Животные анализируют мир

Симаков Юрий Георгиевич

Глава девятая

ДАТЧИКИ ЭКОЛОГИЧЕСКОГО РАВНОВЕСИЯ

#i_026.png

 

 

Там, где отступают физика и химия

Защиту окружающей среды от промышленных загрязнений называют сейчас проблемой века. И неудивительно. Кого не волнует этот вопрос, ставший одним из самых актуальных и острых! Необходим четкий контроль за состоянием окружающей среды, и, чтобы предотвратить надвигающуюся опасность, нужны приборы, которые вовремя сообщат о сдвигах экологического равновесия в природе.

Созданы совершенные аналитические приборы, которые быстро выдают количественную оценку содержания того или иного вещества в воздухе, в воде или в почве, точно определяют его концентрацию. Но с экологической точки зрения сведений только о концентрации — мало. Для контроля за состоянием окружающей среды важны биологические эффекты, которые можно провести только с помощью «живых приборов», самих организмов, реагирующих на присутствие вредных веществ. Изучаются самые различные способы использования «живых приборов».

Во-первых, можно проводить биотестирование. Например, в водную среду вносятся гидробионты, живые организмы, обитающие в ней, и по их поведению, размножению, развитию и физиологическим показателям судят о наличии вредных веществ в воде. Сам организм выступает как датчик состояния окружающей среды и регистратор наличия вредных веществ в исследуемой пробе.

Биотестированием люди пользовались с давних времен: пищу перед употреблением проверяли на домашних животных. Известно, например, что многие восточные султаны специально держали в своих дворцах собак и перед каждой трапезой бросали им пищу для пробы и следили за их состоянием. А шахтеры брали в забои клетки с канарейками, которые начинали беспокоиться при первых признаках появления ядовитых рудничных газов, когда люди его еще не ощущали. Получается, что огромный газоанализатор непрерывного действия с автоматическим управлением и маленькая канарейка одинаково справляются с одной и той же задачей.

Какой бы совершенной ни была современная аппаратура для контроля загрязнения и определения вредных примесей, она не может сравниться со сложно устроенным «живым прибором», тонко реагирующим на токсические вещества. Ведь механизмы «живого прибора» формировались в процессе эволюции на протяжении многих миллионов лет. Правда, у «живого прибора» есть серьезный недостаток — он не может установить концентрацию какого-либо вещества в многокомпонентной смеси, реагируя сразу на весь комплекс веществ благодаря своей высокой сверхчувствительности и анализу принятой информации. Но в этом есть и большое преимущество. Ведь с помощью физических и химических датчиков определяется одно и реже несколько веществ, а загрязнения бывают часто столь многокомпонентны, например сточные воды, что никакие созданные человеком приборы не смогут провести анализ этой смеси. Ведь в сточных водах встречаются сотни, а иногда и тысячи различных соединений. Вот здесь-то и выручат нас тест-объекты.

Во-вторых, «живыми приборами» могут стать сами организмы-индикаторы. Различные виды живых существ показывают, чем загрязнена окружающая среда. В загрязненных определенными веществами воде и почве могут жить только те организмы, которые приспособлены к высоким концентрациям тех или иных химических соединений. Вот такие виды и называются биоиндикаторами. Биоиндикацией так же, как и биотестированием, человек пользуется с незапамятных времен. По наличию некоторых видов растений человек находит воду, определяет соленость почв и обнаруживает полезные ископаемые. Иногда даже принимаются во внимание особенности строения организмов-индикаторов. Опытный глаз геолога сразу отметит: если появились уродливые формы растений, с наростами, с неправильным расчленением листьев, значит, в этой зоне можно искать битумы и нефть. По существу, это есть генетический индикатор, так как вредные фракции нефти нарушают морфогенез.

Не только видимые невооруженным глазом живые существа, но и микроскопические организмы могут «предупредить»

о надвигающейся опасности загрязнения. Основываясь на микроскопических анализах активного ила, технологи по‘организмам-индикаторам не только могут определить, хорошо ли идет очистка сточных вод, но и сказать, где нарушен технологический процесс, не хватает кислорода, где поступают слишком токсичные сточные воды, недостает органических веществ для микроорганизмов. Позже будет рассказано о том, как пользуются технологи этими «живыми приборами».

Наконец, с помощью организмов можно определять концентрации вредных веществ, оказывающих отрицательное действие на их жизнедеятельность. Так, можно установить нормы, превышение которых может нарушить взаимосвязи, сложившиеся во всем, живом сообществе.

