возможно, на теле лягушки есть электрочувствительные точки, которыми они улавливают изменения зарядов атмосферного электричества. В дальнейшем мы еще вернемся к этим интересным созданиям, обладающим загадочными и необъяснимыми чувствами.

Поведение многих птиц также часто резко меняется перед ухудшением погоды, становятся другими характер их пения, высота полета.

Увлекшись животным миром, не стоит забывать о том, что в точности прогноза растения не уступают животным. Краткосрочные прогнозы, — можно сказать, «специальность» некоторых наших зеленых друзей. У знаменитого систематика живого мира К. Линнея были живые часы. Он хорошо знал свойство цветков некоторых видов растений раскрываться и складывать лепестки в строго определенное время. Создав клумбу-циферблат из раскрывающихся в определенный час цветов, он всегда мог сказать, который час. Но часы давали сбои — при ненастье они часто «не работали». Еще больше удивился исследователь, когда при чистом голубом небе часы вдруг «выключились», цветки сложили свои лепестки в неположенный им час. Через некоторое время на небе появились маленькие облака, затем возникли тучи и полил дождь. Вот и получился «живой прибор» — «барометр с часами».

Но барометром могут служить и просто посаженные перед домом ноготки и мальвы. Они плотно складывают свои лепестки перед дождем.

Сходным образом ведут себя различные сорные растения, например, чистотел, мокричник и луговой сердечник. Многие видели в затененных местах среди елей заячью капусту. Так вот, цветы заячьей капусты могут подсказать, какая погода ожидается завтра. Обычно на ночь красноватые цветы заячьей капусты закрываются. Но перед дождем и ночью они распускаются. Каждый может сделать себе «живой барометр». Для этого достаточно посадить заячью капусту в горшок и держать ее не на солнечных окнах. Если цветы заячьей капусты с наступлением ночи будут распущены, значит, утром будет дождь. Живой синоптик-цветок почти никогда не ошибается.

Все приведенные примеры относятся к краткосрочному прогнозу погоды. Тончайшие «приборы» животных и растений улавливают незначительные изменения давления, влажности, температуры, атмосферного электричества и даже звуковых волн, которые недоступны нашим органам чувств, и сигнализируют о предстоящем изменении погоды. Все это можно использовать наряду с приборным прогнозированием погоды. Но живые существа способны и к долгосрочному прогнозу, который так необходим народному хозяйству.

 

Прогноз на все лето

В основу долгосрочного прогноза положены многовековые наблюдения людей за живой природой, многократно проверенные на практике. Лес и луг издавна помогали людям составлять прогноз на все лето. Пробуждение живой природы после зимнего сна — первый указатель в долгосрочном прогнозе. Важно приметить, какое дерево раньше распустится — ольха или береза. Если первой распускается береза, то можно ждать хорошего теплого лета, с ясными солнечными днями и короткими бурными дождями. И наоборот, если ольха распустится раньше березы, то лето будет холодным и дождливым. Береза может подсказать также, каким будет лето, — обычно много сока береза дает перед дождливым летом. А осенью береза может рассказать о наступлении следующей весны — ранней или поздней. Для этого достаточно пронаблюдать, как у нее начинают желтеть листья: желтеют с верхушки — весна будет ранней, а если снизу, то весну следует ждать позднюю.

Что касается зимы, то здесь подмечено — перед холодной зимой урожаи ягод, яблок и семян резко возрастают. Например, обильный урожай рябины сулит суровую зиму, а появление на дубе множества желудей предвещает особо сильные морозы.

В народных приметах подмечено, что по началу цветения некоторых растений можно определить, будут ли еще морозы или резкие похолодания. Так ведут себя рябина, луговые растения: примулы и мать-и-мачеха. Появились на этих растениях цветы, скорее всего, жди теплых дней. В старину время прекращения заморозков определяли с помощью обитающей в прудах или заводях рек белой лилии. Если на поверхности водоема появились ее большие округлые листья — заморозков можно не ждать.

Многовековой опыт научил людей пользоваться биологическими индикаторами. По ним люди узнавали, когда и какие сельскохозяйственные работы следует выполнять. Сев зерновых и посадку овощей издавна проводили не по числам, а по живому календарю природы. Состояние растений подсказывало, когда сеять рожь, а когда — пшеницу, когда сажать картофель, а когда — огурцы. Появились подснежники — пора начинать пахоту. Зацвела осина — веди ранний сев моркови. Душистые цветки белой черемухи говорят о наступлении времени посадки картофеля. Распускаются листья на березе — начало сева овса; зацвели яблони — самый поздний срок посева овса. Ну а если покраснела земляника, все сроки упущены, сеять овес поздно. Пшеницу не следует сеять до появления дубового листа. Рябина зацвела — пора сеять лен. Распустился дуб — сей горох. Гречиху надо сеять, когда трава уже хорошая.

Сходным «предвидением» метеорологических условий обладают и животные. Их долгосрочные прогнозы не уступают прогнозам растений. Обратите внимание на муравейники. Чем они выше, тем суровее будет зима. Опытному пасечнику самый лучший прогноз дают пчелы. Леток в улье они на зиму заделывают воском. Какое отверстие для проветривания оставят, такая и погода будет. Большое отверстие — теплая зима будет, ну а если в летке оставят только маленькую дырочку, не миновать сильных морозов. Перед теплыми зимами они вообще могут не заделывать воском леток и оставляют его полностью открытым. Пасечники знают, что если пчелы рано вылетают из ульев, то можно надеяться на раннюю весну, да еще и теплую.

Есть насекомые, способные дать более детальный прогноз на зиму. В земле можно встретить личинки майского жука. Так вот, по их цвету раньше определяли прогноз на будущую зиму. Если личинка вся белая, следует ожидать трескучих морозов, а вот перед теплой зимой ее цвет отдает голубизной. Ну а если голубизной отдает только задний конец личинки, а передняя половина белая? Ответ напрашивается сам собой: первая половина зимы будет суровая, с морозами, а во второй половине жди оттепелей или самых легких морозцев. Подобные морфологические изменения биологи пока объяснить не могут.

Пока что не знают ученые и тех причин, которые заставляют птиц собираться в ранний отлет на юг, если осень будет холодной, или же, Наоборот, в зависимости от того, какое будет лето, заранее делать гнезда на южной или северной стороне деревьев. Как птицы получают метеорологическую информацию на целый сезон?

Интересно, что в районе Барнаула утки устраивают свои гнезда либо на обоих берегах Оби — тогда половодье будет слабым; либо только на высоком левом берегу — тогда половодье будет сильным и низкий правый берег будет затоплен.

Подобное поведение наблюдается и у млекопитающих. Кроты, например, предвидят, на какой уровень поднимется река во время половодья, и свои норы роют выше той отметки, до которой доберется вода. Мыши живут в самом низу копен только тогда, когда ожидается очень сухая осень.

Не раз наблюдали, как арктические дельфины — белухи буквально втискиваются в щели между льдами. Шестиметровые животные не боятся, что льды сойдутся и сплющат их, потому что заранее предчувствуют, что ветер переменится, погонит льды от берега, а щели превратятся в большую полынью. Приведенные примеры — это только незначительная часть известных и тем более неизвестных способностей живых организмов давать долгосрочный прогноз погоды и, по существу, предугадывать ее. Ведь никакие местные флуктуации метеорологических параметров не позволяют сказать, что ожидает нас через несколько месяцев. «Живые приборы» срабатывают задолго до реальных событий, и люди могут использовать их для своих целей. Но как живые организмы это делают? Пока практически ничего не известно о тех каналах, по которым животные и растения способны принимать метеорологическую биоинформацию о будущем. Пожалуй, решение этой загадки принесет человеку не меньше пользы, чем сам прогноз погоды.

 

Глава четвертая

ЗВУКОВЫЕ ЛОКАТОРЫ

 

Можно ли видеть эхо?

Неужели эхо можно увидеть? Исследования ученых в области биолокации позволяют все более уверенно говорить о существовании звуковидения у некоторых животных. Один из претендентов, несущих прибор звукового видения, — дельфин. У собак и дельфинов, по-видимому, был общий предок. И хотя пути обоих видов разошлись, общее наследие все же чувствуется: и у тех и у других — слабое цветное зрение. Но по велению природы и те и другие мастерски вышли из трудного положения. Собака освоила мир запахов, о чем мы уже говорили, дельфин — мир звуков. Поразительные крики, свисты, скрипы, постоянно издаваемые этим морским млекопитающим, помогают ему в чудесной воспринимающей способности.

Не могу забыть своего удивления во время опытов с дельфинами, в которых мы пытались определить наименьшую разницу в расстоянии между двумя цилиндрами из пенопласта, которую мог бы различить дельфин-афалина. Оказалось, что с расстояния тридцати метров дельфин узнавал, что цилиндры сдвинули на один миллиметр. С такой же легкостью дельфин различал материалы, из которых были сделаны цилиндры. Мутная вода, отсутствие освещения не помеха: звуколокаторы одинаково хорошо действуют в любое время суток, в среде любой прозрачности.

Как же устроен звуковой локатор у дельфина? В литературе не раз рассказывалось об удивительном лоцирующем приборе игривых китообразных. Сначала дельфин посылает ультразвуковой пучок и затем, улавливая слабое отраженное эхо, по которому и определяет форму препятствия. Да, эхо передает данные о пространственных свойствах вещей, и практически каждый человек может путем тренировки развить у себя способность узнавать предметы по отраженному от них звуку.

Нужно только быстрое движение, скорость, как у дельфина. Поэтому такие тренировки лучше всего проводить при езде на автомобиле. Многие водители умеют различать придорожные изгороди, бетонные столбики и телеграфные столбы. Гудение мотора, шелест шин и гул проносящегося мимо воздуха по-разному отражаются от придорожных предметов. Конечно, человек улавливает сотую долю того, что улавливает дельфин.

Об излучающей части дельфиньего локатора сложилось достаточно определенное представление. Генератором звуков служит своеобразный «орган» с четырьмя воздушными мешками или мехами. Перегоняя воздух из одного мешка в другой через систему труб, то сужая, то расширяя их, можно получить сложную гамму звуков — свистов, скрипов и щелчков. Пользуясь этим органом, дельфины издают звуки в таком широком диапазоне, что едва ли можно найти соперников среди других животных, способных на это. От хорошо слышимого нами звука частотой сто пятьдесят герц — до ультразвуковой области до ста девяносто шести килогерц — таков диапазон «речи» дельфинов, производимый их своеобразным генератором. Генератор звуков расположен в передней части черепа и соединен с единственной ноздрей дельфина. Правая, левая стороны «органа» к тому же могут работать независимо друг от друга, что дает животному еще одно преимущество: оно может «говорить» с двумя своими «собеседниками» одновременно.

Если бы генератор звуков посылал их во все стороны, то отраженные сигналы были бы слишком слабы, дельфин не получал бы полного представления об окружающей обстановке. Нужен механизм, направляющий излучение узким пучком, как прожектор. И такое устройство есть. Это лобная кость. Не выпуклая, как у других животных, а вогнутая. По существу, рефлектор направляет звуки вперед, на оригинальное фокусирующее устройство — головную линзу.

У дельфина за рылом расположен выступ. Это жировая ультразвуковая линза, она фокусирует звуки, идущие от лобной кости-рефлектора. Меняя толщину линзы, дельфин может расширять или сужать звуковой пучок, посланный для лоцирования интересующего его предмета.

Послав ориентированный сигнал и приняв его отражение, животное узнает об общем распределении объектов локации. Дельфин выбирает какой-то предмет и вторично, уже направленно шлет сигнал, принимает эхо, старается скопировать его, снова и снова облучает объект до тех пор, пока посланный сигнал не будет полностью соответствовать эху. Эхо в этом случае станет самым сильным и будет отражаться лучше всего.

Помимо тонкой способности лоцировать предмет и находить сигналы, которые почти без потерь отражаются от исследуемого объекта, у дельфинов развита звукоподражательная способность. По звукоподражанию дельфины превосходят попугаев, так как могут «играть» запомнившейся им фразой, сжимая или растягивая ее во времени, так, как если бы пускать запись на магнитофоне то на малых оборотах, то на больших. В этом случае можно было бы слышать то голос Буратино, то длинный тянущийся полусонный бас. Помимо того, копируемую фразу или мелодию дельфины могут повторять с теми же временными интервалами, но на ультразвуковых волнах. Копируя человеческую речь, морской говорун издает Звуки довольно-таки высокой частоты. В точности его интонирования легко убедиться, прокручивая в три-четыре раза медленнее обычного магнитофонную запись.

Можно предположить, что любое эхо дельфин способен скопировать и повторить сколько угодно раз. Он может послать его направленно, вернее, усилить копию эха и передать другому дельфину. Получается, что одним криком дельфин может передать другому всю информацию об окружающей обстановке или же, если его это интересует, он сразу может послать звуковой образ того или иного предмета.

Во время оживленной беседы со своими сородичами каждый оратор посылает не отвлеченные звуки, а воспроизводит эхо-сигналы, пойманные при отражении от предметов. Другими словами, дельфины разговаривают на языке объемных звуков Опыты показывают, что дельфины могут понимать принятые сигналы, даже если разговор ведут особи, находящиеся на расстоянии нескольких тысяч километров и относящиеся к разным популяциям. Для сравнения можно напомнить, что типы из разных популяций часто не понимают друг друга, у них разный язык, и общаться они могут только через «переводчика» — есть и такие полиглоты среди дельфиньего племени. В этом отношении они стоят ближе к людям и другим животным, использующим звуковой язык, где звуки кодируют информацию. Дельфины же «говорят» на объемном звуковом языке, где звуки кодируют образ предмета. Это не исключает и абстрактных звуков, которыми передаются эмоциональные, тревожные и радостные сигналы, они, конечно, есть у дельфинов, но на первом месте, видимо, стоит объемный звуковой язык.

Поэтому-то в стаде могут жить и те особи, у которых работа звукогенератора почему-либо нарушена. Подобные случаи известны. Некоторые дельфины, отделенные от стада, начинают натыкаться на стенки бассейна и другие препятствия. Но в окружении своих соплеменников они избавляются от слепоты. Разгадка, скорее всего, в умении заболевших принимать предметные эхо-сигналы от других животных. Причем здоровые дельфины не просто копируют эхо-образы, но и усиливают их. И тем самым служат «слуховым аппаратом» для «тугоухих».

Но пока еще совершенно не ясно, как работает «живой прибор» по восприятию объемных звуков. Каким бы странным и необычным это ни показалось, все же можно предположить и даже проверить экспериментально, что ультразвук и эхо-образы воспринимают дельфиньи глаза.

Чешский ученый И. Поспешил нашел, что давление на палочки и колбочки сетчатки в некоторых случаях воспринимается в виде света. Упорядоченные ультразвуковые колебания воздействуют на пигментные зерна сетчатки, создавая области повышенного давления в возбужденных фоторецепторах. То, что нашим ухом воспринимается как свист дельфина, у самого дельфина может вызвать видимый образ. Следует напомнить, что ультразвук способен переходить из воды в глаз морского животного почти без потерь и искажения, ибо на его пуги нет резких перепадов плотности.

Возможен и другой путь перевода ультразвукового сигнала в видимое изображение — с помощью эпифиза рудиментарного остатка третьего (теменного) глаза, который у большинства млекопитающих, несомненно, выполняет и эндокринную функцию. Когда во время нейрохирургических операций эпифиз раздражали электрическим током, у пациентов возникало ощущение света. Может быть, ультразвуковые колебания непосредственно воспринимаются эпифизом и позволяют дать дельфину не очень яркую, но все же объемную картину окружающего мира. Строя вышеизложенные гипотезы, никогда не следует забывать, что и сам слуховой аппарат этих животных, возможно, способен на прием объемных звуков. К сожалению, он еще плохо изучен физиологами.

 

Самые различные звуковые приборы

Человек слышит звуки частотой от тридцати до двадцати тысяч герц, а летучая мышь — до ста тысяч герц, хотя нижний предел примерно равен нашему. Так что этот крохотный летающий комочек, покрытый шерстью, живет в настоящем мире звуков. Так же, как и дельфин, это существо находит нужную ему пищу с помощью эхо-локатора. Сонаром летучих мышей ученые занимались более длительное время, чем звуковым локатором дельфина. Еще в 1793 году выдающийся итальянский исследователь Ладзаро Спалланцани установил, что летучие мыши ориентируются и находят свою добычу с помощью слуха. Однако понадобилось около ста пятидесяти лет, чтобы понять, что делают они это с помощью ультразвуковой локации. И здесь нельзя не оценить работ американских ученых Г. Пирса, Д. Гриффина и Р. Галамбоса, внесших неоценимый вклад в расшифровку работы ультразвукового локатора у летучих мышей.

Как и у дельфинов, у летучих мышей есть генератор ультразвука и приемники отраженного эха. И тот и другой прибор в процессе эволюции достигли совершенства. Гортань у летучих мышей очень широкая. Она, как резонатор, позволяет усиливать ультразвуки, создаваемые свистом. Но мыши издают не просто свист, не слышимый для нашего уха, а серию ультразвуковых щелчков. Перед взлетом мышь посылает пять — десять сигналов в секунду, начался поиск — частота возрастает до двадцати-тридцати щелчков, а насекомое мышь настигает при двухсотпятидесяти сигналах в секунду. Как мышь производит непрерывную серию сигналов-писков, пока неизвестно.

У разных видов летучих мышей генераторы отличаются по строению. У одних, гладконосых, звуки, как уже отмечалось, издаются гортанью, поэтому такая летучая мышь летает с открытым ртом. Большая часть гладконосых мышей живет на Североамериканском континенте, но и у нас есть их представители. Самые маленькие из них — нетопыри — встречаются в Подмосковье и почти по всей средней полосе России. В сумерках без труда можно увидеть, как они охотятся за насекомыми на фоне еще непомеркшего неба. Создавая серию сигналов, нетопырь, как и все гладконосые летучие мыши, посылает ультразвук по всем направлениям, а затем улавливает отраженный сигнал. Другая группа летучих мышей — подковоносые, которых можно встретить, например, на Кавказе, генерирует ультразвуковые сигналы не ртом, а носом. Вокруг их носа находится мясистый вырост, напоминающий подкову, который позволяет отражать ультразвук и собирать его в узкий пучок. Летает подковонос с закрытым ртом, импульсы длятся тысячную долю секунды, а у гладконосых это щелчок всего в одну миллисекунду (рис. 5). Поэтому, если подковонос переходит на низкую частоту, его сигналы напоминают тиканье наручных часов.

