Приложение 1. Доказательство теоремы Пифагора
Цель доказательства — убедиться в том, что теорема Пифагора верна для всех прямоугольных треугольников. Треугольник, изображенный на рисунке слева, может быть любым прямоугольным треугольником, так как длины его сторон не указаны, а обозначены буквами x, y и z. Справа из четырех одинаковых прямоугольных треугольников и наклоненного квадрата составлен квадрат больших размеров. Площадь большего квадрата — ключ к доказательству.
Площадь большого квадрата можно вычислить двумя способами.
1-й способ. Измеряем площадь большого квадрата как единой фигуры. Длина каждой стороны равна x+y. Следовательно, площадь большого квадрата равна (x+y)2.
2-й способ. Измеряем площадь каждого элемента большого квадрата. Площадь каждого треугольника равна xy/2. Площадь наклонного квадрата равна z2. Следовательно, площадь большого квадрата равна 4 × (площадь каждого треугольника) + (площадь наклонного квадрата) = 4·xy/2 + z2. 1-й и 2-й способы приводят к двум различным выражениям. Оба выражения должны быть равны, так как они представляют различные записи одной и той же площади. Следовательно,
(x + y) 2 = 4·xy/2 + z 2 .
Раскроем скобки и упростим полученные выражения:
x 2 + 2xy + y 2 = 2xy + z 2 .
Члены 2xy, стоящие в левой и правой частях равенства, взаимно уничтожаются, и мы получаем
x 2 + y 2 = z 2 .
Это и есть теорема Пифагора!
Приведенное доказательство остается в силе для любых прямоугольных треугольников. Длины сторон треугольника в нашем доказательстве обозначены буквами x, y и z, которые могут быть длинами сторон любого прямоугольного треугольника.
Приложение 2. Доказательство Евклида иррациональности числа √2
Цель Евклида состояла в доказательстве того, что число √2 не представимо в виде дроби. Поскольку Евклид использовал доказательство от противного, первый шаг состоял в предположении, что верно противоположное утверждение, т. е. что число √2 представимо в виде некоторой неизвестной дроби. Запишем эту дробь в виде p/q, где p и q — два целых числа.
Прежде чем приступать к самому доказательству, необходимо напомнить некоторые основные свойства дробей и четных чисел.
1) Если взять любое число и умножить его на 2, то произведение должно быть четным. По существу, это определение четного числа.
2) Если квадрат некоторого числа четен, то и само число должно быть четным.
3) Наконец, дроби можно сокращать: 16/24 это то же самое число, что и 8/12. Чтобы убедиться в этом разделите числитель и знаменатель дроби 16/24 на общий множитель 2. Кроме того, число 8/12 это же самое, что и 4/6, а 4/6 это же самое, что и 2/3. Дробь 2/3 не подлежит дальнейшему сокращению, так как 2 и 3 не имеют общих множителей. Дробь невозможно сокращать до бесконечности.
Напомним, что по мнению Евклида число √2 не представимо в виде дроби. Но поскольку Евклид использовал доказательство от противного, он начал с предположения, что дробь p/q, равная числу √2, существует, а затем исследовал, к каким последствиям приводит такое предположение:
√2 = p/q.
Возводя обе части равенства в квадрат, получаем
2 = p2/q2.
После несложного преобразования запишем это равенство в виде
2q 2 = p 2 .
Из 1) мы знаем, что число p2 должно быть четным. Кроме того, из 2) нам известно, что число p также должно быть четным. Но если p четно, то, как следует из 1), его можно записать в виде 2m, где m — некоторое другое целое число. Подставляя p = 2m в равенство для p2, получаем
2q 2 = (2m) 2 = 4m 2 .
Сокращаем правую и левую части равенства на 2:
q 2 = 2m 2 .
Рассуждая так же, как прежде, заключаем, что число q2 должно быть четным. Значит, и само число q должно быть четным. Но если это так, то q можно записать в виде q = 2n, где n — некоторое другое целое число. Возвращаясь к исходной записи числа √2, получаем:
√2 = p/q = 2m/2n.
Дробь 2m/2n можно сократить, разделив числитель и знаменатель на 2:
√2 = m/n.