Многообразна жизнь живого сообщества — биоценоза. Отточены связи между отдельными его звеньями. И если ядовитое вещество выбьет хотя бы одно наиболее чувствительное к нему звено, нарушение произойдет во всем биоценозе. Вот тут-то перед исследователями и встает задача найти не только «живой прибор», реагирующий на химическое соединение или излучение, а найти самый чувствительный к изучаемому фактору организм или даже отдельную стадию его индивидуального развития. Есть, оказывается, у «живых приборов» такая особенность, которой не встретишь у «железных коллег». В процессе развития, на определенных стадиях, чувствительность к вредным веществам у организмов может возрастать в тысячи, а иногда и в миллионы раз. Такие стадии чаще всего встречаются в эмбриональном периоде и называются они критическими. Поэтому токсикологу, пользующемуся «живыми приборами», в буквальном смысле надо ловить эти промежутки времени, поскольку критические стадии длятся иногда несколько часов.

Каким же образом можно найти в биоценозе наиболее чувствительные к данному веществу организмы? Ведь на различные вещества организмы реагируют тоже по-разному. Интересную схему эксперимента предложил профессор МГУ Н. С. Строганов — получить избыточную информацию, взять спектр концентраций исследуемого вещества и испытать его на представительных организмах биоценоза. Как бы смоделировать в лаборатории действие токсикантов на различные цепи живого сообщества.

В группу представительных организмов берутся наиболее изученные и хорошо культивируемые в лабораториях организмы из каждой цепи биоценоза. Например, в водном биоценозе есть первичные продуценты — водоросли и высшие растения. Они синтезируют органическое вещество, используя солнечную энергию и минеральные соли, имеющиеся в водоеме. Но сразу же находятся потребители органического вещества, или первичные консументы, все те, кто питается растениями: микроскопические рачки, заглатывающие одноклеточные водоросли, и даже огромные рыбы — такие, как белый амур и толстолобики. Первичные консументы — это уже второй уровень пищевых цепей биоценоза. А вторичные консументы питаются первичными. Это самые крупные водные животные, в основном рыбы. Они составляют третий уровень пищевых цепей в водоеме. Хищные рыбы и люди — это уже четвертый уровень. Наконец, не надо забывать самых малых тружеников — бактерий. Их задача — до конца редуцировать органическое вещество, трупы животных, органические остатки снова перевести в минеральные вещества и замкнуть тем самым вечный круговорот жизни — ведь минеральные вещества снова начнут использовать растения.

Из каждого уровня биоценоза отбираются представители для токсикологического эксперимента.

Из растений удобнее всего взять одноклеточные водоросли хлореллу и сценедесмус, а также всем известную ряску, иногда летом покрывающую всю поверхность маленьких водоемчиков. Из первичных консументов берут планктонных ракообразных, чаще всего дафний, которыми буквально кишат пруды, а из донных животных, питающихся растительной пищей, — моллюсков-прудовиков. И наконец, рыб на различных стадиях развития. Рыб лучше брать промысловых, так как именно их нужно защищать от вредных веществ. Очень чувствительной к токсикантам считается форель. И последнее. Нужно, чтобы и бактерии не пострадали от исследуемой на токсичность концентрации вещества: без них не завершится круговорот веществ.

Вот каким сложным путем приходится идти в настоящее время, чтобы, используя «живые приборы», установить предельно допустимую концентрацию вещества (ПДК). Понятно, что приходится пользоваться такой громоздкой схемой потому, что пока мы еще плохо знаем наиболее чувствительные периоды индивидуального развития у организмов и еще не разработаны теоретические основы реагирования живых систем на загрязнение окружающей среды. Со временем люди наберутся опыта и создадут наиболее гибкие системы, в которых «живые приборы» будут играть важную роль.

 

Рыбы-контролеры

Самый простой прием исследования токсичности воды — «рыбная проба». Наиболее чувствительных к вредным веществам рыб — окуней, ершей, форелей, щук, налимов и судаков — помещают в сетчатом садке в реку и ведут за ними наблюдение или же ставят опыты в аквариумах, заполненных загрязненной и чистой водой для контроля.

Напомню еще раз о тончайшей способности рыб определять в воде самые малые концентрации веществ и о строении аппарата, которым они производят этот анализ. Беспокойное поведение по сравнению с контрольными рыбами — это уже сигнал. Ну а если рыба начала терять ориентировку в пространстве, переворачиваться и даже гибнуть, значит, вода содержит вредные вещества в больших концентрациях.

В промышленности, где идет выпуск сточных вод на многих технологических линиях, уже поставлены аквариумы с рыбками. Рыбки сигнализируют о благополучном или неблагополучном положении с очисткой воды, сбрасываемой в водоемы.

Однако выживаемость — все же достаточно грубый показатель «живого прибора». В этом вопросе ученые и конструкторы пошли дальше, применяя приборы, регистрирующие поведение рыб и их физиологические показатели. Некоторые из этих биотестирующих установок весьма оригинальны. Примером такого биотестирующего устройства может служить длинный лоток с форелями, поставленный на выходе очищенных вод. В основу биотестирования положено биологическое свойство форели держаться против течения у притока, то есть там, где исследуемая вода втекает в лоток. Как только нарушается технологический процесс на линии или в воде появляется примесь вредных веществ, рыбы уходят в противоположный конец лотка, где находятся фотоэлементы, соединенные с системой сигнализации. Рыбы перекрывают лучи света, идущие через толщу воды от источников в фотоэлементы, и вслед за этим следует сигнал тревоги.