Рис. 5. Ультразвуковые импульсы летучих мышей: а — гладконосы; б — подковоносы

Приемник отраженных сигналов у летучих мышей — тоже совершенное устройство: ведь он способен услышать эхо, которое в две тысячи раз слабее посланного генератором сигнала. Вполне понятно, что для улавливания таких слабых сигналов нужны большие ушные раковины, и у некоторых видов они достигают почти половины общей длины головы и туловища. Так, у ушанов, размером восемь сантиметров, уши в длину равны четырем сантиметрам. Внутреннее ухо тоже имеет особое строение. Вспомним, что из среднего уха колебания передаются во внутреннее стремечко и часть уха летучих мышей, расположенная рядом со стремечком, сильно расширена.

Ну а теперь рассказ о самом интересном — устройстве звукового приемника летучих мышей, позволяющем предохранять его от крика-импульса, посылаемого собственным локатором. Ведь посылаемый импульс, как мы сказали, в две тысячи раз сильнее принимаемых отраженных звуков. Таким звуком мышь может себя оглушить и после этого ничего не слышать. Чтобы этого не случилось, перед импульсом ультразвука стремечко специальной мышцей оттягивается от окна улитки внутреннего уха. Колебания механически прерываются и не попадают во внутреннее ухо. По существу, стремечко тоже делает щелчок, но не звуковой, а антизвуковой, оно сразу же возвращается на место после крика-сигнала, и ухо готово принять отраженный сигнал.

Просто диву даешься, с какой скоростью может сокращаться и расслабляться мышца, выключающая на время посылаемого крика-импульса слух мыши! При высоком полете это всего пять импульсов за секунду. При меньшей высоте полета — десять-двенадцать импульсов, а при преследовании добычи — двести-двести пятьдесят импульсов за секунду. Конечно, при самой высокой частоте мышца не успевает выключать ухо каждый раз, но эхо так сильно, что и при отведенном стремечке летучая мышь, скорее всего, слышит сигналы, отраженные от насекомого, находящегося в нескольких сантиметрах от ее мордочки.

Ничего не скажешь! Эхолокационная система летучей мыши — совершенная радарная установка, работающая в ультразвуковом диапазоне. Ее масса не более восьми граммов, а в ней помещаются и передатчик, и приемник, и вычислительное устройство — мозг. Напомним, что созданная человеком радарная установка весит десятки килограммов и для ее перевозки нужен грузовой автомобиль или автомобиль, специально оборудованный для радарной установки. Конечно, радар работает на радиоволнах, а не на ультразвуке, дальность действия его значительно превосходит ультразвуковой локатор летучих мышей. Принцип локации у них одинаковый, но живая, система значительно эффективнее, если учесть ее мизерную массу.

Можно только удивляться изобретательности природы и тем эволюционным механизмам, которые формировали ультразвуковые приборы у живых существ. Летучие мыши слышат ультразвуковые колебания частотой до ста тысяч герц, а ночные бабочки и златоглазки, за которыми они охотятся, воспринимают ультразвуковые сигналы с частотой до двухсот сорока тысяч герц. Их «уши» напоминают слуховые органы кузнечиков, о которых шла речь ранее. Как только насекомые услышат, что их лоцирует летучая мышь, они начинают выделывать фигуры высшего пилотажа, спирали и мертвые петли — лишь бы летучая мышь промахнулась и не схватила их. А так как насекомые проворнее летучих мышей, то им часто удается увернуться от преследователя. Но на этом не заканчиваются взаимоотношения между бабочками и летучими мышами. Недавно удалось установить, что некоторые бабочки сами способны производить ультразвуковые импульсы. Как только насекомое обнаружит, что летучая мышь прослеживает его путь лоцирующими сигналами, оно само начинает издавать ультразвуковые импульсы. Причем эти импульсы так действуют на преследователя, что он улетает прочь, как бы пугается.

Что же заставляет летучих мышей прекратить преследование насекомого, издающего ультразвуковые сигналы?

На этот счет пока есть только предположения. По одним из них ультразвуковые щелчки — это приспособительные сигналы насекомых, сходные с теми, которые посылает сама летучая мышь, только в тысячу раз сильнее. Ожидая услышать слабый отраженный звук от своего сигнала, преследователь слышит оглушающий грохот, как будто сверхзвуковой самолет пробивает звуковой барьер. По другим представлениям, которых придерживается известный исследователь чувств животных Р. Бертон, ночные бабочки испускают предупреждающие ультразвуковые сигналы для летучих мышей. Если хотите, это можно назвать тоже мимикрией, только не зрительной, а ультразвуковой. Множество насекомых стремятся слиться с окружающей средой и приобретают соответствующую защитную окраску. Ряд же ядовитых насекомых, наоборот, одеты в самые яркие красочные «костюмчики». Это — окраска-предупреждение. Но для летучих мышей, которые охотятся в ночное время, яркая окраска не имеет значения. Ядовитые насекомые используют предупреждающие ультразвуковые сигналы. Возможно, защитную роль этих сигналов постигли и безобидные бабочки и пугают ими летучих мышей. Вот и получилась своеобразная мимикрия.

Каким же образом в длительном эволюционном процессе у насекомых появилась способность воспринимать ультразвуковые сигналы и мгновенно понимать опасность, которую несут в себе «сигналы» летучей мыши? С ультразвуковыми сигналами летучих мышей еще сложнее — никакие крики-сигналы соплеменников (а их иногда в одном месте, как в Бракенской пещере на юге США, собирается свыше двадцати миллионов), никакие искусственные ультразвуковые сигналы, создаваемые человеком с помощью аппаратуры, не мешают охотиться рукокрылым. Они узнают свое эхо среди миллионов голосов и других звуков, а воспроизведение сигналов, создаваемых бабочкой, заставляет мышь улетать прочь. Эти сигналы предельно подобраны к локатору летающего зверька, и, возможно, их щелчки раздаются точно в то время, когда летучая мышь включает ухо, чтобы услышать эхо. Если это так, то ночная бабочка успевает принять частоту лоцирующего ее импульса и послать ответный сигнал с учетом приближения охотника точно в унисон с ним. Такой прибор не может образоваться постепенно, в процессе отбора и совершенствования. Насекомое получает его сразу в готовом виде — только тогда он спасет ему жизнь. Вот так сложно устроенный звуковой локатор ставит новую загадку в эволюции живого, которую пока не решили ученые.

Ультразвуки летучие мыши издают не с помощью голосовых связок, а за счет свиста. Непонятно только, как можно свистеть щелчками. Зато возможности ультразвуковой локации выше, чем локации на частоте слышимых звуков. Во-первых, ультразвук распространяется направленным пучком, а во-вторых, локация при уменьшении длины волны улучшается — отраженное эхо от мелких предметов при этом, меньше искажается. Высокочастотные звуки, испускаемые в лаборатории щелчками, как у дельфинов или у летучих мышей, позволяли слепым людям с хорошо развитым слухом узнавать предметы и материал, из которого сделаны исследуемые объекты, хотя им, конечно, было далеко до тех возможностей, на которые способны «живые локаторы».

Кошки тоже слышат ультразвуки. В нашем «кис-кис» целый аккорд ультразвуков, и, возможно, в нем кошки слышат ряд свистов в большом диапазоне. Собаки не уступают кошкам, их даже можно приучить прибегать к хозяину на сигнал ультразвукового свистка. Верхняя граница слуха различна и у людей. Дети могут слышать более высокие звуки по сравнению со взрослыми. Описан случай, когда четырехлетний мальчик проснулся ночью, разбудил родителей и начал Настаивать, что «оно» кричит и пищит. Родители ничего не слышали. Сначала они думали, что ребенок видел что-то во сне, и начали его успокаивать. Через некоторое время ребенок опять закричал, что «оно» запищало и что в комнате кто-то есть. Родители, чтобы успокоить ребенка, начали обыскивать комнату и нашли летучую мышь, прицепившуюся к одной из занавесок. Справедливости ради можно заметить, что ребенок все равно бы не услышал ультразвуков, на которых лоцирует насекомых летучая мышь, скорее всего, это были сигналы, посылаемые другим рукокрылым на частотах низковолнового ультразвука, примерно в области двадцати пяти тысяч герц.

Не у всех животных есть такой сложный и совершенный аппарат эхолокации, как у летучих мышей и дельфинов. Некоторые животные используют свой сонар только для ориентации в темных пещерах. Так, в Юго-Восточной Азии в пещерах живут стрижи-саланганы. Они знамениты своими гнездами из густой застывшей слюны — в восточной кухне их используют для приготовления супа и называют «ласточкины гнезда». В пещерах саланганы издают щелкающие звуки до пяти — десяти раз в секунду и по эху определяют, где стены, а где гнезда. Другая птица — гуахаро из Южной Америки — тоже проводит весь день в темных пещерах и только ночью вылетает, чтобы полакомиться плодами деревьев. В темной пещере она ориентируется с помощью сонара, издавая пронзительные отрывистые крики частотой около семи тысяч герц.

Однажды вечером на даче я услышал тонкие и резкие писки. Что бы это могло быть? Я взял фонарик и направился к источнику непонятных звуков. В луче фонарика стоял мой кот, а перед ним, как мне сначала показалось, крошечная мышь. Через некоторое время удалось рассмотреть, что это была землеройка — самое мелкое насекомоядное млекопитающее нашей фауны. При любой попытке кота продвинуться вперед и схватить землеройку она издавала такие пронзительные писки, что удивленный кот отскакивал. Свисты, конечно, производились в ультразвуковом диапазоне, что еще больше пугало кота.

Известно, что землеройки — большие специалисты по воспроизведению ультразвуков. Но не только для отпугивания своих врагов используют землеройки ультразвуки, они ими пользуются и для эхолокации. Биологам пришлось много поработать, прежде чем они открыли эхолокационную систему у этих млекопитающих. Опыты пришлось проводить в полной темноте, а наблюдать за зверьками с помощью приборов ночного видения.

Ученые взяли две платформы, тщательно промыли их, чтобы исключить обонятельные ориентационные эффекты, и раздвинули платформы на разные расстояния. При удачном перепрыгивании землеройки получали их любимую пищу. Как обычно, животное подбегало к краю одной платформы, обследовало его, а затем точным прыжком перебиралось на другую платформу, с которой дорожка вела к пище. Если расстояние между платформами было семнадцать сантиметров, то землеройки без труда обнаруживали вторую платформу и перепрыгивали на нее. Стоило расстояние увеличить до двадцати пяти сантиметров, прыжки прекратились, зверек метался по краю первой платформы, ощущал, где находится вторая, но преодолеть огромнейшую для него «пропасть» не решался. Вот эти опыты и помогли ученым установить, что для своей локации землеройки используют ультразвук.

Эта часть книги познакомила читателя с обитателями воздушных просторов, пещер, наземными существами и обитателями морских глубин, которые имеют ультразвуковые эхо-локаторы, поражающие своим совершенством и показывающие пути создания новых лоцирующих приборов.

 

Глава пятая

АНАЛИЗАТОРЫ ФИЗИЧЕСКИХ ПОЛЕЙ

 

Компас в языке

Многие беспозвоночные животные наделены «магнитным компасом». Очень четко такой компас работает у плоских червей планарий. Направление на магнитные полюса Земли люди умели определять давно. Еще до изобретения компаса древние викинги пользовались куском магнитной руды во время путешествий по северным морям. Сейчас каждый человек знает, что Земля — это огромный вращающийся постоянный магнит. Однако не только из постоянного магнитного поля складывается магнитное поле Земли. В нем есть переменный компонент, составляющий всего два процента от постоянного магнитного поля. Но его биологическое действие значительно.

Люди не ощущают магнитного поля Земли и для определения нужного направления по магнитному полю используют компас. А есть ли у животных какие-либо «приборы», которые помогают им ориентироваться в магнитном поле и тем более в геомагнитном поле, которое довольно слабое — всего до 0,7 эрстеда? Напомню, что в лабораториях физики создают магнитные поля в несколько тысяч эрстед. Так вот, в организм живых существ «встроен» довольно чувствительный «магнитный компас». Некоторые экспериментаторы, желая проверить, ощущают ли животные магнитное поле, использовали в своих опытах магниты, поле которых во много раз сильнее, чем магнитное поле Земли. Реакция животных была неадекватной — либо они совсем не реагировали на искусственные магнитные поля, либо у части организмов реакция была бурная и не вписывалась ни в какие рамки. Сейчас стало ясно, что в этих исследованиях недооценивалось эволюционное развитие животных. Вся жизнь организмов на Земле развивалась в условиях воздействия геомагнитного поля, и, конечно, живые существа научились ориентироваться в нем. Поэтому сильные магнитные поля животные воспринимают как непривычный временный фактор. Сильные магнитные поля могут оказать биологическое действие на кроветворение, клеточное деление и физиологические параметры некоторых органов, но восприятие информации у животных связано только со слабыми магнитными полями, близкими к напряженности магнитного поля Земли.

Прямым доказательством действия геомагнитного поля на жизнь организмов можно считать реакцию живых объектов на экранирование их от действия магнитных силовых линий. Живые организмы помещают в камеры из сплавов пермаллоя (железо с никелем) или же мюметалла (никель, железо, медь и хром в определенных соотношениях), которые значительно уменьшают действие магнитного поля Земли. На многих организмах экранирование от магнитного поля никак не сказалось, однако на высших растениях при длительном экранировании удалось показать, что происходит задерживание закладки боковых корешков, а первичная кора становится толще и покрывается своеобразными наростами. Бактерии тоже реагировали на сильное понижение естественного магнитного фона. Золотистый стафилококк стал в пятнадцать раз медленнее размножаться, а размеры клеток азотбактера увеличились в восемь раз, и даже появились нитчатые формы, чего обычно не происходит. Очень важно было проверить, как реагируют на экранирование от магнитного поля высшие животные — млекопитающие. Эксперименты, проведенные на мышах, показали, что к четвертому поколению у них прекращается воспроизводство, во втором поколении наблюдаются частые выкидыши зародышей. Родившиеся мышата с раннего возраста малоактивны и длительное время лежат на спине. У взрослой популяции (примерно четырнадцать процентов) наблюдается прогрессирующее облысение. Сначала лысеет голова, а затем спина. К шести месяцам животные погибают. Гистологический анализ показывает, что экранирование сильнее всего влияет на почки мышей (в них развивается киста и многокамерность), страдает и печень.

Действие искусственных слабых магнитных полей, близких к естественным полям, также влияет на живые организмы. Например, бактерии в переменном магнитном поле с частотой 0,6 герца снижают скорость размножения. В то же время электромагнитное поле с частотой 0,1; 0,5 и 1 герц стимулирует размножение бактерий.

Наиболее высокочувствительными к слабым магнитным полям оказались рыбы, которые используют их в основном для ориентации, но об этом рассказ пойдет несколько позже. Организм млекопитающих тоже реагирует на короткое и длительное пребывание в искусственных магнитных полях. У кроликов, например, низкочастотное магнитное поле (восемь герц) влияло на активность ферментов в лейкоцитах крови. Особенно резкое уменьшение активности щелочной фосфотазы в клетках белой крови наблюдалось при создании магнитных полей, близких по своим параметрам к тем, которые наблюдаются при магнитных бурях. Действие переменных и постоянных магнитных полей не ограничивается только изменениями в периферической крови у млекопитающих. Эксперименты показали, что эти поля действуют на электрическую активность мозга. Под действием слабых магнитных полей с частотой 0,01-5 герц у человека увеличивается частота пульса, появляются слабость, головная боль, чувство тревоги — признаки нарушения электрической активности мозга.

При действии сильных магнитных полей (в экспериментальных условиях) реакции могут быть более отчетливые, чем при влиянии слабых полей. При этом страдают ткани тех органов, где постоянно происходят клеточные деления: костный мозг, селезенка, печень, половые железы. Нарушается биологический ритм клеточных делений, у некоторых животных меняется поведение.

Насекомые, например, тараканы, очень устойчивы к действию сильных магнитных полей. В то же время у «домового усача» под влиянием такого поля активность заметно подавляется. Мухи, попавшие в магнитное поле, сначала очень активны, а затем их поведение резко меняется, и они выглядят сонливыми и вялыми.

А теперь посмотрим, какие «магнитные приборы» позволяют животным ориентироваться в пространстве, передавать друг другу информацию и даже изменять ориентацию планарий. Американский зоолог Ф. Браун провел такой опыт: поместил планарий в воронкообразный проход, на выходе которого менялось направление магнитных силовых линий. Если выход располагался параллельно силовым линиям, то есть смотрел на север или юг, планарии поворачивали направо. Если выход располагали по направлению восток — запад, то они поворачивали налево. И так было всегда, пока у выходов не ставили слабый магнит, в результате чего ориентация планарии нарушалась.

Способностью ориентироваться по магнитным полям обладают и те существа, «компас» у которых находится в языке. Речь идет об улитках. Правда, это не совсем тот язык, что у позвоночных животных. Он похож на терку, которую улитка высовывает изо рта и соскабливает ею водорослевые налеты на камнях и сваях. Но в этой терке, или радуле, как ее еще называют, содержится большой процент железа — почему она и может выполнять функции компаса. Трудно объяснить, как микроскопические усилия, создаваемые в радуле улиток, передаются и мозг и анализируются, помогая ориентироваться по сторонам света, однако она так же, как и планарии, реагирует на небольшие кусочки магнита и меняет ориентацию при выходе из прохода.

