Атомная энергия для военных целей

Смит Генри Деволф

Глава II. Постановка задачи

 

 

ВВЕДЕНИЕ

2.1.Со времени первых открытий, показавших, что при ядерных реакциях выделяются большие количества энергии, и до открытия деления урана, идея использования атомной энергии, или даже создания атомных бомб, время от времени обсуждалась в научных кругах. Открытие деления сделало как будто эту идею более обоснованной, но использование атомной энергии казалось все еще делом отдаленного будущего, и у многих ученых было инстинктивное чувство, что в действительности атомная энергия не сможет когда-либо быть использована. В течение 1939 и 1940 г.г. многие известные ученые в своих публичных выступлениях обращали внимание на громадное количество энергии, заключенной в уране, которую можно было бы использовать как для взрыва, так и для управляемого производства энергии; благодаря этому U-235 приобрел большую известность и стал нарицательным именем больших событий в будущем. Возможность военного применения деления урана привлекла внимание правительства США (см. гл. III). В марте 1939 г. на конференции с представителями Военно-морского министерства Ферми указал на возможность осуществления управляемой реакции при использовании медленных нейтронов и реакции взрывного характера — при использовании быстрых нейтронов. Он подчеркнул, однако, что имеющиеся данные еще недостаточны для точных предсказаний.

2.2. Летом 1940 г. появилась возможность ясно сформулировать задачу, хотя еще невозможно было ответить на отдельные конкретные вопросы или даже решить, будет ли когда-либо осуществлена цепная реакция. В настоящей главе мы осветим состояние проблемы во всей ее полноте. Для большей ясности мы используем некоторые сведения, которые на самом деле были получены позднее.

 

ПРОБЛЕМА ЦЕПНОЙ РЕАКЦИИ

2.3. Принцип действия атомных бомб или силовой установки, использующей деление урана, достаточно прост. Если один нейтрон вызывает деление, которое приводит к освобождению нескольких новых нейтронов, то число делений может чрезвычайно быстро возрасти с выделением огромных количеств энергии (рис. 3). Возможность такого нарастания определяется относительной вероятностью ряда процессов. Нейтроны, освобождаемые в процессе деления, могут вылететь из области пространства, занятой ураном, могут быть захвачены ураном в процессе, приводящем к делению, или же могут быть захвачены посторонними примесями. Таким образом, вопрос о том, будет или не будет развиваться цепная реакция, зависит от результата соревнования между четырьмя процессами:

(1) Вылет нейтронов из урана,(2) захват нейтронов ураном без деления,(3) захват нейтронов примесями.(4) захват нейтронов ураном с делением.

Если потеря нейтронов в первых трех процессах меньше количества нейтронов, освобождаемых в четвертом, то цепная реакция происходит; в противном случае она невозможна. Очевидно, какой-либо из первых трех процессов может иметь такую большую вероятность в данном расположении, что избыток нейтронов, освобождаемых при делении, не в состоянии обеспечить продолжение реакции. Например, в том случае, когда процесс (2) — захват ураном без деления — имеет намного большую вероятность, чем захват с делением, цепная реакция невозможна.

2.4. Дополнительная трудность заключается в том, что естественный уран состоит из трех изотопов: U-234, U-235 и U-238, содержащихся в количествах, приблизительно 0,006, 0,7 и 99,3 % соответственно. Мы уже видели, что вероятности процессов (2) и (4) различны для разных изотопов. Мы видели также, что эти вероятности различны для нейтронов, обладающих различными энергиями.

Рис. 3. Схема цепной реакции деления без учета влияния скоростей нейтронов. В взрывной реакции число нейтронов неограниченно возрастает. В управляемой реакции число нейтронов увеличивается до определенного уровня и затем остается постоянным.

Рис. 4. Схема цепной реакции деления с применением замедлителя для замедления нейтронов до скоростей, при которых они в состоянии вызывать деления.

2.5. Рассмотрим теперь ограничения, налагаемые первыми тремя процессами, и средства, при помощи которых можно уменьшить их влияние.

ВЫЛЕТ НЕЙТРОНОВ ИЗ УРАНА; КРИТИЧЕСКИЕ РАЗМЕРЫ

2.6. Относительное количество нейтронов, которые вылетают из урана, может быть уменьшено изменением размеров и формы. В сфере поверхностные эффекты пропорциональны квадрату, а объемные — кубу радиуса. Вылет нейтронов из урана является поверхностным эффектом, зависящим от величины поверхности; захват с делением происходит во всем объеме, занимаемом материалом, и поэтому является объемным эффектом. Чем больше количество урана, тем меньше, поэтому, вероятность того, что вылет нейтронов из объема урана будет преобладать над захватами с делением и препятствовать цепной реакции. Потеря нейтронов на захваты без деления является объемным эффектом, подобно освобождению нейтронов при захвате с делением, так что увеличение размеров не изменяет их относительной важности.