В некоторых случаях, чтобы форели случайно не заходили в зону фотоэлементов и не перекрывали лучи света, на заднем конце лотка создают слабое электрическое поле, которое рыбы достаточно хорошо ощущают и в чистой воде избегают его. При появлении же загрязнений они пренебрегают этим электрическим полем. Подобные биотестирующие установки работают на некоторых предприятиях в нашей стране и во Франции.

Могут ли рыбы кашлять? Оказывается, могут, но «кашель» их — это не что иное, как способ очистки жабер от различных загрязнений, когда посредством серии резких толчков загрязнения выбрасываются из жаберной полости. «Кашель» рыб давно известен и специалистам-ихтиологам, и любителям-аквариумистам, однако долго никому не приходило в голову использовать его. Группа сотрудников из Управления по охране природной среды США, возглавляемая Р. А. Драммондоном, несколько лет исследовала это свойство рыб на предмет применения его в биотестировании загрязнения воды. Они проверяли «кашель» у многих видов рыб и нашли, что лучше всего очищают свои жабры от загрязнений ушастый окунь, пескарь и форель. В чистой воде рыбы ведут себя спокойно, но достаточно в воду добавить примеси, как у рыб начинается приступ «кашля». Ученым удалось установить, что частота приступов зависит от степени загрязнения, а это уже первый шаг к созданию «живого прибора», показывающего величину загрязнения. К настоящему времени закончено создание промышленных систем, которые автоматически регистрируют «кашель» рыб, его частоту и подают сигнал тревоги, если загрязнение превышает установленные нормы.

А вот западногерманские токсикологи пошли несколько иным путем. Они решили регистрировать частоту электрических разрядов у нильской щуки в нормальной водной среде и при ее загрязнении. Здесь электрическая рыба используется как «живой прибор» дважды. Во-первых, рыба хеморецепторами очень тонко ощущает состав примесей в воде, а во-вторых, она «проверяет» показания своих вкусовых ощущений электрохимическим и электрическим способами. Посылая электрические импульсы и принимая их электрорецепторами, рыба реагирует на изменение электропроводности воды при появлении в ней примесей. Если вода загрязнена, нильская щука увеличивает частоту генерируемых электрических сигналов и тем самым сообщает, что пора принимать экстренные меры. Несмотря на высокую чувствительность живого электрического прибора, есть у него один недостаток — его нельзя использовать в шумной обстановке, при вибрациях, при наличии магнитных и электромагнитных полей. На все эти факторы нильская щука отвечает повышенной частотой генерируемых ею электрических импульсов.

Итак, рассмотрены интересные лабораторные и производственные биотесты, проводимые с помощью рыб. А можно ли проводить биотестирование непосредственно в водоеме? Здесь также достигнуты некоторые успехи. Французские ученые решили создать что-то наподобие рыбы-ищейки. Давно известно, что радужная форель обладает чрезвычайно острым «нюхом» и предпочитает жить в чистых источниках. Исследователи попытались установить, какова же способность форели реагировать на наличие примесей в воде. Выяснилось, что чувствительность необычайно высока: форель реагирует на примеси загрязнителей, величина которых не превышает десять нанограммов на литр. Для примера можно сказать, что такая концентрация регистрируется в автоцистерне с чистой водой, если в нее бросить щепотку соли. Оказывается, в мозгу форели существуют участки, ответственные за распознавание запахов. Причем электрическая активность этих участков и характер электрических импульсов зависят и от концентрации загрязнителя, и от его химической природы. В лабораторных условиях были расшифрованы электрические импульсы, соответствующие различным загрязнителям, таким, как пестициды, различные фенолы и другие вещества, содержащиеся в сточных водах. Появилась возможность по характеру электрических импульсов судить, какие вещества содержатся в воде и в каких концентрациях. Можно запускать форель-ищейку в водоем.

Для реализации этой цели биологи вживили в обонятельные области мозга радужной форели электроды и соединили их с миниатюрным передатчиком, прикрепленным к голове рыбы. Сигналы, передаваемые от рыбы, регистрировались приемником, расположенным на берегу. Правда, для их расшифровки понадобилось применение ЭВМ. Зато форель точно сообщала о присутствии в воде вредных примесей, об их концентрации и о месте, где произведен анализ. Обычными приборами такой анализ выполнить невозможно. Поскольку передатчик весит всего три грамма и не мешает форели, есть мнение, что рыба может успешно жить и «работать» с ним как «живой прибор» более двух лет.

Как видим, симбиоз сверхчувствительных живых датчиков и электронных анализаторов очень полезен.

