Животные анализируют мир

Симаков Юрий Георгиевич

Глава пятая

АНАЛИЗАТОРЫ ФИЗИЧЕСКИХ ПОЛЕЙ

#i_012.png

 

 

Компас в языке

Многие беспозвоночные животные наделены «магнитным компасом». Очень четко такой компас работает у плоских червей планарий. Направление на магнитные полюса Земли люди умели определять давно. Еще до изобретения компаса древние викинги пользовались куском магнитной руды во время путешествий по северным морям. Сейчас каждый человек знает, что Земля — это огромный вращающийся постоянный магнит. Однако не только из постоянного магнитного поля складывается магнитное поле Земли. В нем есть переменный компонент, составляющий всего два процента от постоянного магнитного поля. Но его биологическое действие значительно.

Люди не ощущают магнитного поля Земли и для определения нужного направления по магнитному полю используют компас. А есть ли у животных какие-либо «приборы», которые помогают им ориентироваться в магнитном поле и тем более в геомагнитном поле, которое довольно слабое — всего до 0,7 эрстеда? Напомню, что в лабораториях физики создают магнитные поля в несколько тысяч эрстед. Так вот, в организм живых существ «встроен» довольно чувствительный «магнитный компас». Некоторые экспериментаторы, желая проверить, ощущают ли животные магнитное поле, использовали в своих опытах магниты, поле которых во много раз сильнее, чем магнитное поле Земли. Реакция животных была неадекватной — либо они совсем не реагировали на искусственные магнитные поля, либо у части организмов реакция была бурная и не вписывалась ни в какие рамки. Сейчас стало ясно, что в этих исследованиях недооценивалось эволюционное развитие животных. Вся жизнь организмов на Земле развивалась в условиях воздействия геомагнитного поля, и, конечно, живые существа научились ориентироваться в нем. Поэтому сильные магнитные поля животные воспринимают как непривычный временный фактор. Сильные магнитные поля могут оказать биологическое действие на кроветворение, клеточное деление и физиологические параметры некоторых органов, но восприятие информации у животных связано только со слабыми магнитными полями, близкими к напряженности магнитного поля Земли.

Прямым доказательством действия геомагнитного поля на жизнь организмов можно считать реакцию живых объектов на экранирование их от действия магнитных силовых линий. Живые организмы помещают в камеры из сплавов пермаллоя (железо с никелем) или же мюметалла (никель, железо, медь и хром в определенных соотношениях), которые значительно уменьшают действие магнитного поля Земли. На многих организмах экранирование от магнитного поля никак не сказалось, однако на высших растениях при длительном экранировании удалось показать, что происходит задерживание закладки боковых корешков, а первичная кора становится толще и покрывается своеобразными наростами. Бактерии тоже реагировали на сильное понижение естественного магнитного фона. Золотистый стафилококк стал в пятнадцать раз медленнее размножаться, а размеры клеток азотбактера увеличились в восемь раз, и даже появились нитчатые формы, чего обычно не происходит. Очень важно было проверить, как реагируют на экранирование от магнитного поля высшие животные — млекопитающие. Эксперименты, проведенные на мышах, показали, что к четвертому поколению у них прекращается воспроизводство, во втором поколении наблюдаются частые выкидыши зародышей. Родившиеся мышата с раннего возраста малоактивны и длительное время лежат на спине. У взрослой популяции (примерно четырнадцать процентов) наблюдается прогрессирующее облысение. Сначала лысеет голова, а затем спина. К шести месяцам животные погибают. Гистологический анализ показывает, что экранирование сильнее всего влияет на почки мышей (в них развивается киста и многокамерность), страдает и печень.

Действие искусственных слабых магнитных полей, близких к естественным полям, также влияет на живые организмы. Например, бактерии в переменном магнитном поле с частотой 0,6 герца снижают скорость размножения. В то же время электромагнитное поле с частотой 0,1; 0,5 и 1 герц стимулирует размножение бактерий.

Наиболее высокочувствительными к слабым магнитным полям оказались рыбы, которые используют их в основном для ориентации, но об этом рассказ пойдет несколько позже. Организм млекопитающих тоже реагирует на короткое и длительное пребывание в искусственных магнитных полях. У кроликов, например, низкочастотное магнитное поле (восемь герц) влияло на активность ферментов в лейкоцитах крови. Особенно резкое уменьшение активности щелочной фосфотазы в клетках белой крови наблюдалось при создании магнитных полей, близких по своим параметрам к тем, которые наблюдаются при магнитных бурях. Действие переменных и постоянных магнитных полей не ограничивается только изменениями в периферической крови у млекопитающих. Эксперименты показали, что эти поля действуют на электрическую активность мозга. Под действием слабых магнитных полей с частотой 0,01-5 герц у человека увеличивается частота пульса, появляются слабость, головная боль, чувство тревоги — признаки нарушения электрической активности мозга.

При действии сильных магнитных полей (в экспериментальных условиях) реакции могут быть более отчетливые, чем при влиянии слабых полей. При этом страдают ткани тех органов, где постоянно происходят клеточные деления: костный мозг, селезенка, печень, половые железы. Нарушается биологический ритм клеточных делений, у некоторых животных меняется поведение.

Насекомые, например, тараканы, очень устойчивы к действию сильных магнитных полей. В то же время у «домового усача» под влиянием такого поля активность заметно подавляется. Мухи, попавшие в магнитное поле, сначала очень активны, а затем их поведение резко меняется, и они выглядят сонливыми и вялыми.

А теперь посмотрим, какие «магнитные приборы» позволяют животным ориентироваться в пространстве, передавать друг другу информацию и даже изменять ориентацию планарий. Американский зоолог Ф. Браун провел такой опыт: поместил планарий в воронкообразный проход, на выходе которого менялось направление магнитных силовых линий. Если выход располагался параллельно силовым линиям, то есть смотрел на север или юг, планарии поворачивали направо. Если выход располагали по направлению восток — запад, то они поворачивали налево. И так было всегда, пока у выходов не ставили слабый магнит, в результате чего ориентация планарии нарушалась.

Способностью ориентироваться по магнитным полям обладают и те существа, «компас» у которых находится в языке. Речь идет об улитках. Правда, это не совсем тот язык, что у позвоночных животных. Он похож на терку, которую улитка высовывает изо рта и соскабливает ею водорослевые налеты на камнях и сваях. Но в этой терке, или радуле, как ее еще называют, содержится большой процент железа — почему она и может выполнять функции компаса. Трудно объяснить, как микроскопические усилия, создаваемые в радуле улиток, передаются и мозг и анализируются, помогая ориентироваться по сторонам света, однако она так же, как и планарии, реагирует на небольшие кусочки магнита и меняет ориентацию при выходе из прохода.

Магнитное поле ощущают не только крупные организмы, но и простейшие, обитающие в водоемах. Туфелька хвостатая при наложении искусственного магнитного поля, близкого по своему значению к геомагнитному, меняет свою активность, а иногда и траекторию движения. Возможно, в ее цитоплазме заложены пара- и диамагнитные молекулы, чутко реагирующие на изменение магнитного поля. Одноклеточным не уступают в магнитной ориентации и колониальные простейшие. В чистой воде, богатой соединениями железа, развиваются вольвоксы, колониальные жгутиконосцы. Они способны не только различать направление магнитных силовых линий, но и менять свою ориентацию при увеличении общей напряженности поля. Низшие рачки — дафнии, тысячами развивающиеся в теплые дни в прудах, тоже способны к ориентации в магнитном поле. Они приспособлены точно ощущать изменение силы и частоты магнитных колебаний. Можно проделать простой опыт. На дно небольшого аквариума, где плавают дафнии, насыпать магнитные опилки. Рачки соберутся только в определенных местах аквариума, как бы повторяя своими скоплениями конфигурацию участков дна, заполненных опилками.

О насекомых следует поговорить отдельно. Магнитное поле Земли для них — важнейший ориентир. Первыми, на кого обратили ученые свои взоры, были термиты. Еще бы — они все свои подземные галереи и входы в термитники устраивают в направлении магнитного меридиана. И самку, беспрерывно производящую яйца и имеющую брюшко величиной с небольшой огурец, они укладывают вдоль магнитного меридиана.

А мухи! Обратите внимание, как они ориентируются при посадке. Ученые занялись этим вопросом, и оказалось, что даже домовые мухи в помещении без окон и при искусственном освещении предпочитают садиться по осям север — юг и восток — запад. Конечно, наблюдаются колебания в расположении тела при посадке, но они никогда не превышают двадцати градусов в ту или другую сторону от оси.

