Едва Уайлс закончил свою лекцию в Кембридже, как комиссию Вольфскеля известили о том, что Великая теорема Ферма, наконец, доказана. Премия не могла быть вручена немедленно, так как, по правилам конкурса, ясным и четким, требовались подтверждение правильности доказательства со стороны других математиков и официальная публикация доказательства. Королевское научное общество в Гёттингене в свое время официально уведомило всех о том, что «к рассмотрению допускаются только математические мемуары, представленные в виде статей в периодических изданиях или имеющиеся в книжных лавках… Премия присуждается Обществом не ранее, чем через два года после опубликования мемуара, удостоенного премии. Двухлетний промежуток времени необходим для того, чтобы немецкие и иностранные математики имели возможность высказать свое мнение по поводу опубликованного решения».
Уайлс направил свою рукопись в редакцию журнала «Inventiones Mathematical», после чего редактор журнала Барри Мазур приступил к подбору рецензентов. В своей работе Уайлс использовал различные методы, как старые, чтобы не сказать древние, так и современные, и Мазур, в порядке исключения, решил привлечь к рецензированию работы Уайлса не двух-трех экспертов, как обычно, а шестерых. Каждый год математические журналы всего мира публикуют около тридцати тысяч статей, но огромный объем и значимость рукописи Уайлса требовали, чтобы и рецензирование ее производилось на необычайно высоком уровне. Для упрощения работы все доказательство, занимавшее 200 страниц, было разделено на шесть частей, и на каждого рецензента возлагалась ответственность за одну из этих частей-глав.
Рецензирование главы 3 было поручено Нику Катцу, которому в том году уже приходилось изучать эту часть доказательства Уайлса: «Летом я отправился поработать в Парижский институт высших исследований (IHES) и захватил с собой полное 200-страничное доказательство — моя глава занимала семьдесят страниц. Прибыв в Париж, я решил, что мне понадобится серьезная техническая помощь, и я настоял, чтобы Люк Иллюзи, который также находился в то время в Париже, разделил со мной обязанности рецензента. Все лето мы с Люком встречались по несколько раз в неделю — главным образом, для того, чтобы читать друг другу лекции и пытаться совместными усилиями до конца разобраться в этой главе. Все, что мы делали, сводилось к тщательному, строка за строкой, прочтению рукописи для того, чтобы убедиться, что никаких ошибок в доказательстве нет. Иногда мы заходили в тупик — это бывало раз или два раза в день, и тогда я отправлял Эндрю вопрос по электронной почте примерно такого содержания: "Я не понимаю, что Вы пишете на странице такой-то". Или: "Мне кажется, что в строке такой-то у Вас ошибка". Как правило, я получал ответ в тот же день или на другой день, недоразумение выяснялось, и мы с Люком переходили к следующей проблеме».
Доказательство представляло собой гигантскую цепочку рассуждений, весьма хитроумно выстроенных из сотен математических вычислений, склеенных воедино логическими связями. Если всего лишь одно вычисление оказалось бы ошибочным, или одно звено разорвалось, то все доказательство могло бы обесцениться. Уайлс, вернувшийся в Принстон, с беспокойством ждал, когда рецензенты завершат свою работу. «Мне не хотелось праздновать победу до тех пор, пока проверка не будет закончена. Я занимался, в основном, ответами на вопросы, которые получал по электронной почте от рецензентов. У меня была уверенность, что ни один из этих вопросов не доставит мне особых хлопот». Прежде чем предоставить доказательство референтам, Уайлс проверил и перепроверил его сам, и поэтому был уверен, что те вряд ли сумеют обнаружить в его рукописи что-нибудь, кроме математического эквивалента грамматических ошибок или опечаток — тривиальных ошибок, которые он сможет легко исправить.
«Вопросы возникали вплоть до августа, — вспоминает Катц, — пока я не наткнулся на нечто, показавшееся еще одной небольшой проблемой. Где-то около 23 августа я отправил Эндрю запрос по электронной почте. Проблема оказалась несколько более сложной, поэтому ответ Эндрю прислал по факсу. Меня этот ответ не удовлетворил, поэтому я еще раз направил Эндрю запрос по электронной почте и получил еще один ответ по факсу, который меня также не удовлетворил».
Уайлс поначалу предполагал, что очередная ошибка столь же несерьезна, как и предыдущие, но настойчивость Катца вынудила отнестись к ней серьезнее: «Я не мог немедленно ответить на заданный мне вопрос, который выглядел вполне невинно. Мне казалось, что вопрос того же порядка, что и другие, но где-то в сентябре я начал понимать, что речь шла не о какой-то незначительной трудности, а о фундаментальном пробеле. Это была ошибка в решающей части рассуждения, связанного с использованием метода Колывагина-Флаха, но настолько тонкая, что я заметил ее только после того, как мне ее указали. Описать, в чем суть ошибки в простых терминах невозможно: для этого она слишком абстрактна. Даже для того, чтобы объяснить ее математику, от последнего потребовалась бы готовность затратить два-три месяца для тщательного изучения рукописи с доказательством».