 

Системы постоянного слежения

Токсикологам часто приходится не просто исследовать загрязнение отдельных проб, а постоянно следить за состоянием воды в водоеме или же воды, поступающей со стоками в водоем. Существуют ли живые системы, которые могут вести постоянный контроль, называемый мониторингом? Мы уже познакомились с некоторыми из них: форели в лотке с фотоэлементами — один из «живых приборов» мониторинга. Однако для мониторинга, работающего в любое время суток, форели всё же неудобны. У них меняется активность в разное время суток, и при изменении погоды или после кормления активность у них также падает. Может быть, можно найти животных более удобных, которые не нуждаются в искусственном кормлении и которых можно закрепить в устройстве слежения за загрязнением, чтобы в механических или электрических системах сигнализации они своими движением не вносили помех?

Такие животные нашлись. Это двустворчатые моллюски. Перловиц, или беззубок, можно наблюдать, бродя по щиколотку в воде по дну маленькой песчаной речки. Они медленно бороздят дно, оставляя за собой длинный прочерченный след. Если вынуть ракушку из воды, она быстро сомкнет створки, и раскрыть их очень трудно, скорее раковина лопнет между пальцами, чем створки раскроются. Этот организм и будет основной деталью в устройстве, которое сейчас рассмотрим. Он обладает рядом преимуществ: питается за счет фильтрации, отделяет мельчайшие водоросли и микроорганизмы и тем самым очищает воду от живой и мертвой взвеси. Одну створку перловицы можно зафиксировать, и перловица почти не пострадает — ведь протекающая мимо вода приносит ей кислород и пищу. Наконец, ко второй, свободной, створке можно приделать рычаг или штангу, и тогда силой своих мышц, а она у двустворчатого моллюска немалая, перловица будет включать и выключать сигнализирующую систему. Остается только сказать, что перловица вооружена целой системой хеморецепторов, предпочитает чистую воду, и, как только в протекающей мимо воде появится вредное загрязнение, моллюск сомкнет свои створки.

Основной принцип работы «живого прибора» на двустворчатых моллюсках понятен. Только ко дну лотка с протекающей для анализа водой прикрепляют не одну ракушку, а десять, чтобы случайное закрытие створок не было воспринято как сигнал тревоги. Когда большинство моллюсков сомкнут свои створки, значит, действительно пошел токсичный сток — вот тогда и зазвучит сигнал опасности.

В других автоматических системах мониторинга химического загрязнения воды, основанных на активности двустворок используют электромагнитную индукцию. Такая система может не только дать сигнал опасности загрязнения, но в какой-то мере и показать степень загрязнения. Такая автоматическая система мониторинга делается с более мелкими ракушками — дрейссенами. Дрейссены переносят прикрепление лучше, чем перловицы — ведь они сами прикрепляются к сваям и решеткам так называемыми биссусными нитями, очень близкими по составу к шелку. У дрейссен фиксируют одну створку, а вторую соединяют с катушкой, перемещающейся в переменном магнитном поле, создаваемом другой неподвижной катушкой. Сила тока в подвижной катушке пропорциональна перемещению створки. В систему включается сразу шесть моллюсков, и чем сильнее они захлопывают створки при появлении загрязнения, тем выше индуцируется ток в катушках, показывая на приборах степень загрязнения. Результаты опытов показали, что радужная форель более чувствительна, чем моллюски, к загрязнению воды химическими веществами, но к некоторым веществам, например меди, более чувствительны дрейссены.

В системах мониторинга все чаще начинают использоваться очень мелкие, даже микроскопические обитатели вод, например простейшие и коловратки. Созданы специальные устройства, следящие за Изменением скорости движения инфузорий при появлении в воде вредных примесей, особенно ионов металлов, к которым наиболее чувствительны простейшие. Для этих целей подходят мелкие инфузории тетрахимены, культивирование которых, можно сказать, стандартизировано в лабораторных условиях. Проверка действия таких редких металлов, так селен, ванадий и цирконий, на скорость плавания тетрахимен позволяет через двадцать — тридцать минут определить наличие различных концентраций этих веществ в воде. Ведь в концентрациях всего пять — десять промилле веществ, они могут снизить скорость плавания на девяносто шесть процентов, которая у тетрахимен в норме составляет две тысячи семьсот микрометров в секунду, а большие концентрации вообще останавливают движение инфузорий.

Постоянное слежение за содержанием токсикантов в воде с помощью биологического мониторинга имеет неоспоримые преимущества по сравнению с химическим мониторингом, производимым различной аппаратурой. Но все, что разработано, относится главным образом к мониторингу, основанному на физиологических показателях. Однако сейчас человеку важно не. только знать ближайшие последствия промышленного загрязнения, но и делать прогноз последствий загрязнения на месяцы и годы. Ведь многие из соединений, попадающих в окружающую среду, могут оказаться мутагенами, канцерогенами или могут нарушить процессы эмбрионального развития.