Пчелы безошибочно разыскивают корм и свой улей. Известно, что важнейшим ориентиром для сборщиц меда служит Солнце. Даже когда небо покрыто тучами, пчелы знают, где оно находится, — для этого им достаточно маленького кусочка неба. Они видят поляризованные лучи и по их направлению определяют местоположение Солнца. Прилетев в улей, они передают своим соплеменникам информацию о том, где можно взять большие сборы нектара и пыльцы. Эту информацию пчелы передают друг другу довольно своеобразно: танцами, движением хвостового отдела. Этим они показывают, как далеко надо лететь и в каком направлении. Однако танцующая пчела может передать неверное направление месторасположения корма, иногда ошибаясь на пять-десять градусов. После экранирования магнитного поля ошибки уменьшались до трех градусов. Это говорит о том, что пчелы используют магнитное поле Земли для ориентации, а ошибки связаны с изменением геомагнитного поля.

Рыбы живут в мире электрических полей. Однако и магнитное поле в их ориентации, локации, как сейчас выяснилось, играет важную роль. Несколько тысяч километров могут преодолеть рыбы во время ежегодных миграций к дому. Ранее была описана их необычная способность находить родную реку и то место, где они впервые появились на свет. Но какими ориентирами пользуются рыбы в открытом море, когда их химические анализаторы не могут ощутить запаха родного водоема? Вероятно, они также обладают способностью ориентироваться по магнитным линиям Земли. Тщательные эксперименты в природных и в лабораторных условиях подтвердили этот вывод. В лаборатории работали с молодью стеклянного угря. Ее запускали в специальные лабиринты, в которых было до двухсот пятидесяти разветвлений. Рыбки должны были решать задачу выбора, взять правое или левое направление на каждом очередном разветвлении. И они всегда избирали то направление, как если бы они двигались от Саргассова моря. Вспомним, ведь там они выклюнулись из икры и прошли личиночный период. Одиннадцать тысяч наблюдений провели на широте Ленинграда, Одессы и Калининграда, и всякий раз молодь угря в каждом географическом пункте выбирала определенное направление движения по линии от Саргассова моря к месту испытаний. Такую ориентацию можно осуществить только при наличии рецепторов, улавливающих геомагнитные силовые линии и определенный угол движения по отношению к магнитному меридиану. Но как доказать, что именно магнитное поле помогает угрям ориентироваться в лабиринтах? Очень просто — экранировать от магнитных полей или же компенсировать магнитное поле искусственными магнитами. В результате рыбы теряют способность ориентации в лабиринтах и движутся по всем направлениям.

Рыбы не только используют магнитное поле для ориентации во время миграций, но и могут лоцировать им свои жертвы. Так, у щуки вокруг головы, примерно в области глаз, создается переменное магнитное поле с частотой восемь-девять герц. Это привилегия не только рыб. Магнитное поле создается вокруг головы большинства позвоночных животных, и обусловлено оно электрическим действием мозга и его альфа-ритмами. Однако хищные рыбы, в нашем случае щука, используют переменное магнитное поле для обнаружения рыбок, спрятавшихся в траве. Своим переменным магнитным полем щуки как бы наводят электрический потенциал, который они могут воспринимать с помощью электрорецепторов. Зубастый хищник действует точно по закону Фарадея. Он пересекает магнитными линиями тело рыбы, индуцирует в нем электрические потенциалы между хвостом и головой и таким образом определяет, где рыба и в какую сторону направлены ее хвост и голова.

Среди птиц тоже можно найти виды, совершающие упорядоченные сезонные миграции на тысячи километров. Пожалуй, дальше всех мигрируют кроншнепы, гнездящиеся на Аляске и на зиму улетающие в теплые края к Таити и Гавайским островам. Примерно десять тысяч километров занимает их путь, из которых три тысячи километров они летят над морем. Даже представить себе трудно — три тысячи километров над водными просторами! Ведь это небольшая птица! И не сбивается с пути! Навигационная способность, как и у всех птиц, отличная.

Механизм биологической навигации у птиц еще не раскрыт. Есть несколько теорий, из которых следует, что-либо птица пользуется «биокомпасом», улавливающим неизвестные пока поля, либо ориентируется по физическим параметрам: по силам Кориолиса, положению Солнца над горизонтом, звездам и геомагнитному полю. Не исключено, что для ориентации и навигации птицы используют и «биокомпас» и физические параметры. Во всяком случае, магнитное поле Земли для ориентации птиц играет большую роль.

Примерно пятнадцать лет назад советский исследователь В. И. Данилов и американский зоолог Л. Талкингтон предположили, что роль магнитометра у птиц может играть «гребешок» — специальное образование в глазу. Совместное действие на гребешок света и геомагнитного, поля приводит к фотомагнитному эффекту. В результате в гребешке возникают токи, которые раздражают волокна зрительного нерва.

Есть предположения, что птицы могут связывать одновременно гравитацию и геомагнитное поле. Ведь сила земного притяжения, хотя и незначительно, меняется при перемещении с севера на юг и обратно, но птицы способны различить эту разницу. Магнитные поля в разных точках Земли имеют разный наклон. Существует четыре точки с постоянным наклоном магнитного поля и соответствующей гравитацией — две в Северном полушарии и две в Южном. Пользуясь этими точками, птицы без труда определяют соотношение земного притяжения и наклонение геомагнитного поля.

Нельзя не упомянуть об энергетической упорядоченной сетке. По мнению ряда исследователей, Землю покрывает особая энергетическая сеть, то есть все поля, несущие энергию: гравитационное, магнитное, электромагнитное, электрическое, они не гомогенно распределены по поверхности Земли, а образуют определенные структуры в виде сети с шестиугольными, треугольными или квадратными ячеями. Причем сеть соподчиненная: крупные ячеи огромны, их размеры составляют сотни километров, ячеи меньших размеров — в десятки километров — расположены внутри крупных, в них — ячеи километровые и так далее, пока размер ячеек не доходит до нескольких сантиметров и даже миллиметров. В крупных энергетических узлах наблюдаются аномалии полей. Но на этих разломах и энергетических точках — повышенная биопродуктивность. Однако до настоящего времени вопрос остается спорным и для окончательного выявления «энергетической» сети требуется провести тщательные эксперименты. Есть данные, что вертикальная составляющая магнитного поля в энергетических точках меняется, а раз так, то это тоже прекрасный ориентир для перелетных птиц.

А может быть, и у самих живых существ есть свое магнитное поле? О некоторых таких полях мы уже говорили — «компас» в радуле моллюсков. В некоторых же случаях само тело живых существ может представлять собой магнитный диполь. Ученые размещали высушенных насекомых на поплавке либо подвешивали мух на тонкие нити, и они «работали» как магнитная стрелка. Правда, достаточно было их смочить, как это свойство исчезало — уж очень невелико их собственное магнитное поле.

У семян пшеницы, ячменя, ржи тоже есть собственное магнитное поле, слабое, всего несколько гаммов. Однако определено, что южный магнитный полюс у них находится на зародышевом конце, а на противоположном — северный. Но есть среди семян и перевертыши, когда зародыш оказывается на северном полюсе. Вполне может оказаться, что собственная «магнитная стрелка» в теле живого и есть тот первый датчик, который позволяет животному или растению ориентироваться в магнитном поле. Видимо, в этой области ученых еще ждут новые открытия.

 

В мире электрочувства

Известно, что многие животные и растения способны улавливать электрические поля и электрические токи в воде и чутко реагировать на них. Наиболее совершенно электрочувство развито у рыб. Они, как сказал известный американский зоолог Т. Буллок, «видят мир посредством нового чувства», и не только «видят», а осуществляют электрическую локацию, обмениваются информацией между собой и, наконец, генерируют ток напряжением до шестисот вольт, которым могут сбить с ног человека и полностью парализовать свою добычу. Рыбаки, живущие на побережье Аргентины, знают, что в их заливах водятся электрические угри, способные накапливать в своих живых батареях до трехсот вольт. Никто из рыбаков не хочет получить такой удар от электрического угря. Понимая, что для накопления энергии нужно время, рыбаки сначала загоняют в воду стадо коров, которые, получив электрические разряды от угрей, с ревом выбегают из воды. Теперь «живые батареи» разряжены, и рыбаки входят с сетями в залив, не опасаясь сильных электрических ударов.

Нужно сказать, что генерировать мощные электрические заряды могут только некоторые виды рыб, а способностью чувствовать электрические поля и токи наделены многие представители животного мира. Так, простейшие, например инфузории, свое движение в электрическом поле ориентируют по направлению к электродам. Исследователи назвали это свойство гальванотаксисом. Если напряжение между электродами невелико, инфузории движутся от анода к катоду. Но достаточно повысить напряжение до нескольких вольт, как реснички инфузорий, с помощью которых они передвигаются, непроизвольно начинают работать в обратную сторону, и хвостовым концом, сама того не желая, инфузория движется к аноду, где начинает раздуваться и затем гибнет. Очень интересно наблюдать в микроскоп за инфузориями в электрическом поле. Можно увидеть, как только что снующие во все стороны одноклеточные существа после включения тока, будто по команде сотнями движутся в одну сторону.

