Первый эпизод «Маленький домик ужасов на дереве» появился во втором сезоне мультсериала «Симпсоны» и с тех пор традиционно каждый год выходит к Хеллоуину. Как правило, эти особые эпизоды состоят из трех коротких историй, которые могут нарушать привычный ход жизни в Спрингфилде, а их сюжет может включать в себя все, от пришельцев до зомби.

Дэвид Коэн, один из страстных приверженцев идеи включения математики в эпизоды «Симпсонов», написал сценарий к последней части эпизода «Маленький домик ужасов на дереве 6» (Treehouse of Horror VI, сезон 7, эпизод 6; 1995 год). Вне всяких сомнений, этот фрагмент представляет собой самую насыщенную и элегантную интеграцию математики в сериал «Симпсоны» с начала его выхода на экраны четверть века назад.

Сюжет начинается вполне невинно: свояченицы Гомера Пэтти и Сельма без предупреждения приходят в гости. Пытаясь избежать с ними встречи, Гомер прячется за книжным шкафом, где находит таинственный портал, ведущий в другую вселенную. Когда «приятные» голоса Пэтти и Сельмы становятся громче, Гомер слышит, что они хотят, чтобы все помогли им очистить и рассортировать морские ракушки. В отчаянии он проходит через портал, оставив позади двумерный мир Спрингфилда, и попадает в невероятный трехмерный мир. Гомер совершенно сбит с толку новым количеством измерений и замечает нечто шокирующее: «Что здесь творится? Я такой выпуклый. И живот выступает далеко вперед».

Авторы решили создать фигурку Гомера с помощью самой современной технологии компьютерной анимации; затраты на этот пятиминутный фрагмент существенно превысили бы бюджет целого эпизода. К счастью, компания Pacific Data Images (PDI) предложила свои услуги, прекрасно понимая, что «Симпсоны» – это глобальная платформа для демонстрации возможностей новой технологии. В том же году компания PDI заключила с DreamWorks сделку, которая привела к появлению мультфильмов «Муравей Антц» и «Шрек», что стало началом революции в сфере анимационных фильмов.

Когда Гомер подходит к дорожному указателю, на котором обозначены направления x, y и z в новой трехмерной вселенной, он говорит, что стоит на самой продвинутой сцене, которая когда-либо появлялась на телевидении: «Здесь роскошно. Просто стоять здесь – уже дорогое удовольствие. Надо урвать, что можно».

Трехмерный Гомер Симпсон после прохождения через портал в истории «Трехмерный Гомер». Позади Гомера вдалеке парят два математических уравнения

THE SIMPSONS™ и © 1990 Twentieth Century Fox Television. Все права защищены

Оказавшись в новой среде, Гомер делает еще одно уместное замечание: «Просто обалдеть можно. Похоже на фильм о странной сумеречной зоне». Это намек на то, что «Трехмерный Гомер» является отсылкой к одному из эпизодов сериала «Сумеречная зона» (The Twilight Zone) под названием «Пропала девочка» (Little Girl Lost, сезон 3, эпизод 26; 1961 год).

В эпизоде «Пропала девочка» родители маленькой девочки по имени Тина впадают в отчаяние, когда заходят в ее спальню и не находят там дочку. Хуже всего то, что они слышат голос Тины, раздающийся вокруг, но не видят ее. Девочки в комнате нет, но создается впечатление, что она где-то поблизости. Отчаянно нуждаясь в помощи, родители Тины звонят другу семьи Биллу, физику. Билл определяет местонахождение портала и рисует его на стене спальни, после чего заявляет, что Тина перешла в четвертое измерение. Родителям очень трудно понять концепцию четырехмерного пространства, поскольку они (как и все люди) привыкли оперировать исключительно понятиями знакомого им трехмерного мира.

Хотя Гомер переходит из двумерного в трехмерный мир, а не из трехмерного в четырехмерный, в истории «Трехмерный Гомер» происходит та же последовательность событий. Мардж не может понять, что случилось с мужем, поскольку слышит, но не видит его. Она тоже получает советы от ученого, профессора Джона Нерделбаума Фринка-младшего.

Несмотря на весьма неординарную личность профессора Фринка, нельзя недооценивать его гениальность. Научные заслуги профессора становятся очевидными в истории под названием «Фринкинштейн» из эпизода «Маленький домик ужасов на дереве 14» (Treehouse of Horror XIV, сезон 15, эпизод 1; 2003 год), где ему вручает Нобелевскую премию не кто иной, как Дадли Роберт Хершбах, который получил Нобелевскую премию в 1986 году и озвучивает в эпизоде своего персонажа.