Магнитное поле ощущают не только крупные организмы, но и простейшие, обитающие в водоемах. Туфелька хвостатая при наложении искусственного магнитного поля, близкого по своему значению к геомагнитному, меняет свою активность, а иногда и траекторию движения. Возможно, в ее цитоплазме заложены пара- и диамагнитные молекулы, чутко реагирующие на изменение магнитного поля. Одноклеточным не уступают в магнитной ориентации и колониальные простейшие. В чистой воде, богатой соединениями железа, развиваются вольвоксы, колониальные жгутиконосцы. Они способны не только различать направление магнитных силовых линий, но и менять свою ориентацию при увеличении общей напряженности поля. Низшие рачки — дафнии, тысячами развивающиеся в теплые дни в прудах, тоже способны к ориентации в магнитном поле. Они приспособлены точно ощущать изменение силы и частоты магнитных колебаний. Можно проделать простой опыт. На дно небольшого аквариума, где плавают дафнии, насыпать магнитные опилки. Рачки соберутся только в определенных местах аквариума, как бы повторяя своими скоплениями конфигурацию участков дна, заполненных опилками.

О насекомых следует поговорить отдельно. Магнитное поле Земли для них — важнейший ориентир. Первыми, на кого обратили ученые свои взоры, были термиты. Еще бы — они все свои подземные галереи и входы в термитники устраивают в направлении магнитного меридиана. И самку, беспрерывно производящую яйца и имеющую брюшко величиной с небольшой огурец, они укладывают вдоль магнитного меридиана.

А мухи! Обратите внимание, как они ориентируются при посадке. Ученые занялись этим вопросом, и оказалось, что даже домовые мухи в помещении без окон и при искусственном освещении предпочитают садиться по осям север — юг и восток — запад. Конечно, наблюдаются колебания в расположении тела при посадке, но они никогда не превышают двадцати градусов в ту или другую сторону от оси.

Пчелы безошибочно разыскивают корм и свой улей. Известно, что важнейшим ориентиром для сборщиц меда служит Солнце. Даже когда небо покрыто тучами, пчелы знают, где оно находится, — для этого им достаточно маленького кусочка неба. Они видят поляризованные лучи и по их направлению определяют местоположение Солнца. Прилетев в улей, они передают своим соплеменникам информацию о том, где можно взять большие сборы нектара и пыльцы. Эту информацию пчелы передают друг другу довольно своеобразно: танцами, движением хвостового отдела. Этим они показывают, как далеко надо лететь и в каком направлении. Однако танцующая пчела может передать неверное направление месторасположения корма, иногда ошибаясь на пять-десять градусов. После экранирования магнитного поля ошибки уменьшались до трех градусов. Это говорит о том, что пчелы используют магнитное поле Земли для ориентации, а ошибки связаны с изменением геомагнитного поля.

Рыбы живут в мире электрических полей. Однако и магнитное поле в их ориентации, локации, как сейчас выяснилось, играет важную роль. Несколько тысяч километров могут преодолеть рыбы во время ежегодных миграций к дому. Ранее была описана их необычная способность находить родную реку и то место, где они впервые появились на свет. Но какими ориентирами пользуются рыбы в открытом море, когда их химические анализаторы не могут ощутить запаха родного водоема? Вероятно, они также обладают способностью ориентироваться по магнитным линиям Земли. Тщательные эксперименты в природных и в лабораторных условиях подтвердили этот вывод. В лаборатории работали с молодью стеклянного угря. Ее запускали в специальные лабиринты, в которых было до двухсот пятидесяти разветвлений. Рыбки должны были решать задачу выбора, взять правое или левое направление на каждом очередном разветвлении. И они всегда избирали то направление, как если бы они двигались от Саргассова моря. Вспомним, ведь там они выклюнулись из икры и прошли личиночный период. Одиннадцать тысяч наблюдений провели на широте Ленинграда, Одессы и Калининграда, и всякий раз молодь угря в каждом географическом пункте выбирала определенное направление движения по линии от Саргассова моря к месту испытаний. Такую ориентацию можно осуществить только при наличии рецепторов, улавливающих геомагнитные силовые линии и определенный угол движения по отношению к магнитному меридиану. Но как доказать, что именно магнитное поле помогает угрям ориентироваться в лабиринтах? Очень просто — экранировать от магнитных полей или же компенсировать магнитное поле искусственными магнитами. В результате рыбы теряют способность ориентации в лабиринтах и движутся по всем направлениям.

Рыбы не только используют магнитное поле для ориентации во время миграций, но и могут лоцировать им свои жертвы. Так, у щуки вокруг головы, примерно в области глаз, создается переменное магнитное поле с частотой восемь-девять герц. Это привилегия не только рыб. Магнитное поле создается вокруг головы большинства позвоночных животных, и обусловлено оно электрическим действием мозга и его альфа-ритмами. Однако хищные рыбы, в нашем случае щука, используют переменное магнитное поле для обнаружения рыбок, спрятавшихся в траве. Своим переменным магнитным полем щуки как бы наводят электрический потенциал, который они могут воспринимать с помощью электрорецепторов. Зубастый хищник действует точно по закону Фарадея. Он пересекает магнитными линиями тело рыбы, индуцирует в нем электрические потенциалы между хвостом и головой и таким образом определяет, где рыба и в какую сторону направлены ее хвост и голова.

Среди птиц тоже можно найти виды, совершающие упорядоченные сезонные миграции на тысячи километров. Пожалуй, дальше всех мигрируют кроншнепы, гнездящиеся на Аляске и на зиму улетающие в теплые края к Таити и Гавайским островам. Примерно десять тысяч километров занимает их путь, из которых три тысячи километров они летят над морем. Даже представить себе трудно — три тысячи километров над водными просторами! Ведь это небольшая птица! И не сбивается с пути! Навигационная способность, как и у всех птиц, отличная.

Механизм биологической навигации у птиц еще не раскрыт. Есть несколько теорий, из которых следует, что-либо птица пользуется «биокомпасом», улавливающим неизвестные пока поля, либо ориентируется по физическим параметрам: по силам Кориолиса, положению Солнца над горизонтом, звездам и геомагнитному полю. Не исключено, что для ориентации и навигации птицы используют и «биокомпас» и физические параметры. Во всяком случае, магнитное поле Земли для ориентации птиц играет большую роль.

Примерно пятнадцать лет назад советский исследователь В. И. Данилов и американский зоолог Л. Талкингтон предположили, что роль магнитометра у птиц может играть «гребешок» — специальное образование в глазу. Совместное действие на гребешок света и геомагнитного, поля приводит к фотомагнитному эффекту. В результате в гребешке возникают токи, которые раздражают волокна зрительного нерва.

Есть предположения, что птицы могут связывать одновременно гравитацию и геомагнитное поле. Ведь сила земного притяжения, хотя и незначительно, меняется при перемещении с севера на юг и обратно, но птицы способны различить эту разницу. Магнитные поля в разных точках Земли имеют разный наклон. Существует четыре точки с постоянным наклоном магнитного поля и соответствующей гравитацией — две в Северном полушарии и две в Южном. Пользуясь этими точками, птицы без труда определяют соотношение земного притяжения и наклонение геомагнитного поля.

Нельзя не упомянуть об энергетической упорядоченной сетке. По мнению ряда исследователей, Землю покрывает особая энергетическая сеть, то есть все поля, несущие энергию: гравитационное, магнитное, электромагнитное, электрическое, они не гомогенно распределены по поверхности Земли, а образуют определенные структуры в виде сети с шестиугольными, треугольными или квадратными ячеями. Причем сеть соподчиненная: крупные ячеи огромны, их размеры составляют сотни километров, ячеи меньших размеров — в десятки километров — расположены внутри крупных, в них — ячеи километровые и так далее, пока размер ячеек не доходит до нескольких сантиметров и даже миллиметров. В крупных энергетических узлах наблюдаются аномалии полей. Но на этих разломах и энергетических точках — повышенная биопродуктивность. Однако до настоящего времени вопрос остается спорным и для окончательного выявления «энергетической» сети требуется провести тщательные эксперименты. Есть данные, что вертикальная составляющая магнитного поля в энергетических точках меняется, а раз так, то это тоже прекрасный ориентир для перелетных птиц.

А может быть, и у самих живых существ есть свое магнитное поле? О некоторых таких полях мы уже говорили — «компас» в радуле моллюсков. В некоторых же случаях само тело живых существ может представлять собой магнитный диполь. Ученые размещали высушенных насекомых на поплавке либо подвешивали мух на тонкие нити, и они «работали» как магнитная стрелка. Правда, достаточно было их смочить, как это свойство исчезало — уж очень невелико их собственное магнитное поле.

У семян пшеницы, ячменя, ржи тоже есть собственное магнитное поле, слабое, всего несколько гаммов. Однако определено, что южный магнитный полюс у них находится на зародышевом конце, а на противоположном — северный. Но есть среди семян и перевертыши, когда зародыш оказывается на северном полюсе. Вполне может оказаться, что собственная «магнитная стрелка» в теле живого и есть тот первый датчик, который позволяет животному или растению ориентироваться в магнитном поле. Видимо, в этой области ученых еще ждут новые открытия.

 

В мире электрочувства

Известно, что многие животные и растения способны улавливать электрические поля и электрические токи в воде и чутко реагировать на них. Наиболее совершенно электрочувство развито у рыб. Они, как сказал известный американский зоолог Т. Буллок, «видят мир посредством нового чувства», и не только «видят», а осуществляют электрическую локацию, обмениваются информацией между собой и, наконец, генерируют ток напряжением до шестисот вольт, которым могут сбить с ног человека и полностью парализовать свою добычу. Рыбаки, живущие на побережье Аргентины, знают, что в их заливах водятся электрические угри, способные накапливать в своих живых батареях до трехсот вольт. Никто из рыбаков не хочет получить такой удар от электрического угря. Понимая, что для накопления энергии нужно время, рыбаки сначала загоняют в воду стадо коров, которые, получив электрические разряды от угрей, с ревом выбегают из воды. Теперь «живые батареи» разряжены, и рыбаки входят с сетями в залив, не опасаясь сильных электрических ударов.

Нужно сказать, что генерировать мощные электрические заряды могут только некоторые виды рыб, а способностью чувствовать электрические поля и токи наделены многие представители животного мира. Так, простейшие, например инфузории, свое движение в электрическом поле ориентируют по направлению к электродам. Исследователи назвали это свойство гальванотаксисом. Если напряжение между электродами невелико, инфузории движутся от анода к катоду. Но достаточно повысить напряжение до нескольких вольт, как реснички инфузорий, с помощью которых они передвигаются, непроизвольно начинают работать в обратную сторону, и хвостовым концом, сама того не желая, инфузория движется к аноду, где начинает раздуваться и затем гибнет. Очень интересно наблюдать в микроскоп за инфузориями в электрическом поле. Можно увидеть, как только что снующие во все стороны одноклеточные существа после включения тока, будто по команде сотнями движутся в одну сторону.

А вот коловратки — микроскопические черви величиной почти с инфузорию — не подчиняются властному зову электрического поля, хотя, возможно, и чувствуют его не хуже простейших. Был проделан такой опыт: большой кристалл фтористого лития раскололи на две половинки. На поверхностях расколотого кристалла возникает электростатическое поле, причем не гомогенное, а сложное по конфигурации, повторяющее структуру кристаллической решетки. Расколотый кристалл положили в культуру с коловратками филодинами и через некоторое время проверили под микроскопом, куда коловратка отложила свои яйца. На поверхности кристалла яйца были отложены по узлам кристаллической решетки. Следовательно, можно сделать вывод, что коловратка ощущает даже слабые точечные электрические поля на поверхности кристалла.

Можно предположить, что большинство существ, ощущающих электрические поля и их изменение в природе, способны воспринимать информацию посредством взаимодействия природных полей с собственным электрическим полем организма. В 1967 году ленинградскому физиологу П. И. Гуляеву с помощью специальных зондирующих усилителей удалось зарегистрировать электрические поля вокруг нервов мышц, сердца лягушки, а также вокруг человека на расстоянии десяти — двадцати пяти сантиметров. Электрические поля зарегистрированы также вокруг летящего комара и шмеля. В дальнейшем будет рассказано о специальных рецепторах электрического чувства у рыб, у них эта система наиболее совершенна.

Водная среда, в которой обитают рыбы, обладает высокой электропроводностью. По этой причине токовые поля, вырабатываемые живыми генераторами, достигают электрорецепторов других рыб почти без потерь. Появляется возможность электролокации и передачи электрических сигналов на несколько метров в реках и морях, где зрение часто не играет главной роли, если вода мутная.

Всех электрических рыб можно разделить на сильноэлектрических и слабоэлектрических. Эта классификация связана с работой у них «генераторов электрических импульсов». Если за основу взять способность рыб к восприятию электрических импульсов, то можно увидеть, что одни рыбы очень чувствительны к электричеству, у них есть специальные электрические рецепторы, другие рыбы менее чувствительны к токовым полям — обычно у этих видов рыб отсутствуют специальные электрорецепторы. Рыбы с электрорецепторами улавливают импульсы до сотых долей милливольта на сантиметр, рыбы же без электрорецепторов менее чувствительны.

Рис. 6. Строение электропластинок:

А — скат; Б — звездочет; В — электрический угорь; Г — нильский слоник;

1 — электрическая пластина; 2 — соединительная ткань; 3 — сосочек; 4 — кровеносный сосуд; 5) нервы

Что же собой представляют электрические органы у рыб и каково их гистологическое строение? Как правило, это видоизмененная мышечная ткань. Электрические клетки очень сильно уплощены, поэтому их и называют электрическими пластинками. Например, у электрического угря толщина таких пластинок всего десять микрон. Их можно увидеть только сбоку в световой микроскоп, а сверху они напоминают шестиугольник площадью примерно один сантиметр. Такое устройство увеличивает площадь мембраны клетки, ведь именно на ней вырабатываются во всех живых клетках электрические потенциалы. И если обычная живая клетка может создать на своей мембране потенциал, равный тридцати милливольтам, то электрическая пластинка создает потенциал до ста пятидесяти милливольт. Следовательно, основной элемент «электрической батареи» — видоизмененная мышечная клетка. Эти электрические пластины собраны в столбики, уложены одна на другую и соединены последовательно, как элементы любой электрической батареи. Ряды столбиков, контактируя друг с другом, образуют тип параллельного электрического соединения. У разных видов электрические пластинки могут отличаться (рис. 6), но принцип строения электрических органов сходен. Правда, полярность во многом зависит от ориентации электрических столбиков. Если столбики ориентированы лицевой стороной к голове рыбы, то голова становится носителем отрицательного заряда относительно хвоста. У других видов столбики ориентированы в сторону хвоста, следовательно, у головы положительный заряд (рис. 7).

Рис. 7. Полярность электрических зарядов у различных видов рыб (закрашенные места — расположение электрических органов):

1) электрический скат с главным (А) и вспомогательным (Б) электрическими органами;

2) обыкновенный скат;

3) электрический сом;

4) электрический угорь: главный орган спереди, вверху (А); орган Сакса сзади (Б); орган Хантера снизу (В);

5) рыба-нож;

6) гимнарх;

7) гиатонемус;

8) звездочет;

9) ископаемая рыба, верхний силур

Познакомимся с одной из таких рыб, с африканским слоником (нильским длиннорылом) из семейства мормирид. Рыбаки очень удивлялись, что в их сети никогда не попадали длиннорылы. Думали, что он уходит из сетей. Однако все дело в «электрическом видений», которое позволяет ему следить за окружающей обстановкой, даже если он зарылся в ил и своим длинным рылом разыскивает червей. Электрический орган у нильского слоника небольшой по размерам, находится в стебле хвоста и состоит из пластинок, перпендикулярных оси тела. Такая структура позволяет генерировать электрические импульсы — диполи с разностью потенциала от семи до семнадцати вольт. Рыба не просто разряжается, а как бы «стреляет» отдельными двухфазными синусоидальными импульсами. Когда нильский слоник лежит спокойно в своем убежище в полной темноте, он посылает пять — семь импульсов в секунду и создает вокруг своего тела электрическое поле, мерцающее с такой же частотой, как идут его импульсы. Поле это асимметрично: более плотно у хвостового конца тела и более разрежено к голове. Но стоит только изменить соленость, температуру воды, дать свет или же внести в поле электропроводящий объект, как длиннорыл начинает испускать сорок — пятьдесят импульсов в секунду. Все чаще и чаще лоцируя исследуемый объект, он решает, как ему поступать — убегать или поглубже зарыться в ил. Электрические импульсы нильского слоника очень короткие и длятся всего от трехсот микросекунд до одной миллисекунды. Лоцирующий прибор нильского длиннорыла, видимо не только определяет размеры объекта, искажающего его поле, но и узнает его форму. Об искажении формы своего собственного электрополя нильский слоник узнает с помощью электрорецепторов, которыми усеяны его голова, спина и брюшко.

У других рыб с электролокаторами — таких, как нильская щука и гимнотус, электрорецепторы расположены в тех же местах, а у ската в основном на брюшной стороне. Самое интересное, что электрорецепторы были открыты задолго до того, как у людей возникло какое-либо представление об электрической деятельности рыб. В 1678 году их подробно исследовал и описал итальянец Лоренцини. На поверхности тела ската он увидел поры, а при детальном исследовании оказалось, что поры — это вход в длинный канал, который заканчивается расширением или ампулой. Эти образования так и назвали — «ампулы Лоренцини». Только совсем недавно удалось доказать, что они очень чувствительны к электрическим полям, для срабатывания ампул достаточно тока величиной всего 0,005 микроампера. Такие ампулы обнаружены в теле акулы, скатов и морского тропического сома. А нильский слоник и нильская щука вооружены бугорчатыми рецепторами. В таком рецепторе тоже есть расширение с электрочувствительными клетками, как и в ампуле Лоренцини. Наиболее чувствительный рецептор электрических полей у нильской щуки в десять раз чувствительнее, чем у скатов.