А вот коловратки — микроскопические черви величиной почти с инфузорию — не подчиняются властному зову электрического поля, хотя, возможно, и чувствуют его не хуже простейших. Был проделан такой опыт: большой кристалл фтористого лития раскололи на две половинки. На поверхностях расколотого кристалла возникает электростатическое поле, причем не гомогенное, а сложное по конфигурации, повторяющее структуру кристаллической решетки. Расколотый кристалл положили в культуру с коловратками филодинами и через некоторое время проверили под микроскопом, куда коловратка отложила свои яйца. На поверхности кристалла яйца были отложены по узлам кристаллической решетки. Следовательно, можно сделать вывод, что коловратка ощущает даже слабые точечные электрические поля на поверхности кристалла.

Можно предположить, что большинство существ, ощущающих электрические поля и их изменение в природе, способны воспринимать информацию посредством взаимодействия природных полей с собственным электрическим полем организма. В 1967 году ленинградскому физиологу П. И. Гуляеву с помощью специальных зондирующих усилителей удалось зарегистрировать электрические поля вокруг нервов мышц, сердца лягушки, а также вокруг человека на расстоянии десяти — двадцати пяти сантиметров. Электрические поля зарегистрированы также вокруг летящего комара и шмеля. В дальнейшем будет рассказано о специальных рецепторах электрического чувства у рыб, у них эта система наиболее совершенна.

Водная среда, в которой обитают рыбы, обладает высокой электропроводностью. По этой причине токовые поля, вырабатываемые живыми генераторами, достигают электрорецепторов других рыб почти без потерь. Появляется возможность электролокации и передачи электрических сигналов на несколько метров в реках и морях, где зрение часто не играет главной роли, если вода мутная.

Всех электрических рыб можно разделить на сильноэлектрических и слабоэлектрических. Эта классификация связана с работой у них «генераторов электрических импульсов». Если за основу взять способность рыб к восприятию электрических импульсов, то можно увидеть, что одни рыбы очень чувствительны к электричеству, у них есть специальные электрические рецепторы, другие рыбы менее чувствительны к токовым полям — обычно у этих видов рыб отсутствуют специальные электрорецепторы. Рыбы с электрорецепторами улавливают импульсы до сотых долей милливольта на сантиметр, рыбы же без электрорецепторов менее чувствительны.

Рис. 6. Строение электропластинок:

А — скат; Б — звездочет; В — электрический угорь; Г — нильский слоник;

1 — электрическая пластина; 2 — соединительная ткань; 3 — сосочек; 4 — кровеносный сосуд; 5) нервы

Что же собой представляют электрические органы у рыб и каково их гистологическое строение? Как правило, это видоизмененная мышечная ткань. Электрические клетки очень сильно уплощены, поэтому их и называют электрическими пластинками. Например, у электрического угря толщина таких пластинок всего десять микрон. Их можно увидеть только сбоку в световой микроскоп, а сверху они напоминают шестиугольник площадью примерно один сантиметр. Такое устройство увеличивает площадь мембраны клетки, ведь именно на ней вырабатываются во всех живых клетках электрические потенциалы. И если обычная живая клетка может создать на своей мембране потенциал, равный тридцати милливольтам, то электрическая пластинка создает потенциал до ста пятидесяти милливольт. Следовательно, основной элемент «электрической батареи» — видоизмененная мышечная клетка. Эти электрические пластины собраны в столбики, уложены одна на другую и соединены последовательно, как элементы любой электрической батареи. Ряды столбиков, контактируя друг с другом, образуют тип параллельного электрического соединения. У разных видов электрические пластинки могут отличаться (рис. 6), но принцип строения электрических органов сходен. Правда, полярность во многом зависит от ориентации электрических столбиков. Если столбики ориентированы лицевой стороной к голове рыбы, то голова становится носителем отрицательного заряда относительно хвоста. У других видов столбики ориентированы в сторону хвоста, следовательно, у головы положительный заряд (рис. 7).

Рис. 7. Полярность электрических зарядов у различных видов рыб (закрашенные места — расположение электрических органов):

1) электрический скат с главным (А) и вспомогательным (Б) электрическими органами;

2) обыкновенный скат;

3) электрический сом;

4) электрический угорь: главный орган спереди, вверху (А); орган Сакса сзади (Б); орган Хантера снизу (В);

5) рыба-нож;

6) гимнарх;

7) гиатонемус;

8) звездочет;

9) ископаемая рыба, верхний силур

Познакомимся с одной из таких рыб, с африканским слоником (нильским длиннорылом) из семейства мормирид. Рыбаки очень удивлялись, что в их сети никогда не попадали длиннорылы. Думали, что он уходит из сетей. Однако все дело в «электрическом видений», которое позволяет ему следить за окружающей обстановкой, даже если он зарылся в ил и своим длинным рылом разыскивает червей. Электрический орган у нильского слоника небольшой по размерам, находится в стебле хвоста и состоит из пластинок, перпендикулярных оси тела. Такая структура позволяет генерировать электрические импульсы — диполи с разностью потенциала от семи до семнадцати вольт. Рыба не просто разряжается, а как бы «стреляет» отдельными двухфазными синусоидальными импульсами. Когда нильский слоник лежит спокойно в своем убежище в полной темноте, он посылает пять — семь импульсов в секунду и создает вокруг своего тела электрическое поле, мерцающее с такой же частотой, как идут его импульсы. Поле это асимметрично: более плотно у хвостового конца тела и более разрежено к голове. Но стоит только изменить соленость, температуру воды, дать свет или же внести в поле электропроводящий объект, как длиннорыл начинает испускать сорок — пятьдесят импульсов в секунду. Все чаще и чаще лоцируя исследуемый объект, он решает, как ему поступать — убегать или поглубже зарыться в ил. Электрические импульсы нильского слоника очень короткие и длятся всего от трехсот микросекунд до одной миллисекунды. Лоцирующий прибор нильского длиннорыла, видимо не только определяет размеры объекта, искажающего его поле, но и узнает его форму. Об искажении формы своего собственного электрополя нильский слоник узнает с помощью электрорецепторов, которыми усеяны его голова, спина и брюшко.

У других рыб с электролокаторами — таких, как нильская щука и гимнотус, электрорецепторы расположены в тех же местах, а у ската в основном на брюшной стороне. Самое интересное, что электрорецепторы были открыты задолго до того, как у людей возникло какое-либо представление об электрической деятельности рыб. В 1678 году их подробно исследовал и описал итальянец Лоренцини. На поверхности тела ската он увидел поры, а при детальном исследовании оказалось, что поры — это вход в длинный канал, который заканчивается расширением или ампулой. Эти образования так и назвали — «ампулы Лоренцини». Только совсем недавно удалось доказать, что они очень чувствительны к электрическим полям, для срабатывания ампул достаточно тока величиной всего 0,005 микроампера. Такие ампулы обнаружены в теле акулы, скатов и морского тропического сома. А нильский слоник и нильская щука вооружены бугорчатыми рецепторами. В таком рецепторе тоже есть расширение с электрочувствительными клетками, как и в ампуле Лоренцини. Наиболее чувствительный рецептор электрических полей у нильской щуки в десять раз чувствительнее, чем у скатов.

Своими электрорецепторами, используя импульсное электрическое поле, рыбы не только улавливают мелкие по размерам предметы, но и различают ничтожную разницу в их электропроводности. Каким же образом они достигают такой точности? Делать это им помогает все то же пульсирующее поле. Клетки — детекторы рецептора — воспринимают не само электрическое поле, а его изменения и деформацию из-за посторонних предметов. Чувствительный орган сам генерирует электрические импульсы тоже с высокой частотой, но он их так подбирает по фазе, что вспышки его импульсов возникают в промежутках между импульсами, создаваемыми электрогенератором. Стоит только постороннему предмету появиться в поле рыбы и сдвинуть время прихода электрического импульса к рецептору, как промежутки между пульсацией электрогенератора и рецептора сократятся, а мозжечок, анализирующий промежутки между нервными импульсами, сразу отметит эти изменения — ведь у электрических рыб он очень хорошо развит. Если бы электрическое поле у рыбы было постоянным, то о локации с его помощью не могло быть и речи, она была бы невозможна. Пульсирующее электрическое поле — главная особенность прибора рыб, необычного для нас «видения».

Некоторые ихтиологи отмечали, что, когда они на рыбозаводах переводили рыбу из одного бассейна в другой или же пытались перегородить путь большой рыбе, например осетрам, то рыба делала рывок, и они ощущали его на расстоянии. И им передавался не удар волны, создаваемой рывками и бросками, а от рыб исходил какой-то непонятный импульс. Много лет посвятивший исследованию электрического чувства у рыб ихтиолог В. Р. Протасов считает, что во время испуга рыбы воспроизводят низкочастотные колебания. Другим ученым удалось показать, что при испуге во время скачков, рывков и бросков рыбы испускают наиболее сильные электрические разряды. Это могут быть не только электрические рыбы. Сейчас установлено, что большинство из известных нам рыб может генерировать слабые электрические разряды с частотой от пятидесяти до восьмисот герц. Если с помощью приборов перевести эти колебания в звуковые, то можно было бы услышать, как рыбы «щелкают», убегая от хищника, и как «взвизгивает» щука, бросаясь на свою жертву. А в морской воде «щелчки» испугавшихся преследования рыб привлекают к себе акул.