Подобно физику из «Сумеречной зоны», Фринк рисует мелом на стене очертания портала. За происходящим наблюдают все, кто пришел предложить свою помощь: Нед Фландерс, Шеф Виггам, преподобный Лавджой и доктор Хибберт. Затем Фринк начинает объяснять загадочное событие: «Даже самому недалекому индивидууму, обладающему степенью магистра в области гиперболической топологии, очевидно, что Гомер Симпсон очутился в… третьем измерении».

Заявление Фринка предполагает, что персонажи сериала «Симпсоны» обитают в двумерном мире, а значит, им трудно понять концепцию третьего измерения. Хотя анимационная реальность Спрингфилда гораздо сложнее, поскольку мы постоянно видим, как Гомер и члены его семьи проходят позади или впереди друг друга, что было бы невозможно в двумерном пространстве в строгом смысле слова. Тем не менее в контексте этого фрагмента эпизода «Маленький домик ужасов на дереве» можно исходить из предположения, что Фринк прав, говоря о существовании в «Симпсонах» только двух измерений. Давайте посмотрим, как он объясняет концепцию большего количества измерений, рисуя при этом схему на доске.

Профессор Фринк. Вот обыкновенный квадрат.

Шеф Виггам. Помедленнее, яйцеголовый!

Профессор Фринк. Но предположим, мы достроим этот двумерный квадрат до нашей вселенной при помощи гипотетической оси z . Вот так.

Все. [Изумленно ахают].

Профессор Фринк. Тем самым образуется трехмерный объект, известный как куб, или  фринкаэдр,  – в честь того, кто его открыл.

Объяснения Фринка иллюстрируют связь между двумя и тремя измерениями. На самом деле этот подход можно использовать для объяснения связи между всеми измерениями.

В случае нулевой размерности мы имеем нульмерную точку, которую можно сдвинуть, скажем, в направлении x, чтобы получить путь, образующий одномерную линию, которую затем можно развернуть в перпендикулярном направлении y, чтобы создать двумерный квадрат. Именно с этого начинает свои объяснения профессор Фринк, так как двумерный квадрат можно сдвинуть в направлении z, перпендикулярном плоскости квадрата, и получить в итоге трехмерный куб (или фринкаэдр). И наконец, если не физически, то хотя бы математически можно пойти на шаг дальше и сдвинуть куб в еще одном перпендикулярном направлении (обозначенном как направление w), чтобы образовать четырехмерный куб. Куб в четырех (или более) измерениях известен как гиперкуб.

Схематический рисунок гиперкуба – это всего лишь эскиз, эквивалент контурного изображения, используемого для того, чтобы передать суть статуи Давида Микеланджело. Тем не менее контурное изображение гиперкуба позволяет выявить закономерность, которая помогает объяснить геометрию фигур в пространстве с четырьмя и более измерениями. Давайте проанализируем количество конечных точек, или углов (известных как вершины), имеющихся у каждого объекта, когда мы переходим от одного измерения к другому. Количество вершин подчиняется простой закономерности: 1, 2, 4, 8, 16, …. Другими словами, если d – это количество измерений, тогда число вершин равно 2d . Следовательно, десятимерный гиперкуб содержит 210 или 1024 вершины.

Несмотря на то что профессор Фринк хорошо разбирается в высоких размерностях, это, к сожалению, не помогает ему спасти Гомера, который продолжает бродить по своей новой вселенной. Это влечет за собой серию невероятных событий, которые заканчиваются посещением Гомером магазина эротических тортов. Во время своих приключений Гомер сталкивается с несколькими фрагментами математики, которые материализуются в трехмерном пространстве.

Например, вскоре после прохождения Гомера через портал вдали от него проносится на первый взгляд случайная последовательность чисел и букв: 46 72 69 6E 6B 20 72 75 6C 65 73 21. На самом деле эти буквы представляют собой числа в шестнадцатеричной системе счисления: в ней используются обычные цифры от 0 до 9, а также еще шесть цифр, обозначенных латинскими буквами от A до F: A = 10, B = 11, C = 12, D = 13, E = 14 и F = 15. Каждая пара шестнадцатеричных цифр представляет символ в коде ASCII (сокр. от American Standard Code for Information Interchange – Американский стандартный код обмена информацией), который является протоколом конвертации букв и знаков препинания в числа, главным образом в компьютерных целях. Согласно протоколу ASCII, число 46 соответствует букве F, 72 – букве r и т. д. Если перевести таким образом всю последовательность, то получится смелое заявление, восхваляющее гиков: Frink rules! («Фринк рулит!»).