Своими электрорецепторами, используя импульсное электрическое поле, рыбы не только улавливают мелкие по размерам предметы, но и различают ничтожную разницу в их электропроводности. Каким же образом они достигают такой точности? Делать это им помогает все то же пульсирующее поле. Клетки — детекторы рецептора — воспринимают не само электрическое поле, а его изменения и деформацию из-за посторонних предметов. Чувствительный орган сам генерирует электрические импульсы тоже с высокой частотой, но он их так подбирает по фазе, что вспышки его импульсов возникают в промежутках между импульсами, создаваемыми электрогенератором. Стоит только постороннему предмету появиться в поле рыбы и сдвинуть время прихода электрического импульса к рецептору, как промежутки между пульсацией электрогенератора и рецептора сократятся, а мозжечок, анализирующий промежутки между нервными импульсами, сразу отметит эти изменения — ведь у электрических рыб он очень хорошо развит. Если бы электрическое поле у рыбы было постоянным, то о локации с его помощью не могло быть и речи, она была бы невозможна. Пульсирующее электрическое поле — главная особенность прибора рыб, необычного для нас «видения».

Некоторые ихтиологи отмечали, что, когда они на рыбозаводах переводили рыбу из одного бассейна в другой или же пытались перегородить путь большой рыбе, например осетрам, то рыба делала рывок, и они ощущали его на расстоянии. И им передавался не удар волны, создаваемой рывками и бросками, а от рыб исходил какой-то непонятный импульс. Много лет посвятивший исследованию электрического чувства у рыб ихтиолог В. Р. Протасов считает, что во время испуга рыбы воспроизводят низкочастотные колебания. Другим ученым удалось показать, что при испуге во время скачков, рывков и бросков рыбы испускают наиболее сильные электрические разряды. Это могут быть не только электрические рыбы. Сейчас установлено, что большинство из известных нам рыб может генерировать слабые электрические разряды с частотой от пятидесяти до восьмисот герц. Если с помощью приборов перевести эти колебания в звуковые, то можно было бы услышать, как рыбы «щелкают», убегая от хищника, и как «взвизгивает» щука, бросаясь на свою жертву. А в морской воде «щелчки» испугавшихся преследования рыб привлекают к себе акул.

Ученые проделали такой опыт. Поместили камбалу и ее заклятого врага ската — морскую лисицу — в разные аквариумы. Связь между аквариумами осуществлялась только проводами. В грунт того и другого аквариума были вделаны электроды, прикрепленные к проводам. Как только камбала приближалась на расстояние десяти — пятнадцати сантиметров от электродов в своем аквариуме, в другом аквариуме скат приходил в возбуждение, он чувствовал электрическое поле камбалы. Вероятно, акулы и скаты используют биоэлектрические потенциалы для отыскания пищи, и не исключено, что такой же способностью обладают осетровые и хищные рыбы пресных вод.

Электрические рыбы могут использовать сигналы своих разрядов и для общения особей одного вида. Так, угри могут общаться примерно на расстоянии семи метров и привлекать других особей определенной серией электрических разрядов. Каким-то образом «переговариваются» электрическими сигналами и нильские слоники. Двух рыб поместили в один аквариум с перегородкой из марли, чтобы рыбы не могли видеть друг друга. В дневное время рыбы неподвижно лежали на дне, но посредством электродов, опущенных в воду, и переведения электрических колебаний на регистрирующие приборы удалось установить, что мормирусы посылают друг другу какие-то сигналы. Если одну из рыб трогали палочкой, она увеличивала им-пульсацию своих разрядов, а «слушающий» ее длиннорыл не оставался безучастным — он тоже увеличивал пульсацию своего электрического поля. Эти опыты проводил профессор Кембриджского университета Г. Лиссманн. Причем его дневные опыты подтверждались ночью. Рыбы всплывали, плавали вместе вдоль перегородки и «скрипели» электрическими полями.

Нильская щука (гимнарх) — ночной хищник, достигающий в длину 1,6 метра, строит гнездо, куда откладывает крупные икринки диаметром до одного сантиметра. Гимнарх охраняет территорию, где находится гнездо, от других особей своего вида и по электрическим импульсам на достаточном расстоянии почти всегда узнает об их приближении. Перед нападением он производит особенно сильные разряды, чтобы предупредить пришельца, что территория занята. Так же ведут себя и нильские слоники. Если их помещают на одну территорию, они нападают друг на друга и пытаются откусить у противника хвостовой стебель, где сосредоточены электрические органы. В природе же «бой» идет только электрическими разрядами. Две мормириды становятся друг против друга и разряжают свои живые батареи, если силы их примерно равны. Если же одна рыба значительно сильнее другой, то она подавляет разряды противника, попросту говоря, не дает «сказать ему своего слова», и он, поняв это, отступает.

Очень своеобразно электрические дуэли проходят у южноамериканских рыб гимнотусов, обитающих в реках и достигающих в длину шестидесяти сантиметров. Каждая такая рыба охраняет территорию, на которой питается. Площадь охраняемого участка примерно 0,4 квадратного метра, но участки не смыкаются друг с другом, а находятся на расстоянии трех метров. Если сосед гимнотус приближается к участку ближе двух метров, обладатель участка начинает посылать электрические сигналы, подкрепляя их оборонительными позами. Если соперник не реагирует на предупредительный сигнал, гимнотус издает боевой клич — короткий разряд — менее чем за полторы секунды. Поняв силу сигнала, приближающийся гимнотус не принимает сражения. От него поступает сигнал: разряд длительностью более чем полторы секунды. Вся эта проверка сил проходит беззвучно, в слабых электрических полях.

«Неэлектрические» рыбы — такие, как щуки, окуни, угри, тоже выясняют свои отношения с помощью различных агрессивных поз и электрических разрядов, так как способны генерировать слабые электрические разряды. Однако расшифровать значение их электрических разрядов еще не удалось.

Кратко рассмотрев роль магнитных и электрических полей в ориентации, локации и передаче информации среди простейших и рыб и уточнив устройство биоприборов на их основе, перейдем к «живым приборам», улавливающим электромагнитные поля.

 

Как пахнет электромагнитное поле?

Все живые существа окружены электромагнитным полем. Электромагнитные волны как бы пронизывают нас. Многие из них не оказывают никакого действия, без других мы не можем жить, третьи могут принести смертельный вред. Все зависит от длины электромагнитной волны.

Электромагнитный спектр охватывает широкий диапазон длин волн, простираясь от х-лучей с длиной волны меньше чем 10 метра до радиоволн, длина волны которых измеряется километрами. Однако живые существа для фотобиологических процессов используют только незначительную часть электромагнитного спектра — от трехсот до девятисот нанометров. Три четверти энергии Солнце в основном испускает именно на этой длине волны. А земная атмосфера как бы фильтрует опасные для жизни электромагнитные излучения нашего светила. Лучи короче двухсот девяноста нанометров (жесткий ультрафиолет) задерживаются озоном в верхних слоях атмосферы, а длинноволновое испепеляющее излучение поглощается углекислым газом, парами воды и озоном. В процессе эволюции у многих животных и даже у растений выработались приспособления, улавливающие лучи от трехсот до девятисот нанометров, — это глаза. Пчелы видят ультрафиолетовый свет длиной волны до трехсот нанометров, а люди фиолетовый цвет воспринимают только при длине волны выше четырехсот нанометров и перестают видеть красный, когда длина волны больше семисот пятидесяти нанометров, то есть свет станет инфракрасным. В этих лучах видят некоторые ночные зверьки и маленькие странные существа на тонких ножках ай-ай, относящиеся к полуобезьянам.

Какие же «живые приборы» приобрели существа в процессе эволюции, чтобы воспринимать самые распространенные в природе электромагнитные волны?

Сколько бы ни рассматривали мельчайшие организмы, как бы тщательно ни изучали более крупных животных и человека, специальных рецепторов, воспринимающих радиочастотные электромагнитные волны, нам не найти. Человек не ощущает пронизывающих его радиоволн, хотя они и влияют на общее его состояние. Видимо, сами живые клетки становятся приемниками волн различной длины. Чем меньше длина волны, тем отчетливее реагирует на них организм. Например, метровые радиоволны вызывают возбуждение у обезьян. Они поворачивают голову в сторону их источника, начинают волноваться. Не исключено, что радиоволны взаимодействуют с электрическими токами в нейронах мозга и нервной периферической системе. Некоторые одноклеточные принимают определенную ориентацию в радиочастотном диапазоне. Особенно хорошо это прослеживается у зеленых жгутиконосцев эвглен, которые поворачиваются передним концом тела к антенне радиопередатчика и плавают в таком направлении. Все это возможно в тонких слоях воды, вполне проницаемых для радиоволн.

Низкочастотные электромагнитные колебания (три герца) после тридцатиминутного воздействия вызывают у подопытных кроликов учащение коркового ритма до восьми — десяти герц и увеличение амплитуды колебаний нейронов мозга примерно в два раза, то есть до семидесяти микровольт. Такое нарушение электрической активности мозга под влиянием электромагнитного поля и нарушение параметров колебаний могут сохраняться до двух суток после воздействия.

Люди тоже небезразличны к воздействию искусственных электромагнитных полей с частотой около десяти герц. Внешне они пс ощущают этого воздействия. Но достаточно было поставить эксперимент в подземном помещении и проследить за активностью людей и за ритмикой их жизни без воздействия электромагнитного поля и при его воздействии, как разница четко обозначилась. Эксперимент длился месяц. Люди, участвовавшие в эксперименте, не знали о воздействии слабых электромагнитных волн. Если обычно даже в темном помещении период активности человека сохраняется около двадцати пяти-двад-цати шести часов, то облучаемые электромагнитным полем были активны тридцать и даже сорок часов. Под влиянием электромагнитного поля изменились электролитный состав мочи и выделительная функция почек. И опять можно предположить, что действие радиоволн на человека регистрируется на клеточном уровне, это и приводит к вышеописанным сдвигам.

Можно уменьшить длину радиоволн до области инфракрасных волн, занимающую в электромагнитном спектре интервал от семисот до одной тысячи шестисот нанометров. Это тепловые лучи, и человек их ощущает терморецепторами кожи на достаточно большом расстоянии, если они идут от таких мощных источников, как Солнце, раскаленная печь, электролампочка или костер. Но у людей нет «живых приборов», способных воспринимать инфракрасные лучи, идущие от всего живого, даже от растений. Для этих целей человек создал приборы ночного видения, которые по своей чувствительности все же уступают «живым» термолокаторам.

Кровососущим в любое время дня и ночи нужно находить жертвы. Для них важнее инфракрасные лучи, позволяющие дистанционно находить свою жертву и днем и ночью. Самый обычный постельный клоп на расстоянии пятнадцати сантиметров обнаруживает объекты, имеющие температуру. Человека он обнаруживает на расстоянии нескольких метров. По мере приближения к теплому объекту клоп во все стороны водит антеннами. Когда он выбрал место присасывания, его антенны устремлены точно на это место. После этого клоп поворачивает все тело в сторону, указываемую антеннами, и направляется к месту свершения «пиратских акций». Другой кровосос — клещ — вооружен лучшим, чем у клопа, термолокатором. Забравшись на кончик листа дерева или куста, он поднимает передние ножки и начинает ими водить в разные стороны. На ножках можно различить округлые образования — это и есть термолокаторы. Они принимают лучи на расстоянии нескольких метров. Клещ только и ждет, когда теплокровное животное или человек приблизится к нему, чтобы упасть на него и впиться в кожу. Как и клоп, клещ может находить человека на значительном расстоянии, улавливая комплекс полей, испускаемых головой человека. Исследователь паукообразных П. И. Мариковский проделал очень простой опыт. Достаточно было высунуть голову из автомобиля, как клещ на расстоянии нескольких метров обнаруживал человека и начинал двигаться в его сторону. Металлический корпус автомобиля выступал как экран. Поэтому, если убрать голову, клещ терял человека и начинал беспорядочно бегать во все стороны. Появление головы из кабины опять позволяло ему найти верное направление.

В глубинах океана обитает много животных, пользующихся «приборами ночного видения». Последние отблески света в воде гаснут на глубине трехсот метров, а жизнь продолжается и на глубине до десяти тысяч метров. Животные наделены там биолюминесцентными фонариками, другие научились видеть инфракрасный свет, идущий от всех живых существ. Глубоководные кальмары, помимо глаз, по своему строению похожих на человеческие, имеют еще термоскопические глаза, улавливающие инфракрасные лучи. Строение термоскопического глаза сходно с обычным глазом, воспринимающим видимый для нас свет. В нем можно найти и хрусталик, и роговицу, и сетчатку. Только в сетчатке рецепторы приспособлены воспринимать инфракрасные волны, а чтобы обычные световые лучи не мешали рассматривать идущее от живых объектов тепловое излучение, каждый термоскопический глаз снабжен специальным светофильтром, задерживающим все лучи, кроме инфракрасных. Интересно, что термоскопические глаза у кальмара расположены на хвосте. Вращая хвостом, как головой, кальмар рассматривает животных, которыми можно полакомиться, а если вдруг сверху пикирует огромное светящееся бревно — приближается кашалот — надо удирать. Полезно иногда на хвосте иметь глаза, тем более ночного видения.

В своей книге «20 лет в батискафе» (Л., Гидрометеоиздат, 1976) известный исследователь подводных глубин Жорж Уо отмечает, что на глубине пяти-шести километров, в океанской пучине, где властвует вечный мрак, он встречал рыб с хорошо развитыми глазами. Они подплывали к иллюминатору батискафа, но никак не реагировали на яркий луч прожектора. Зачем тогда им глаза? А может, и в этом случае глаза видели только инфракрасный свет и всех тех, кто его испускал?

В Америке водятся гремучие змеи, а у нас в Средней Азии щитомордники. Это очень ядовитые змеи. С каждой стороны головы у них видны ямки — большая и маленькая. Одна из них ноздря, а между глазом и ноздрей расположен живой термолокатор — «лицевая ямка». По этому признаку их и относят к семейству ямкоголовых. Каждая ямка представляет собой полость глубиной шесть миллиметров, открывающуюся наружу отверстием диаметром около трех миллиметров. На дне полости натянута тонкая мембрана (рис. 8). На квадратном миллиметре мембраны можно насчитать до одной тысячи пятисот терморецепторов. По существу, это своеобразный простой глаз — инфракрасная камера обскура. А поскольку поля ямок перекрываются и поступающие в мозг нервные импульсы анализируются как одно целое, то/возникает своеобразный эквивалент стереоскопического зрения, позволяющий змее точно определить местонахождение источника тепла. У змеи слабое зрение и обоняние, а «слышит» она только колебания, передающиеся через почву, поэтому в охоте за мелкими теплокровными зверьками и птицами термолоцирующий орган играет важную роль. Зверек может не иметь запаха и не издавать ни одного звука, но он не может не излучать тепло. Поэтому его местонахождение будет точно установлено живым термолокатором змеи. А чувствительность термолокатора змеи очень высока: он реагирует на изменение температуры в 0,002 °C.

Рис. 8. Увеличенная схема строения термолокатора — «лицевой ямки» у змеи:

1 — мембрана с рецепторами

Может показаться, что термолокаторы, созданные человеком, лучше и чувствительнее, чем те, что создала природа, — ведь чувствительность их достигает 0,0005 аС. Однако достаточно сравнить размеры творения природы и творения рук человеческих, как становится понятным, насколько искусственный прибор несовершенен. В «железном» термолокаторе зеркало, собирающее тепловые лучи на специальную зачерненную пленку, меняющую сопротивление в зависимости от температуры, достигает в диаметре более метра. В природе этому великану противопоставлены, например, две лицевые ямки на голове змеи, диаметр которых исчисляется миллиметрами. Получается, что «живой прибор» на единицу термолоцирующей площади в несколько тысяч раз более чувствителен, чем- созданный человеком.

Наконец, среди инфракрасных локаторов есть «приборы», способные переводить невидимые лучи в видимое изображение с помощью флуоресценции. Такой механизм найден в глазах ночных бабочек. Инфракрасные лучи проходят через сложную оптическую систему и фокусируются на пигменте, который под действием теплового излучения флуоресцирует и переводит инфракрасное изображение в видимый свет. Однако эти видимые образы строятся непосредственно в глазу ночной бабочки. Благодаря способности воспринимать инфракрасное излучение бабочки без труда находят цветы, которые в темные ночи испускают излучение именно в этой области спектра.

Рассмотрим еще один способ регистрации животными невидимых электромагнитных волн — в области рентгеновских лучей. Рентгеновские лучи могут обнаруживать очень немногие животные. Крысы, например, на это способны. Американский исследователь Б. Федер сообщил, что ряд проведенных им экспериментов позволил установить, что крысы обнаруживают в воздухе рентгеновское излучение в двадцать миллирентген, которое практически безвредно для них. Каким образом? Они «нюхают» высокочастотное электромагнитное поле и по запаху определяют мощность облучения. Вернее, они с помощью обоняния улавливают даже незначительное количество ионов, образовавшихся после воздействия рентгеновских лучей на молекулы воздуха. Видимо, только крысы знают как пахнет электромагнитное поле. 

 

Самые необычные глаза

 Все ли живые существа одинаково воспринимают окружающий мир с помощью зрения? Конечно, нет!

Так, например, плащеносная ящерица, живущая в Австралии, умеющая ходить на задних ногах, раскрывающая свой плащ-капюшон для устрашения и сама до смерти боящаяся людей, несмотря на внушительные размеры (может достигать 1,6 метра), видит мир оранжевым.

Ученые исследовали глаза ящериц и нашли, что они снабжены оранжевыми «очками». В их сетчатке много жировых капель, окрашенных в оранжевый цвет. Следовательно, светофильтры находятся прямо в сетчатке этих живых организмов. Значит, ящерицы видят мир не так, как мы. И не только ящерицы. Многим птицам кажется зеленым то, что мы видим в красном цвете. Рыбы тоже несут различные светофильтры в глазах. Например, терпуг может менять цвет роговицы глаза.

Анализаторы видимых электромагнитных волн у животных могут быть разные по цвету и форме — большие, как блюдца, и маленькие, как бусинки, с круглыми, щелевидными и дугообразными зрачками.

У козы зрачок квадратный, а у некоторых копытных похож на сердце. Зато у летучих рыб зрачок принимает вид щели — в виде полукольца. Все эти приспособления помогают животным наблюдать за окружающей обстановкой. Когда, например, летучая рыба стремительно вырывается из воды, она попадает в мир солнца, зрачок за это время не успел бы сократиться, а щель уже сокращена и через нее удобно наблюдать за состоянием водной поверхности.