По существу, проблема сводилась к тому, что метод Колывагина-Флаха мог не сработать так, как было необходимо Уайлсу. Предполагалось, что доказательство, полученное для первых элементов E-рядов эллиптических кривых, и M-рядов модулярных форм, допускает обобщение на все элементы E- и M-рядов, что и позволяло применять принцип математической индукции. Первоначально метод Колывагина-Флаха был применим только при определенных ограничительных условиях, но Уайлс полагал, что ему удалось усилить метод настолько, что тот удовлетворял всем необходимым требованиям. По словам Катца, в действительности это было не так, и последствия были драматическими и опустошительными. Обнаруженная ошибка не обязательно означала, что доказательство Уайлса нельзя спасти, но одно было несомненно: Уайлсу было необходимо восполнить существенный пробел в доказательстве. Абсолютизм математики требовал, чтобы Уайлс дал не оставляющее ни малейших сомнений доказательство того, что предложенный им метод применим к каждому элементу любого E-ряда и любого M-ряда.
Мелкий ремонт ковров
Когда Катц осознал всю важность обнаруженной им ошибки, он стал размышлять о том, почему ошибка была пропущена им весной, когда Уайлс читал ему лекции с единственной целью — выявить возможные ошибки. «Я полагаю, ответ заключается в следующем. Когда вы слушаете чью-нибудь лекцию, перед вами возникает довольно трудный выбор: понять все до мельчайших деталей или предоставить лектору излагать материал так, как было им задумано. Если вы станете перебивать лектора на каждом слове (я не понял это, не понял то), то ему никогда не удастся объяснить все, что он хотел, и вы ничего не достигнете. С другой стороны, если вы не будете прерывать лектора, то вы скоро не сможете следить за ходом рассуждений и будете лишь кивать головой из вежливости, но совершенно утратите понимание деталей. Каждый, кто слушает лекцию, стоит перед выбором — задавать ли слишком много вопросов или слишком мало вопросов. По-видимому, к концу лекций, в том месте, где проскользнула обнаруженная впоследствии ошибка, я предпочел задавать слишком мало вопросов».
Всего лишь несколькими неделями раньше газеты всего земного шара называли Уайлса самым блестящим математиком на Земле, и специалисты по теории чисел после 350 лет разочарования уверовали в то, что им удалось, наконец, одержать верх над Пьером де Ферма. Теперь же Уайлс должен был сделать унизительное признание в том, что в своем доказательстве он допустил ошибку. Но прежде, чем признавать ошибку, Уайлс решил собраться с духом и попытаться восполнить пробел. «Я не мог так просто сдаться. Проблема захватила все мои помыслы, и я все еще верил, что стоит лишь еще немного поразмыслить над методом Колывагина-Флаха, как все получится. Нужно лишь немного модифицировать метод, и он великолепно заработает. Я решил вернуться к своему старому образу жизни и полностью отказаться от контактов с внешним миром. Мне было необходимо всецело сосредоточиться на проблеме, но на этот раз при гораздо более трудных обстоятельствах. Долгое время я полагал, что спасительная идея где-то рядом, что мне не достает чего-то простого и что не сегодня-завтра все встанет на свое место. Разумеется, так вполне могло случиться, но по мере того, как шло время, я видел, что проблема становится все более сложной».
Жена Уайлса, наблюдавшая за его напряженной работой все семь лет, которые ушли на первоначальный вариант доказательства, теперь стала свидетельницей того, как ее муж из последних сил пытается бороться с ошибкой, которая грозит разрушить все. Уайлс вспоминает ее оптимизм: «В сентябре Нада сказала мне, что единственный подарок, который она хотела бы получить на день рождения — это правильное доказательство. Ее день рождения — шестое октября. У меня оставались две недели, но исправить ошибку я так и не сумел».
Для Ника Катца это также был напряженный период: «К октябрю об ошибке знали только я сам, Иллюзи, рецензенты остальных глав и Эндрю. Этим круг осведомленных исчерпывался. Я придерживался того мнения, что рецензент должен хранить тайну. По моему глубокому убеждению, мне не следовало обсуждать возникшую проблему с кем-нибудь помимо Эндрю, и о том, что мне было известно, я не проронил ни слова. Думаю, что внешне Эндрю выглядел нормально, но в том, что касалось представленного им доказательства, он хранил от всего мира тайну. Я полагаю, что он чувствовал себя весьма неуютно. Эндрю все надеялся, что через день-другой ему удастся преодолеть обнаруженный пробел, но время шло, а исправленный вариант рукописи в редакцию все не поступал. Пошли слухи, что с доказательством Уайлса возникла какая-то проблема».