Мы получаем дробь m/n, которая проще, чем p/q (имеет меньший числитель и знаменатель). Теперь мы как бы снова оказались находимся на исходной позиции, и, проделав с дробью m/n все, что мы проделали с дробью p/qn, получим в результате еще более простую дробь, например, g/h. Проделав с этой дробью тоже самое, приведем ее к еще более простой дроби t/f, и т. д. Аналогичную процедуру можно проделывать бесконечное число раз. Но из 3) мы знаем, что дробь невозможно упрощать бесконечно — всегда существует простейшая дробь. Но наша исходная гипотетическая дробь p/q, насколько можно судить, не подчиняется этому правилу. Следовательно мы получили противоречие. Итак, мы можем утверждать, что число √2 не представимо в виде дроби, а это означает оно является иррациональным числом.
Приложение 3. Загадка о возрасте Диофанта
Обозначим продолжительность жизни Диофанта через L. Из загадки нам известно, как протекала жизнь Диофанта: 1/6 жизни, т. е. L/6, пришлась на его детство; L/12 — на юношеские годы; L/7 прошла прежде, чем он женился; через 5 лет у него родился сын; сын прожил L/2 жизни отца; 4 года Диофант оплакивал смерть сына прежде, чем умер.
Таким образом, продолжительность жизни Диофанта L можно записать в виде суммы:
L = L/6 + L/12 + L/7 + 5 + L/2 + 4.
Отсюда L = 84. Итак, Диофант умер в возрасте 84 лет.
Приложение 4. Задача Баше о наборе гирь
Чтобы взвесить любое целое число килограммов от 1 до 40, по мнению большинства людей необходимо иметь 6 гирь: 1, 2, 4, 8, 16 и 32 кг. Действительно, такой набор гирь позволяет взвесить любой груз от 1 до 40 кг, помещая его на одну чашу весов и ставя на другую следующие комбинации гирь:
1 кг = 1, 2 кг = 2, 3 кг = 2 + 1, 4 кг = 4, …, 5 кг = 4 + 1, …, 40 кг = 32 + 8.
Но грузы можно взвешивать и по-другому, а именно: располагая гири на обеих чашах весов, т. е. не только на чаше, свободной в начале взвешивания, но и на чаше с грузом. При таком способе взвешивания Баше понадобились только 4 гири: 1, 3, 9 и 27 кг. Гиря, помещаемая на одну чашу с грузом, как бы приобретает отрицательный вес. Способ Баше позволяет взвесить любой груз от 1 до 40 кг, ставя гири на обе чаши весов в следующих комбинациях:
1 кг = 1, 2 кг = 3–1, 3 кг = 3, 4 кг = 3 + 1, 5 кг = 9–3 — 1, …, 40 кг = 27 + 9 + 3 + 1.
Приложение 5. Доказательство Евклида существования бесконечного числа пифагоровых троек
Пифагоровой тройкой называется такой набор из трех целых чисел, что сумма квадратов двух из них равна квадрату третьего числа. Евклид сумел доказать, что существует бесконечно много таких пифагоровых троек.
Предложенное Евклидом доказательство начинается с наблюдения: разность квадратов последовательных целых чисел всегда равна какому-нибудь нечетному числу:
Прибавив каждое из бесконечного множества нечетных чисел к соответствующему квадрату, мы получим другой квадрат. Некоторые нечетные числа, составляющие часть всех нечетных чисел, сами являются квадратами (например, 32, 52, 72 и т. д.). Следовательно, существует бесконечно много нечетных квадратов, которые можно прибавить к квадрату и получить другой квадрат. Иначе говоря, существует бесконечно много пифагоровых троек.
Приложение 6. Доказательство гипотезы о трех точках
Гипотеза о трех точках утверждает, что невозможно построить точную диаграмму так, чтобы на каждой прямой было по крайней мере три точки. Хотя это доказательство требует минимальных познаний в математике, оно опирается на некоторую геометрическую «гимнастику», и поэтому следует тщательно продумать каждый его шаг.
Начнем с произвольно расположенных точек. Проведем через каждую точку прямые, соединяющие ее со всеми остальными точками. Затем для каждой точки измерим расстояние, отделяющие ее от ближайшей прямой, и найдем ту из точек, которая ближе, чем все остальные, находится от некоторой прямой.