Через несколько мгновений в трехмерном пространстве благодаря сценаристу Дэвиду Коэну появляется еще один фрагмент математики:

1782¹² + 1841¹² = 1922¹²

Это еще одно ошибочное доказательство последней теоремы Ферма, наподобие созданного Коэном для эпизода «Волшебник Вечнозеленой аллеи», о котором мы говорили в главе 3. Эти числа тщательно подобраны таким образом, чтобы обе стороны уравнения были почти равны. Если сравнить сумму первых двух степеней с третьей степенью, результат окажется точным до первых девяти цифр, выделенных жирным шрифтом:

1 025 397 835 622 633 634 807 550 462 948 226 174 976 (1 782¹²)

+ 1 515 812 422 991 955 541 481 119 495 194 202 351 681 (1 841¹²)

= 2 541 210 258 614 589 176 288 669 958 142 428 526 657

≈ 2 541 210 259 314 801 410 819 278 649 643 651 567 616 (1 922¹²)

Это означает, что расхождение между левой и правой частями уравнения составляет всего 0,00000003 процента, но это более чем весомый аргумент, чтобы считать данное решение уравнения ошибочным. На самом деле есть быстрый способ определить, что 1782¹² + 1841¹² = 1922¹² – ложное решение, не прибегая к громоздким вычислениям. Для этого достаточно обратить внимание на присутствие в уравнении четного числа (1782), возведенного в двенадцатую степень, которое в сумме с нечетным числом (1841), также возведенным в двенадцатую степень, предположительно равно четному числу (1922) в двенадцатой степени. Здесь четность и нечетность играют большую роль, поскольку нечетное число, возведенное в любую степень, всегда дает только нечетный результат, тогда как четное число, возведенное в любую степень, дает исключительно четный результат. Исходя из того, что сумма нечетного и четного числа всегда нечетная, левая сторона равенства может быть только нечетной, тогда как правая должна быть четной. Таким образом, очевидно, что это ошибочное решение:

четное¹² + нечетное¹² ≠ четное¹²

Моргните – и пропустите еще пять намеков на нердовские штучки, которые проплывают мимо Гомера в трехмерной вселенной. Первый – вполне безобидный обычный чайник. Почему же он нердовский? Когда в 1975 году один из пионеров компьютерной графики Мартин Ньюэлл из Университета штата Юта решил сгенерировать на компьютере какой-то объект, он выбрал именно этот предмет быта. Чайник был достаточно простым объектом, но в то же время содержал довольно сложные элементы, такие как ручка и кривые поверхности. С тех пор так называемый чайник из Юты стал отраслевым стандартом для демонстрации возможностей компьютерной графики. Именно такой чайник присутствует в сцене с чайной вечеринкой в мультфильме «История игрушек» (Toy Story), в спальне Бу из мультфильма «Корпорация Монстров» (Monsters, Inc.), а также еще в нескольких фильмах.

Второй намек – пролетающие мимо Гомера цифры 7, 3 и 4. Это зашифрованная ссылка на компанию Pacific Data Images, которая занималась созданием сцен с компьютерной графикой. Цифры на поле набора телефона ассоциируются с буквами P, D и I, представляющими собой акроним названия компании.

Третий – проносящееся мимо космологическое неравенство (ρ m 0 > 3H0² / 8πG), описывающее плотность вселенной Гомера. Составленное одним из близких друзей Коэна Дэвидом Шиминовичем, оно подразумевает высокую плотность, а это значит, что сила тяжести в итоге приведет к коллапсу вселенной, что на самом деле и происходит в конце истории.

Буквально перед исчезновением вселенной Гомера Коэн оставляет для проницательного зрителя особенно интригующий математический фрагмент. В сцене, показанной на приведенном выше рисунке, за левым плечом Гомера в несколько непривычном виде виднеется уравнение Эйлера. Оно также присутствует в эпизоде «ДеньгоБАРТ».

И наконец, в той же сцене за правым плечом Гомера можно увидеть соотношение P = NP. Хотя большинство зрителей даже не заметили бы его, не говоря уже о том, чтобы проанализировать, соотношение P = NP представляет собой ссылку на одну из самых важных нерешенных задач в теории вычислительных систем.

Утверждение P = NP касается двух классов математических задач. P означает polynomial, «полиномиальная задача», а NP – nondeterministic polynomial («недетерминированная полиномиальная задача»). Грубо говоря, задачи класса P легко решить, тогда как задачи класса NP трудно решить, но легко проверить.