Другой рецензент, Кен Рибет, вспоминает, что хранить тайну становилось все труднее: «По какой-то чисто случайной причине меня стали называть "службой информации по теореме Ферма". В "New York Times" появилась статья, в которой среди прочего говорилось: "Рибет, который выступает в роли пресс-атташе при Эндрю Уайлсе…" — или что-то в этом роде. После этой публикации я стал магнитом для всех, кто так или иначе интересуется Великой теоремой Ферма как изнутри, так и извне математического сообщества. Журналисты со всех концов света обрывали мои телефоны, и за два-три месяца мне пришлось неоднократно выступать с лекциями о доказательстве Великой теоремы Ферма. В своих лекциях я подчеркивал, каким великим достижением было представленное Уайлсом доказательство, излагал общий ход доказательства, рассказывал более подробно те его части, которые знал лучше всего, но слушатели довольно скоро начинали терять терпение и начинали задавать неприятные вопросы…
Уайлс заявил во всеуслышание о том, что ему удалось доказать Великую теорему Ферма, но никто, кроме узкой группы рецензентов, не видел рукописи с изложением доказательства. Математики были исполнены ожидания: Эндрю обещал представить рукопись через несколько недель после своего выступления в июне. Люди говорили: "Ну хорошо, о доказательстве теоремы заявлено. Но как ему удалось ее доказать? Почему нам ничего не сообщают?" Математики испытывали легкое беспокойство по поводу того, что их держали в неведении, и они просто хотели знать, в чем дело. Затем ситуация ухудшилась: над доказательством стали сгущаться тучи, и коллеги приходили и делились со мной слухами о том, что в главе 3 обнаружен пробел. Им хотелось знать, что мне известно по этому поводу, а я не знал, что им сказать».
Поскольку Уайлс и рецензенты отрицали, что им что-либо известно о пробеле в доказательстве, или вовсе отказывались от комментариев на эту тему, стали множиться самые дикие слухи. Математики обменивались по электронной почте самыми невероятными догадками в надежде докопаться до сути дела.
Дата: 18 нояб 1993 21:04:49
Тема: Пробел в доказательстве Уайлса
Циркулирует множество слухов об одном или нескольких пробелах в доказательстве Уайлса. Но что означает пробел — небольшую трещину, расщелину, расселину, ущелье или бездну? Располагает ли кто-нибудь надежной информацией?
Джозеф Липман
Университет Пурду
В чайной комнате любого математического факультета слухи вокруг доказательства Уайлса росли с каждым днем. Некоторые математики пытались успокоить математическое сообщество:
Дата: 19 нояб 1993 15:42:20
Тема: Ответ на вопрос: пробел в доказательстве Уайлса?
Не располагаю никакой информацией из первых рук и не беру на себя смелость обсуждать информацию, полученную из вторых рук. Полагаю, что в подобной ситуации лучше всего сохранять спокойствие и предоставить компетентным рецензентам, которые тщательно изучают доказательство Уайлса, выполнять свой долг. О том, что им удастся обнаружить, рецензенты сообщат, когда у них будет, что сообщить. Всякий, кому приходилось писать или рецензировать статью, знает, как часто в процессе проверки доказательств возникают различные вопросы. Было бы удивительно, если бы они не возникли в связи со столь важным результатом и таким длинным доказательством.
Леонард Эванс
Северо-Западный университет
Несмотря на призывы к спокойствию, дебаты по электронной почте становились все напряженнее.
Дата: 24 нояб 93 12:00:34
Тема: Новые слухи о теореме Ферма
Я не согласен с теми, кто утверждает, будто мы не должны распускать слухи по поводу того, есть ли пробел в предложенном Уайлсом доказательстве великой теоремы Ферма. Я благосклонно отношусь к подобным слухам, если их не принимать чересчур серьезно, и не вижу в этом ничего плохого. В частности, независимо от того, есть ли ошибка в доказательстве Уайлса или нет, я считаю, что он создал великолепную математику высочайшего класса.
А вот что мне известно на сегодня из n -ых рук…
Боб Сильверман
Дата: 22 нояб 93 20:16
Тема: Пробел в доказательстве теоремы Ферма
Выступая на прошлой неделе с лекцией в Институте Ньютона, Коутс заявил, что, по его мнению, в «геометрических системах Эйлера», составляющих важную часть доказательства, имеется пробел, на ликвидацию которого «может потребоваться от недели до двух лет». Я разговаривал с Уайлсом несколько раз, но все еще не уверен в том, что ему удалось доказать великую теорему Ферма: у Уайлса нет ни одного экземпляра рукописи.
Насколько мне известно, единственный экземпляр доказательства в Кембридже имеется только у Ричарда Тейлора — одного из рецензентов журнала «Inventiones», и он упорно отказывается комментировать доказательство до тех пор, пока все рецензенты не придут к единому заключению. Поэтому ситуация не проясняется. Сам я не знаю, насколько авторитетным можно считать мнение Коутса на этой стадии. Я намереваюсь ждать известий от Ричарда Тейлора.
Ричард Пинч
Ажиотаж вокруг неуловимого доказательства усиливался, но Уайлс упорно держался в стороне от дебатов и игнорировал всякие измышления. «Я был очень далек от всего этого, поскольку не желал знать, что говорят обо мне. Я вел уединенный образ жизни, но периодически встречался с моим коллегой Питером Сарнаком, который сообщал мне: "Знаете, там разыгралась настоящая буря!" Я выслушивал его, но не предпринимал ни малейших попыток внести ясность, так как полностью сосредоточился на проблеме».