2.7. Критические размеры устройства, содержащего уран, можно определить как размеры, при которых количество освобождаемых при делении нейтронов в точности равно их потере вследствие вылета и захватов, не сопровождающихся делением. Другими словами, если размеры меньше критических, то, по определению, цепная реакция не может развиться. Принципиально уже в 1940 г. можно было определить критические размеры, однако неточность в определении необходимых для расчета постоянных была практически столь велика, что разные их оценки отличались друг от друга в очень широких пределах. Не была исключена возможность, что критические размеры могли оказаться слишком большими для практических целей. Даже сейчас оценки для проектируемых установок время от времени изменяются в некоторых пределах по мере получения новых данных.

ПРИМЕНЕНИЕ ЗАМЕДЛИТЕЛЯ ДЛЯ УМЕНЬШЕНИЯ ЧИСЛА ЗАХВАТОВ БЕЗ ДЕЛЕНИЯ

2.8. В главе I мы указали, что тепловые нейтроны обладают наибольшей вероятностью производить деление U-235 и что нейтроны, испускаемые в процессе деления, имеют большие скорости.

Разумеется, было бы слишком большим упрощением сказать, что цепная реакция может продолжаться тогда, когда при делении освобождается большее число нейтронов, чем поглощается. В самом деле, вероятности захвата с делением и захвата без деления зависят от скоростей нейтронов. К сожалению, скорость, при которой захват без деления наиболее вероятен, находится между скоростью нейтронов, испускаемых в процессе деления, и скоростью, при которой захват с делением наиболее вероятен.

2.9. В течение нескольких лет до открытия деления общепринятый способ замедления нейтронов состоял в том, что их заставляли пройти через вещество с малым атомным весом, например какой-нибудь из материалов, содержащих водород. Процесс замедления представляет собой процесс упругого соударения частицы, имеющей большую скорость, и частицы, практически находящейся в состоянии покоя. Чем ближе масса нейтрона к массе ударяемой частицы, тем большую долю своей кинетической энергии теряет нейтрон. Поэтому легкие элементы наиболее эффективны в качестве «замедлителей», т. е. веществ, уменьшающих скорость нейтронов.

2.10. Многие физики считали, что можно было бы смешать уран с замедлителем для того, чтобы быстрые нейтроны за время между их освобождением при делении урана и встречей с ядрами урана могли уменьшить свою скорость до значения меньшего, чем скорость, при которой очень велика вероятность захвата без деления. Хороший замедлитель должен обладать малым атомным весом и не иметь тенденции поглощать нейтроны. Литий и бор не удовлетворяют второму требованию. Гелий трудно применить, потому что он является газом и потому что он не образует никаких соединений. Для выбора замедлителя, поэтому, остаются водород, дейтерий, бериллий и углерод. Даже теперь ни одно из этих веществ не может быть исключено. Предложение об использовании графита в качестве замедлителя исходило от Э. Ферми и Л. Сциларда.

ПРИМЕНЕНИЕ РЕШЕТКИ ДЛЯ УМЕНЬШЕНИЯ ЧИСЛА ЗАХВАТОВ БЕЗ ДЕЛЕНИЯ

2.11. Общая схема применения замедлителя, смешанного с ураном, совершенно очевидна. Специальный прием употребления замедлителя был впервые предложен в США, — насколько нам известно, Ферми и Сцилардом. Идея заключалась в применении кусков урана значительных размеров, включенных в виде пространственной решетки в материал замедлителя. Такая система имеет значительные преимущества перед однородной смесью. Когда константы были определены более точно, появилась возможность теоретически вычислить наиболее эффективный тип решетки.

УМЕНЬШЕНИЕ ЧИСЛА ЗАХВАТОВ БЕЗ ДЕЛЕНИЯ ПУТЕМ РАЗДЕЛЕНИЯ ИЗОТОПОВ

2.12. В главе I было установлено, что для нейтронов в определенном диапазоне скоростей (соответствующем энергиям в несколько электрон-вольт) U-238 имеет большое поперечное сечение захвата для образования U-239, но не для деления. Существует также значительная вероятность неупругих (т. е. не приводящих к захвату) столкновений быстрых нейтронов с ядрами U-238. Таким образом присутствие U-238 приводит к уменьшению скорости быстрых нейтронов и к поглощению нейтронов с умеренными скоростями. Хотя случаи захвата без деления ядрами U-235 могут также иметь место, все же очевидно, что если бы мы могли отделить U-235 от U-238 и избавиться от U-238, то нам удалось бы уменьшить число захватов без деления и, таким образом, добиться развития цепной реакции. Вероятность деления U-235 быстрыми нейтронами может оказаться достаточно большой, чтобы сделать ненужным применение замедлителя, коль скоро U-238 удален.