* * *

Например, умножение – это легкая задача, которая относится к классу P. Даже если умножаемые числа становятся больше, время на выполнение вычислений увеличивается умеренными темпами.

Напротив, разложение числа на множители (поиск его делителей) – задача класса NP. Она достаточно простая для малых чисел, но для больших становится практически невыполнимой. Например, если вас попросят разложить на множители число 21, вы сразу же найдете ответ: 21 = 3 × 7. Однако разложить на множители число 428 783 гораздо труднее. В действительности вам, возможно, понадобится около часа, чтобы с помощью калькулятора определить: 428 783 = 521 × 823. Важно то, что если бы вам дали числа 521 и 823, вы за несколько секунд смогли бы проверить, являются ли они делителями числа 428 783. Таким образом, разложение на множители – это классическая задача класса NP, поскольку в случае больших чисел ее трудно решить, но легко проверить.

Или… возможно, задача разложения на множители не так сложна, как нам кажется?

В этом случае перед математиками и программистами встает следующий фундаментальный вопрос: действительно ли задачу разложения на множители трудно решить, или мы просто не знаем способа, который бы нам позволил ее упростить? То же касается и множества других задач класса NP: они и правда настолько сложны, или все дело в нашем незнании более доступного варианта их решения?

Этот вопрос представляет собой нечто большее, чем обычный академический интерес, поскольку высокий уровень сложности решения задач класса NP лежит в основе некоторых важных технологий. Например, такие задачи используются в алгоритмах шифрования, опирающихся на предположении о том, что большие числа трудно разложить на множители. Однако если разложение на множители окажется не такой уж сложной задачей и кто-то найдет легкий способ ее решения, это разрушит системы шифрования, что, в свою очередь, поставит под угрозу всеобщую безопасность, от покупок в интернете до международных политических и военных контактов на самом высоком уровне.

Эту проблему часто описывают так: P = NP или P ≠ NP?. Другими словами, могут ли якобы сложные задачи (класса NP) однажды оказаться такими же легкими, как простые задачи (класса P), или нет?

Поиск решения загадки P = NP или P ≠ NP? входит в список самых востребованных математиками задач. Существует даже награда за ее решение. В 2000 году Математический институт Клэя, основанный филантропом Лэндоном Клэем в Кембридже, включил эту задачу в список семи задач тысячелетия, и назначил вознаграждение в 1 миллион долларов за окончательный ответ на вопрос: P = NP или P ≠ NP?.

Дэвид Коэн, который изучал задачи класса P и NP во время учебы в магистратуре Калифорнийского университета в Беркли, подозревает, что в действительности задачи класса NP гораздо проще, чем мы считаем. Именно поэтому соотношение P = NP появляется за плечом Гомера в трехмерной вселенной.

Однако Коэн придерживается мнения меньшинства. Когда в 2002 году специалист по теории вычислительных систем из Университета штата Мэриленд Уильям Газарк провел опрос среди сотни исследователей, только 9 процентов ответили, что P = NP, тогда как 61 процент респондентов отдали предпочтение P ≠ NP. В 2010 году в ходе аналогичного опроса в пользу P ≠ NP высказались уже 81 процент респондентов.

Безусловно, в математике истина определяется не уровнем популярности, но если мнение большинства окажется правильным, то включение соотношения P = NP в фрагмент «Трехмерный Гомер» будет выглядеть несколько неуместным. Однако это не должно стать проблемой в краткосрочной перспективе, поскольку, по мнению половины опрошенных математиков, эта задача не будет решена в текущем столетии.

И наконец, в эпизоде «Трехмерный Гомер» есть еще одна математическая ссылка, заслуживающая упоминания. А если точнее, она появляется в конце всего эпизода «Маленький домик ужасов на дереве 6», в его финальных титрах. По сложившейся традиции титры к эпизодам «Симпсонов», посвященным Хеллоуину, всегда представлены несколько необычно. Например, Мэтт Грейнинг появляется в них как Летучая Мышь Грейнинг, Крыса Грейнинг, Мэтт «Привидение» Грейнинг и Ужасный Мэтт Грейнинг.