Питер Сарнак стал сотрудником математического факультета Принстонского университета в то же время, что и Уайлс, и за прошедшие годы они успели стать близкими друзьями. В период кипения страстей, последовавший за лекциями Уайлса в Институте Ньютона, Сарнак был одним из тех немногих, с кем Уайлс поддерживал доверительные отношения. «Я не знал подробностей, но понимал, что Уайлс пытается восполнить серьезный пробел. Всякий раз, когда ему удавалось исправить какую-то часть своих вычислений, какая-нибудь другая трудность возникала в другой части доказательства. Дело обстояло так, будто Уайлс пытается расстелить в комнате ковер, который больше комнаты: стоило Эндрю добиться, чтобы расстелить ковер ровно в одном углу, как в другом углу тотчас же возникали складки. Но расстелить ковер так, чтобы он лег без складок по всей комнате, Уайлсу никак не удавалось. Не следует забывать, что Эндрю сделал гигантский шаг вперед. Никому до него не удавалось предложить никакого подхода к доказательству гипотезы Таниямы-Шимуры, а Уайлс продемонстрировал нам так много свежих идей, что все пришли в неописуемый восторг. Еще бы! Его идеи были новы, фундаментальны, и никто ранее не высказывал ничего подобного. И если пробел в его доказательстве не удалось бы восполнить, то и тогда огромный прогресс был бы налицо — но, разумеется, Великая теорема Ферма осталась бы нерешенной».
В конце концов Уайлс почувствовал, что не может молчать вечно. Исправление ошибки оказалось далеко не простым делом, и настало время положить конец домыслам. И после гнетущих неудач, преследовавших его всю осень, Уайлс направил по электронной почте в редакцию математического бюллетеня следующее сообщение:
Дата: 4 дек 93 01:36:50
Тема: В каком состоянии доказательство Великой теоремы Ферма
Имея в виду различные домыслы по поводу моей работы над гипотезой Таниямы-Шимуры и Великой теоремой Ферма, сообщаю кратко о той ситуации, которая сложилась на самом деле. В ходе рецензирования моей работы возник ряд проблем, большинство из которых были успешно решены, но одну проблему мне так и не удалось решить. Игравшая ключевую роль редукция (большинства случаев) гипотезы Таниямы-Шимуры к вычислению группы Сельмера правильна. Однако заключительные вычисления точной верхней грани для группы Сельмера в полуустойчивом случае (симметричного квадратичного представления, ассоциированного с модулярной формой) в том виде, в котором они существуют на данный момент, неполны. Я уверен, что мне удастся в ближайшее время восполнить пробел, используя те идеи, которые были изложены в моих кембриджских докладах.
Большой объем работы, который еще предстоит проделать над рукописью, не позволяют мне издать ее в виде препринта. Полностью доказательство гипотезы Таниямы-Шимуры будет изложено в моих лекциях, которые я собираюсь прочитать в Принстоне в феврале.
Эндрю Уайлс
Оптимизм Уайлса убедил немногих. Прошло почти шесть месяцев, а ошибка так и не была исправлена, и не было никаких причин ожидать каких-либо изменений в ближайшие шесть месяцев. Во всяком случае, если бы Уайлс действительно рассчитывал «в ближайшее время восполнить пробел», то зачем ему было беспокоиться и отправлять сообщение по электронной почте? Продолжал бы себе хранить молчание еще несколько недель, а потом взял бы и выпустил законченную рукопись. Февральский курс лекций, о котором Уайлс упомянул в своем сообщении, разосланном по электронной почте, не содержал обещанной детали, и математическое сообщество заподозрило, что Уайлс просто пытается выиграть время.
О происходящем пронюхали газеты и напомнили математикам о провалившейся сенсации 1986 года с доказательством Великой теоремы Ферма Мияокой. История повторялась. Специалисты по теории чисел теперь ожидали очередного послания по электронной почте с сообщением о том, что в доказательстве обнаружен невосполнимый пробел. Некоторые математики выразили сомнение в том, что доказательство будет получено за лето, и теперь их пессимизм казался вполне оправданным. Рассказывают, будто профессор Алан Бейкер из Кембриджского университета предложил заключить пари на сто бутылок против одной, что в течение года доказательство Уайлса не будет исправлено. Бейкер отрицает эту историю, но гордо заявляет о том, что выражал «здоровый скептицизм».
Менее чем через шесть месяцев после выступления в Институте Ньютона доказательство Уайлса было повержено в прах. Удовольствие, которое Уайлс получал от работы над доказательством в тайне от всех, когда им двигала страсть и надежда, сменились разочарованием и отчаянием. Уайлс вспоминает о том, как мечта его детства превратилась в кошмар: «Первые семь лет моей работы над проблемой я наслаждался противоборством с труднейшей задачей один на один. Какой бы трудной она ни была, сколь бы непреодолимыми ни казались препятствия, я занимался решением любимой задачи. Она была страстью моего детства, я просто не мог отделаться от нее, не мог оставить ни на миг. Затем мне пришлось говорить о Великой теореме Ферма публично — и это вызвало у меня чувство потери. Я испытывал смешанные чувства. Было чудесно видеть, как другие люди реагируют на доказательство, как приводимые аргументы полностью изменяют все направление математики, но в то же время проблема утратила для меня «личное» обаяние. Теперь проблема была открыта всему миру, и я лишился возможности приватно размышлять над ней. И когда с доказательством возникли трудности, десятки, сотни, тысячи людей жаждали отвлечь меня от дела. Заниматься математикой на виду у всего мира не в моем вкусе, и публичная работа над исправлением доказательства не доставляла мне ни малейшего удовольствия».