В природе встречается рыбка, у которой в каждом глазу по два зрачка: один вверху, другой внизу. Эту рыбу, обитающую в южноамериканских реках, так и называют четырехглазкой. Выставит она половину своего выпученного глаза наружу и смотрит, что над поверхностью воды, а нижняя в это время наблюдает, что делается под водой. Но самое интересное, что и сетчатка каждого глаза разделена на две части. Одна улавливает подводное, другая — надводное изображение. Однако рыбы, как установили ученые, не различают эти два раздельных изображения, а видят общую картину.

Как бы ни был замысловато устроен зрачок, острота зрения зависит от сетчатки, от того, сколько зрительных элементов приходится на единицу ее площади, сколько в ней палочек или колбочек. У человека и некоторых животных в сетчатке есть и палочки и колбочки. Такой глаз способен воспринимать свет и днем и ночью. Те же животные, которые ведут ночной образ жизни, вооружены только палочками. Их глаз не обладает острым зрением, зато при самом слабом свете он может улавливать малейшие движения предметов.

У тех, кто видит только днем, в сетчатке глаза одни колбочки. Таким глазом многое различишь, но при хорошем освещении. Так, некоторые суслики выходят из норы, лишь когда солнце заглянет в их жилище. Среди дневных животных можно найти очень остроглазых. Человек давно заметил, что птицы, особенно хищные, различают самые мельчайшие детали на земле с высоты в триста метров.

Загадка свечения глаз у животных в темноте не так уж сложна. Вообще-то, свечения здесь никакого нет, а дело все в отражении света, попавшего в глаз. У ночных животных на дне глаза есть своеобразное зеркальце. Ученые называют его тапетум. Только зеркальце-тапетум не сплошное, а составлено из мелких серебристых кристаллов. Отраженный от них свет различен и по цвету, и по силе. Все зависит от формы, величины и угла поворота кристаллов. Кошка, например, в спокойном состоянии «гасит» свои глаза, но достаточно поскрести по стене пальцами, привлечь ее внимание — глаза так и вспыхивают. Это на определенный угол повернулись кристаллики зеркальца. Форма кристаллов зеркальца определяется генетически, поэтому цвет свечения глазовидовой признак. Глаза медведя в сумерках отливают оранжевым цветом, у енота — ярко-желтым, а глаза тропических лягушек светятся зеленым цветом. Если в быстро надвигающейся южной ночи вспыхнут два рубиновокрасных огня у прибрежной воды — это значит, что на вас смотрит аллигатор.

«Зеркальце» встречается и у паукообразных. В пустыне в свете фар автомобиля водители могут увидеть искорки, как бы рассыпанные по барханам, — это светятся глаза фаланг.

А вот у пауков восемь глаз и светятся они разным цветом: крайние глаза — голубым, а средние — желтым. Однажды маленький паучок забежал в поле зрения моего бинокулярного микроскопа. Я надеялся увидеть разноцветное свечение его глаз. Но вместо этого только восемь маленьких фонариков брызнули на меня своим желтоватым цветом, и пришелец тут же скрылся. Если бы это был паук-скакунчик, то в его глазах можно было бы различить голубой и желтый цвета.

В теплый день паук-скакунчик любит охотиться на деревянном заборе. Его глаза обладают удивительным свойством. Крайние глаза, с голубым отблеском, видят не только впереди себя и сбоку, но и сзади. А два средних — настоящие телескопические трубы. Ими скакунчик рассматривает удаленные от него небольшие области, к которым он проявляет особый интерес. Только сам корпус трубы остается на месте, а сетчатка, принимающая изображение, перемещается в ту или иную сторону. Так что, исследуя окружающее, он даже не вращает глазами.

Очень много существует разновидностей глаз, устроенных по типу фотокамеры, но такой тип глаза занимает только шесть процентов у всех видов животных. Большинство же обладает сложными фасеточными глазами — такими, как у насекомых и ракообразных.

Принцип работы сложного глаза следующий: каждый глазок видит свое изображение, но в мозгу животного создается общая объемная картина окружающего мира. Глазки сложного глаза напоминают трубочки, у которых есть своя фокусирующая система, построенная из двух линз, выпуклой роговицы и хрусталика. У стрекозы, отличного охотника, каждый сложный глаз, занимающий почти половину головы, состоит из двадцати восьми тысяч глазков. А у муравья их так мало, что своими глазами он способен лишь отличить свет от тьмы. Однако волноваться за муравья не стоит, другие «живые приборы», которыми он наделен, помогают ему определять форму предметов в полной темноте, но об этом позже.

Ученые не раз пытались узнать, как видит сложный глаз насекомого или ракообразного. Немецкий физиолог Экснер сфотографировал окно сквозь фасетчатый глаз светляка. На фотографии видны и расплывчатый оконный переплет, и неясные очертания собора, находящегося за окном. Это позволило предположить, насколько неопределенно видят окружающий мир насекомые. Когда же появилась возможность регистрировать с помощью микроэлектродов биотоки, идущие от отдельных клеток, то оказалось, что зрение насекомых куда лучше, чем предполагали ученые. Каждый отдельный глазок различает изображение той или иной части рассматриваемой картины. Правда, пока еще остается загадкой, каким образом эти фрагменты изображения, часто повторяющиеся в нервных клетках насекомого, превращаются в стройную картину окружающего мира. То, что сначала казалось простым, требует еще немало усилий для изучения. Сложные глаза насекомых и ракообразных могут видеть то, что недоступно нашему взору. Во-первых, ультрафиолетовые лучи, а во-вторых, поляризованный свист.

Если выйти на цветущий луг, взору предстает пестрый, разноцветный ковер. Вот стоят красные маки, а для пчел они «ультрафиолетовые». К сожалению, мы никогда не видели и не увидим этих лучей, а поэтому и не можем представить, какие они. Белые цветы пчелы воспринимают как голубовато-зеленые. Зато синие и фиолетовые расцветки для насекомых несут множество оттенков и красок. Ибо как раз синий и фиолетовый тона цветов отражают самое разнообразное количество лучей самой различной длины видимого спектра.

Сложный глаз пчел, раков также видит поляризованный свет. Представьте себе хотя бы на минуту, что мы смогли увидеть поляризованный свет. Тогда небо, вода рек и озер покрылись бы сложным узором. И даже Солнце, закрытое облаками или тучами, можно было бы «видеть», вернее, точно узнавать его местоположение, используя рисунок поляризованных лучей. Словом, Солнце можно было бы использовать для ориентирования при любой погоде.

Мир существ с фасеточными глазами велик и разнообразен. Здесь можно встретить и огромного рака-мечехвоста, достигающего в длину девяноста сантиметров. Древнейший вид рака, который существует на Земле четыреста двадцать пять миллионов лет, оказывается, может своими сложными глазами увеличивать контрастность видимой им картины. Чтобы изменить контрастность изображения на телевизионном экране, нужна сложная электроника, а у мечехвоста вся его «электроника» скрыта в небольшом фасеточном глазу.

Могло бы насекомое, обладающее сложными глазами, воспринимать телевизионную передачу или смотреть кино? Если человеку показывать десять изображений в секунду, то он еще различит отдельные зрительные образы, а если шестнадцать, то все сольется в непрерывное действие. Больше шестнадцати раз в секунду меняются кадры на телеэкране или экране кинотеатра, и мы наблюдаем непрерывное действие людей и движение предметов. Мухе или пчеле надо двести смен кадров в секунду, чтобы они воспринимали непрерывное движение. Поэтому на наших телеэкранах и киноэкранах насекомые могли бы видеть отдельно меняющиеся картинки. А свет ламп дневного света, зажигающихся и гаснущих пятьдесят раз в секунду, который мы воспринимаем как непрерывный, для насекомых был бы мигающим.

В ходе эволюции животных постепенно отработались «живые приборы» необычайного зрения. Наверное, мало кто слышал о сканирующем глазе, который работает по тому же принципу, что и телевизионная трубка. Сканирующим глазом обладает маленький членистоногий рачок — копилия. Большим хрусталиком смотрит на мир этот глаз, а фокусируется изображение с этой линзы не на сетчатку, а в пустое пространство глазной камеры. Изображение улавливается всего-навсего одним светочувствительным рецептором, прикрепленным к тонкому мышечному пучку, который перемещает его в глазу, словно электронный луч в светочувствительной трубке телекамеры.

Другие животные обходятся без хрусталика, и глаз у них напоминает камеру с точечным отверстием. Головоногий моллюск наутилус, родственник осьминога и кальмара, со странными большими глазами и очень маленьким зрачком, как раз использует для своего зрения настоящую камеру-обскуру. У такой камеры-глаза есть большое преимущество: на каком бы расстоянии ни рассматривался предмет, его изображение всегда будет сфокусировано на сетчатке. Жаль только, что через узкое отверстие зрачка проходит мало световых лучей, поэтому при плохом освещении наутилус многого не различает.

Животные используют почти все известные оптические приспособления. Единственное, чего еще не удалось обнаружить, так это глаза, работающие по принципу вогнутого зеркала. И то у ночных бабочек, о которых уже говорилось, на флуоресцирующий пигмент инфракрасные лучи фокусируются вогнутым тапетумом — кристалликами; составляющими зеркало.

Не менее совершенны глаза человека. Они способны видеть днем и ночью, различать цвета и определять объемность изображения за счет бинокулярного зрения. Каждое из этих свойств может быть сильно развито в необыкновенных глазах животных, зато такие глаза теряют свою универсальность по сравнению с нашими.

Человеческий глаз, приняв на себя многие функции, свойственные глазам отдельных животных, конечно же, не лишен недостатков. Зато какими способностями он обладает! И часто то, что нам кажется обычным, на самом деле должно вызывать восхищение.

Возьмем хотя бы цветное зрение. Только у обезьян оно такое же полное, как у нас. А кошки и собаки воспринимают мир как бы частично подкрашенным. Правда, осьминоги, пчелы, некоторые пауки обладают цветным зрением и достаточно совершенным, но оно сильно отличается от нашего. Совсем другие спектры принимают фоторецепторы их сетчатки, и другие картины предстают перед их глазами.

А диапазон освещенности, который улавливает человеческий глаз? Разве может с ним сравниться самый совершенный фотоаппарат и пусть даже сотни пленок самой различной чувствительности? Нашему глазу и в сумерках, и при ярком солнечном свете помогает справиться с этим сетчатка и вся оптическая система.

Сначала ученые считали, что чувствительность глаза зависит от количества необесцветившегося фотопигмента. Однако все оказалось значительно сложнее.

Американскому исследователю У. Раштону удалось показать, что сетчатка работает как сложная электронная машина с обратной связью. Исследовав глаз человека, ученые установили, что рецептор, освещенный ярким светом и истративший весь зрительный пигмент, не бездействует, а, наоборот, начинает посылать в управляющий центр (зрительную часть мозга) сигналы, которые усиливаются в мозгу и в виде нервных импульсов идут обратно к фоторецепторам, заставляя их посылать новые сигналы. Происходит нервно-световое «замыкание». И несмотря на то что эти несколько минут зрительный пигмент не восстанавливается, человек не прекращает видеть на сильном свету.

Глаза ящериц, как известно, имеют оранжевый светофильтр. Оказывается, в глазу человека хрусталик выполняет не только роль линзы, но и светофильтра. Хрусталик нашего глаза отсекает от видимой части спектра ультрафиолетовые лучи. Не будь у нас его, мы тоже могли бы частично воспринимать мир в ультрафиолетовых лучах. В самом деле, люди, у которых удален хрусталик по поводу катаракты и заменен стеклянными линзами-очками, видят предметы в ультрафиолетовом свете. Они даже читают таблицу для проверки зрения при ультрафиолетовом освещении. Обычно люди при таком свете ничего не видят.

Сейчас многие исследователи считают, что цветное зрение человека включает три типа реакций, каждая из которых отвечает за видение либо желтого, либо синего, либо же красного цвета. Есть даже мнение, что люди не всегда на протяжении своей истории одинаково видели цвета, и аппарат цветного зрения эволюционирует вместе с развитием человека. Древние документы вроде бы подтверждают, что люди на заре своего развития не могли различать коротковолновую часть видимого спектра. Конечно, может оказаться, что Гомер, назвав море в своих произведениях «виноцветным», применил метафору, но если внимательно проследить за всеми лингвистическими примерами, то они убедительно доказывают, что в далеком прошлом люди слабо различали зеленый, синий и голубой цвета. Исследования американского ученого Ж. Молдона показали, что синечувствительные колбочки значительно отличаются от системы желтых и красных колбочек. Это указывает на их независимое и, скорее всего, более позднее развитие.

Существует раздел науки, который занимается психофизикой цветного видения. Испытуемым предлагают выбирать наиболее предпочтительные окраски изображений. Чаще всего называют сине-фиолетовую, чисто-зеленую и оранжево-красную. Желтые, голубые, коричневые, бордовые и другие оттенки цветов упоминаются очень редко. Если сине-фиолетовая область спектра воспринималась древним человеком слабо, то ему оставалось создавать свои художественные наскальные произведения в зеленом либо оранжево-красном тоне. А поскольку человек хотел выделить свои изображения из окружающей (зеленой) природы, то он предпочитал оранжево-красный цвет.

Ученые выдвигают ряд гипотез, стараясь объяснить феномен сдвига цветного зрения у человека в сторону коротковолновой части спектра. Одна из гипотез, на наш взгляд, очень интересна. Сдвиг в синюю часть спектра связан с изменением силы тяжести на Земле или с переходом в процессе эволюции из одной среды обитания в другую. Может быть, эту гипотезу можно проверить на историческом развитии животных, ведь их эволюция длилась примерно в 1600 раз дольше, чем миллионный период развития человечества. При этом за такой промежуток времени могла меняться сила тяжести на Земле, а животные в процессе эволюции то выходили из водной среды на сушу, то обратно возвращались в водную среду. Каждый такой переход — природный эксперимент по изменению силы тяжести.

Достижения современной науки позволяют ответить на вопрос: как животные видят цвета? У животных на тот или иной цвет можно выработать условный рефлекс. Можно снять электроретинограммы (ЭРГ) с сетчатки. Глаз освещается светом с определенной длиной волны, а с сетчатки микроэлектродами снимаются биотоки. Используя два указанных способа, ученые не только установили, как видят цвета звери, птицы, ящерицы и земноводные, но и исследовали цветное зрение у моллюсков, раков и даже некоторых червей. Особенно усиленно исследуется цветное зрение у насекомых.

Анализируя большое количество фактического материала и учитывая среду обитания животных, можно установить взаимосвязь между силой тяжести и спектром цветоощущения.

Оказалось, что рыбы наиболее активно реагируют на оранжево-красный цвет. Дафнии, тело которых насыщено водой, лучше всего различают красные участки спектра. Сходная картина отмечается у пелагических моллюсков и у других планктонных рачков.

Земноводные, которые первыми переселились на сушу, в процессе эволюции ощутили всю силу земного притяжения.

Проверка цветного зрения у лягушек показала, что они предпочитают всем цветам спектра голубой. Тому же цвету отдают свои пристрастия и вышедшие на сушу виноградные улитки, в то время как их родственники, оставшиеся в воде, лучше видят длинноволновую часть спектра. Голубые и синие цвета для улиток, живущих далеко от водоема, не имеют предохранительного значения, как для лягушек, сидящих около воды. Создается впечатление, что увеличение силы тяжести приводит к сдвигу в сторону коротковолновой части спектра. Но нужно помнить, что это свойство развивается в процессе эволюции и закрепляется генетически, а не появляется при изменении силы тяжести в данный момент.

Как только наземные животные преодолели силу тяжести и появились летающие существа, снова произошел сдвиг в сторону оранжево-красного видения. Птицы, например, используют аэродинамические токи воздуха для создания невесомости. У парящих птиц, морских чаек, крачек, поморников зрение приспособлено к восприятию красного цвета. Опять та же закономерность: с уменьшением силы тяжести цветное восприятие сдвигается в сторону длинноволновой части спектра.

Однако сделанные выводы нельзя считать окончательными, потому что многие факты можно истолковать и по-другому, ведь из всех чувств цветное зрение труднее всего поддается изучению, а выдвинутые предположения иногда не укладываются в схему, связанную с воздействием гравитации на развитие цветного зрения.

Многое еще предстоит изучить в сложнейшем механизме зрения животных и человека и в строении «живых приборов», улавливающих электромагнитные, магнитные и электрические поля, а также звуковые волны.

 

Загадки биолокации

Биолокация — один из самых интересных и в то же время спорных феноменов. Одна за другой вспыхивают дискуссии вокруг вопроса о возможности человека и животных находить интересующие их объекты на большом расстоянии либо скрытые под водой или землей. В основе биолокации у человека и различных видов животных могут быть совершенно отличные друг от друга механизмы достижения цели. Общее то, что человек имеет дело со слабыми, но высокоинформативными энергетическими взаимодействиями. Неизвестны человеку пока и живые приборы, принимающие информацию о местонахождении искомого объекта. Однако эксперименты многократно подтверждают, что биолокацией пользуются живые организмы. Самцы бабочки павлиний глаз отыскивают самку на расстоянии более десяти километров. Лососи точно находят родную реку. Термиты знают, где находятся муравьи, враждующие с ними. Во всех этих примерах ученые либо близко подошли к разгадке природы такой биолокации, либо примерно знают, где располагаются живые приборы, принимающие сигналы от передающего объекта. Но есть случаи биолокации, объяснить которые гораздо труднее, например, способность термитов ощущать напряжение древесных волокон в сооружении. Ведь только располагая информацией о всей постройке, можно выедать части, не несущие основной нагрузки. Это самая настоящая биолокация, правда, действующая на не очень большом расстоянии.

Не менее удивительно свойство термитов ориентироваться в пространстве и возводить сооружения без использования зрения. Экспериментальным путем было доказано, что термиты ощущают магнитное поле Земли и электростатическое поле. Они даже могут чувствовать живой организм на расстоянии. Как бы тихо ни приближался человек или животное к термитнику, часовые все равно поднимут тревогу. Видимо, вокруг каждого живого существа находится комплекс различных полей, который ранее называли биологическим полем. Именно эти поля и воспринимаются термитами. Только так мы пока можем предположить, как осуществляется «видение» термитов в темноте и через стены своего жилища.