Эта традиция возникла под влиянием комиксов под названием «Байки из склепа» (Tales from the Crypt), в которых регулярно появлялись видоизмененные имена авторов и художников. Их издатель, EC Comics, приобрел печальную известность после того, как в 1954 году Подкомитет сената по делам несовершеннолетних провел слушания по вопросу комиксов, по результатам которых был сделан вывод о том, что «Байки из склепа» и другие публикации издательства негативно сказываются на молодом поколении страны. Это привело к тому, что из всех комиксов были удалены зомби, оборотни и им подобные персонажи. В результате в 1955 году «Байки из склепа» прекратили свое существование. Тем не менее у них до сих пор немало поклонников, большинство которых еще даже не родились, когда комикс скоропостижно скончался. К их числу относится и Эл Джин – именно он предложил идею включить видоизмененные титры в эпизоды серии «Маленький домик ужасов на дереве».

Все это объясняет, почему в титрах к эпизоду «Маленький домик ужасов на дереве 6» можно увидеть такие имена, как Брэд «Колосажатель» Бирд, Оборотень Ли Хартинг, Что-с-тобой-стряслось Грейнинг. А если вы посмотрите очень внимательно, то заметите очаровательную ссылку на теорему Пифагора и автора сценария к фрагменту «Трехмерный Гомер»:

Дэвид² + С.² = Коэн²

ЭКЗАМЕН IV

ЭКЗАМЕН НА УРОВНЕ МАГИСТРАТУРЫ

Шутка 1

Вопрос: Что такое полярный медведь?

Ответ: Прямоугольный медведь после перехода в полярную систему координат.

2 балла

Шутка 2

Вопрос: Что значит «Семь реалов! Семь реалов!»?

Ответ: Попугайская ошибка. (Англ. parroty error («ошибка попугая») созвучно с parity error – «ошибка четности»; испанские монеты выпускались достоинством восемь реалов.)

2 балла

Шутка 3

Рассел Уайтхеду: «Мой Гедель меня убивает!» (Имя Kurt Gödel звучит как kurt girdle, а girdle означает «корсет».)

3 балла

Шутка 4

Вопрос: Что коричневое, пушистое, бежит к морю и эквивалентно аксиоме выбора?

Ответ: Лемминг Цорна (созвучно с «лемма Цорна»).

2 балла

Шутка 5

Вопрос: Что желтое и эквивалентно аксиоме выбора?

Ответ: Лимон Цорна.

2 балла

Шутка 6

Вопрос: Почему чем большая точность интерполирующей функции вам нужна, тем дороже обходится ее вычисление?

Ответ: Дело в законе спроса и предложения. (Англ. supply («предложение») созвучно со spline – «сплайн».)

3 балла

Шутка 7

Два математика, Исаак и Готфрид, приходят в паб. Исаак начинает жаловаться на отсутствие математических знаний у простых людей, но Готфрид настроен более оптимистично. Чтобы доказать свою точку зрения, Готфрид ждет, пока Исаак уйдет в туалет, подзывает официантку и объясняет ей, что после возвращения Исаака задаст ей вопрос, на который она должна ответить: «Одна третья икс в кубе». Официантка переспрашивает: «Одна треть яиц вкупе?» Готфрид повторяет свое предложение, на этот раз более медленно: «Одна… третья… икс… в… кубе». Официантка вроде бы понимает (более-менее) и уходит, снова и снова бормоча себе под нос: «Одна треть яиц вкупе».

Вернувшись, Исаак снова выпивает с Готфридом, и спор продолжается. В конце концов Готфрид подзывает официантку, чтобы доказать свою точку зрения: «Исаак, давай проведем эксперимент. Мисс, позвольте мне задать вам простой вопрос по интегральному исчислению. Чему равен интеграл от икс в квадрате?» Официантка останавливается и неуверенно произносит: «Одна треть яиц вкупе». Готфрид самодовольно улыбается, но официантка, уже собираясь уходить, оборачивается, дерзко смотрит на двоих математиков и говорит: «…Плюс константа».

6 баллов

Всего – 20 баллов

Персонажи «Футурамы» (слева направо): Зепп Бранниган (25-звездный генерал и капитан звездолета «Нимбус»); Мамочка (коварная владелица компании MomCorp); профессор Хьюберт Дж. Фарнсворт (160-летний основатель компании Planet Express); Лила (капитан «Межпланетного экспресса»), Бендер (беспутный робот); Филипп Дж. Фрай (парень из ХХ столетия, проснувшийся в XXXI столетии); Зойдберг (врач «Межпланетного экспресса», прибывший с планеты Декапод-10); Киф Крокер (член экипажа «Нимбуса», влюблен в Эми), а также Эми Вонг (член экипажа «Межпланетного экспресса», влюблена в Кифа).

FUTURAMA © 2002 Twentieth Century Fox Television. Все права защищены