очень сухо сообщающая читателю, что такое «интервал» и преобразование Лоренца. Прочитав эту главу до конца, можно также узнать, как своеобразна в теории Эйнштейна формула для сложения скоростей

Эйнштейн

(«удивительные» выводы теории)

Несколько упрощая, можно заявить: вся математическая сторона теории Эйнштейна основана на одном факте — инвариантности интервала.

Что такое «интервал» и его «инвариантность», сейчас скажем. Правда, в нашей беседе значение понятия интервала не будет раскрыто, и, уверяя читателя, что это очень важно, автор напоминает человека, демонстрирующего фотографию тигра, чтобы доказать, какой это страшный зверь. У собеседника же всегда останется смутное подозрение, что перед ним просто увеличенный портрет котенка. Тем не менее от соблазна продемонстрировать фото все же трудно удержаться…

Пусть произошли два каких-то события А и В.

Пусть координаты этих событий, измеренные в определенной инерциальной системе отсчета K, — xA; yA; zA и xB; yB; zB.

Пусть, наконец, определенные в той же инерциальной системе моменты времени, когда случились эти события, — tA и tB.

Тогда интервал между этими событиями определяется соотношением:

S 2 AB  =  c 2 ( t B  –  t A ) 2  – ( x B  –  x A ) 2  – ( y B  –  y A ) 2  – ( z B  –  z A ) 2 .

И эта величина обладает замечательным свойством.

Допустим, что наши события А и В рассматривают из другой инерциальной системы отсчета K1. Обозначим координаты событий в этой новой системе x1A; y1A; z1A и x1B; y1B; z1B, а моменты времени, когда произошли события, — t1A и t1B. Для наглядности снова представим некую многострадальную железную дорогу — такую, что система отсчета, связанная с полотном дороги, инерциальна. Допустим, это система К. (Если вспомнить, что система отсчета «Земля», строго говоря, неинерциальная, наш рельсовый путь придется проложить где-то в космосе.)

Пусть по дороге равномерно и прямолинейно идет поезд. Тогда система отсчета, связанная с поездом, тоже инерциальна. Это система K1. Где-то на небосклоне вспыхнули две звезды — это события А и В.

Если наблюдатели на полотне дороги и в поезде отметят координаты событий и моменты, когда они произошли, то окажется, что

SAB = S1AB или c2(tB – tA)2 – (xB – xA)2 – (yB – yA)2 – (zB – zA)2 = c2(t1B – t1A)2 – (x1B – x1A)2 – (y1B – y1A)2 – (z1B – z1A)2.

Интервал между событиями неизменен при переходе от одной инерциальной системы к другой. Иначе говоря — интервал инвариантен.

Предыдущее равенство еще удобнее записать так:

S 2 AB  =  c 2 t 2 AB  –  r 2 AB  =  c 2 ( t 1 AB ) 2  – ( r 1 AB ) 2  = ( S 1 AB ) 2 .

Здесь rAB и r1AB — расстояние между точками, где произошли события A и B в системах K и K1, а tAB и t1AB — соответственно промежутки времени.

Как установили, что интервал остается неизменным, инвариантным при переходе от одной системы к другой?

Инвариантность интервала — просто математическая запись основных положений теории — принцип относительности плюс принцип постоянства скорости света. Как именно доказывается инвариантность интервала, обсуждать не стоит, хотя это и довольно просто. Это вопрос математики, а математика, как говорил А. Н. Крылов, подобно мельнице, перемалывает все, что вы засыплете. Нас же интересует в первую очередь «засыпка».

Из инвариантности интервала немедленно следуют преобразования Лоренца — формулы, позволяющие перейти от одной инерциальной системы отсчета к другой.

Это тоже математика. Опустим вывод преобразования Лоренца и даже скрепя сердце промолчим об удивительно изящной математической трактовке этих преобразований, принадлежащей Минковскому. В конце концов все это относится к работе мельницы, а нам с лихвой хватит попытки разобраться в основных физических выводах теории. Посему все формулы будем принимать на веру.

1. Рассмотрим две инерциальные системы отсчета K и K1, оси которых по направлениям совпадают.

Пусть относительная скорость движения этих систем v направлена вдоль осей x и x 1 . Тогда, зная время и координаты любого события в одной системе отсчета, можем найти время и координаты этого же события в другой системе. А именно:

Как видите, написаны формулы перехода от штрихованной системы к нештрихованной[69]Стоит обратить внимание на то, что формулы Лоренца имеют смысл только, если относительная скорость систем отсчета V  <  C . При V  >  C корень в знаменателе, как легко видеть, — мнимая величина. Впрочем, все это можно было утверждать заранее, так как математический формализм обязан соответствовать физическим предположениям, а, как помните, скоростей больших C , не может быть!
.

Из рисунка видно, что рассматривается случай, когда скорость системы K1 в системе K равна +v.

Теперь, зная координаты и время в системе K1 и использовав наши формулы, сразу можем найти соответствующие координаты и время в системе K.

Чтобы проделать обратный переход, нужно разрешить наши уравнения относительно x1 и t1 (как говорится, «уединить» x1 и t1). Это очень легко сделать чисто формально, но еще проще вспомнить, что ввиду равноправия инерциальных систем формулы перехода от K к K1 и от K1 к K должны иметь тождественный вид.

Учитывая, что скорость движения K относительно K1 равна — v, сразу напишем:

Мы рассмотрели сравнительно простой случай, когда относительная скорость движения систем K к K1 совпадает по направлению с осями x и x1.