Ученые проделали такой опыт. Поместили камбалу и ее заклятого врага ската — морскую лисицу — в разные аквариумы. Связь между аквариумами осуществлялась только проводами. В грунт того и другого аквариума были вделаны электроды, прикрепленные к проводам. Как только камбала приближалась на расстояние десяти — пятнадцати сантиметров от электродов в своем аквариуме, в другом аквариуме скат приходил в возбуждение, он чувствовал электрическое поле камбалы. Вероятно, акулы и скаты используют биоэлектрические потенциалы для отыскания пищи, и не исключено, что такой же способностью обладают осетровые и хищные рыбы пресных вод.

Электрические рыбы могут использовать сигналы своих разрядов и для общения особей одного вида. Так, угри могут общаться примерно на расстоянии семи метров и привлекать других особей определенной серией электрических разрядов. Каким-то образом «переговариваются» электрическими сигналами и нильские слоники. Двух рыб поместили в один аквариум с перегородкой из марли, чтобы рыбы не могли видеть друг друга. В дневное время рыбы неподвижно лежали на дне, но посредством электродов, опущенных в воду, и переведения электрических колебаний на регистрирующие приборы удалось установить, что мормирусы посылают друг другу какие-то сигналы. Если одну из рыб трогали палочкой, она увеличивала им-пульсацию своих разрядов, а «слушающий» ее длиннорыл не оставался безучастным — он тоже увеличивал пульсацию своего электрического поля. Эти опыты проводил профессор Кембриджского университета Г. Лиссманн. Причем его дневные опыты подтверждались ночью. Рыбы всплывали, плавали вместе вдоль перегородки и «скрипели» электрическими полями.

Нильская щука (гимнарх) — ночной хищник, достигающий в длину 1,6 метра, строит гнездо, куда откладывает крупные икринки диаметром до одного сантиметра. Гимнарх охраняет территорию, где находится гнездо, от других особей своего вида и по электрическим импульсам на достаточном расстоянии почти всегда узнает об их приближении. Перед нападением он производит особенно сильные разряды, чтобы предупредить пришельца, что территория занята. Так же ведут себя и нильские слоники. Если их помещают на одну территорию, они нападают друг на друга и пытаются откусить у противника хвостовой стебель, где сосредоточены электрические органы. В природе же «бой» идет только электрическими разрядами. Две мормириды становятся друг против друга и разряжают свои живые батареи, если силы их примерно равны. Если же одна рыба значительно сильнее другой, то она подавляет разряды противника, попросту говоря, не дает «сказать ему своего слова», и он, поняв это, отступает.

Очень своеобразно электрические дуэли проходят у южноамериканских рыб гимнотусов, обитающих в реках и достигающих в длину шестидесяти сантиметров. Каждая такая рыба охраняет территорию, на которой питается. Площадь охраняемого участка примерно 0,4 квадратного метра, но участки не смыкаются друг с другом, а находятся на расстоянии трех метров. Если сосед гимнотус приближается к участку ближе двух метров, обладатель участка начинает посылать электрические сигналы, подкрепляя их оборонительными позами. Если соперник не реагирует на предупредительный сигнал, гимнотус издает боевой клич — короткий разряд — менее чем за полторы секунды. Поняв силу сигнала, приближающийся гимнотус не принимает сражения. От него поступает сигнал: разряд длительностью более чем полторы секунды. Вся эта проверка сил проходит беззвучно, в слабых электрических полях.

«Неэлектрические» рыбы — такие, как щуки, окуни, угри, тоже выясняют свои отношения с помощью различных агрессивных поз и электрических разрядов, так как способны генерировать слабые электрические разряды. Однако расшифровать значение их электрических разрядов еще не удалось.

Кратко рассмотрев роль магнитных и электрических полей в ориентации, локации и передаче информации среди простейших и рыб и уточнив устройство биоприборов на их основе, перейдем к «живым приборам», улавливающим электромагнитные поля.

 

Как пахнет электромагнитное поле?

Все живые существа окружены электромагнитным полем. Электромагнитные волны как бы пронизывают нас. Многие из них не оказывают никакого действия, без других мы не можем жить, третьи могут принести смертельный вред. Все зависит от длины электромагнитной волны.

Электромагнитный спектр охватывает широкий диапазон длин волн, простираясь от х-лучей с длиной волны меньше чем 10 метра до радиоволн, длина волны которых измеряется километрами. Однако живые существа для фотобиологических процессов используют только незначительную часть электромагнитного спектра — от трехсот до девятисот нанометров. Три четверти энергии Солнце в основном испускает именно на этой длине волны. А земная атмосфера как бы фильтрует опасные для жизни электромагнитные излучения нашего светила. Лучи короче двухсот девяноста нанометров (жесткий ультрафиолет) задерживаются озоном в верхних слоях атмосферы, а длинноволновое испепеляющее излучение поглощается углекислым газом, парами воды и озоном. В процессе эволюции у многих животных и даже у растений выработались приспособления, улавливающие лучи от трехсот до девятисот нанометров, — это глаза. Пчелы видят ультрафиолетовый свет длиной волны до трехсот нанометров, а люди фиолетовый цвет воспринимают только при длине волны выше четырехсот нанометров и перестают видеть красный, когда длина волны больше семисот пятидесяти нанометров, то есть свет станет инфракрасным. В этих лучах видят некоторые ночные зверьки и маленькие странные существа на тонких ножках ай-ай, относящиеся к полуобезьянам.

Какие же «живые приборы» приобрели существа в процессе эволюции, чтобы воспринимать самые распространенные в природе электромагнитные волны?

Сколько бы ни рассматривали мельчайшие организмы, как бы тщательно ни изучали более крупных животных и человека, специальных рецепторов, воспринимающих радиочастотные электромагнитные волны, нам не найти. Человек не ощущает пронизывающих его радиоволн, хотя они и влияют на общее его состояние. Видимо, сами живые клетки становятся приемниками волн различной длины. Чем меньше длина волны, тем отчетливее реагирует на них организм. Например, метровые радиоволны вызывают возбуждение у обезьян. Они поворачивают голову в сторону их источника, начинают волноваться. Не исключено, что радиоволны взаимодействуют с электрическими токами в нейронах мозга и нервной периферической системе. Некоторые одноклеточные принимают определенную ориентацию в радиочастотном диапазоне. Особенно хорошо это прослеживается у зеленых жгутиконосцев эвглен, которые поворачиваются передним концом тела к антенне радиопередатчика и плавают в таком направлении. Все это возможно в тонких слоях воды, вполне проницаемых для радиоволн.

Низкочастотные электромагнитные колебания (три герца) после тридцатиминутного воздействия вызывают у подопытных кроликов учащение коркового ритма до восьми — десяти герц и увеличение амплитуды колебаний нейронов мозга примерно в два раза, то есть до семидесяти микровольт. Такое нарушение электрической активности мозга под влиянием электромагнитного поля и нарушение параметров колебаний могут сохраняться до двух суток после воздействия.

Люди тоже небезразличны к воздействию искусственных электромагнитных полей с частотой около десяти герц. Внешне они пс ощущают этого воздействия. Но достаточно было поставить эксперимент в подземном помещении и проследить за активностью людей и за ритмикой их жизни без воздействия электромагнитного поля и при его воздействии, как разница четко обозначилась. Эксперимент длился месяц. Люди, участвовавшие в эксперименте, не знали о воздействии слабых электромагнитных волн. Если обычно даже в темном помещении период активности человека сохраняется около двадцати пяти-двад-цати шести часов, то облучаемые электромагнитным полем были активны тридцать и даже сорок часов. Под влиянием электромагнитного поля изменились электролитный состав мочи и выделительная функция почек. И опять можно предположить, что действие радиоволн на человека регистрируется на клеточном уровне, это и приводит к вышеописанным сдвигам.

Можно уменьшить длину радиоволн до области инфракрасных волн, занимающую в электромагнитном спектре интервал от семисот до одной тысячи шестисот нанометров. Это тепловые лучи, и человек их ощущает терморецепторами кожи на достаточно большом расстоянии, если они идут от таких мощных источников, как Солнце, раскаленная печь, электролампочка или костер. Но у людей нет «живых приборов», способных воспринимать инфракрасные лучи, идущие от всего живого, даже от растений. Для этих целей человек создал приборы ночного видения, которые по своей чувствительности все же уступают «живым» термолокаторам.