К сожалению, U-235 содержится в природном уране только в отношении приблизительно 1:140, а относительно малое различие масс обоих изотопов затрудняет разделение. В 1940 г. разделение изотопов в большом масштабе было осуществлено только для водорода, массы двух изотопов которого относятся друг к другу, как 1:2. Тем не менее, возможность выделения U-235 из обычного урана была с самого начала признана весьма важной, и разделение изотопов урана стало одним из двух основных направлений приложения усилий в течение последующих пяти лет.

ПРОИЗВОДСТВО И ОЧИСТКА МАТЕРИАЛОВ

2.13. Выше было установлено, что поперечное сечение захвата нейтронов меняется в очень широких пределах у различных веществ.

У некоторых оно очень велико по сравнению с максимальным поперечным сечением урана. Для осуществления цепной реакции необходимо уменьшить захват нейтронов примесями до такого значения, когда он не сможет оказать существенного влияния. Это требует очень тщательной очистки металлического урана и замедлителя. Вычисления показывают, что максимально допустимые концентрации многих элементов-примесей составляют несколько частей на миллион как для урана, так и для замедлителя. Если вспомнить, что до 1940 г. все производство металлического урана в США не превышало нескольких граммов вещества сомнительной чистоты, что все количество добытого в США металлического бериллия достигало лишь нескольких фунтов, что все производство концентрированного дейтерия составляло не более нескольких фунтов и что углерод никогда до этого не производился в тех количествах и с той степенью очистки, какие необходимы для замедлителя, — станет ясным, что проблема производства и очистки материалов была весьма важна.

УПРАВЛЕНИЕ ЦЕПНОЙ РЕАКЦИЕЙ

2.14. Все проблемы, рассмотренные выше, относятся лишь к осуществлению цепной реакции. Если для такой реакции хотят найти целесообразное применение, то нужно уметь управлять ею. Проблема управления ставится по разному, в зависимости от того, что мы хотим получить: постепенное освобождение энергии или взрыв. Непрерывное производство атомной энергии требует проведения цепной реакции на медленных нейтронах в смеси урана и замедлителя, в то время как для атомной бомбы необходима цепная реакция на быстрых нейтронах, которая происходит в U-235 или Pu−239, хотя в них могут иметь место оба типа деления. Казалось правдоподобным, даже в 1940 г., что, применяя вещества, поглощающие нейтроны, удастся управлять цепной реакцией. Казалось также достаточно ясным, хотя и не совсем достоверным, что такая цепная реакция должна быть самоограничивающейся ввиду более низкого значения вероятности захвата, сопровождаемого делением, при достижении высоких температур. Тем не менее, не было исключено, что цепная реакция может выйти из под контроля, и, поэтому, казалось необходимым проведение опытов по цепным реакциям в ненаселенной местности.

ПРАКТИЧЕСКИЕ ПРИМЕНЕНИЯ ЦЕПНОЙ РЕАКЦИИ

2.15. До сих пор мы рассматривали, каким образом можно осуществить ядерную цепную реакцию и управлять ею, не затрагивая вопроса о том, как ее использовать. Технологический разрыв между получением управляемой цепной реакции и использованием ее в качестве мощного источника энергии или взрывчатого вещества подобен разрыву, существовавшему между открытием огня и производством паровозов.

2.16. Несмотря на то, что производство энергии никогда не было главной целью этих работ, достаточное внимание было уделено выяснению главной трудности — установлению режима работы при высокой температуре. Эффективная тепловая машина должна быть не только источником теплоты, но развивать ее при высокой температуре. Проведение цепной реакции при высокой температуре и превращение тепла в полезную работу значительно более трудно, чем проведение цепной реакции при низкой температуре.

2.17. Доказательства возможности осуществления цепной реакции еще недостаточно для уверенности в том, что ядерная энергия будет эффективна в бомбах. Для получения эффективного взрыва необходимо, чтобы цепная реакция развивалась чрезвычайно быстро; в противном случае лишь незначительное количество ядерной энергии будет использовано до того, как бомба разлетится на части и реакция прекратится. Необходимо предотвратить, кроме того, преждевременный взрыв. Эта проблема полной «детонации» была и все еще остается одной из самых трудных проблем при создании высокоэффективной атомной бомбы.