Мы уже говорили о критических стадиях развития, во время которых зародыш наиболее чувствителен к действию вредных веществ, загрязняющих природную среду. Ученые поняли, что именно на этих стадиях и нужно испытывать допустимые концентрации или контролировать вредность загрязнения. Санитарные токсикологи проверяют действие вредных веществ на эмбриональных стадиях развития экспериментальных животных — мышей и крыс, а токсикологи, занимающиеся охраной гидробиоценозов и отдельных видов подводного мира, берут в качестве экспериментальных объектов устриц, эмбрионы дафний, икру и личинки радужной форели и личинки водных нематод. Это очень чувствительные организмы, и критические стадии их развития приходятся на периоды наиболее сложных морфологических перестроек или вы клева из зародышевых оболочек, когда организм попадает в новую, не свойственную для него среду. А можно ли эти короткие критические периоды использовать для постоянного слежения за состоянием окружающей среды? Разрешима ли эта задача?

Оказывается, можно предложить эмбриологический мониторинг. У коловраток, у рачков-артемий, живущих в соленых и пересоленных водах, существуют покоящиеся яйца. Поэтому в любой момент, через равные промежутки времени можно заново «запускать» эмбриональное развитие у этих живых организмов и постоянно в наборе зародышевых и личиночных стадий иметь объекты, находящиеся в критических и наиболее чувствительных периодах развития. Можно использовать не только коловраток и артемий. В лабораторных условиях, применяя современные методы культивирования и гормональные препараты, круглогодично получают икринки моллюсков и рыб, например вьюна, а также икру шпорцевых лягушек и тритонов.

Сейчас теоретически уже разработаны основы будущего центра слежения эмбриологического мониторинга. О том, как он будет выглядеть, и пойдет рассказ.

На управляющем пульте ряд телевизионных экранов, и на каждом из них видны различные стадии развития эмбрионов и личинок водных организмов. Телекамеры позволяют постоянно следить за развитием организмов под водой. А там организован настоящий конвейер. По миниатюрным штангам-рельсам периодически продвигаются камеры с развивающимися эмбрионами, напоминающие детскую железную дорогу, но в каждом вагончике-камере зародыши или личинки водных животных на одной из стадий развития. Если в этом составе в самые последние камеры помещают только что начавшие свой путь развития яйцеклетки, то первые уже с развившимися личинками снимаются с рельсов. В любой момент в этом составе есть все основные стадии развития, и самое главное — те критические, на которые загрязнение влияет в полной мере, приводя развитие к замедлению или даже к его полной остановке. На экранах телевизоров опытный взгляд эмбриолога-оператора в нужный момент отметит начавшееся загрязнение водной среды так же, как это бы сделал физик, исследующий частоту колебаний в электронных схемах, по фигуре Лиссажу на экране осциллографа.

Особенностью эмбриологического мониторинга является то, что он с равным успехом применим как для слежения за загрязнением пресных вод, так и морских. Для контроля за состоянием морской водной среды особенно подходят ранние стадии развития иглокожих: морских звезд и ежей. Эмбрионы и личинки этих обитателей морей — любимый объект эмбриологов, у них, пожалуй, самые изученные стадии, нежели у других видов. К тому же икринки иглокожих почти не содержат желтка, что позволяет наблюдать на просвет в световой микроскоп за морфогенезом на ранних стадиях развития и за перемещением клеток внутри зародыша. К настоящему времени биологи научились активировать созревание икринок у морских звезд и ежей такими веществами, как ацетилхолин и метиладенин, поэтому получение оплодотворенных икринок в заданное время не представляет сложности. Следует отметить, что зародыши иглокожих в эмбриональной стадии очень чувствительны к загрязнению водной среды промышленными отходами. Теперь остается только представить, насколько четко будут видны на экранах телевизоров отдельные стадии развития этих прозрачных зародышей при организации системы эмбриологического мониторинга. «Живой прибор», не имеющий ни шкал, ни стрелок, как неусыпное око, и днем и ночью может следить за чистотой прибрежных вод морей в тех местах, где возможен сток промышленных вод, несущих ядовитые вещества.

 

Хорошо ли идет биологическая очистка воды?

С каждым годом нарастает мощность промышленных предприятий, и хотим мы этого или нет, в водоемы, пока не созданы системы замкнутого водооборота, попадает все большее количество загрязняющих веществ. На первых порах, когда промышленность еще не развивалась так бурно, гидробиоценозы сами справлялись с поступающими в водоемы загрязнениями; происходило, как говорят ученые, самоочищение водоема. Но в наш век индустриализации самоочищение можно использовать только как подсобную силу. Основную биологическую очистку сточных вод ведут с помощью искусственного биоценоза, мощность которого в биоокислении продуктов отходов производства в сотни, а то и в тысячи раз выше самоочищающей способности естественных живых сообществ.