Многие виды термитов делают свои гнезда из картона. Они скрепляют частицы древесины и земли своими выделениями, словно цементом. Получаются прочные гигиенические стены. Внутри термитника возводятся колонны, своды и арки. При этом опять работает непонятное «подземное видение», которое в этом случае направлено не на живые объекты, а на строительные конструкции. Чем иначе объяснить точную стыковку концов свода арки, произведенную насекомыми в полной темноте? Можно предположить, что термиты, находящиеся на концах арки, обмениваются информацией с помощью все тех же полей неизвестной природы.

В сырую погоду в лесу много лягушек. Каким образом они добираются до родного водоема? На их пути столько препятствий! Может быть, лягушки ориентируются по Солнцу? Но в дождливую погоду его нет. По запаху в лесу тоже трудно определить дорогу — здесь столько всевозможных запахов. И все-таки лягушки находят свой дом. Весной жабы и лягушки всегда верно выбирают направление к родному водоему, когда приходит время метать икру. Ученые проводили различные эксперименты. Увозили лягушек за несколько километров, закрывали им глаза, нос, но во всех случаях они возвращались в свой водоем.

Объяснить природу локации, которая позволяет лягушкам находить водоем, даже если он осушен и распахан, ученые пока не могут. Однако можно предположить, что эти животные тонко чувствуют «энергетическую» сетку, покрывающую земную поверхность. Наличие на земной поверхности упорядоченных магнитных дорожек в виде спирали уже найдено английским ученым. Интересно отметить, что об этих магнитных аномалиях, улавливаемых только самыми современными магнитометрами, знали древние люди неолитической эпохи. Из камней они выкладывали изображения спиралей в семь витков.

Зимой тюлени, обитающие в полярных морях, не отходят от своих лунок, следят, чтобы не замерзли полыньи, в которых кормятся и скрываются в случае опасности. Ученые решили выяснить, какими же рыбами питаются животные. Провели с вертолетов выборочный отстрел и нашли у каждого тюленя в желудке по нескольку больших рыбин, которые встречаются только на глубине восемьсот — девятьсот метров.

Получается, что тюлень охотится не за любой рыбой, он «знает», что там, почти на километровой глубине, появилась крупная добыча, которая движется в его сторону. Нужно нырнуть и встретиться с ней под водой. Сделать это надо с опережением, чтобы приблизиться к рыбе именно в тот момент, когда она проплывает мимо лунки, — это типичная биолокация. Как это делает тюлень, откуда он черпает «знания», ученые пока только решают.

У собак описаны не менее удивительные случаи биолокации, когда они находят своего хозяина в другом городе, где сами никогда не были.

С ярко-рыжим псом Мишкой писатель В. Немоляев познакомился в подмосковном Доме творчества. Собака ходила вместе с ним ловить рыбу, следила за поплавками и предупреждала лаем, что начался клев. Непонятно, каким образом Мишка узнавал, что Немоляевы должны быть в Доме творчества, но собака появлялась всегда за два- дня до их приезда, хотя месяцами шаталась неизвестно где. Вершиной этих связей, пока еще совсем необъяснимых, было то, что собака отправилась в Москву и через несколько месяцев нашла там полюбившихся ей людей. Пришла к подъезду дома, дождалась, когда жена Немоляева выйдет из дому, и бросилась к ней, чуть не сбив с ног. Радости не было конца. Подобных историй, описанных в газетах и журналах, не счесть.

Лоза, или «волшебная палочка», — простейший из индикаторов, которым люди пользуются уже тысячелетия, отыскивая воду и руду. По мнению некоторых исследователей, этим методом владели древние шумеры, халдеи и вавилоняне, Лоза, конечно, не была волшебной. Она и не поисковый прибор, пусть даже самый примитивный. Это скорее стрелка прибора, сам же прибор — человек.

Время шло, но лозоходцы не забывали о своих способностях. Их практическая помощь была просто необходима при выборе места, где рыть колодец или прокладывать шахту.

Водоискатели с незапамятных времен известны в России. В начале XX века в Москве устроили даже проверку лозоходцам. Одного из них возили по городу и сверяли его показания с планом городской водопроводной сети. Водоискатель, ранее совершенно не знакомый с расположением труб, точно указывал, где они находятся под землей.

В настоящее время границы биолокации значительно расширены. Современные «лозоходцы» не только помогают вести разведку полезных ископаемых, но и работают в архитектурноисторической, реставрационной и культурно-исторической областях. Они находят скрытые под землей остатки строений, фундаментов, подземные ходы.

В Москве создана межведомственная комиссия при Центральном правлении научно-технического общества радиотехники, электроники и связи имени А. С. Попова, занимающаяся проблемами биолокации.

Мне много раз приходилось наблюдать за работой операторов, проводящих биолокационную съемку. Всегда вызывает удивлен не то, что два совершенно незнакомых человека, в разное время исследующие одну и ту же местность, часто указывают на одинаковые точки. Это уже в какой-то мере может рассеять недоверие к биолокации. Ведь вопрос до настоящего времени остается спорным, механизм биолокации окончательно не объяснен. Пока мы строим гипотезы, проводим различные эксперименты, чтобы раскрыть тайну биолокации, этот метод уже достаточно широко используется на практике.

Операторы с успехом отыскивают не только воду, но и нерудные месторождения полезных ископаемых, например гипс. Важную помошь они оказывают градостроителям, указывая с помощью биолокации, где находятся подземные карстовые пустоты. Если на таком месте будет построено здание, оно может рухнуть. Поиск карстовых пустот обычным методом — очень дорогостоящее мероприятие.

Возникнет вопрос: а где взять столько операторов-биолокаторщиков? Оказывается, значительная часть людей может освоить методы биолокации. Примерно у восьмидесяти человек из ста. впервые взявших рамку в руки, проявляется эффект ее вращения в местах с искомым объектом. Но это только проявление эффекта. Чтобы стать хорошим оператором, нужно много тренироваться, развивать свою чувствительность.

Натренированный человек с рамкой может найти многое: наметить границы места залегания руды, найти развалины древ-него города, обнаружить водную жилу, отыскать захоронения золотых, серебряных и медных монет и, наконец, просто отмстить, где находится пустота, а по активности реакции рамки можно определить глубину залегания. Предельная глубина определения «объектов» может превышать семьсот метров.

Сейчас установлено, что можно и под водой искать объекты с помощью биолокации. Именно такие опыты проведены А. И. Плужниковым. Опыты заключались в том, что оператора поместили на небольшое суденышко, которое восемь суток двигалось по определенным направлениям на ограниченном участке моря. В результате такой работы была составлена «биолокационная» карта, которую сверили с геофизической. Они оказались идентичными. Но Плужникову принадлежит и другой не менее интересный эксперимент по биолокации плавающих объектов.

Можно ли рассмотреть судно, находящееся, предположим, в сорока километрах от наблюдателя? Нет. А проводя с помощью рамок биолокацию горизонта, можно указать направление, где находится это судно. Результаты опыта были подтверждены показаниями радиолокатора, и А. И. Плужников считает, что биолокация надводных объектов может иметь большое практическое значение. Во-первых, это позволит разыскивать потерявшиеся буи, пустые цистерны, промысловое оборудование. Во-вторых, биолокацию можно применить для промысловой разведки, выявлять скопления рыб и морских животных. Наконец, этот метод даст возможность устанавливать местонахождение потерпевших кораблекрушение.

Почему же все-таки рамка или лоза вращаются в руках у оператора? Сейчас можно с уверенностью сказать, что рамку движет человек. Это идиомоторная реакция человека. Мышцы руки непроизвольно, лаже незаметно для самого оператора сокращаются в ответ на бессознательный анализ окружающих человека полей и их изменение при движении в пространстве. Лучше даже сказать: улавливается не само поле, а его изменения и аномалии.

В этом феномене нет ничего мистического, он вполне материален. Экспериментаторы подключали к мышцам оператор;! идущего с рамкой, миограф и отмечали, что сначала сокращаются мышцы, а вслед за этим изменяет свое положение рамка. С другой стороны, проверка чувствительными приборами показывает, что над водоемом — наземным или подземным, около деревьев, а также над различными залеганиями под землей и пустотами напряженность электрического поля падает. Видимо, сам того не осознавая, человек улавливает эти отклонения полей.

Профессор Парижского университета Ж. Рокар считает, что в основе эффекта биолокации лежит способность человека подсознательно реагировать на отдельные нарушения магнитного поля, которые производят электромагнитную индукцию, и появление электрического напряжения, непосредственно действующего на нервные клетки и дающего чувствительную информацию.

Но какие бы гипотезы ни строились, для научных доказательств нужны экспериментальные проверки влияния магнитных, электрических, гравитационных и других полей на биолокационный эффект. Необходимо также изучить психологические и психические реакции оператора во время проведения биолокации. Пока ясно только одно: рамка или лоза выступает как стрелка биоприбора — человека, позволяющая сосредоточить на ней подсознательный анализ полей.

Мне приходилось наблюдать операторов, которые для биолокации не используют никаких рамок. А у некоторых моряков с врожденной повышенной чувствительностью развиваются способности поиска потерпевших кораблекрушение без использования биоиндикаторов.

Будем надеяться, что ученые скоро основательно разберутся в загадочном механизме биолокации — одном из самых интересных эффектов, присущих как человеку, так и животным.

 

Глава шестая

«ЖИВЫЕ ПРИБОРЫ» ВРЕМЕНИ

 

Часы внутри нас

Большинство живых существ — люди, животные, растения — обладают «приборами времени», позволяющими им измерять прошедшие промежутки их жизни. Однако с «живыми часами» связаны также и физиологические функции, которыми во многих случаях биологические часы «руководят» без нашего ведома. Только некоторые отдаленные ощущения говорят о неустанной работе приборов времени в нашем организме.

Что-то непонятное, странное происходило с подопытными насекомыми и животными в одной из экспериментальных лабораторий, занимающейся изучением биологических часов.

Все тараканы ползли за едой, а подопытный засыпал. Все засыпали, а наш подопытный бежал есть. Вернее, таракан делал все то же, что и другие, только с отставанием на полсуток.

Подопытные куры и петухи вели себя тоже странно. Спали днем, а когда их собратья садились на насесты, просыпались и бежали клевать зерно. А петухи еще петь к вечеру начинали так, как на заре.

Что же произошло? В данном случае ученые просто «подвели Стрелки» живых часов у животных. Это наиболее простой способ воздействия на время, текущее в клетках организма. «Часы» на некоторое время останавливают, а затем включают. Как экспериментаторы это делают — разберем несколько позднее.

Для значительной части животных и растений биологические ритмы задаются циклическими изменениями факторов окружающей среды. К таким очевидным факторам можно отнести суточные, лунно-приливные, лунные и годовые циклы. По этим вехам живые организмы проверяют свои собственные ритмы или внутренние колеблющиеся системы. Поэтому для многих обитателей суши и воды циферблатом служит огромное небо, а стрелками — солнечный луч.

Заглянем в маленький мирок, кишащий жизнью, — небольшой пруд. Сколько здесь низших рачков — дафний! Сначала может показаться, что каждая крошка беспорядочно снует в воде.

На самом деле все предопределено, и каждый организм в пруду ориентируется как у себя дома. Все дафнии собраны в одно облачко-стадо, а поляризованные солнечные лучи четко расчерчивают толщу воды. Человеческий глаз не может отличить поляризованный свет от неполяризованного, поэтому ему кажется, что лучи света просто освещают толщу воды. Но ведь помимо порядка, вносимого в подводный мир лучом, поляризованный свет, который видят дафнии, выступает как часовые стрелки. Свет поляризуется в воде и сложным глазом дафнии. Если даже Солнце закрыто облаками, дафнии все равно определяют время по плоскостям поляризации света.

Пчелы также способны видеть поляризованные лучи. Им только надо увидеть кусочек неба в щель или леток улья, чтобы определить где находится на небе Солнце и который час. Безошибочно чувствуют время козы, собаки, кошки и другие животные. Кому неизвестно, что собаки встречают точно в определенный час хозяина, возвращающегося с работы?

У меня была кошка Зорька, с точностью до минуты знающая приход с работы каждого члена семьи. Ежедневно в пять, без четверти шесть и в половине седьмого вечера садилась она в ожидании у двери, а встретив одного из нас, успокаивалась до прихода следующего члена семьи.

Человеку почти не приходится пользоваться собственными биологическими часами. Но бывают ситуации, когда никаких часов, кроме биологических, у человека нет, а что-то нужно сделать в определенное время. Например, проснуться в заданный час, когда нет будильника и разбудить некому. И он просыпается вовремя.

Растения определяют время не хуже животных. Одноклеточные водоросли, например, светятся только перед заходом Солнца. А высшие растения в строго определенный час закрывают или открывают лепестки своих цветков. Начинается утро, и заработали цветочные часы. В четыре-пять часов утра распускаются цветки цикория, мака и шиповника, в семь часов распускается салат, в девять-десять часов — цветки мать-и-мачехи, а вечером начинают распускаться цветки ночных растений: в двадцать часов — душистого табака, в двадцать один час — ночной фиалки, а ряд растений только ночью раскрывает лепестки своих цветков. Другие виды растений выделяют запах или нектар в строго определенные часы, и пчелы об этом очень хорошо знают.

Теперь самый интересный вопрос: как же устроены живые часы и в каком органе они расположены?.

Ученые не установили* еще в организме структур, которые ответственны за жизненные ритмы, и тем более молекулярных изначальных структур, задающих первичные колебания в биологических часах. Есть только ряд гипотез, объясняющих устройство датчика времени. Суть одной из них сводится к следующему.

Механизм биологических часов невозможно рассмотреть ни в какой микроскоп, потому что «маятником» их может служить молекула белка. Такой маятник колеблется очень часто. Если бы удалось увеличить его через микроскоп до такой степени, чтобы молекула белка была видна, то, кроме ее расплывчатого контура, мы ничего бы не увидели. Молекула похожа на звучащую струну. В каждой клетке колеблется не один, а миллионы мельчайших маятников-молекул.

Однако колебания белковых молекул-маятников не надо путать с тепловым колебанием. Колебания, дающие ритм времени, связаны в основном с движением скручивания и раскручивания белковых молекул. Огромные белковые молекулы в живых клетках по своему строению напоминают сложные пружины, кою-рые раскручиваются и скручиваются в определенном ритме. Каждая цепочка, из которой состоит белковая пружина, несет на себе электрические заряды. Достаточно растянуть пружины, как эти заряды начнут вращаться, создавая магнитное поле с определенным расположением полюсов. А отпустишь ее — она сожмется, заряды и полюсы магнитного поля вернутся в исходное положение. Таким образом, уже при сжатии и растяжении белковой молекулы возникает переменное магнитное поле. Значит, если бы около такой пружины был постоянный магнит, он способствовал бы ее ритмическим колебаниям. Но ведь такие магниты в живой клетке есть! Это — атомы металлов, включенные в состав самой белковой молекулы, вернее, в особый центр. У них сильное постоянное магнитное поле. Вполне возможно, что комплекс белковых молекул, а может быть, специальные молекулы — хронодатчики переводят беспорядочные тепловые колебания в резонансные. Ведь такую белковую молекулу можно рассматривать как своеобразный колебательный контур, настроенный на определенную частоту.

Существует и Другая точка зрения на молекулярный механизм биологических часов. Ее придерживается, например, Чарлз Эрет, окончивший Парижский университет, но долгое время работающий после этого в Аргонской лаборатории при Комиссии по атомной энергии США. Эрет разработал концепцию «хронона», соответственно которой первичным маятником биологических часов служат ДНК, информационная РНК и связанные с ними реакции белкового синтеза. Последовательность этих реакций играет роль датчика ритмов в точном механизме отсчета времени, который в очень большом диапазоне не зависит от температуры.

Ни одной из высказанных точек зрения нельзя отдать предпочтения, пока экспериментально не будет выявлен источник первичных временных импульсов. Где он находится — в ядре или в цитоплазме клетки?

Группа американских ученых — Суини, Хэкео и Рихтер — решили проверить это на крупной водоросли ацетобулярии величиной до двух — четырех сантиметров, похожей на маленький зонтик. Всего одна клетка и ядро в ризоиде, которым водоросль прикреплена к субстрату; отрезал микроскальпелем ризоид — и клетка оказывается без ядра. Когда ядро у ацетобулярии удалили, то оказалось, что одна протоплазма способна поддерживать циркадный (околосуточный) ритм фотосинтеза в течение тридцати циклов. Так где же работают биологические часы — в протоплазме или в ядре? Ученые попробовали создать «синтетическую клетку», у которой ритм ядра и цитоплазмы расходился бы по фазе на двенадцать часов. Из живой клетки удалили собственное ядро, а подсадили другое, работающее по своим часам. Прошло немного времени, и клетка начала жить по. ритму ядра, следовательно, оно определяет ход биологических часов. Другое дело, какие молекулы задают первичный ритм — белки или нуклеиновые кислоты? Ответа на этот вопрос пока нет.

Нет пока еще единого мнения среди ученых относительно механизма, управляющего ходом биологических часов. Большинство ученых считают, что ходом биологических часов управляют механизмы, заложенные в самих живых клетках, а вот, по мнению американского профессора Ф. Брауна, наоборот, регуляторами биологического времени служат космическое излучение, магнитное поле Земли и само движение в космическом пространстве Солнца, Земли и Луны. Опыты свои он проводил в полной темноте на кусочках картофеля, вырезанных с глазком, и показал, что дыхание этих кусочков зависит и меняется главным образом от вышеперечисленных внешних факторов. Однако вернемся к нашим внутренним часам, ведь мы разобрали только, как работает их «маятник».

Как и у настоящих часов, где стрелки медленно ползут по циферблату, в часах, заключенных внутри нас, есть механизмы, выполняющие роль стрелок. Только в живых часах не три стрелки (если принимать во внимание и секундную), а значительно больше. Они показывают часовые, суточные, месячные, годовые ритмы, возможно, даже жизненные. А на уровне отдельных клеток минимальные временные ритмы, возможно, укорачиваются до тысячных долей секунды.

