Рассмотрим внимательно, как изменяется давление газа. На каждый градус понижения температуры приходится 1/273 часть давления. На десять градусов мороза отодвинулись мы от нуля Цельсия — на 10/273 упало давление. Ну что ж, пойдем дальше. На бумаге ведь понижать температуру легко. При — 200 °C от первоначального давления останется только 73/273. Это совсем немного.

А что будет при температуре минус 273 °C? Арифметика показывает — давление обратится в нуль. Давление газа полностью пропадет.

Но что это означает? Давление газа — удары его молекул о стенки сосуда. Выходит, при абсолютном нуле температуры молекулы должны замереть на месте. Покоящаяся молекула?

Этого не может быть! Движение — неотъемлемое свойство молекул, свойство материи.

Не могут молекулы остановиться. Выходит, невозможно достичь и такой температуры?

Да, именно так! Минус 273 градуса Цельсия или, точнее, минус 273,16 — предел понижения температур, абсолютный нуль. Более низких температур просто не существует.

Вот и добрались мы до абсолютного нуля.

Эту величину ученые получили не сразу. Не сразу вслед за открытием газовых законов взялись они за арифметические подсчеты, которые мы сделали с такой легкостью. Интереснее другое. Задолго до работ французского ученого Михайло Васильевич Ломоносов утверждал, что температурная шкала должна быть ограничена снизу, что понижать температуру безгранично нельзя. Утверждал он это, исходя из того, что существуют молекулы, что они движутся и иными быть не могут.

Ломоносов, по сути дела, предсказал появление большой области физики — кинетической теории материи. У него не было опытных данных — многие эксперименты появились сто лет спустя.

Но гениальный ученый смотрел вперед, далеко обгоняя свое время.

Ведь в конце концов действительно дело не в арифметике. Раз скорость движения молекул падает при охлаждении — должен быть предел, так как остановиться, замереть молекулы не могут.

Кажется, простой вывод. Как будто все ясно и так. А между тем надо было быть гениальным Ломоносовым, чтобы утверждать это в конце XVIII века, когда наука только еще становилась на ноги, когда мрак средневековья сменился узенькой полоской неяркого света. И главное — то, что Ломоносов дал представление об абсолютном нуле не из арифметических подсчетов, а используя глубокие представления о строении мира.

Гений выше других на много голов и видит он далеко вперед!

Однако предвидения Ломоносова стали законами физики лишь сто лет спустя.

Сразу же после Гей-Люссака за газы взялся английский ученый Уильям Томсон. Он, можно сказать, окончательно разделался с абсолютным нулем.

Томсон известен больше под другой фамилией, так как за научные заслуги ему был пожалован титул лорда Кельвина. Английский ученый, в частности, предложил новую шкалу для измерения температур. Она так и называется теперь: абсолютная шкала температур, или шкала Кельвина. Обозначаются градусы Кельвина буквой «К». Например, 20° К — двадцать градусов по шкале Кельвина. Удобна эта шкала, между прочим, тем, что у нее нет отрицательных и положительных температур. Все температуры — положительные, так как отсчитываются они от абсолютного нуля. Абсолютный нуль — нуль термометра Кельвина. Что касается значения одного градуса шкалы Кельвина, то оно совпадает с привычной нам шкалой Цельсия. Там тоже две опорные точки: замерзание воды и кипение ее. Расстояние между ними Кельвин разбил на 100 частей. И отложил 273 такие части вниз от бывшего нуля Цельсия — точки замерзания воды. Тут он и поставил значок «0». Конечно, сделал он это мысленно, на бумаге. В действительности в стране сверххолода обычным термометром ничего не сделаешь. И ртуть и спирт замерзнут. Измерение сверхнизких температур — дело очень хитрое и тонкое.

Сейчас во всех странах мира принята система единиц «СИ». Тут и знакомый нам метр, и секунды, и ампер, и ом.

А вот температуру эта стройная система единиц разрешает измерять в двух шкалах. Шкала Кельвина основная. Но можно пользоваться и термометром Цельсия. Ведь разница между ними лишь в расположении нуля.

От температуры Кельвина, от температуры абсолютной легко перейти к привычной нам шкале Цельсия, и наоборот.

Вот, например, водород превращается в жидкость и кипит при — 252 °C. Сколько это будет по Кельвину?

— 252 + 273 = 21° К.

Можно произвести и обратный подсчет.

21° К = 21 — 273 = — 252 °C.

Абсолютная шкала температур очень удобна. Но применяется она в основном, когда дело имеют с очень низкими температурами. А в наших обычных земных условиях немного смешно говорить, скажем, что температура 293 градуса. А на самом деле это наши 20 градусов Цельсия!

Не так уж и жарко!

Зато там, где пока что оперируют большими минусовыми температурами, конечно, удобнее вести более простой счет.

Но дело не только в этой простоте. Существуют серьезные научные основания, для того чтобы считать шкалу Кельвина самой удобной и самой строгой с точки зрения науки.

Так и будем знать.

Вот теперь мы познакомились с абсолютным нулем. И можно начать главное, для чего мы и затеяли этот разговор. Можно начать путешествие к абсолютному нулю.

Но наше путешествие будет необычным. Мы не просто собираемся познакомиться с чудесами сверххолода, побывать где-то рядом с абсолютным нулем. Нет, мы хотим еще научиться понижать температуру.

Правда, организовать получение сверххолода «на дому» вряд ли удастся. Но как интересно узнать о работе фабрик жидкого воздуха, холодильных машин, необычных установок, с помощью которых можно совсем близко приблизиться к абсолютному нулю.

Значит, решено. Едем вниз по шкале температур от нуля Цельсия к нулю абсолютному.

На нашем пути будут остановки. Мы посмотрим, как работают всевозможные холодильные машины. Как различные вещества преобразуются в холоде. А потом снова вниз по шкале, к абсолютному нулю!

Но сначала еще немного физики.