Специалисты по теории чисел во всем мире сочувствовали Уайлсу, оказавшемуся в весьма затруднительном положении. Кен Рибет сам пережил подобный кошмар восемью годами раньше, когда пытался доказать существование связи между гипотезой Таниямы-Шимуры и Великой теоремой Ферма. «Я выступал с докладом о доказательстве в Институте математических исследований в Беркли, и кто-то из присутствовавших спросил: «Минутку, а откуда Вам известно, что то-то и то-то правильно?» Я немедленно ответил, объяснив свое рассуждение, но мне возразили, сославшись на то, что приведенные мной доводы в данном случае не применимы. Меня охватил панический страх. Я покрылся холодным потом и почувствовал себя весьма неуютно. Затем мне пришло в голову, как можно было бы доказать свою правоту: единственная возможность состояла в том, чтобы обратиться к какой-нибудь фундаментальной работе по данному вопросу и посмотреть, как автор поступает в аналогичной ситуации. Я заглянул в соответствующую работу и убедился в том, что мой метод действительно применим в рассматриваемом случае, и через день-другой все встало на место. В следующей лекции я смог привести обоснование того места в предыдущей лекции, которое вызвало сомнение. Но невозможно было избавиться от страха, что стоит объявить о чем-то важном, как сразу же обнаружится какая-нибудь фундаментальная ошибка.
Если вы обнаружили в рукописи ошибку, то дальнейшие события могут развиваться по двум сценариям. Иногда вас не покидает уверенность в том, что в основном все сделано правильно и доказательство может быть легко исправлено. Иногда возникает противоположная ситуация. У вас появляется весьма тревожное губительное чувство, когда вы осознаете, что допустили фундаментальную ошибку, исправить которую невозможно. Бывает и так, что обнаруженная в доказательстве прореха становится настолько широкой, что теорема полностью распадается, и чем больше вы пытаетесь залатать отверстие, тем сильнее увязаете. Но в доказательстве Уайлса каждая глава сама по себе была значительным математическим исследованием. Рукопись явилась результатом семилетней работы и, по сути, представляла собой несколько важных статей, сшитых в единое целое, и каждая из этих статей представляла огромный интерес. Ошибка вкралась только в одну из этих статей — в главу 3, но даже если изъять главу 3, то остальная часть работы Уайлса просто великолепна».
Но без главы 3 не было доказательства гипотезы Таниямы-Шимуры и, следовательно, доказательства Великой теоремы Ферма. Математическое сообщество переживало глубокое разочарование: доказательство двух великих проблем было в опасности. Кроме того, за шесть месяцев ожидания никто, кроме Уайлса и рецензентов, так и не получил доступа к рукописи. Все громче раздавались призывы к большей открытости, чтобы каждый желающий мог сам увидеть детали ошибок. Высказывалась надежда на то, что кому-нибудь, возможно, удастся обнаружить то, что ускользнуло от Уайлса, и восполнить пробел в доказательстве. Некоторые математики утверждали, что доказательство Уайлса представляет слишком большую ценность, чтобы оставлять его в руках одного человека. Специалисты по теории чисел стали мишенью насмешек со стороны остальных математиков, которые саркастически осведомлялись у них, знают ли они вообще что-либо о предложенном доказательстве. То, что должно было стать моментом величайшего торжества и гордости в истории математики, превратилось в предмет насмешек.
Но, несмотря ни на что, Уайлс отказывался публиковать свою рукопись. После семи лет упорных усилий, ему вовсе не улыбалось отойти от проблемы и наблюдать, как кто-то другой завершит доказательство и похитит его славу. Победителем станет не тот, кто проделал большую часть работы, а тот, кто сделает заключительный шаг и даст миру законченное доказательство. Уайлс знал, что если рукопись будет опубликована с ошибкой в доказательстве, то он немедленно будет погребен под ворохом вопросов и просьб пояснить ту или иную деталь, и это окончательно отвлечет его от дела и разрушит надежды на то, что ему самому удастся исправить доказательство.
Уайлс попытался вернуться в то состояние изоляции, которое позволило ему создать первоначальный вариант доказательства. Он возобновил интенсивные занятия в кабинете на мансарде своего дома. Время от времени он, как в добрые старые времена, совершал пешие прогулки к озеру. Но теперь любители бега трусцой, велосипедисты и гребцы, которые прежде приветствовали его коротким взмахом руки, останавливались и спрашивали, удалось ли продвинуться в восполнении пробела. Портреты Уайлса появились на первых полосах газет, статья о нем была напечатана в журнале «People», интервью с Уайлсом передавалось по CNN. И хотя за прошедшее лето Уайлс стал математической знаменитостью мирового масштаба, его имидж уже померк.