На рисунке внизу изображена такая точка D, которую от прямой L отделяет самое короткое расстояние. На рисунке это расстояние показано штриховой линией. Оно короче, чем расстояние, отделяющее любую другую точку от ближайшей к ней линии. Теперь можно показать, что на прямой L всегда лежат только две точки и что, следовательно, гипотеза верна, т. е. невозможно построить точечную диаграмму так, чтобы на каждой прямой лежали три точки.
Чтобы показать, что на прямой L должны лежать две точки, рассмотрим, что случилось бы, если бы на ней оказалось третья точка. Если бы третья точка D A лежала на прямой L вне двух точек, через которые она проходит, то расстояние, показанное пунктирной линией, было бы короче расстояния, показанного штриховой линией. Между тем это расстояние по предположению, наименьшее из всех кратчайших расстояний, отделяющих точку диаграммы от линии. Следовательно, точка D A существовать не может.
Аналогично, если бы третья точка D B оказалась на прямой между двумя точками, то расстояние, показанное пунктиром, оказалось бы короче расстояния, показанного штрихом, по предположению наименьшего из кратчайших расстояний от точки диаграммы до прямой.
Следовательно, для каждой конфигурации всегда существует по крайней мере эта прямая, которой принадлежат только две точки диаграммы, и гипотеза верна.
Приложение 7. Пример неправильного доказательства
Приведем классический пример того, как легко, начав с очень простого утверждения и сделав всего лишь несколько, казалось бы, прямых и вполне логичных шагов, показать, 2=1.
Начнем с невинного утверждения о том, что
a = b.
Умножив обе части равенства на a, получим:
a 2 = ab .
Добавив к обеим частям равенства по a2–2ab:
a 2 + a 2 – 2ab = ab + a 2 – 2ab .
Это равенство можно упростить:
2(a 2 — ab) = a 2 — ab .
Наконец, сокращая это выражение на a2-ab получаем требуемое равенство 2=1.
Исходное утверждение казалось совершенно безвредным (и на самом деле оно не таит в себе ничего плохого), но, производя шаг за шагом преобразования равенства a=b, мы допустили маленькую, но роковую ошибку, которая и привела нас к противоречию. Эту ошибку мы допустили, производя последнее преобразование, когда разделили обе части равенства на a2-ab. Из исходного утверждения нам известно, что a=b. Следовательно, деление на a2-ab эквивалентно делению на нуль.
Такого рода тонкая ошибка типична для просчетов, допущенных многими соискателями премии Вольфскеля.
Приложение 8. Аксиомы арифметики
Величественное здание арифметики опирается на следующие аксиомы.
1. Для любых чисел m и n
m + n = n + m и mn = nm .
2. Для любых чисел m, n и k
( m + n ) + k = m + ( n + k ) и ( mn ) k = m ( nk ).
3. Для любых чисел m, n и k
m ( n + k ) = mn + mk .
4. Существует число 0, такое, что для любого числа n
n + 0 = n .
5. Существует число 1, такое, что для любого числа n
n ·1 = n .
6. Для любого числа n существует другое число k, такое, что
n + k = 0.
7. Для любых чисел m, n и k
если k ≠ 0 и kn = km , то m = n .
Исходя из этих аксиом, можно доказать другие правила арифметики. Например, используя только приведенные выше аксиомы и не прибегая ни к каким другим допущениям, мы можем строго доказать правило, которое кажется очевидным и заключается в следующем:
если m + k = n + k, то m = n.
Прежде всего, пусть
m + k = n + k.
Аксиома 6 гарантирует, что существует число l, такое, что k+l=0, поэтому
(m + k) + l = (n + k) + l.
Но по аксиоме 2
m + (k + l) = n + (k + l).
Принимая во внимание, что k+l=0, получаем:
m + 0 = n + 0.
Аксиома 4 позволяет нам утверждать то, что требовалось доказать, а именно:
m = n.