Одним из наиболее перспективных и не ограниченных природными условиями очистных сооружений является аэротенк. Это огромный бетонный резервуар, принимающий сточные воды на биологическую очистку с помощью активного ила. Сточная вода смешивается в аэротенке с активным илом и постоянно продувается снизу мощным потоком мельчайших пузырьков воздуха. Избыток кислорода и приток органических веществ со сточными водами позволяют бактериальному населению и микроскопическим животным бурно развиваться в активном иле. Бактерии склеиваются в хлопья или зооглеи, образующие огромную рабочую поверхность — около одной тысячи двухсот квадратных метров в одном кубическом метре ила, и выделяют ферменты, расщепляющие органические соединения до простых минеральных молекул. Происходит так называемая минерализация органики. Поглощая в избытке органические вещества, бактерии растут, делятся, и масса активного ила постоянно возрастает.

Благодаря тому что бактерии склеены в хлопья, активный ил быстро оседает и отделяется от очищенной им воды.

На поверхности бактериальных хлопьев и между ними обитает бесчисленное множество микроскопических животных: инфузорий, амеб, жгутиконосцев, коловраток, червей и клещей. Вот они-то и есть те «живые приборы», по которым технологи определяют, хорошо ли идет биологическая очистка воды. Правда, их роль не сводится только к роли организмов-индикаторов. Они еще несут и генетическую службу, питаются бактериями и уничтожают старые неработоспособные клетки и те бактерии, которые отрываются от хлопьев, а следовательно, при отстаивании активного ила от чистой воды не оседают и загрязняют ее. Но эти организмы уже выполняют роль датчиков экологического равновесия в аэротенке.

Прежде всего сам видовой состав может сказать многое о том, как чувствует себя активный ил. При хорошей очистке в активном иле в больших количествах встречаются брюхоресничные инфузории и прикрепленные формы — сувойки, напоминающие отдельные колокольчики, а иногда целые гроздья колокольчиков. В таком иле много коловраток и почти нет жгутиковых и амеб (рис. 16).

Рис. 16. Микроорганизмы активного ила:

А — при плохой работе аэротенка; Б, В — при хорошей работе аэротенка;

1 — эуглифа (раковинная амеба);

2 — арцелла (раковинная амеба);

3 — инфузория туфелька;

4 — бодо (жгутиковое);

5 — амеба протей;

6 — нитчатые бактерии;

7 — сосущая инфузория;

8 — политома (жгутиковое);

9 — коловратка нотоммата;

10 — хлопья активного ила;

11 — амеба дисковидная;

12 — зооглея «оленьи рога»;

13 — аспидиска (брюхоресничная инфузория);

14 — коловратка филодина;

15 — солнечник;

16 — эуплотес (брюхоресничная инфузория);

17 — аэлозома (малоресничный червь);

18 — опекулярия (колониальная инфузория);

19 — циклидиум (инфузория);

20 — сувойка;

21 — окситриха (брюхоресничная инфузория);

22 — коловратка моностила;

23 — стилонихия (инфузория);

24 — каршезиум (колонильная инфузория);

25 — коловратка катипна;

26 — эпистилис (колониальная инфузория);

27 — фабдоста (прикрепленная инфузория);

28 — амеба террикола

Интересен также и морфологический показатель — строение зооглеи. Бактерии объединяются в крупные хлопья с изрезанными краями, когда их рабочая поверхность максимальная.

При ухудшении очистки в активном иле появляются равноресничные инфузории, например всем известные туфельки. Прикрепленные организмы переходят в плавающее состояние. Сувойки отбрасывают ножку, на которой сидят, образуют дополнительный венчик ресничек и становятся «бродяжками», плавающими в толще воды. Коловраток по-прежнему много, но видовой состав их изменяется, появляются виды, способные переносить высыхание и впадать в анабиоз. Все организмы как бы ощущают приближающуюся катастрофу. Зато больше становится жгутиковых и амеб.

Наконец, при плохой биологической очистке сильно развиваются жгутиконосцы и амебы. Совсем мало становится инфузорий и коловраток. А бактериальные хлопья либо измельчаются, либо округляются (рис. 17).

Рис. 17. Округлившиеся бактериальные хлопья

Смена биоценозов активного ила требует нескольких дней, но экстренные сообщения можно получить от «живых приборов» сразу же при рассматривании их в поле зрения микроскопа. Как узнать, например, что для активного ила не хватает кислорода? Это подскажут сувойки. Обычно их устьица раскрыты, видно, как работает ресничный аппарат и гонит в их клеточный рот бактерий, которыми они питаются. При нехватке кислорода устьица сжимаются, и на тонкой ножке вместо колокольчика виден шарик. Появился кислород в среде — сувойка раскрывает свой ресничный аппарат и начинав им работать. Но если в очищаемую воду был произведен залповый выброс токсических веществ, то сувойки лучше и быстрее любого химического анализатора укажут на это: они не только сжимаются, но и сворачивают ножку в пружинку. Одновременно с этим уменьшается скорость движения инфузорий, а коловратки втягивают голову и ногу в тело. Опасность налицо.