Между тем по математическому факультету Принстона продолжали циркулировать слухи. Профессор Джон Конвей вспоминает атмосферу, царившую тогда в чайной комнате математического факультета: «В три часа мы собирались на чай и налегали на булочки. Иногда мы обсуждали математические проблемы, иногда — суд над О. Дж. Симпсоном, иногда судачили о том, как продвигалась работа у Эндрю. Поскольку никому из нас и в голову не приходило пойти и спросить у него, как идут дела с доказательством, мы вели себя, как кремлинологи. Кто-нибудь заявлял: "Сегодня утром я встретил Эндрю". "Он улыбался?" — спрашивал другой коллега. "Улыбался, но вид у него был не слишком радостный". О том, как продвигается исправление доказательства, мы могли судить только по выражению лица Эндрю».
Кошмарное сообщение по электронной почте
Зима вступила в свои права. Надежды на прорыв окончательно угасали, и все больше математиков высказывали мнение, что Уайлс должен опубликовать рукопись. Слухи не стихали, и в одной из газетных статей появилось сообщение о том, будто Уайлс отказался от попыток восполнить пробел в своем доказательстве и признал, что оно обладает неисправимым дефектом. И хотя автор заметки заведомо преувеличил, не подлежало сомнению, что Уайлс испробовал несколько вариантов в надежде исправить замеченную ошибку и пока не видел новых возможных путей, ведущих к решению.
Уайлс признался Питеру Сарнаку, что ситуация становится отчаянной и он готов признать поражение. Сарнак был склонен думать, что трудности Уайлса отчасти обусловлены его одиночеством: у Уайлса не было надежного человека, с которым он мог бы «перебрасываться» идеями, который вдохновлял бы Уайлса исследовать не столь прямые подходы. Сарнак посоветовал Уайлсу довериться кому-нибудь и попытаться еще раз восполнить пробел. Уайлсу был необходим специалист, свободно владеющий методом Колывагина-Флаха и способный, к тому же, хранить тайну. По зрелом размышлении Уайлс решил пригласить к себе в Принстон для совместной работы Ричарда Тейлора, ученого из Кембриджского университета.
Тейлор был одним из рецензентов, проверявших доказательство. Кроме того, он был бывшим аспирантом Уайлса, поэтому Уайлс питал к нему двойное доверие. В прошлом году Тейлор присутствовал на лекции Уайлса в Институте сэра Исаака Ньютона. Теперь ему предстояло помочь в спасении доказательства, которое оказалось небезупречным.
В январе Уайлс с помощью Тейлора снова без устали исследовал метод Колывагина-Флаха, пытаясь найти выход из создавшегося затруднения. Иногда, после нескольких дней упорнейших усилий, Уайлс и Тейлор вступали на новую территорию, но неизбежно возвращались к исходному пункту. Проникая все дальше и дальше вглубь неизвестной территории и возвращаясь каждый раз туда, откуда они выходили, Уайлс и Тейлор осознали, что находятся в самом центре невообразимо огромного лабиринта. Больше всего они боялись, что этот лабиринт бесконечен, что из него нет выхода и они обречены бесцельно блуждать до скончания времени.
Весной 1994 года, когда казалось, что ситуация не может быть хуже, на экраны компьютеров всего мира поступило следующее сообщение по электронной почте:
Дата: 03 апр 1994
Тема: Снова великая теорема Ферма!
Сегодня в доказательстве великой теоремы Ферма произошел поистине поразительный сдвиг. Наум Элькис заявил, что располагает контрпримером. Таким образом, великая теорема Ферма оказалась неверной! Элькис выступил с сообщением о контрпримере сегодня в Институте. Построенное им решение уравнения Ферма имеет невероятно большую простую степень (больше, чем 1020), тем не менее оно представляет собой разновидность точечной конструкции Хенгера в комбинации с весьма остроумным вариантом метода спуска для перехода от модулярных кривых к кривой Ферма. Самая трудная часть задачи заключается в том, чтобы показать, что область определения решения (которая априори есть некоторое поле классов колец мнимого квадратичного поля) действительно допускает спуск на Q.
Я не смог проследить за всеми деталями, которые были весьма сложными… Таким образом, есть основания полагать, что гипотеза Таниямы-Шимуры все-таки неверна. По мнению экспертов, гипотезу все еще можно спасти, обобщая понятие автоморфного представления и вводя понятие «аномальных кривых», которое приведет к «квазиавтоморфному представлению».
Анри Дарман
Принстонский университет
Наум Элькис, профессор Гарвардского университета, в 1988 году обнаружил контрпример к гипотезе Эйлера. Теперь Элькис, по-видимому, нашел контрпример, опровергающий Великую теорему Ферма. Для Уайлса это был весьма чувствительный удар: причина, по которой ему никак не удавалось исправить доказательство заключалась в том, что так называемая ошибка была прямым следствием ложности Великой теоремы Ферма. Для математического сообщества в целом удар был еще сильнее, так как если Великая теорема Ферма неверна, то, как показал Фрей, это привело бы к эллиптической кривой, которой не соответствует никакая модулярная форма, а это прямо противоречит гипотезе Таниямы-Шимуры. Тем самым, можно было утверждать, что Элькис нашел не только контрпример Великой теореме Ферма, но и к гипотезе Таниямы-Шимуры.