Кровососущим в любое время дня и ночи нужно находить жертвы. Для них важнее инфракрасные лучи, позволяющие дистанционно находить свою жертву и днем и ночью. Самый обычный постельный клоп на расстоянии пятнадцати сантиметров обнаруживает объекты, имеющие температуру. Человека он обнаруживает на расстоянии нескольких метров. По мере приближения к теплому объекту клоп во все стороны водит антеннами. Когда он выбрал место присасывания, его антенны устремлены точно на это место. После этого клоп поворачивает все тело в сторону, указываемую антеннами, и направляется к месту свершения «пиратских акций». Другой кровосос — клещ — вооружен лучшим, чем у клопа, термолокатором. Забравшись на кончик листа дерева или куста, он поднимает передние ножки и начинает ими водить в разные стороны. На ножках можно различить округлые образования — это и есть термолокаторы. Они принимают лучи на расстоянии нескольких метров. Клещ только и ждет, когда теплокровное животное или человек приблизится к нему, чтобы упасть на него и впиться в кожу. Как и клоп, клещ может находить человека на значительном расстоянии, улавливая комплекс полей, испускаемых головой человека. Исследователь паукообразных П. И. Мариковский проделал очень простой опыт. Достаточно было высунуть голову из автомобиля, как клещ на расстоянии нескольких метров обнаруживал человека и начинал двигаться в его сторону. Металлический корпус автомобиля выступал как экран. Поэтому, если убрать голову, клещ терял человека и начинал беспорядочно бегать во все стороны. Появление головы из кабины опять позволяло ему найти верное направление.

В глубинах океана обитает много животных, пользующихся «приборами ночного видения». Последние отблески света в воде гаснут на глубине трехсот метров, а жизнь продолжается и на глубине до десяти тысяч метров. Животные наделены там биолюминесцентными фонариками, другие научились видеть инфракрасный свет, идущий от всех живых существ. Глубоководные кальмары, помимо глаз, по своему строению похожих на человеческие, имеют еще термоскопические глаза, улавливающие инфракрасные лучи. Строение термоскопического глаза сходно с обычным глазом, воспринимающим видимый для нас свет. В нем можно найти и хрусталик, и роговицу, и сетчатку. Только в сетчатке рецепторы приспособлены воспринимать инфракрасные волны, а чтобы обычные световые лучи не мешали рассматривать идущее от живых объектов тепловое излучение, каждый термоскопический глаз снабжен специальным светофильтром, задерживающим все лучи, кроме инфракрасных. Интересно, что термоскопические глаза у кальмара расположены на хвосте. Вращая хвостом, как головой, кальмар рассматривает животных, которыми можно полакомиться, а если вдруг сверху пикирует огромное светящееся бревно — приближается кашалот — надо удирать. Полезно иногда на хвосте иметь глаза, тем более ночного видения.

В своей книге «20 лет в батискафе» (Л., Гидрометеоиздат, 1976) известный исследователь подводных глубин Жорж Уо отмечает, что на глубине пяти-шести километров, в океанской пучине, где властвует вечный мрак, он встречал рыб с хорошо развитыми глазами. Они подплывали к иллюминатору батискафа, но никак не реагировали на яркий луч прожектора. Зачем тогда им глаза? А может, и в этом случае глаза видели только инфракрасный свет и всех тех, кто его испускал?

В Америке водятся гремучие змеи, а у нас в Средней Азии щитомордники. Это очень ядовитые змеи. С каждой стороны головы у них видны ямки — большая и маленькая. Одна из них ноздря, а между глазом и ноздрей расположен живой термолокатор — «лицевая ямка». По этому признаку их и относят к семейству ямкоголовых. Каждая ямка представляет собой полость глубиной шесть миллиметров, открывающуюся наружу отверстием диаметром около трех миллиметров. На дне полости натянута тонкая мембрана (рис. 8). На квадратном миллиметре мембраны можно насчитать до одной тысячи пятисот терморецепторов. По существу, это своеобразный простой глаз — инфракрасная камера обскура. А поскольку поля ямок перекрываются и поступающие в мозг нервные импульсы анализируются как одно целое, то/возникает своеобразный эквивалент стереоскопического зрения, позволяющий змее точно определить местонахождение источника тепла. У змеи слабое зрение и обоняние, а «слышит» она только колебания, передающиеся через почву, поэтому в охоте за мелкими теплокровными зверьками и птицами термолоцирующий орган играет важную роль. Зверек может не иметь запаха и не издавать ни одного звука, но он не может не излучать тепло. Поэтому его местонахождение будет точно установлено живым термолокатором змеи. А чувствительность термолокатора змеи очень высока: он реагирует на изменение температуры в 0,002 °C.

Рис. 8. Увеличенная схема строения термолокатора — «лицевой ямки» у змеи:

1 — мембрана с рецепторами

Может показаться, что термолокаторы, созданные человеком, лучше и чувствительнее, чем те, что создала природа, — ведь чувствительность их достигает 0,0005 аС. Однако достаточно сравнить размеры творения природы и творения рук человеческих, как становится понятным, насколько искусственный прибор несовершенен. В «железном» термолокаторе зеркало, собирающее тепловые лучи на специальную зачерненную пленку, меняющую сопротивление в зависимости от температуры, достигает в диаметре более метра. В природе этому великану противопоставлены, например, две лицевые ямки на голове змеи, диаметр которых исчисляется миллиметрами. Получается, что «живой прибор» на единицу термолоцирующей площади в несколько тысяч раз более чувствителен, чем- созданный человеком.

Наконец, среди инфракрасных локаторов есть «приборы», способные переводить невидимые лучи в видимое изображение с помощью флуоресценции. Такой механизм найден в глазах ночных бабочек. Инфракрасные лучи проходят через сложную оптическую систему и фокусируются на пигменте, который под действием теплового излучения флуоресцирует и переводит инфракрасное изображение в видимый свет. Однако эти видимые образы строятся непосредственно в глазу ночной бабочки. Благодаря способности воспринимать инфракрасное излучение бабочки без труда находят цветы, которые в темные ночи испускают излучение именно в этой области спектра.

Рассмотрим еще один способ регистрации животными невидимых электромагнитных волн — в области рентгеновских лучей. Рентгеновские лучи могут обнаруживать очень немногие животные. Крысы, например, на это способны. Американский исследователь Б. Федер сообщил, что ряд проведенных им экспериментов позволил установить, что крысы обнаруживают в воздухе рентгеновское излучение в двадцать миллирентген, которое практически безвредно для них. Каким образом? Они «нюхают» высокочастотное электромагнитное поле и по запаху определяют мощность облучения. Вернее, они с помощью обоняния улавливают даже незначительное количество ионов, образовавшихся после воздействия рентгеновских лучей на молекулы воздуха. Видимо, только крысы знают как пахнет электромагнитное поле. 

 

Самые необычные глаза

 Все ли живые существа одинаково воспринимают окружающий мир с помощью зрения? Конечно, нет!

Так, например, плащеносная ящерица, живущая в Австралии, умеющая ходить на задних ногах, раскрывающая свой плащ-капюшон для устрашения и сама до смерти боящаяся людей, несмотря на внушительные размеры (может достигать 1,6 метра), видит мир оранжевым.

Ученые исследовали глаза ящериц и нашли, что они снабжены оранжевыми «очками». В их сетчатке много жировых капель, окрашенных в оранжевый цвет. Следовательно, светофильтры находятся прямо в сетчатке этих живых организмов. Значит, ящерицы видят мир не так, как мы. И не только ящерицы. Многим птицам кажется зеленым то, что мы видим в красном цвете. Рыбы тоже несут различные светофильтры в глазах. Например, терпуг может менять цвет роговицы глаза.

Анализаторы видимых электромагнитных волн у животных могут быть разные по цвету и форме — большие, как блюдца, и маленькие, как бусинки, с круглыми, щелевидными и дугообразными зрачками.

У козы зрачок квадратный, а у некоторых копытных похож на сердце. Зато у летучих рыб зрачок принимает вид щели — в виде полукольца. Все эти приспособления помогают животным наблюдать за окружающей обстановкой. Когда, например, летучая рыба стремительно вырывается из воды, она попадает в мир солнца, зрачок за это время не успел бы сократиться, а щель уже сокращена и через нее удобно наблюдать за состоянием водной поверхности.

В природе встречается рыбка, у которой в каждом глазу по два зрачка: один вверху, другой внизу. Эту рыбу, обитающую в южноамериканских реках, так и называют четырехглазкой. Выставит она половину своего выпученного глаза наружу и смотрит, что над поверхностью воды, а нижняя в это время наблюдает, что делается под водой. Но самое интересное, что и сетчатка каждого глаза разделена на две части. Одна улавливает подводное, другая — надводное изображение. Однако рыбы, как установили ученые, не различают эти два раздельных изображения, а видят общую картину.

Как бы ни был замысловато устроен зрачок, острота зрения зависит от сетчатки, от того, сколько зрительных элементов приходится на единицу ее площади, сколько в ней палочек или колбочек. У человека и некоторых животных в сетчатке есть и палочки и колбочки. Такой глаз способен воспринимать свет и днем и ночью. Те же животные, которые ведут ночной образ жизни, вооружены только палочками. Их глаз не обладает острым зрением, зато при самом слабом свете он может улавливать малейшие движения предметов.