ВОЗМОЖНОСТИ ИСПОЛЬЗОВАНИЯ ПЛУТОНИЯ

2.18. До сих пор рассматривались только возможности применения самого урана. Мы уже упоминали о предположении, что элемент с атомным номером 94 и массой 239, обычно называемый плутонием, мог бы оказаться очень эффективным. Действительно, теперь уже известно, что он по своей ценности приближается к чистому U-235. Мы упоминали о трудности отделения U-235 от более распространенного изотопа U-238. Эти два изотопа в химическом отношении, конечно, тождественны. Однако плутоний, хотя и получается из U-238, является отличным в химическом отношении элементом. Поэтому, если возможен процесс превращения U-238 в плутоний, то химическое отделение плутония от урана может оказаться более практичным, чем разделение изотопов U-235 и U-238.

2.19. Предположим, что удалось создать управляемую цепную реакцию в решетке из обычного урана и замедлителя, например, углерода в виде графита. Тогда, в процессе цепной реакции, при делении U-235 испускаются нейтроны, и многие из них поглощаются U-238. В результате этого образуется U-239, каждый атом которого испускает β-частицу, превращаясь в нептуний (93Np239). Нептуний, в свою очередь, испускает β — частицу, превращаясь в плутоний (94Pu239); этот последний после α-распада снова превращается в U-235, но так медленно, что его можно практически рассматривать, как устойчивый элемент (см. рис. 1). Если после длительного протекания реакции смесь металлов изолировать, то окажется возможным выделить плутоний химическими методами и после очистки употребить его в цепной реакции с делением, имеющей взрывной характер.

ОБОГАЩЕННЫЕ КОТЛЫ

2.20. Мы говорили о трех способах увеличения возможности осуществления цепной реакции: применении замедлителя, получении материалов высокой чистоты, использовании таких специальных материалов, как U-235 или Pu−239. Эти три способа не исключают друг друга, и было предложено много схем с применением небольших количеств выделенных U-235 или Pu−239 в решетках, состоящих в основном из обычного урана или окиси урана и замедлителя или двух различных замедлителей. Эти устройства обычно называются «обогащенными котлами».

 

ПРИМЕНЕНИЕ ТОРИЯ, ПРОТАКТИНИЯ ИЛИ ДРУГИХ МАТЕРИАЛОВ

2.21. Все предыдущие рассуждения концентрировались вокруг того или иного использования урана; однако, известно, что как торий, так и протактиний также подвергаются делению при бомбардировке быстрыми нейтронами. Большим преимуществом урана, по крайней мере для предварительных работ, является его восприимчивость к медленным нейтронам. Другим двум элементам уделялось немного внимания. Протактиний можно исключить, так как он редко встречается в природе. Торий относительно часто встречается, однако и он не имеет явных преимуществ перед ураном.

2.22. Не следует забывать, что теоретически многие ядерные реакции могут быть использованы для получения энергии. В настоящее время мы не можем указать другого пути возбуждения и управления реакциями, помимо применения реакций деления; однако может случиться, что лабораторным путем будет воспроизведена одна из тех реакций синтеза, о которых уже упоминалось, как об источнике солнечной энергии.

 

НЕОБХОДИМЫЕ КОЛИЧЕСТВА МАТЕРИАЛОВ

2.23. Летом 1940 г. невозможно было итти дальше догадок относительно количеств материалов, необходимых для осуществления:

(1) цепной реакции с применением замедлителя,(2) бомбы, основанной на использовании цепной реакции в чистом или по меньшей мере в обогащенном U-235 или плутонии.

В то время в качестве критических размеров бомбы обычно назывались цифры от одного до ста килограммов U-235, который должен был быть выделен из природного урана, взятого в количестве, по крайней мере, в 140 раз большем. Было почти очевидно, что для проведения цепной реакции с медленными нейтронами потребуются тонны урана и замедлителя.

 

ДОСТУПНОСТЬ МАТЕРИАЛОВ

2.24. Данные о составе земной коры указывают на значительное содержание урана и тория (около 4:106 урана и около 12:106 тория по весу). В настоящее время известны залежи урановой руды в Колорадо, в районе Большого Медвежьего озера (Северная Канада), в Иоахимстале (Чехословакия) и в Бельгийском Конго. Известны многие другие месторождения урановой руды, однако их размеры в большинстве случаев не разведаны. Уран всегда встречается вместе с радием, хотя и в значительно больших количествах. Оба часто встречаются вместе с ванадиевыми рудами.

2.25. Торий тоже достаточно широко распространен и встречается в виде окиси тория в весьма большой концентрации в монацитовых песках, имеющихся кое-где в США, но главным образом в Бразилии и в Британской Индии.