Приложение 9. Теория игр и труэль
Однажды утром м-р Блэк, м-р Грей и м-р Уайт вздумали решить конфликт труэлью на пистолетах. Стрелять условились до тех пор, пока в живых не останется только один из участников. М-р Блэк стрелял хуже всех. В цель он попадал в среднем лишь один раз из трех. М-р Уайт стрелял лучше всех — без промаха. Чтобы уравнять шансы участников труэли, м-ру Блэку разрешено стрелять первым, за ним должен стрелять м-р Грей (если он останется в живых), затем мог стрелять м-р Уайт (если он еще будет жив). Далее все начиналось снова, и так до тех пор, пока в живых не останется только один из участников труэли. Вопрос: в кого должен выстрелить м-р Блэк, производя свой первый выстрел?
Проанализируем выбор цели, который предстоит сделать мистеру Блэку. Во-первых, если мистер Блэк стреляет в мистера Грея и попадает в цель, то право следующего выстрела перейдет к мистеру Уайту. У мистера Уайта останется единственный противник — мистер Блэк, а поскольку мистер Уайт стреляет без промаха, то мистер Блэк может считать себя покойником.
Для мистера Блэка лучше, если он прицелится в мистера Уайта. Если мистер Блэк попадает в цель, то право следующего выстрела перейдет к мистеру Грею. Мистер Грей попадает в цель только в двух случаях из трех, поэтому у мистера Блэка есть шанс остаться в живых, произвести ответный выстрел в мистера Грея и, возможно, выиграть труэль.
На первый взгляд кажется, что мистеру Блэку следует остановить свой выбор на втором варианте труэли. Однако существует третий, еще лучший выбор. Мистер Блэк может выстрелить в воздух. Право следующего выстрела переходит к мистеру Грею, который стреляет в мистера Уайта как более опасного оппонента. Если мистер Уайт остается в живых, то он стреляет в мистера Грея как более опасного противника. Стреляя в воздух, мистер Блэк предоставляет мистеру Грею исключить мистера Уайта.
Третий вариант — наилучшая стратегия для мистера Блэка. Мистер Грей или мистер Уайт в конечном счете погибает, после чего мистер Блэк стреляет в того из них, кто остается жив. Выстрелом в воздух мистер Блэк изменяет ситуацию: вместо первого выстрела в труэли он производит первый выстрел в дуэли.
Приложение 10. Пример доказательства по индукции
В математике важно иметь точные формулы, позволяющие вычислять сумму различных последовательностей чисел. В данном случае мы хотим вывести формулу, дающую сумму первых n натуральных чисел.
Например, «сумма» всего лишь одного первого натурального числа 1 равна 1; сумма двух первых натуральных чисел 1+2 равна 3, сумма первых трех натуральных чисел 1+2+3 равна 6, сумма первых четырех натуральных чисел 1+2+3+4 равна 10 и т. д.
Возможно, что требуемая формула имеет вид
Σ(n) = ½·n(n + 1).
Иначе говоря, если требуется найти сумму n первых натуральных чисел, то нужно просто подставить число n в приведенную выше формулу и получить ответ.
Доказательство по индукции позволяет убедиться в том, что эта формула дает правильный ответ при любом натуральном числе от 1 до бесконечности. Первый шаг состоит в том, чтобы показать, что формула работает в первом случае, при n=1. В этом нетрудно убедиться непосредственно, так как мы знаем, что сумма, состоящая из одного-единственного слагаемого, числа 1, равна 1. Подставляя n=1 в нашу формулу убеждаемся в том, что она дает правильный результат:
Σ(1) = ½·1·(1 + 1).
Следующий шаг в доказательстве по индукции заключается в том, чтобы показать, что если формула верна при каком-то значении n, то она должна быть верна и при n+1. Если
Σ(n) = ½·n(n + 1).
то
Σ(n + 1) = Σ(n) + (n + 1) = ½·n(n + 1) + (n + 1).
После преобразования членов в правой части получаем
Σ(n + 1) = ½·(n + 1)[(n + 1) + 1].
Важно отметить, что последняя формула «устроена» точно так же, как исходная формула с той лишь разницей, что там, где в исходной формуле стоит n, в новой формуле стоит n+1. Иначе говоря, если формула верна для n, то она должна быть верна и для n+1. Доказательство по индукции завершено.