Кончина гипотезы Таниямы-Шимуры имела бы разрушительные последствия для всей теории чисел, поскольку на протяжении двух десятилетий математики молчаливо предполагали, что гипотеза Таниямы-Шимуры верна. В главе 5 мы упоминали о том, что математики опубликовали десятки доказательств различных теорем, начинавшихся со слов: «Предположим, что гипотеза Таниямы-Шимуры верна…», но если Элькис доказал, что это предположение неверно, это означало бы, что все опиравшиеся на него теоремы рухнули. Математики немедленно стали требовать более подробной информации и забросали Элькиса вопросами, но ответов и разъяснений не последовало. Никаких подробностей относительно якобы построенного им контрпримера никому разузнать не удалось.
Через день или два всеобщей сумятицы некоторые математики взглянули на сообщения о контрпримере Элькиса еще раз и поняли, что, хотя сообщение было датировано 2 или 3 апреля, объяснялось это тем, что электронная почта была получена из вторых или третьих рук. Первоначально сообщение было датировано 1 апреля: сообщение было шуткой канадского специалиста по теории чисел Анри Дармана. Розыгрыш стал уроком для тех, кто распространял слухи о Великой теореме Ферма, и на какое-то время Великую теорему Ферма, Уайлса, Тейлора и доказательство с вкравшейся ошибкой оставили в покое.
В то лето Уайлсу и Тейлору не удалось продвинуться ни на шаг. После восьми лет непрестанных усилий — несмотря на то, что поиск доказательства стал делом его жизни, Уайлс был на грани того, чтобы признать свое поражение. Он сообщил Тейлору, что не видит смысла продолжать их совместные усилия по исправлению доказательства. Тейлор к тому времени уже принял решение провести сентябрь в Принстоне прежде, чем возвращаться в Кембридж, и поэтому, несмотря на то, что Уайлс пал духом, Тейлор предложил поработать над проблемой еще месяц. Если к концу сентября выяснится, что никаких признаков успеха нет, они публично признают поражение и опубликуют доказательство в том виде, в каком оно есть, чтобы предоставить другим возможность найти и исправить вкравшуюся ошибку.
Подарок ко дню рождения
Хотя сражение, которое Уайлс вел с самой трудной математической проблемой мира, по-видимому, было обречено на поражение, он мог, оглянувшись на семь последних лет, утешить себя сознанием того, что все же он достиг неплохих результатов.
Если не считать заключительной части, связанной с использованием метода Колывагина-Флаха, остальная работа Уайлса сомнений не вызывала. Гипотеза Таниямы-Шимуры и Великая теорема Ферма могли оставаться недоказанными, тем не менее Уайлс обогатил математику целой серией новых методов и стратегий, которые можно было использовать для доказательства других теорем. В том, что Уайлс потерпел неудачу, не было ничего постыдного, и он начал привыкать к такому положению дел.
В качестве слабого утешения Уайлс хотел по крайней мере понять, почему он потерпел поражение. Пока Тейлор еще и еще раз подвергал тщательному анализу альтернативные методы, Уайлс решил посвятить сентябрь изучению метода Колывагина-Флаха, чтобы понять, почему он не работает. Он живо вспоминает те роковые дни: «В понедельник 19 сентября я с утра сидел у себя в кабинете, изучая метод Колывагина-Флаха. Я не надеялся на то, что мне удастся заставить его заработать, но хотел по крайней мере выяснить, почему этот метод не срабатывает. Я понимал, что хватаюсь за соломинку, но хотел до конца разобраться в причинах постигшей меня неудачи. Внезапно, совершенно неожиданно, на меня снизошло озарение. Я понял, что хотя метод Колывагина-Флаха не работал на полную мощность, в нем было все, что необходимо для возможности применения теории Ивасавы, на которую я первоначально опирался. Мне стало ясно, что от метода Колывагина-Флаха я могу взять все необходимое для того, чтобы сделать эффективным мой первоначальный подход трехлетней давности. Так из руин и пепла метода Колывагина-Флаха возникло правильное решение проблемы».
Теория Ивасавы сама по себе была недостаточна. Метод Колывагина-Флаха сам по себе также был недостаточен. Но взятые вместе, они идеально дополняли друг друга. Этот момент, когда на него снизошло прозрение, Уайлс не забудет никогда. Когда он вспоминает те мгновения, картины прошлого оживают настолько ярко, что он едва удерживает слезы: «Решение было неописуемо прекрасно, такое простое и изящное. Я никак не мог взять в толк, почему оно не приходило мне в голову раньше. Не веря самому себе, я минут двадцать молча таращился на него. На следующий день я обошел моих коллег по математическому факультету и пригласил их заглянуть ко мне в кабинет и посмотреть, все ли в порядке с найденным мной накануне решением. С решением все было в порядке. Я был вне себя от возбуждения. Это был самый важный момент за всю мою математическую карьеру. Ничто из того, что мне суждено свершить, не могло сравниться с переживаемым моментом».