У тех, кто видит только днем, в сетчатке глаза одни колбочки. Таким глазом многое различишь, но при хорошем освещении. Так, некоторые суслики выходят из норы, лишь когда солнце заглянет в их жилище. Среди дневных животных можно найти очень остроглазых. Человек давно заметил, что птицы, особенно хищные, различают самые мельчайшие детали на земле с высоты в триста метров.

Загадка свечения глаз у животных в темноте не так уж сложна. Вообще-то, свечения здесь никакого нет, а дело все в отражении света, попавшего в глаз. У ночных животных на дне глаза есть своеобразное зеркальце. Ученые называют его тапетум. Только зеркальце-тапетум не сплошное, а составлено из мелких серебристых кристаллов. Отраженный от них свет различен и по цвету, и по силе. Все зависит от формы, величины и угла поворота кристаллов. Кошка, например, в спокойном состоянии «гасит» свои глаза, но достаточно поскрести по стене пальцами, привлечь ее внимание — глаза так и вспыхивают. Это на определенный угол повернулись кристаллики зеркальца. Форма кристаллов зеркальца определяется генетически, поэтому цвет свечения глазовидовой признак. Глаза медведя в сумерках отливают оранжевым цветом, у енота — ярко-желтым, а глаза тропических лягушек светятся зеленым цветом. Если в быстро надвигающейся южной ночи вспыхнут два рубиновокрасных огня у прибрежной воды — это значит, что на вас смотрит аллигатор.

«Зеркальце» встречается и у паукообразных. В пустыне в свете фар автомобиля водители могут увидеть искорки, как бы рассыпанные по барханам, — это светятся глаза фаланг.

А вот у пауков восемь глаз и светятся они разным цветом: крайние глаза — голубым, а средние — желтым. Однажды маленький паучок забежал в поле зрения моего бинокулярного микроскопа. Я надеялся увидеть разноцветное свечение его глаз. Но вместо этого только восемь маленьких фонариков брызнули на меня своим желтоватым цветом, и пришелец тут же скрылся. Если бы это был паук-скакунчик, то в его глазах можно было бы различить голубой и желтый цвета.

В теплый день паук-скакунчик любит охотиться на деревянном заборе. Его глаза обладают удивительным свойством. Крайние глаза, с голубым отблеском, видят не только впереди себя и сбоку, но и сзади. А два средних — настоящие телескопические трубы. Ими скакунчик рассматривает удаленные от него небольшие области, к которым он проявляет особый интерес. Только сам корпус трубы остается на месте, а сетчатка, принимающая изображение, перемещается в ту или иную сторону. Так что, исследуя окружающее, он даже не вращает глазами.

Очень много существует разновидностей глаз, устроенных по типу фотокамеры, но такой тип глаза занимает только шесть процентов у всех видов животных. Большинство же обладает сложными фасеточными глазами — такими, как у насекомых и ракообразных.

Принцип работы сложного глаза следующий: каждый глазок видит свое изображение, но в мозгу животного создается общая объемная картина окружающего мира. Глазки сложного глаза напоминают трубочки, у которых есть своя фокусирующая система, построенная из двух линз, выпуклой роговицы и хрусталика. У стрекозы, отличного охотника, каждый сложный глаз, занимающий почти половину головы, состоит из двадцати восьми тысяч глазков. А у муравья их так мало, что своими глазами он способен лишь отличить свет от тьмы. Однако волноваться за муравья не стоит, другие «живые приборы», которыми он наделен, помогают ему определять форму предметов в полной темноте, но об этом позже.

Ученые не раз пытались узнать, как видит сложный глаз насекомого или ракообразного. Немецкий физиолог Экснер сфотографировал окно сквозь фасетчатый глаз светляка. На фотографии видны и расплывчатый оконный переплет, и неясные очертания собора, находящегося за окном. Это позволило предположить, насколько неопределенно видят окружающий мир насекомые. Когда же появилась возможность регистрировать с помощью микроэлектродов биотоки, идущие от отдельных клеток, то оказалось, что зрение насекомых куда лучше, чем предполагали ученые. Каждый отдельный глазок различает изображение той или иной части рассматриваемой картины. Правда, пока еще остается загадкой, каким образом эти фрагменты изображения, часто повторяющиеся в нервных клетках насекомого, превращаются в стройную картину окружающего мира. То, что сначала казалось простым, требует еще немало усилий для изучения. Сложные глаза насекомых и ракообразных могут видеть то, что недоступно нашему взору. Во-первых, ультрафиолетовые лучи, а во-вторых, поляризованный свист.

Если выйти на цветущий луг, взору предстает пестрый, разноцветный ковер. Вот стоят красные маки, а для пчел они «ультрафиолетовые». К сожалению, мы никогда не видели и не увидим этих лучей, а поэтому и не можем представить, какие они. Белые цветы пчелы воспринимают как голубовато-зеленые. Зато синие и фиолетовые расцветки для насекомых несут множество оттенков и красок. Ибо как раз синий и фиолетовый тона цветов отражают самое разнообразное количество лучей самой различной длины видимого спектра.

Сложный глаз пчел, раков также видит поляризованный свет. Представьте себе хотя бы на минуту, что мы смогли увидеть поляризованный свет. Тогда небо, вода рек и озер покрылись бы сложным узором. И даже Солнце, закрытое облаками или тучами, можно было бы «видеть», вернее, точно узнавать его местоположение, используя рисунок поляризованных лучей. Словом, Солнце можно было бы использовать для ориентирования при любой погоде.

Мир существ с фасеточными глазами велик и разнообразен. Здесь можно встретить и огромного рака-мечехвоста, достигающего в длину девяноста сантиметров. Древнейший вид рака, который существует на Земле четыреста двадцать пять миллионов лет, оказывается, может своими сложными глазами увеличивать контрастность видимой им картины. Чтобы изменить контрастность изображения на телевизионном экране, нужна сложная электроника, а у мечехвоста вся его «электроника» скрыта в небольшом фасеточном глазу.

Могло бы насекомое, обладающее сложными глазами, воспринимать телевизионную передачу или смотреть кино? Если человеку показывать десять изображений в секунду, то он еще различит отдельные зрительные образы, а если шестнадцать, то все сольется в непрерывное действие. Больше шестнадцати раз в секунду меняются кадры на телеэкране или экране кинотеатра, и мы наблюдаем непрерывное действие людей и движение предметов. Мухе или пчеле надо двести смен кадров в секунду, чтобы они воспринимали непрерывное движение. Поэтому на наших телеэкранах и киноэкранах насекомые могли бы видеть отдельно меняющиеся картинки. А свет ламп дневного света, зажигающихся и гаснущих пятьдесят раз в секунду, который мы воспринимаем как непрерывный, для насекомых был бы мигающим.

В ходе эволюции животных постепенно отработались «живые приборы» необычайного зрения. Наверное, мало кто слышал о сканирующем глазе, который работает по тому же принципу, что и телевизионная трубка. Сканирующим глазом обладает маленький членистоногий рачок — копилия. Большим хрусталиком смотрит на мир этот глаз, а фокусируется изображение с этой линзы не на сетчатку, а в пустое пространство глазной камеры. Изображение улавливается всего-навсего одним светочувствительным рецептором, прикрепленным к тонкому мышечному пучку, который перемещает его в глазу, словно электронный луч в светочувствительной трубке телекамеры.

Другие животные обходятся без хрусталика, и глаз у них напоминает камеру с точечным отверстием. Головоногий моллюск наутилус, родственник осьминога и кальмара, со странными большими глазами и очень маленьким зрачком, как раз использует для своего зрения настоящую камеру-обскуру. У такой камеры-глаза есть большое преимущество: на каком бы расстоянии ни рассматривался предмет, его изображение всегда будет сфокусировано на сетчатке. Жаль только, что через узкое отверстие зрачка проходит мало световых лучей, поэтому при плохом освещении наутилус многого не различает.

Животные используют почти все известные оптические приспособления. Единственное, чего еще не удалось обнаружить, так это глаза, работающие по принципу вогнутого зеркала. И то у ночных бабочек, о которых уже говорилось, на флуоресцирующий пигмент инфракрасные лучи фокусируются вогнутым тапетумом — кристалликами; составляющими зеркало.

Не менее совершенны глаза человека. Они способны видеть днем и ночью, различать цвета и определять объемность изображения за счет бинокулярного зрения. Каждое из этих свойств может быть сильно развито в необыкновенных глазах животных, зато такие глаза теряют свою универсальность по сравнению с нашими.

Человеческий глаз, приняв на себя многие функции, свойственные глазам отдельных животных, конечно же, не лишен недостатков. Зато какими способностями он обладает! И часто то, что нам кажется обычным, на самом деле должно вызывать восхищение.

Возьмем хотя бы цветное зрение. Только у обезьян оно такое же полное, как у нас. А кошки и собаки воспринимают мир как бы частично подкрашенным. Правда, осьминоги, пчелы, некоторые пауки обладают цветным зрением и достаточно совершенным, но оно сильно отличается от нашего. Совсем другие спектры принимают фоторецепторы их сетчатки, и другие картины предстают перед их глазами.