Как же эти короткие временные ритмы передаются дальше? Где же в биологических часах второе «колесико»? Его уже можно рассмотреть в микроскоп, оно не так мало, как «маятник» живых часов. Роль этого колесика, по-видимому, выполняет ядро клетки. Но у науки пока еще нет ответа, каким образом высокочастотные ритмы молекул-«маятников» переводятся ядром в циркадные, то есть околосуточные ритмы.

Часовым механизмом в ядре служит не генетический материал, а скорее всего ядерная оболочка. Когда исследователи хотели посмотреть, как работают часы у бактерий, они ничего не обнаружили. Никаких циркадных ритмов у бактерий не найдено. Вот тут-то биологи задумались: чем же отличаются бактерии от других организмов? Ответ как бы напрашивался сам собой — у бактерий нет оформленного ядра. Ядерный материал есть, но он не заключен в оболочку. Это, по существу, часы без стрелок.

Много еще в организме есть непонятных колеблющихся систем, о которых почти ничего не известно. Например, нейроны головного мозга окружены звездчатыми клетками, их называют астроглия. Так вот, эти клетки совершают одно колебание в четыре минуты. Зачем такой ритм, что он отмеряет, может быть, это маятник месячных, сезонных или годовых часов? Пока неизвестно.

О сезонных часах мы тоже почти ничего не знаем, кроме того, что они могут включать и выключать на определенный сезон работу отдельных генов. Так, всем хорошо известно, что многие животные впадают в зимнюю спячку. Когда биологи посмотрели, что же происходит в организме спящих животных, то оказалось, что многие функции у них, вплоть до клеточных, выключены. Спит организм, и спят его клетки. Причем как спят! Ничем не разбудить. Вот возьмем, например, лягушку. Каждую зиму она, зарывшись в ил какого-нибудь пруда, переживает тяжелые студеные времена. В это время ее клетки не делятся — они отключены. Проследим это на клетках хрусталика глаза. Переднюю часть линзы глаза покрывает тонкая пленочка, на которой расположен только один слой клеток. Если этот монослой снять, то можно, как в кожице лука, наблюдать за клетками и их делением.

Перейдем к эксперименту. Попробуем разбудить лягушку зимой. Лягушка хочет спать, постоянно опускается в воду. Но мы ее освещаем, переводим в теплое помещение, не даем ей спать. Через некоторое время лягушка просыпается. Сидит, смотрит, даже может тихо квакать, но что происходит с ее клетками? При рассматривании клеток под микроскопом обнаруживаем, что они спят. И будут спать до весны, пока их не включат сезонные часы и они не начнут делиться.

Да что там говорить о животных! Люди, создавшие вокруг себя искусственный микроклимат в зимнее время, не утеряли полностью ни сезонные, ни суточные ритмы. Можно даже сказать — человек находится во власти суточных ритмов. Более сорока физиологических процессов зависит у нас от биологических часов.

На протяжении суток у человека меняется температура. Самым «горячим» он бывает в восемнадцать часов, а самым «холодным» — между четырьмя и пятью часами. Колебания температуры составляют у разных людей от 0,6 до 1,3 X. Примерно в том же ритме меняется у человека частота сердечных сокращений и кровяное давление, но в тринадцать часов и в двадцать один час оно наиболее низкое.

Известно, что анализ крови делают утром. И это потому, что именно в эти часы кровоток наполняется молодыми эритроцитами, в крови максимум гемоглобина и сахара.

Даже физические нагрузки человек по-разному переносит в течение суток. Самым «сильным» человек бывает с восьми часов. И сохраняет физическую активность до двенадцати дня, затем следует перерыв, когда человек как бы слабеет, — с двенадцати до четырнадцати часов, а затем с четырнадцати до семнадцати часов к нему приходит новый прилив сил. Ночью — от двух до пяти часов — человек наиболее «слаб».

Ученым еще много предстоит работать, чтобы познать биологические ритмы у человека и животных, но некоторые уже за-думываются над тем, как их изменить.

 

Человек учится концентрировать и удлинять биологическое время

У некоторых индийских фокусников есть удивительный номер. Они берут зернышко лимонного дерева, сажают его в землю, и на глазах у изумленной публики вырастает дерево. Затем на дереве появляется зеленый плод, он желтеет. В естественных условиях для этого необходимо несколько лет на сцене происходит за считанные минуты.

Интересно, а нашли ли биологи концентраторы и ингибиторы времени для живых организмов? Ведь пока мы знаем одно — биологические часы очень трудно разладить колебаниями температуры, только сильное охлаждение может их остановить. Успехи управления живыми часами пока невелики. У некоторых животных можно «подвести» стрелки биологических часов. Вспомним таракана, который делает все не так, как ело сородичи, таракана охладили на двенадцать часов, а затем содержали при нормальной температуре. Его живые часы опять пошли, но стали отставать на полсуток, поэтому он ведет себя необычно в тараканьей семье — все делает с опозданием на двенадцать часов. Можно у того же таракана совсем разладить биологические часы. Достаточно его поместить в условия непрерывного освещения, и он забудет о суточной ритмике, хотя внутренние маятники его часов будут работать.

А вот еще интересный опыт. На этот раз с мелкими лабораторными мушками дрозофилами, вернее, с их развитием. Эти мушки из куколок выходят в предутренние часы, так сказать! с появлением первого солнечного луча. Часы своего развития дрозофилы сверяют с солнечными часами. Попробуем теперь поместить дрозофил в полную темноту. Часы, следящие за развитием, разлаживаются. Мухи начинают выходить из куколок в любое время суток. Однако достаточно секундной вспышки света, чтобы развитие синхронизировать. Вспышку света можно уменьшить даже до 0,005 секунды, и все равно синхронизирующее действие прояви ген. после эшго развитие идет синхронно, и выклев мушек из куколок происходит одномоментно.

Только резкое охлаждение — до О °С и ниже — влечет за собой остановку живых часов. Но это только остановка, стоит отогреть организм, как часы снова пойдут и будут отставать ровно на столько часов, на сколько их остановили. У птиц и млекопитающих, имеющих постоянную температуру тела, часы в норме идут почти в одинаковом темпе. А как быть рыбам, лягушкам и ящерицам — ведь у них не постоянная температура тела, а такая, как во внешней среде? Оказывается, и у этих существ, несмотря на резкие колебания температуры тела, часы идут с одинаковой скоростью.

Неужели только резкие охлаждения и вспышки света могут изменить ход биологических часов? Совсем нет. Существует целый ряд химических веществ, способных влиять на ход живых часов. Ученые установили, что вещества, задерживающие образование информационной РНК, например антибиотик актино-мицин-Д, влияют на ритмику фотосинтеза у водорослей. Спирт явно замедляет биологические часы, иногда суточные ритмы под его влиянием сдвигаются на пять часов. Сходно действуют папаверин и наркотин, правда, замедление ритмов от этих веществ не столь велико, как от спирта.

До этого разбирались только возможности остановки биологических часов ‘либо замедление их работы химическими веществами. А делали ли биологи обратный эксперимент — ускоряли биологическое время или концентрировали его? Может быть, сама природа уже поставила такой эксперимент, и существуют организмы, у которых сконцентрировано время?

Вот коловратка, микроскопическое, но многоклеточное существо. Некоторые виды коловраток живут всего одну‘неделю. За эту неделю у них проходит вся жизнь. Коловратка выводится из яйца, растет и старится, к старости у нее ухудшается зрение, на теле появляются морщины, откладывается жир, а быстрое плавание сменяется неторопливым ползанием. Все признаки старения, а ведь вся жизнь прошла за несколько дней. Коловратки микроскопически малы, размером в десятки микронов, но зато у них есть почти все органы, характерные для многоклеточных животных. Правда, каждый орган состоит всего из нескольких клеток. Глаз, например, из двух клеток: одна клетка — хрусталик, другая — сетчатка.

С какой же скоростью протекают жизненные процессы у коловратки — как у человека или в три тысячи раз быстрее? Именно на эту величину и отличается продолжительность жизней. Не исключено, что время у коловратки сконцентрировано по отношению к нам, людям.

Так как же можно сконцентрировать биологическое время, переместиться в микроскопический мир коловратки с его быстротечностью или же во много раз усилить биоритмику, заставить клетки* делиться быстрее обычного, но соблюдать при этом общую организацию организма?

Экспериментатору, какой бы прибор в его руках ни был, надо стремиться как можно меньше вмешиваться в живую систему и вводить в нее те или другие датчики. Если ввести в клетку электрод или просто приложить его к поверхности, то сигналы о биоритмах будут поступать не от нормальной, а от поврежденной клетки. Прав был Мефистофель у Гёте, высказавший мысль о заколдованном круге в изучении живого:

«Чтобы живое изучить, его сначала убивают, потом на части разрезают, но связи жизненной, увы, там не открыть».

Сама природа дала исследователю прибор, который позволяет следить за временем, протекающим в живой клетке, не внедряясь внутрь ее и сильно не нарушая взаимосвязи с другими структурами. Прибор этот — процесс деления самой клетки, или митоз. Он позволяет следить за жизненным циклом клетки, касаясь ее только световым лучом. Воздействие, конечно, есть, но оно минимально по сравнению с другими методами. Давайте посмотрим, как идет деление клетки у млекопитающих с самого начала развития.

На первый взгляд кажется несколько странным, что слон, человек, мышь и другие млекопитающие, так сильно различающиеся по размерам и по продолжительности жизни, первые шаги на жизненном пути проделывают с одинаковой скоростью.

У всех развитие начинается с одной клетки. Вот и сравним, как оно идет у слона и мыши. Слон живет около шестидесяти лет, а мышь — два-три года. Эмбриональное развитие у мыши составляет двадцать один день, а у слона жизнь до рождения длится шестьсот шестьдесят дней, почти два года. Первые стадии развития у них начинаются с одинаковой скоростью, а как по-разному заканчиваются: слоненок только рождается, а мышь к этому времени прожила почти всю свою жизнь. Может показаться, что биологическое время у мыши бежит быстрее, чем у слона, быстрее начинается деление клеток и развитие заканчивается раньше. Оказывается, это не так. И мышонок, и слоненок, если их на этой стадии можно так назвать, первые семь дней развиваются без связи с материнским организмом через плаценту, и скорость клеточных делений при этом у них одинаковая. Но для слона семь дней развития из шестисот шестидесяти дней почти ничего не значат, а для мыши — это треть всего развития в организме матери. Как надо сконцентрировать время, чтобы за оставшиеся две недели сформировался мышонок, способный жить самостоятельно, вне организма матери? Почему же в первую неделю развития биологическое время у зародышей мыши и слона идет с одинаковой скоростью?

Ученые выяснили этот вопрос. Оказалось, что в этот период у всех зародышей млекопитающих, за некоторым исключением, куда, возможно, попадает человек, биологические часы работают без генной регуляции. Настрой ритмам задают механизмы, полученные еще во время созревания яйцеклетки, а новая программа, сложившаяся после оплодотворения, молчит. Чтобы убедиться в этом, генетики и эмбриологи ставили различные опыты: ядро, где сосредоточен генетический аппарат, выжигали лазерным лучом, облучали смертельными дозами рентгеновских лучей или просто удаляли микрохирургическими инструментами. Однако деление оплодотворенной яйцеклетки не прекращалось и продолжалось до тех пор, пока «завод», полученный еще до слияния со сперматозоидом, не кончался. Но такой зародыш без ядер мог дать только массу клеток. Нужно было набрать эту массу клеток, из которых придется строить органы, а на эту операцию отводилось как бы сконцентрированное время. Операция проста, — дробление или деление клеток, и на нее расходуется весь «завод» пружины биологических часов.

Как только начинается органогенез (строительство органов), то снова заводится пружина биологических часов. Но теперь каждый «завод» делается с осторожностью и не до конца. Вся работа живых часов идет под контролем генетического аппарата. Чем сложнее становится организм по мере развития, тем с большей четкостью гены выдают информацию, следуя строгой временной программе развития. Организм начинает довлеть над клеточным временем и регулировать его. Для этой цели используются и нервная система, и гормоны. Биологическое время при такой сложнейшей регуляции все более и более замедляется и становится минимальным к моменту рождения.

Такое же замедление биологического времени по мере развития можно отметить и у других классов животных. Мне не раз приходилось делать микрохирургические операции на эмбрионах амфибий, и всякий раз в поле зрения возникает картина, поражающая воображение. Получается картина, сходная с тем, что была у факира, выращивающего лимонное дерево. У эмбриона, биологические часы которого еще слабо сдерживаются генетическим аппаратом и гормональными влияниями, раны зарастают прямо на глазах, поврежденная кожа тут же принимает прежний вид. Биологическое время на ранних стадиях развития по отношению к взрослому состоянию сконцентрировано.

А можно ли снять тормоз времени у взрослого организма и заставить его жить быстрее? Может быть, есть такие вещества, которые концентрируют биологическое время?

Вся опасность в этом случае заключается в нарушении биологических часов. Ускорение обмена веществ и деление клеток должны быть гармоничными по отношению ко всему организму, нельзя, чтобы какая-то часть или орган обгоняли по ритмике остальные части организма. Что получается при разлаживании живых часов — обсудим позже.

Существуют способы, позволяющие ускорить обмен веществ и ритмику внутриклеточных систем за счет использования резервов, которые клетки сохраняют на случай опасности. Значит, если дать сигнал опасности, то клетки частично снимут временной тормоз и колебательные процессы в организме пойдут с большей скоростью. Для этого необходимо воздействовать на те гены, которые регулируют скорость химических взаимодействий огромных биомолекул внутри клетки.

Как же можно подать клетке сигнал опасности? В процессе эволюции в клетках выработался механизм, воспринимающий продукты распада, которые получаются от страдающих по соседству клеток как сигнал опасности. Обычно молекулы, сигнализирующие об опасности, однотипны у разных организмов. Они образуются из биомолекул, в первую очередь распадающихся при вредном для организма воздействии. Получив сигнал опасности, биологические часы частично освобождают клетки от генной и гормональной опеки, и клеточные деления увеличиваются как у растений, так и у животных. Вот почему листья алоэ, находящиеся в холодильнике при 4 °C, содержат вещества, способные ускорить клеточные деления и обмен веществ у других организмов. Такие вещества, вырабатывающиеся в тканях животных и растений, подвергнутых неблагоприятному воздействию, назвали биогенными стимуляторами.

Возможно, что в скором времени управление биологическими часами в живых клетках приобретет важное практическое значение. Английская исследовательница Жаннет Харкер провела интересные опыты. Охлаждением она разлаживала биологические часы у тараканов: держала их в холодильнике двенадцать часов. Биологические часы таких тараканов отличались от биологических часов контрольных тараканов тоже на двенадцать часов. Далее Жаннет Харкер сделала сложнейшую микрохирургическую операцию — пересадила подглоточный ганглий (часть мозга таракана), ведающий скоростью живых часов, контрольному таракану. У этого таракана стало два центра, управляющих биологическим временем, но их работа различалась на двенадцать часов. Таракан совсем был сбит с толку, он не мог определить ночь и день, принимался есть, тут же засыпал, но через некоторое время другой ганглий будил его. В результате в кишечнике таракана развилась опухоль, от которой он погиб. Повторные опыты приводили к тем же результатам — разлаживание биологических часов приводило к развитию злокачественных опухолей. Можно ли распространить сделанный вывод на высших животных и человека? Конечно, нет. Нужны тщательные исследования этого вопроса.

 

Глава седьмая

ЖИВАЯ КЛЕТКА КАК ПРИБОР

 

Микроскопические приемники и передатчики информации

В микромире действуют свои законы. До этого разговор шел о живых организмах, которые вооружены многоклеточными живыми приборами и мозгом, контролирующим и принимающим информацию от этих приборов. А теперь заглянем в межклеточные взаимоотношения, о которых наш мозг часто ничего и не знает или же не вмешивается в отношения между микроскопическими одноклеточными существами, у которых все живые приборы — это части клеток.

Живые клетки очень подвижны, они делятся, перемещаются, а самое главное — узнают друг друга; причем узнают не только при непосредственном контакте, но и на расстоянии. И это не все. Иногда живым клеткам приходится поддерживать контакт через толстые клеточные пласты — речь идет о дистанционной связи. Трудно даже вообразить, насколько обособленной должна быть такая связь: ведь все клетки, находящиеся между приемником и передатчиком, сами «разговаривают» между собой. Поскольку природа их связи очень близка, здесь между приемником и передатчиком слышатся уже не отдельные «радиопомехи», а сплошной гул сливающихся голосов. И все же и приемник, и передатчик выделяют из этого гула необходимые им сигналы, информация передается, несмотря ни на какие помехи. Ни один созданный человеком приемник не мог бы работать в таких условиях.

А как доказать, что клетки связываются друг с другом и что связь на расстоянии очень надежна? Поместить внутрь клеток какие-то приборы, как уже отмечалось, не представляется возможным. Однако ученые нашли способы раскрытия сокровенных тайн межклеточных связей. Помогли таксисы — сложные процессы ориентации живых клеток под влиянием химических веществ и полей различной природы. Таксис можно сравнить с наведением ракеты на цель, но только самоуправляемой, сходной с той, которая имеет аппаратуру наведения на инфракрасные лучи. Клетка принимает сигнал и движется навстречу передатчику и стыкуется с ним. Бывает наоборот: клетка движется от передатчика и старается избежать его. Если таксис положительный, то приемник должен найти передатчик, и куда бы ни отклонялся в определенных пределах передатчик, он будет найден клеткой, стремящейся к нему. При перемещении передатчика происходит корректировка траектории, принимающей сигналы клетки, как и в случае с самонаводящейся ракетой.

Существует много различных видов связи, один из них — хемотаксис — химическая ориентация живых клеток в пространстве. Он осуществляется с помощью хеморецепторов, расположенных прямо на самой клетке. Лучше всего хемотаксис наблюдать на одноклеточных организмах — инфузориях и амебах. Очень интересно, как они убегают от одних химических веществ и движутся к другим, переходят из низкой концентрации в высокую или наоборот. Подобные «крупные» клетки помогают нам представить себе, как и в нашем организме движутся, используя хемотаксис, различные макрофаги, нейтрофилы, базофилы, моноциты и лимфоциты, то есть клетки, относящиеся к белой крови, призванные защищать организм от непрошеных вселенцев.