О появлении ядовитых соединений в очищаемой активным илом воде могут сказать бактериальные хлопья (зооглен). От токсических соединений эти бактериальные образования мельчают, а иногда становятся прозрачными. В сильно загрязненных водах при недостатке кислорода могут развиваться также нитчатые бактерии, напоминающие вату, от которых вода почти не отстаивается. Сами нитчатые бактерии, называемые сферотилус, прекрасно очищают воду от различных соединений, но активный ил, где они развиваются, вспухает. Приходится даже вести борьбу с нитчатыми бактериями, чтобы очистка воды не нарушилась.

 

Живые индикаторы загрязнения окружающей среды

Теперь перейдем к рассмотрению самых оригинальных «живых приборов» — организмов-индикаторов. Это, по существу, генетический прибор, ведь при определенных уровнях загрязнения могут жить только те организмы, наследственная программа которых приспособлена к экологическим сдвигам, вызываемым деятельностью человека. Живые индикаторы могут рассказать нам многое: где скапливаются вредные вещества, как они влияют на экосистему в целом и какова скорость происходящих изменений. По результатам химического и физического анализов можно узнать, в каких концентрациях скапливаются вещества, вредящие живым сообществам, но о тенденциях дальнейшего развития загрязнения и о его биологических последствиях такой анализ ничего не скажет. На помощь здесь могут прийти именно живые индикаторы.

Ежегодно в научной литературе появляется много статей, в которых рассказывается о новых организмах-индикаторах.

Это и низшие, и высшие растения, беспозвоночные и позвоночные животные. Но многие виды стали классическими живыми индикаторами. Кто не видел лишайников, зеленой бородой свисающих с дремучих деревьев! Но их все меньше и меньше встречается в наших лесах — признак загрязнения воздуха. Меньше стало в подмосковных лесах и муравейников. Одна из причин этого — в загрязнении окружающей среды. Муравьи не могут жить в загрязненной атмосфере и при появлений пестицидов в почве. Первыми из загрязненных мест уходят крупные рыжие муравьи.

Со шляпочными грибами происходит сходная история. С одной стороны, их урожайность снижается от неправильного сбора, когда грибники повреждают грибницу. Однако и загрязнения вносят свою лепту. Такие ценные грибы, как белые, подосиновики и подберезовики, выступают и в качестве индикаторов загрязнения окружающей среды. Они не выдерживают загрязнения окружающей среды, поэтому и снизилась их урожайность за последние двенадцать лет на 50,5 %.

В систему индикаторных организмов включают самые разнообразные группы. Это и мокрицы, и дождевые черви, и даже почвенные простейшие. Экологи изучают на этот предмет и крупных позвоночных животных. Например, чешские исследователи в качестве вида-индикатора предлагают использовать зайца-русака. Оказывается, промышленные загрязнения далеко не безразличны для зайцев, которые чутко реагируют на токсические вещества в среде. В зонах промышленного загрязнения в их крови увеличивается фракция Y-глобулинов и меняется отношение кальция к фосфору. В шерсти накапливаются тяжелые металлы. Анализ шерсти покажет, какие из металлов являются главными загрязнителями. При сильном загрязнении рост зайцев замедляется, в их популяции увеличивается число самок.

В качестве живых индикаторов можно также с успехом использовать мелких грызунов. Для этой цели подходят полёвки, лесные мыши.

Вопрос о роли наземных живых индикаторов в охране окружающей среды находится в стадии изучения. Оказывается, загрязнения на суше можно определить по состоянию не только отдельных видов, но и целого сообщества. Разрабатывается аэрокосмический мониторинг природоохранных экосистем. Со спутников можно следить за состоянием растительности, почв и сменой живых сообществ под воздействием человека. Только в этом случае «живым прибором» служит уже не отдельное растение или даже их группа, а отражающая свет экосистема в целом, например тундра, лес, пастбище. Причем оценка природного контраста охраняемой системы с хозяйственно используемым фоном позволяет из космического пространства определить, насколько сильно человек эксплуатирует ту или иную экосистему, а заодно и дать прогноз динамики восстановления экологического равновесия.

Очень сложны по составу видов наземные биоценозы. К их изучению приложим только биогеографический подход, когда в каждом регионе приходится выделять свои виды-индикаторы и биоценозы, характерные для охранных лесов. Все это создает трудности в создании единой системы организмов-индикаторов для каждой зоны загрязнения наземных систем.

Несколько по-иному обстоит дело с пресноводными биоценозами. Почти во всех пресноводных водоемах встречаются виды-космополиты, способные жить при определенном загрязнении. Это позволило создать шкалу сапробиости, то есть степени загрязненности отдельных водоемов или их зон органическими веществами, в которых способны жить определенные организмы. Загрязнение вод по шкале сапробности подразделяется на четыре зоны: поли-, α-мезо-, β-мезо- и олигосапробную. Посмотрим, какие организмы-индикаторы живут в каждой из этих зон.