А диапазон освещенности, который улавливает человеческий глаз? Разве может с ним сравниться самый совершенный фотоаппарат и пусть даже сотни пленок самой различной чувствительности? Нашему глазу и в сумерках, и при ярком солнечном свете помогает справиться с этим сетчатка и вся оптическая система.

Сначала ученые считали, что чувствительность глаза зависит от количества необесцветившегося фотопигмента. Однако все оказалось значительно сложнее.

Американскому исследователю У. Раштону удалось показать, что сетчатка работает как сложная электронная машина с обратной связью. Исследовав глаз человека, ученые установили, что рецептор, освещенный ярким светом и истративший весь зрительный пигмент, не бездействует, а, наоборот, начинает посылать в управляющий центр (зрительную часть мозга) сигналы, которые усиливаются в мозгу и в виде нервных импульсов идут обратно к фоторецепторам, заставляя их посылать новые сигналы. Происходит нервно-световое «замыкание». И несмотря на то что эти несколько минут зрительный пигмент не восстанавливается, человек не прекращает видеть на сильном свету.

Глаза ящериц, как известно, имеют оранжевый светофильтр. Оказывается, в глазу человека хрусталик выполняет не только роль линзы, но и светофильтра. Хрусталик нашего глаза отсекает от видимой части спектра ультрафиолетовые лучи. Не будь у нас его, мы тоже могли бы частично воспринимать мир в ультрафиолетовых лучах. В самом деле, люди, у которых удален хрусталик по поводу катаракты и заменен стеклянными линзами-очками, видят предметы в ультрафиолетовом свете. Они даже читают таблицу для проверки зрения при ультрафиолетовом освещении. Обычно люди при таком свете ничего не видят.

Сейчас многие исследователи считают, что цветное зрение человека включает три типа реакций, каждая из которых отвечает за видение либо желтого, либо синего, либо же красного цвета. Есть даже мнение, что люди не всегда на протяжении своей истории одинаково видели цвета, и аппарат цветного зрения эволюционирует вместе с развитием человека. Древние документы вроде бы подтверждают, что люди на заре своего развития не могли различать коротковолновую часть видимого спектра. Конечно, может оказаться, что Гомер, назвав море в своих произведениях «виноцветным», применил метафору, но если внимательно проследить за всеми лингвистическими примерами, то они убедительно доказывают, что в далеком прошлом люди слабо различали зеленый, синий и голубой цвета. Исследования американского ученого Ж. Молдона показали, что синечувствительные колбочки значительно отличаются от системы желтых и красных колбочек. Это указывает на их независимое и, скорее всего, более позднее развитие.

Существует раздел науки, который занимается психофизикой цветного видения. Испытуемым предлагают выбирать наиболее предпочтительные окраски изображений. Чаще всего называют сине-фиолетовую, чисто-зеленую и оранжево-красную. Желтые, голубые, коричневые, бордовые и другие оттенки цветов упоминаются очень редко. Если сине-фиолетовая область спектра воспринималась древним человеком слабо, то ему оставалось создавать свои художественные наскальные произведения в зеленом либо оранжево-красном тоне. А поскольку человек хотел выделить свои изображения из окружающей (зеленой) природы, то он предпочитал оранжево-красный цвет.

Ученые выдвигают ряд гипотез, стараясь объяснить феномен сдвига цветного зрения у человека в сторону коротковолновой части спектра. Одна из гипотез, на наш взгляд, очень интересна. Сдвиг в синюю часть спектра связан с изменением силы тяжести на Земле или с переходом в процессе эволюции из одной среды обитания в другую. Может быть, эту гипотезу можно проверить на историческом развитии животных, ведь их эволюция длилась примерно в 1600 раз дольше, чем миллионный период развития человечества. При этом за такой промежуток времени могла меняться сила тяжести на Земле, а животные в процессе эволюции то выходили из водной среды на сушу, то обратно возвращались в водную среду. Каждый такой переход — природный эксперимент по изменению силы тяжести.

Достижения современной науки позволяют ответить на вопрос: как животные видят цвета? У животных на тот или иной цвет можно выработать условный рефлекс. Можно снять электроретинограммы (ЭРГ) с сетчатки. Глаз освещается светом с определенной длиной волны, а с сетчатки микроэлектродами снимаются биотоки. Используя два указанных способа, ученые не только установили, как видят цвета звери, птицы, ящерицы и земноводные, но и исследовали цветное зрение у моллюсков, раков и даже некоторых червей. Особенно усиленно исследуется цветное зрение у насекомых.

Анализируя большое количество фактического материала и учитывая среду обитания животных, можно установить взаимосвязь между силой тяжести и спектром цветоощущения.

Оказалось, что рыбы наиболее активно реагируют на оранжево-красный цвет. Дафнии, тело которых насыщено водой, лучше всего различают красные участки спектра. Сходная картина отмечается у пелагических моллюсков и у других планктонных рачков.

Земноводные, которые первыми переселились на сушу, в процессе эволюции ощутили всю силу земного притяжения.

Проверка цветного зрения у лягушек показала, что они предпочитают всем цветам спектра голубой. Тому же цвету отдают свои пристрастия и вышедшие на сушу виноградные улитки, в то время как их родственники, оставшиеся в воде, лучше видят длинноволновую часть спектра. Голубые и синие цвета для улиток, живущих далеко от водоема, не имеют предохранительного значения, как для лягушек, сидящих около воды. Создается впечатление, что увеличение силы тяжести приводит к сдвигу в сторону коротковолновой части спектра. Но нужно помнить, что это свойство развивается в процессе эволюции и закрепляется генетически, а не появляется при изменении силы тяжести в данный момент.

Как только наземные животные преодолели силу тяжести и появились летающие существа, снова произошел сдвиг в сторону оранжево-красного видения. Птицы, например, используют аэродинамические токи воздуха для создания невесомости. У парящих птиц, морских чаек, крачек, поморников зрение приспособлено к восприятию красного цвета. Опять та же закономерность: с уменьшением силы тяжести цветное восприятие сдвигается в сторону длинноволновой части спектра.

Однако сделанные выводы нельзя считать окончательными, потому что многие факты можно истолковать и по-другому, ведь из всех чувств цветное зрение труднее всего поддается изучению, а выдвинутые предположения иногда не укладываются в схему, связанную с воздействием гравитации на развитие цветного зрения.

Многое еще предстоит изучить в сложнейшем механизме зрения животных и человека и в строении «живых приборов», улавливающих электромагнитные, магнитные и электрические поля, а также звуковые волны.

 

Загадки биолокации

Биолокация — один из самых интересных и в то же время спорных феноменов. Одна за другой вспыхивают дискуссии вокруг вопроса о возможности человека и животных находить интересующие их объекты на большом расстоянии либо скрытые под водой или землей. В основе биолокации у человека и различных видов животных могут быть совершенно отличные друг от друга механизмы достижения цели. Общее то, что человек имеет дело со слабыми, но высокоинформативными энергетическими взаимодействиями. Неизвестны человеку пока и живые приборы, принимающие информацию о местонахождении искомого объекта. Однако эксперименты многократно подтверждают, что биолокацией пользуются живые организмы. Самцы бабочки павлиний глаз отыскивают самку на расстоянии более десяти километров. Лососи точно находят родную реку. Термиты знают, где находятся муравьи, враждующие с ними. Во всех этих примерах ученые либо близко подошли к разгадке природы такой биолокации, либо примерно знают, где располагаются живые приборы, принимающие сигналы от передающего объекта. Но есть случаи биолокации, объяснить которые гораздо труднее, например, способность термитов ощущать напряжение древесных волокон в сооружении. Ведь только располагая информацией о всей постройке, можно выедать части, не несущие основной нагрузки. Это самая настоящая биолокация, правда, действующая на не очень большом расстоянии.

Не менее удивительно свойство термитов ориентироваться в пространстве и возводить сооружения без использования зрения. Экспериментальным путем было доказано, что термиты ощущают магнитное поле Земли и электростатическое поле. Они даже могут чувствовать живой организм на расстоянии. Как бы тихо ни приближался человек или животное к термитнику, часовые все равно поднимут тревогу. Видимо, вокруг каждого живого существа находится комплекс различных полей, который ранее называли биологическим полем. Именно эти поля и воспринимаются термитами. Только так мы пока можем предположить, как осуществляется «видение» термитов в темноте и через стены своего жилища.

Многие виды термитов делают свои гнезда из картона. Они скрепляют частицы древесины и земли своими выделениями, словно цементом. Получаются прочные гигиенические стены. Внутри термитника возводятся колонны, своды и арки. При этом опять работает непонятное «подземное видение», которое в этом случае направлено не на живые объекты, а на строительные конструкции. Чем иначе объяснить точную стыковку концов свода арки, произведенную насекомыми в полной темноте? Можно предположить, что термиты, находящиеся на концах арки, обмениваются информацией с помощью все тех же полей неизвестной природы.