Исследования показывают, что хеморецепторы очень чувствительны к изменению химического состава вещества вокруг клетки. Часто они ощущают буквально считанные ионы, присутствующие в водной среде или в крови.

Кто бывал на море ночью, тот мог видеть слабый мерцающий свет. Это светятся одноклеточные организмы — ночесветки. Стоит только стукнуть веслом по воде, как свечение становится значительно интенсивнее, вода в этом месте вспыхивает голубоватым светом. Это ночесветки в ответ на механическое раздражение как бы зажигают свои клетки — фонарики. Таким же свечением они отвечают на самое незначительное повышение ионов натрия или сахара в воде. Их хеморецепторы — тончайшие анализаторы химических соединений. Они редко ошибаются. Правда, бывают и ошибки, но в основном тоже по вине действия химических веществ. Как-то один ученый хотел добавить раствор сахара в пробирку с ночесветками, но ошибся и капнул этиловый спирт. Концентрация получилась невысокая, и ночесветки даже внешне не изменили своего поведения. Но зато потом ни соль, ни сахар уже не вызывали у них вспышек.

Опыты говорят об очень тонком механизме хеморецепции, да к тому же еще с передачей информации другим клеткам. Ведь вспышка ночесветок при введении в воду химических веществ — это перевод химического языка на электромагнитный — световой. Загоревшийся фонарик — сигнал соплеменникам об изменении состава химических соединений в водной среде, предупреждение о возможной опасности.

Насколько тонко настроены клетки на дистанционную химическую связь, насколько ничтожные количества вещества-сигнала воспринимаются отдельными клетками на значительном расстоянии, показывает пример с миксомицетами. Миксомицеты — это слизистые грибки. Их можно встретить на старых пнях. Пройдет мимо пня человек, наступит сапогом и даже его не заметит. А вот биологи его давно заметили. Очень уж поразительно его свойство как бы рассыпаться на отдельные клетки и снова собираться в многоклеточный организм. В систематике животного мира некоторые ученые его так и относят к колониальным амебам. Сначала клетки миксомицета, как самые обыкновенные амебы, ползают по земле. Но есть среди ползающих амеб миксомицета — диктиостелиума, та, которая по неизвестным пока причинам подает химический сигнал, приказывающий всем клеткам собраться вместе, построить ножку грибка и похожий на лимон спорангий. Совсем недавно сигнальное вещество диктиостелиума было загадочным, и его называли просто акразин. Теперь ученые знают, что привлекающее вещество представляет циклический аденозинмонофосфат, секретируемый самими клетками-амебами. Из сложного букета ароматов прелой почвы и запаха множества цветов амебы выбирают посланный им сигнал и движутся точно по направлению клеток, призывающих к сбору остальных соплеменников. Для нахождения верного пути нужны самые незначительные количества циклических аденозинмонофосфатов. Если амебам поставить на пути перегородку, они будут форсировать ее, взбираясь одна на другую, и дойдут до сборного пункта. Даже «пропасть» не остановит их. Экспериментаторы поместили клетки, образующие центр агрегации, на одном стекле, а значительную часть амеб, движущихся к месту сбора, — на другом и оставили между стеклами промежуток не больше миллиметра. Для амеб миксомицета это, конечно, была бездонная пропасть. Пойдут ли они к клеткам, основательницам колонии? Пошли. Сцепившись, они смогли перекрыть разрыв между стеклами. Образовали «живой мост», а по этому мосту двигались все остальные. Затем и мост сам, разбираясь поклеточно, переполз через пропасть, и клетки заспешили за перебравшимися ранее амебами, чтобы слиться и образовать многоклеточный организм — маленький грибок на тонкой ножке.

Не менее интересно поведение клеток и их ориентация в электрическом поле — гальванотаксис. Если посмотреть в микроскоп на каплю воды с инфузориями, то можно увидеть, как они движутся во всех направлениях с помощью покрывающих. их тело ресничек. Стоит опустить в каплю воды два микроэлектрода — катод и анод — и приложить к ним напряжение, как что-то непонятное происходит с инфузориями. Во-первых, они все направляются к положительному электроду — аноду. Во-вторых, их движение будет очень странным — задом наперед. Оказывается, электрическое поле приводит к тому, что биение ресничек инфузорий меняется на противоположное. Инфузории стремятся убежать от губительного для них положительного электрода, а в действительности приближаются к нему. Если же электрическое поле слабое, то инфузории предпочитают двигаться к отрицательному электроду.

Другие живые клетки тоже стремятся двигаться к катоду. Поэтому амебоидные клетки, которые передвигаются путем переливания частей своего тела в ложноножки, уже не пойдут к положительному полюсу. Но ведь амебоидным движением пользуются не только свободно живущие амебы, а большинство клеток в развивающемся зародыше, когда нужно перегруппировать «кирпичики», составляющие основу строящихся органов. Растущие структуры, как оказалось, заряжены отрицательным электричеством. Поэтому к ним устремляется поток клеток, заряженных положительно, и они принимают участие в развитии того или иного органа. В некоторых случаях клеткам нужно связаться через клеточные пласты других органов. Как это они делают — узнаем несколько позднее. Ведь живые клетки пользуются не только статическим электричеством, их живые приборы способны улавливать и электромагнитные поля.

 

Биоконтакт

Живые клетки вооружены приборами не только дистанционного восприятия информации, но и для непосредственного контакта между собой.

Достаточно зародышей морских ежей поместить в морскую воду, лишенную кальция, после легкого встряхивания эмбрионы распадутся на отдельные клетки. Но стоит добавить в воду недостающий кальций, опять встряхнуть ее, и все клетки зародышей, как по мановению волшебной палочки, снова займут свои места. Каким же образом одинаковые атомы кальция «склеивают» клетки зародыша в строго определенном порядке, в соответствии с генетической программой?

Английским ученым Вейсу и Мейхю удалось показать, что ионы кальция способны связываться с периферическими участками рибонуклеиновых кислот. Раньше считалось, что РНК считывает информацию с ДНК, а затем использует ее при синтезе белка, потом нашли, что РНК и ДНК принимают участие в клеточной памяти и в памяти всего организма. Теперь выясняется еще одно назначение РНК: она вполне может оказаться ответственной за пространственную память, то есть за пространственное расположение клеток и программирование их стыковки. Иначе говоря, она хранит память о том, как клетки должны контактировать друг с другом, и является главным компонентом в приборах межклеточного контакта.

Попытаемся представить весь механизм контакта клеток, сделав, правда, некоторые допущения ради связи еще разрозненных данных в стройную единую систему.

Складываясь в ткань, формируя орган, клетки организма контактируют друг с другом с помощью петель РНК, как бы выпущенных через оболочку, и эти петли несут как раз те участки нуклеиновых кислот, которые либо сами обладают сродством к кальцию, либо синтезируют в межклеточном пространстве белки, способнее соединяться через кальциевые мостики. Именно межклеточному веществу сейчас придается большое значение в клеточных контактах, а в нем как раз находят и нуклеиновые кислоты, и белки, и мукополисахариды. Кальций же Во всех этих процессах играет важную роль. Можно предположить, что поверхности всех клеток как бы покрыты рисунками из РНК, и стыковка клеток в таком случае будет происходить только тогда, когда поверхностные рисунки совпадают и соединяются через кальциевые мосты. Существование таких рисунков из РНК на поверхности развивающихся зародышей уже открыто, и об этом будет сказано позже. Точное совпадение возможно лишь при одинаковых наследственных программах, полученных непосредственно от ядра клетки. И как бы ни был представлен механизм контакта клеток, все это пока только гипотезы, которые станут стройной теорией после выяснения многих загадочных сторон клеточного контакта.

Следует отметить, что связь через кальциевые мостики — это первичная и непрочная связь. Но в молодом, развивающемся организме клетки, испытывающие постоянные перестройки, соединяются именно этой первичной связью. Затем клетки «применяют» приборы для закрепления развившихся структур. В тканях организма начинается как бы «закручивание гаек», клетки занимают определенное положение и цементируются в определенных местах контакта. О том, как они определяют нужное им и всему организму местоположение, мы расскажем ниже — ведь это одна из самых сокровенных тайн, которую стремятся познать биологи. А пока будем довольствоваться тем, что ученые установили: в нужных местах клетки «цементируются» да еще на каждом гаком участке для придания большей прочности образуются специальные волокна, называемые десмосомами.

Совсем недавно было отмечено, что клетки должны как бы узнавать друг друга и знать, к какому органу они принадлежат. А что будет, если приборы взаимного опознавания испортятся? Как показывают последние исследования, якобы именно это и происходит с клетками злокачественных опухолей. Нельзя пока еще сказать — причина ли это возникновения злокачественных опухолей или следствие, ясно одно: раковые клетки отличаются от нормальных еще и тем, что теряют пространственную память расположения в организме и чувство контакта с другими клетками. Видимо, под влиянием каких-то канцерогенных факторов происходят генетические изменения, отражающиеся на программировании порядка работы, генов и на искажении конфигурации главных молекул, ответственных за хранение и передачу генетической пространственной информации. Вполне понятно, что искажение рисунка РНК в межклеточном веществе может привести и к поломке кальциевых мостиков, и к изменению электрического заряда поверхности клетки. Контакт выходит из строя, десмосомы разрываются, и каждая клетка приобретает самостоятельность, что очень не нужно организму в целом. Клетки отрываются друг от друга, округляются и начинают делиться как им заблагорассудится. Выходит из строя еще один «живой прибор», регулирующий и обеспечивающий клеточные деления.

До сих пор рассматривался близкий контакт, но в организме, построенном из миллионов клеток, есть и дистанционные контакты. О некоторых проблемах и сложностях при изучении дистанционного контакта мы уже говорили. Но в многоклеточном организме приборы, руководящие дистанционным контактом клеток, достигают своего совершенства, и особенно в мозгу высших животных и человека.

Мозг — самый сложный агрегат, где собрано неисчислимое количество контактирующих элементов. Все нейроны (а в мозгу человека их десятки миллиардов) связаны с соседними тончайшими отростками, к тому же каждый отросток при росте приходит в точно намеченное для него место контакта на соседней клетке. Сходно ведут себя и нейроны спинного мозга, контактирующие своими отростками. Каким же образом отростки нервного волокна находят строго заданное им место на соседних нейронах? Во всяком случае, не хватит никакой генетической информации, заключенной в ДНК хромосом, чтобы закодировать пространственное распределение нервных отростков в мозгу и их точные контакты с нейронами. Тогда где же заложена схема монтажа пространственного расположения контактов между нейронами? Пока на этот вопрос ответа нет. Может быть, такая схема-голограмма существует в самом пространстве?

Правда, проведен ряд сложно поставленных опытов, показывающих, что нервное волокно как бы притягивается к месту контакта, но это далеко от того, что происходит в мозгу на самом деле. За притягиванием нервных волокон можно проследить на развивающихся системах-эмбрионах. Если зачаток конечности эмбриона тритона, к которому тянутся из спинного мозга строго определенные нервные волокна, пересадить из обычного места дальше, к хвосту, он быстро приживется на новом месте, и в точно намеченное время в него начнут врастать нервы, как они врастали бы в зачаток нормальной конечности. В пересаженный зачаток будут врастать именно те нервные волокна, которые для него предназначены. Они изменят свой обычный путь и, отойдя от нервных спинальных узлов, отклонятся ровно настолько, насколько был перенесен назад зачаток конечности.

О силах, которые на расстоянии притягивают нервное волокно к развивающемуся зачатку, пока можно только догадываться и строить различные предположения. Одни исследователи, например, считают, что здесь оказывает влияние электрическое поле, другие отдают предпочтение магнитному полю, третьи видят причину в химическом взаимодействии контактирующих на расстоянии клеток. Все это предстоит еще решить в будущем.

 

Приборы клеточных делений

Жизнь отдельных клеток измеряется днями, неделями, месяцами и самое большое — десятилетиями, а организм может жить десятки лет. Как же большинству многоклеточных существ удалось вырваться из плена всесокрушающего времени? Благодаря клеточным делениям. Мало того: клеточные деления приносят еще одну незаменимую пользу — позволяют размножить клетки, увеличить живую биомассу.

Как же происходят клеточные деления? Еще до того как клетка начнет делиться, в ней удваивается генетический материал и весь аппарат клеточного деления. Все подготовлено к тому, чтобы после деления получилась копия живой клетки с тем же числом хромосом и с той же морфологией. При делении становятся видимы нити хромосом, а mitos по-гречески — это нить, отсюда и название этого вида деления. Клетка может делиться и прямым делением без образования нитей хромосом, просто поперечной перетяжкой. Однако недолго живет такая клетка и, как правило, делится прямым делением именно перед гибелью.

Теперь давайте посмотрим, как же идут фазы митоза и что происходит внутри клетки на каждой фазе деления.

Период между делениями называется интерфазой. В это время живая клетка выполняет свои прямые функции, предназначенные ей в организме: движется, выделяет различные секреты, борется с микроорганизмами. На этой же стадии клетки, как уже отмечалось ранее, удваивают количество хромосом и все подготавливают для деления. Когда же начинается митоз, клетка только им и занимается. У человека основная часть митозов проходит ночью, когда он спит и большинство органов отключено от повседневной работы.

Первая стадия митоза называется профазой. В это время начинается упаковка хромосом. Ведь если бы пришлось их растаскивать к двум полюсам в неупакованном виде, понадобилось бы устройство, напоминающее лебедку с барабаном, на который накручивались бы длинные нити. В клетке проходит все проще: хромосомы спирализуются, отчего становятся толще, но короче. Потом спираль еще раз закручивается в спираль, теперь хромосомы становятся совсем короткими, плотными и хорошо видны в микроскоп. А как можно растаскивать хромосомы в разные стороны, если они, как в мешке, находятся внутри оболочки ядра? Поэтому в профазе и ядерная оболочка распадается. К полюсам клетки в это время движутся центриоли — органоиды клетки, которые закрепляются нитями у полюсов и становятся центром, притягивающим к себе хромосомы. Но хромосомы к центриолям притягиваются не физическими или биологическими полями, а устройством, которое можно увидеть в микроскоп, — нитями веретена деления. Каждая такая нить одним концом прикрепляется к центриоли, а вторым — к хромосоме. Место прикрепления нити на хромосоме называется центромерой. Все, казалось бы, налажено для митоза. На следующих фазах деления все приходит в движение, и за час митоз заканчивается.

За профазой следует вторая стадия — метафаза. В это время хромосомы из беспорядочного клубка, как по приказу, выстраиваются по экватору. Образуют метафазную пластинку. Теперь видно, что к каждой паре хромосом, подготовленной для расхождения; тянутся две нити веретена деления. Одна нить — к одной центриоли, а другая — к противоположной. По экватору стоят удвоенные хромосомы, как две капли воды похожие друг на друга, называемые сестринскими хроматидами. Начни сейчас сокращаться нити веретена — и поползут хромосомы к разным полюсам.

Это и происходит на следующей стадии деления — анафазе. Нити веретена сокращаются. Сестринские хроматиды расщепляются и движутся к противоположным полюсам.

Наконец, наступает последняя стадия — телофаза. Опять раскручиваются хромосомы, строятся ядерные оболочки, удваиваются центриоли. И оболочка самой клетки как бы перешнуровывается. Все уже и уже становится талия клетки и, наконец, их получается две. А в каждой дочерней клетке есть уже свое ядро и удвоившиеся центриоли для будущего деления.

Вот так на наших глазах произошел процесс деления клетки. Все в нем стройно и отлажено. Какая-то «невидимая рука» скручивала хромосомы, разводила к разным полюсам центриоли, крепила нити веретена деления к хромосомам. Наконец, с помощью каких-то приборов хромосомы выстраивались по экватору, а после их расхождения к разным полюсам какая-то сила перешнуровывала клетку пополам, а это сравнимо с тем, как если бы человек попытался перетянуть шпагатом на две части туго накачанную футбольную камеру. Только современные методы исследования позволили приоткрыть завесу над процессом деления клетки и посмотреть на все другими глазами.

Первое, на что обратили внимание исследователи, были нити веретена, разводящие хромосомы к разным полюсам. Они видны даже в световой микроскоп. Ученые сразу начали думать о механизме их сокращения и пришли к выводу, что они сокращаются, подобно волокнам наших мышц. Но как тогда быть с остальными организованными движениями органоидов клетки во время митоза?

С помощью электронной микроскопии внутри клеток были найдены микротрубочки и микрофиламенты. Микротрубочки — это действительно длинные полые цилиндры с наружным диаметром около двадцати четырех нанометров и толщиной стенок пять нанометров. В световой микроскоп они не видны. Микрофиламенты — это уже нити в три раза тоньше, чем микротрубочки, находящиеся в цитоплазме. В интерфазе микротрубочки держат форму клетки. Они идут от ядра во все стороны и во все отростки клетки. Это внутренний каркас клетки. Стоит только разрушить их высокой температурой, давлением или ядом колхицином, как клетка теряет свою форму и становится округлой. Если вредное действие прекратится, структура микротрубочек может восстановиться и клетка приобретет свою прежнюю форму, А вот микрофиламенты непосредственно участвуют в генерации движения поверхности клетки. Они могут скользить относительно друг друга, прикрепляться к мембране клетки, втягивать и выпячивать ее различные части или же надстраиваться и разрушаться под мембраной. Так что в ускоренной киносъемке поверхность клетки напоминает (благодаря действию микрофиламентов) беспокойный океан.

Однако, как только начинается деление клетки, все микротрубочки и микрофиламенты уходят на построение пространственной организации митоза. Форма клетки становится округлой. На всех стадиях митоза, кроме телофазы, микротрубочки и микрофиламенты строят сходные пространственные фигуры, соответствующие веретену деления. На стадии телофазы микротрубочки во время перетяжки клетки остаются только в соединительном мостике, а микрофиламенты в это время, как кольцом из тонких нитей, перетягивают клетку надвое (рис. 9).