Полисапробные воды характеризуются полным отсутствием кислорода, наличием в воде неразложившихся белков и значительного количества сероводорода и углекислого газа. Это самая грязная, отвратительно пахнущая вода. Однако и в ней есть жизнь. В этой воде прежде всего можно встретить следующих бактерий: самых крупных серных бактерий и нитчатых бактерий сферотилус. В такой воде живут жгутиконосцы и инфузории путринум. Есть даже сувойки, но только напоминающие не ландыш, а скорее шарик на тонкой ножке. У этих сувоек очень маленький рот, поэтому и называют их микростомата, В иле развивается множество червей трубочников, и, как подводная лодка, выставив свою дыхательную трубку в виде перископа, по дну таких грязных стоков ползает личинка мухи-крыски.

Серобактерии разлагают органические остатки в полиса-пробной воде, выделяется сероводород и метан. Им помогают другие бактерии и все население этого царства сточных вод. Так и идет процесс самоочищения.

В воде α-мезосапробной зоны (рис. 18) еще есть аммиак, вода пахнет сероводородом, но уже появляется и кислород. В такой воде бактерии многочисленны: есть грибы мукор, но и водоросли, пусть даже синезеленые, находят себе здесь приют.

Рис. 18. Организмы α-мезосапробной зоны: а — сточный гриб; б — осциллятория; в — водоросль нитшия; г — жгутиконосец хиломонас; д — водоросль стефанодискус; е — инфузория уронема; ж — инфузория хилодонелла; з — водоросль клостериум; и — инфузория кольпода с зоохлореллами внутри; к — антофиза; л — сувой ка ландышевидная; м — круглоресничная инфузория каршезиум

Плавают в поле зрения микроскопа окрашенные жгутиконосцы хламидомонады, эвглены и огромные инфузории-трубачи. Появляются в этой зоне сапробности коловратки, моллюски сфериум, рачки водяные ослики, и в иле, в огромном количестве, развиваются личинки комаров хирономид, многие крупные виды которых рыбоводы и аквариумисты называют мотылем. За счет работы бактерий и всего населения органическое вещество в воде еще больше минерализуется и вода переходит в следующую зону сапробности.

Следующая, β-мезосапробная зона наиболее знакома человеку. В прудах, водохранилищах аминокислот нет, незначительное количество сероводорода, зато вода насыщена кислородом. Видовое разнообразие организмов-индикаторов в этой зоне выше, чем в других зонах (рис. 19). Из водорослей чаще всего встречаются диатомовые и зеленые. Например, известная всем хлорелла из протококковых водорослей или спирогира из нитчатых водорослей, образующих тину. В этих водах уже встречаются цветковые растения, а также ракообразные и рыбы.

Рис. 19. Организмы β-мезосапробной зоны: а — астерионелла; б, в — различные вщы осцилляторий; г — мелозира; д — ко-лепс; е — сценедесмус; ж — инфузория аспидиска; з — педиаструм; и — эуплотес; к — сувойка; л — синура; м — диатомовая водоросль табеллярия; н — парамеция; о — колониальный жгутикоосец; уроглена; п — червь стилярия; р — нитчатая водросль спирогира; с — коловратка брахионус; т — кладофора; у — солнечник

Последняя зона олигосапробная — зона самой чистой воды. Бактерий в такой воде мало, видов животных и растений много, но число особей каждого вида невелико. Организмами-индикаторами олигосапробной зоны могут быть как водоросли, так и микроскопические животные, например сувойки-нубилиферы. Здесь встречаются дафнии-лонгиспины, у которых раковина заканчивается длинным отростком. Высшая водная растительность — полушник озерный и полушник иглистый — тоже указывает на чистоту воды в водоеме. Рыбы, обитающие в олигосапробной зоне, обычно холодолюбивые, предпочитают высокое содержание кислорода в воде. Это радужная и ручьевая форель, красноперки, сиг, рипус.

Однако в настоящее время, когда приток сточных вод в водоемы с промышленными токсичными веществами усилился, для оценки загрязнения одной шкалы сапробности уже недостаточно. Ученые считают, что настало время разработки трех шкал, которые позволили бы оценить степень загрязнения воды с помощью живых индикаторов. Оценку загрязнения предлагается вести по сапробности, по токсобности и сапротоксобности. Токсобность сходна по своему понятию с сапробностью, только здесь подразумевается выживаемость определенных видов не вообще при загрязнении воды органическими соединениями, а способность организмов существовать в водах, содержащих токсические вещества — как минеральные, так и органические. И вполне понятно, что третья шкала сапротоксобности объединяет в себе и сапробность, и токсобность. Академик В. И. Жадин предложил четыре зоны токсобности: гипертоксобную, где организмы-индикаторы вообще жить не могут; поли-, мезо- и олиготоксобную зоны соответственно с сильной, средней и слабой степенью загрязнения токсическими веществами. Однако окончательной шкалы токсобности и сапротоксобности не создано. Гидробиологи и не ожидали, что на их пути встретится столь трудная задача, так как механизм реагирования гидробионтов на токсические вещества до необычайности сложен и зависит как от физических и химических, так и от биологических факторов окружающей среды.