В сырую погоду в лесу много лягушек. Каким образом они добираются до родного водоема? На их пути столько препятствий! Может быть, лягушки ориентируются по Солнцу? Но в дождливую погоду его нет. По запаху в лесу тоже трудно определить дорогу — здесь столько всевозможных запахов. И все-таки лягушки находят свой дом. Весной жабы и лягушки всегда верно выбирают направление к родному водоему, когда приходит время метать икру. Ученые проводили различные эксперименты. Увозили лягушек за несколько километров, закрывали им глаза, нос, но во всех случаях они возвращались в свой водоем.

Объяснить природу локации, которая позволяет лягушкам находить водоем, даже если он осушен и распахан, ученые пока не могут. Однако можно предположить, что эти животные тонко чувствуют «энергетическую» сетку, покрывающую земную поверхность. Наличие на земной поверхности упорядоченных магнитных дорожек в виде спирали уже найдено английским ученым. Интересно отметить, что об этих магнитных аномалиях, улавливаемых только самыми современными магнитометрами, знали древние люди неолитической эпохи. Из камней они выкладывали изображения спиралей в семь витков.

Зимой тюлени, обитающие в полярных морях, не отходят от своих лунок, следят, чтобы не замерзли полыньи, в которых кормятся и скрываются в случае опасности. Ученые решили выяснить, какими же рыбами питаются животные. Провели с вертолетов выборочный отстрел и нашли у каждого тюленя в желудке по нескольку больших рыбин, которые встречаются только на глубине восемьсот — девятьсот метров.

Получается, что тюлень охотится не за любой рыбой, он «знает», что там, почти на километровой глубине, появилась крупная добыча, которая движется в его сторону. Нужно нырнуть и встретиться с ней под водой. Сделать это надо с опережением, чтобы приблизиться к рыбе именно в тот момент, когда она проплывает мимо лунки, — это типичная биолокация. Как это делает тюлень, откуда он черпает «знания», ученые пока только решают.

У собак описаны не менее удивительные случаи биолокации, когда они находят своего хозяина в другом городе, где сами никогда не были.

С ярко-рыжим псом Мишкой писатель В. Немоляев познакомился в подмосковном Доме творчества. Собака ходила вместе с ним ловить рыбу, следила за поплавками и предупреждала лаем, что начался клев. Непонятно, каким образом Мишка узнавал, что Немоляевы должны быть в Доме творчества, но собака появлялась всегда за два- дня до их приезда, хотя месяцами шаталась неизвестно где. Вершиной этих связей, пока еще совсем необъяснимых, было то, что собака отправилась в Москву и через несколько месяцев нашла там полюбившихся ей людей. Пришла к подъезду дома, дождалась, когда жена Немоляева выйдет из дому, и бросилась к ней, чуть не сбив с ног. Радости не было конца. Подобных историй, описанных в газетах и журналах, не счесть.

Лоза, или «волшебная палочка», — простейший из индикаторов, которым люди пользуются уже тысячелетия, отыскивая воду и руду. По мнению некоторых исследователей, этим методом владели древние шумеры, халдеи и вавилоняне, Лоза, конечно, не была волшебной. Она и не поисковый прибор, пусть даже самый примитивный. Это скорее стрелка прибора, сам же прибор — человек.

Время шло, но лозоходцы не забывали о своих способностях. Их практическая помощь была просто необходима при выборе места, где рыть колодец или прокладывать шахту.

Водоискатели с незапамятных времен известны в России. В начале XX века в Москве устроили даже проверку лозоходцам. Одного из них возили по городу и сверяли его показания с планом городской водопроводной сети. Водоискатель, ранее совершенно не знакомый с расположением труб, точно указывал, где они находятся под землей.

В настоящее время границы биолокации значительно расширены. Современные «лозоходцы» не только помогают вести разведку полезных ископаемых, но и работают в архитектурноисторической, реставрационной и культурно-исторической областях. Они находят скрытые под землей остатки строений, фундаментов, подземные ходы.

В Москве создана межведомственная комиссия при Центральном правлении научно-технического общества радиотехники, электроники и связи имени А. С. Попова, занимающаяся проблемами биолокации.

Мне много раз приходилось наблюдать за работой операторов, проводящих биолокационную съемку. Всегда вызывает удивлен не то, что два совершенно незнакомых человека, в разное время исследующие одну и ту же местность, часто указывают на одинаковые точки. Это уже в какой-то мере может рассеять недоверие к биолокации. Ведь вопрос до настоящего времени остается спорным, механизм биолокации окончательно не объяснен. Пока мы строим гипотезы, проводим различные эксперименты, чтобы раскрыть тайну биолокации, этот метод уже достаточно широко используется на практике.

Операторы с успехом отыскивают не только воду, но и нерудные месторождения полезных ископаемых, например гипс. Важную помошь они оказывают градостроителям, указывая с помощью биолокации, где находятся подземные карстовые пустоты. Если на таком месте будет построено здание, оно может рухнуть. Поиск карстовых пустот обычным методом — очень дорогостоящее мероприятие.

Возникнет вопрос: а где взять столько операторов-биолокаторщиков? Оказывается, значительная часть людей может освоить методы биолокации. Примерно у восьмидесяти человек из ста. впервые взявших рамку в руки, проявляется эффект ее вращения в местах с искомым объектом. Но это только проявление эффекта. Чтобы стать хорошим оператором, нужно много тренироваться, развивать свою чувствительность.

Натренированный человек с рамкой может найти многое: наметить границы места залегания руды, найти развалины древ-него города, обнаружить водную жилу, отыскать захоронения золотых, серебряных и медных монет и, наконец, просто отмстить, где находится пустота, а по активности реакции рамки можно определить глубину залегания. Предельная глубина определения «объектов» может превышать семьсот метров.

Сейчас установлено, что можно и под водой искать объекты с помощью биолокации. Именно такие опыты проведены А. И. Плужниковым. Опыты заключались в том, что оператора поместили на небольшое суденышко, которое восемь суток двигалось по определенным направлениям на ограниченном участке моря. В результате такой работы была составлена «биолокационная» карта, которую сверили с геофизической. Они оказались идентичными. Но Плужникову принадлежит и другой не менее интересный эксперимент по биолокации плавающих объектов.

Можно ли рассмотреть судно, находящееся, предположим, в сорока километрах от наблюдателя? Нет. А проводя с помощью рамок биолокацию горизонта, можно указать направление, где находится это судно. Результаты опыта были подтверждены показаниями радиолокатора, и А. И. Плужников считает, что биолокация надводных объектов может иметь большое практическое значение. Во-первых, это позволит разыскивать потерявшиеся буи, пустые цистерны, промысловое оборудование. Во-вторых, биолокацию можно применить для промысловой разведки, выявлять скопления рыб и морских животных. Наконец, этот метод даст возможность устанавливать местонахождение потерпевших кораблекрушение.

Почему же все-таки рамка или лоза вращаются в руках у оператора? Сейчас можно с уверенностью сказать, что рамку движет человек. Это идиомоторная реакция человека. Мышцы руки непроизвольно, лаже незаметно для самого оператора сокращаются в ответ на бессознательный анализ окружающих человека полей и их изменение при движении в пространстве. Лучше даже сказать: улавливается не само поле, а его изменения и аномалии.

В этом феномене нет ничего мистического, он вполне материален. Экспериментаторы подключали к мышцам оператор;! идущего с рамкой, миограф и отмечали, что сначала сокращаются мышцы, а вслед за этим изменяет свое положение рамка. С другой стороны, проверка чувствительными приборами показывает, что над водоемом — наземным или подземным, около деревьев, а также над различными залеганиями под землей и пустотами напряженность электрического поля падает. Видимо, сам того не осознавая, человек улавливает эти отклонения полей.

Профессор Парижского университета Ж. Рокар считает, что в основе эффекта биолокации лежит способность человека подсознательно реагировать на отдельные нарушения магнитного поля, которые производят электромагнитную индукцию, и появление электрического напряжения, непосредственно действующего на нервные клетки и дающего чувствительную информацию.

Но какие бы гипотезы ни строились, для научных доказательств нужны экспериментальные проверки влияния магнитных, электрических, гравитационных и других полей на биолокационный эффект. Необходимо также изучить психологические и психические реакции оператора во время проведения биолокации. Пока ясно только одно: рамка или лоза выступает как стрелка биоприбора — человека, позволяющая сосредоточить на ней подсознательный анализ полей.

Мне приходилось наблюдать операторов, которые для биолокации не используют никаких рамок. А у некоторых моряков с врожденной повышенной чувствительностью развиваются способности поиска потерпевших кораблекрушение без использования биоиндикаторов.

Будем надеяться, что ученые скоро основательно разберутся в загадочном механизме биолокации — одном из самых интересных эффектов, присущих как человеку, так и животным.