Момент действительно был необычайно важным: не только исполнилась мечта детства Уайлса, не только достигнута кульминация восьми лет напряженнейшей работы, но и сам Уайлс, казалось, находившийся на грани поражения, еще раз заявил о себе как о выдающемся математике. Последние четырнадцать месяцев были особенно мучительным, унизительным и отчаянным периодом в его математической карьере. И теперь блестящее озарение положило конец всем страданиям.
«В первый вечер я отправился домой и заснул у себя в кабинете над найденным решением. На следующее утро к 11 часам я убедился, что все в порядке. Тогда я спустился вниз и сказал жене: "Я нашел его! Думаю, что мне удалось найти его". Мое заявление прозвучало так неожиданно, что жена решила, будто я говорю о какой-то детской игрушке. Тогда я объяснил, что мне удалось исправить свое доказательство».
Первая страница доказательства теоремы Ферма, представленного Уайлсом
MODULAR ELLIPTIC CURVES AND FERMAT'S LAST THEOREM / 455
Chapter 1
This chapter is devoted to the study of certain Galois representations. In the first section we introduce and study Mazur's deformation theory and discuss various refinements of it. These refinements will be needed later to make precise the correspondence between the universal deformation rings and the Hecke rings in Chapter 2. The main results needed are Proposition 1.2 which is used to interpret various generalized cotangent spaces as Selmer groups and (1.7) which later will be used to study them. At the end of the section we relate these Selmer groups to ones used in the Bloch—Kato conjecture, but this connection is not needed for the proofs of our main results.
In the second section we extract from the results of Poitou and Tate on Galois cohomology certain general relations between Selmer groups as Σ varies, as well as between Selmer groups and their duals. The most important observation of the third section is Lemma 1.10(i) which guarantees the existence of the special primes used in Chapter 3 and [TW].
1. Deformations of Galois representations
Let p be an odd prime. Let Σ be a finite set of primes including p and let QΣ be the maximal extension of Q unramified outside this set and ∞. Throughout we fix an embedding of Q, and so also of QΣ, in C. We will also fix a choice of decomposition group D q for all primes q in Z. Suppose that k is a finite field of characteristic p and that
(1.1)
ρ0: Gal(QΣ/Q) → GL2(k)
is an irreducible representation. In contrast to the introduction we will assume in the rest of the paper that ρ0 comes with its field of definition k. Suppose further that det ρ0 is odd. In particular this implies that the smallest field of definition for ρ0 is given by the field k0 generated by the traces but we will not assume that k = k0. It also implies that ρ0 is absolutely irreducible. We consider the deformations [ρ] to GL2(A) of ρ0 in the sense of Mazur [Ma1]. Thus if W(k) is the ring of Witt vectors of k, A is to be a complete Noetherian local W(k)-algebra with residue field k and maximal ideal m, and a deformation [ρ] is just a strict equivalence class of homomorphisms ρ: Gal(QΣ/Q) → GL2(A) such that ρ mod m = ρ0, two such homomorphisms being called strictly equivalent if one can be brought to the other by conjugation by an element of ker: GL2(A) → GL2(k). We often simply write ρ instead of [ρ] for the equivalence class.
В следующем месяце Уайлс, наконец, смог исполнить обещание, которое ему не удалось исполнить в прошлом году. «Приближался день рождения Нады, и я вспомнил, что в прошлый раз я не смог подарить ей то, что она хотела получить в подарок. На этот раз, через полминуты после начала праздничного обеда по случаю ее дня рождения, я подарил Наде рукопись полного доказательства. Думаю, что этому подарку она была рада больше, чем любому другому, который я когда-либо дарил ей».
Дата: 25 окт 1994 11:04:11
Тема: Последние новости о великой теореме Ферма
Этим утром поступили две рукописи: «Модулярные эллиптические кривые и великая теорема Ферма» Эндрю Уайлса и «Теоретико-кольцевые свойства некоторых алгебр Гекке» Ричарда Тейлора и Эндрю Уайлса.
Первая из них (большая) содержит среди прочего доказательство великой теоремы Ферма, использующее в одном решающем шаге вторую (малую).
Как известно большинству из вас, в доказательстве, изложенном в кембриджских докладах Уайлса, оказался серьезный пробел, а именно: построение эйлеровской системы. После безуспешных попыток исправить эту конструкцию, Уайлс обратился к другим подходам, которые он использовал раньше, но от которых отказался в пользу идеи эйлеровской системы. Уайлсу удалось восполнить пробел в своем доказательстве в предположении, что некоторые алгебры Гекке представляют собой локально полные пересечения. Эта и остальные идеи, бегло описанные в кембриджских докладах Уайлса, изложены в первой рукописи. В совместной работе Тейлор и Уайлс (вторая статья) установили необходимое свойство алгебр Гекке. Общий ход доказательства аналогичен намеченному Уайлсом в его кембриджских докладах. Новый подход гораздо проще и короче первоначального, поскольку изъята система Эйлера. (После изучения обеих работ Фалтингсу удалось еще более упростить эту часть доказательства.) Варианты представленных рукописей попали в руки небольшого числа людей (в некоторых случаях) в течение нескольких недель. И хотя разумно сохранять осторожность, основания для оптимизма заведомо имеются.
Карл Рубин
Университет штата Огайо