В общем случае формулы перехода, естественно, усложняются, но все принципиальные отличия теории Эйнштейна от классической физики полностью выявлены и в частном случае.

Сразу видно, как существенно отличаются преобразования Лоренца от аналогичного преобразования Галилея в классической механике. Однако, кроме различия, есть и значительное сходство.

По этому поводу можно высказать совершенно общее утверждение. Заранее ясно, что в теории Эйнштейна как предельный случай должна заключаться классическая механика. Механика Ньютона многократно оправдывалась при проверке на опыте, и никакая разумная новая теория не может просто ее отбросить. От подобных неприятностей классическую механику метод принципов Ньютона страхует навечно.

Как бы ни изменились принципиальные положения, что бы ни оказалось в дальнейшем, но когда скорости тел малы, любая теория должна давать те же или, точнее, почти те же результаты, что и механика Ньютона. Как приближение к истине законы Ньютона останутся навсегда.

Все, что сказано сейчас о механике Ньютона, можно дословно повторить по отношению к специальной теории относительности. Дальнейшее развитие науки может внести любые изменения. Может произойти все что угодно, но хотя бы как приближение к истине теория Эйнштейна останется в науке навсегда.

Вернемся, однако, к конкретному вопросу. Как можно увидеть, что теория Эйнштейна включает в себя механику Ньютона? В этом легко, например, убедиться при анализе любого вывода теории. Ограничимся только одним примером. Когда v /c  << 1 можно пренебречь членами (v/c)2 и (v2/c2) и формулы преобразования Лоренца переходят в хорошо известные классические формулы преобразования Галилея:

x  =  x 1  +  vt 1 ;

y  =  y 1 ;

z = z 1 ; t = t 1 .

С другой стороны, преобразование Лоренца переходит в преобразование Галилея, если устремить с к бесконечности. Здесь физическое содержание тоже очень прозрачно. Бесконечная скорость распространения сигналов — это гипотеза, как помните, лежит в основе классической физики.

А теперь разрешите совсем маленькую сенсацию.

По существу, наша работа уже почти закончена. Вся специальная теория относительности непосредственно вытекает из двух постулатов, которые мы разобрали в предыдущих главах.

Самое основное изменение, которое вносится в классическую физику, — это изменение понятия времени, или, что то же, изменение понятия одновременности. Сей вопрос также рассмотрен. Мы не касались только одного вывода совершенно принципиального характера — связи между массой и энергией. Но это потом.

Так как математическая часть теории основана целиком на преобразовании Лоренца, которое нами рассмотрено, то все остальное, в том числе сокращение длины и изменение времени, не более чем простые следствия.

Итак, перейдем к рассмотрению частностей с приятным сознанием, что основы уже ясны. Во-первых — закон сложения скоростей.

Постановка вопроса очевидна.

Пусть в инерциальной системе К со скоростью v1 движется некое тело. Пусть далее другое тело движется относительно первого со скоростью v2. Требуется определить скорость второго тела относительно системы K.

Доставив себе удовольствие строгой и общей формулировкой проблемы, вернемся к железной дороге.

Поезд идет по полотну дороги со скоростью v1 относительно полотна. (Конечно, его скорость может быть близка к скорости света.) Некто в поезде по не интересующей нас причине стреляет из ружья, и скорость пули — относительно поезда — v2. Требуется определить скорость пули относительно полотна дороги. (Конечно, и скорость пули v2 тоже может быть близка к скорости света.) Мы ограничимся только тем частным случаем, когда скорости v1 и v2 направлены по одной прямой, но все характерные черты теории относительности великолепно видны и в этом случае.

В классической механике суммарная скорость определялась предельно простым выражением vсум = v1 ± v2 (знак + в том случае, когда стреляют по ходу поезда, и знак –, когда против хода).

По Эйнштейну, закон для определения суммарной скорости другой:

Как видно, если v1 << c и v2 << c, формула Эйнштейна переходит в классическую. (В этом случае можно спокойно пренебречь вторым членом знаменателя по сравнению с единицей.) Если же скорости v1 и v2 сравнимы со скоростью света, тогда формула Эйнштейна становится совершенно отличной от классической.

Лучше всего в этом можно убедиться, положив одну из скоростей (например, v2) равной скорости света. Если помните, мы уже упоминали об этой задаче, обсуждая в XI главе, какова будет относительно полотна дороги скорость светового луча, посланного источником, находящимся на поезде. Легко видеть, что независимо от v1 абсолютная величина суммарной скорости снова равна скорости света.

Теперь можно разбить наши рассуждения в XI главе. Как помните, там, защищая баллистическую гипотезу, мы принимали как самоочевидный факт классическую формулу сложения скоростей.

И вот, как оказывается, именно это и неправильно.

Фронт световой волны, идущей из прожектора поезда, распространяется со скоростью с относительно поезда. Но относительно наблюдателя на земле он распространяется не со скоростью (vпоезда + c), а снова с той же скоростью c.

Для нашего воображения, воспитанного на классической механике, это удивительно. Удивительно, но тем не менее правильно.

Более того, относительная скорость двух фотонов, несущихся навстречу друг другу со скоростью света, снова равна c, а не 2c, как в классической физике[70]Очень несложно убедиться, что задача определения относительной скорости двух тел тождественна отысканию закона сложения скоростей.
.

В механике Эйнштейна скорость света в вакууме представляет барьер, через который невозможно перебраться.