2.26. По предварительным грубым оценкам, которые, вероятно, оптимистичны, ядерная энергия, содержащаяся в разведанных месторождениях урана, достаточна для удовлетворения всех энергетических потребностей США на 200 лет (предполагая использование как U-238, так и U-235).

2.27. Как уже было указано, до 1940 года металлического урана было произведено очень мало; сведения об уране были столь скудными, что даже точка плавления его оставалась неизвестной (например, в Handbook of Physics and Chemistry на 1943–1944 гг. указано только, что точка плавления находится ниже 1850 °C в то время, как в настоящее время известно, что она лежит вблизи 1150°). Очевидно, поскольку речь идет об уране, не было непреодолимых трудностей в получении сырья и в производстве металла, однако очень серьезным вопросом было, сколько это займет времени, и во что обойдется производство необходимого количества чистого металла.

2.28. Из материалов, упомянутых выше в качестве пригодных для замедлителей, наиболее очевидными преимуществами обладает дейтерий. Его содержание в обычном водороде составляет приблизительно 1:5000. К 1940 году были разработаны различные методы выделения его из водорода, и в США было получено для экспериментальных целей несколько литров. Единственное крупное производство было сосредоточено на Норвежском заводе, откуда было получено несколько сотен литров тяжелой воды (D2O, окись дейтерия). Как и в отношении урана, решение проблемы зависело только от времени и денег.

2.29. Бериллий в виде силикатов широко распространен, однако лишь в малых по количеству руды месторождениях. В последние несколько лет он нашел широкое применение в качестве компонента в сплавах; однако, для такого применения нет нужды в получении бериллия в виде металла. В 1940 г. в США было произведено только 700 фунтов этого металла.

2.30. В отношении углерода дело обстояло совсем по другому. В США ежегодно производилось много сотен тонн графита. Это являлось одной из причин, делавших графит желательным в качестве замедлителя. Трудности заключались в получении достаточного количества графита требуемой чистоты, в особенности в связи с возросшими потребностями военной промышленности.

 

ОЦЕНКА ВРЕМЕНИ И СТОИМОСТИ

2.31. Требования, связанные со средствами и временем, зависели не только от многих неизвестных научных и технологических факторов, но и от политических обстоятельств. Очевидно, для достижения конечной цели могли потребоваться годы и миллионы долларов. Почти все, чего добивались в это время, ограничивалось оценкой, сколько времени и сколько денег потребуется для выяснения научных и технологических перспектив. Казалось, что осуществление и развитие цепной реакции с тепловыми нейтронами в решетке из графита и урана в размерах, позволяющих ответить на вопрос о возможности протекания реакции в действительности, является не очень крупный предприятием. Оценка, сделанная тогда, определяла время, необходимое для получения ответа, сроком в один год и затраты — суммой в 100 000 долларов. Такая оценка относилась к созданию системы цепной реакции очень малой мощности без системы охлаждения и без всяких приспособлений для использования освобождающейся энергии.

 

ВРЕДНОСТЬ ДЛЯ ЗДОРОВЬЯ

2.32. Как уже давно известно, радиоактивные вещества вредно действуют на здоровье. Они испускают весьма проникающие γ-лучи, которые по своему физиологическому воздействию подобны рентгеновским лучам. Радиоактивные вещества испускают также α- и β-лучи, которые хотя и не обладают большой проникающей способностью, но также могут нанести вред здоровью. Количество радия, употребляемое в госпиталях и в обычных физических установках, ограничивается лишь несколькими миллиграммами. Количество радиоактивных материалов, получающихся при делении урана в сравнительно малых установках для цепных реакций, может быть эквивалентно сотням или тысячам граммов радия. Установка для цепной реакции испускает также интенсивное нейтронное излучение, которое по своему вредному действию на здоровье сравнимо с действием γ-лучей. Независимо от своих радиоактивных свойств, уран является в химическом отношении ядом. Таким образом, почти вся работа в этой области, в особенности при наличии цепных реакций и образующихся при этом радиоактивных продуктов, весьма вредна для здоровья.

 

МЕТОД ПОДХОДА К ЗАДАЧЕ

2.33. Были два пути разрешения проблемы. Один заключался в постановке ряда точных физических измерений поперечных сечений поглощения различных веществ для различных процессов, вызываемых нейтронами, и для различных энергий нейтронов. Коль скоро такие данные были бы получены, представлялось бы возможным рассчитать с достаточной точностью ход цепной реакции. Другой путь — чисто эмпирический — состоял в смешивании урана или его соединений различными способами с разными замедлителями и в наблюдении происходящих при этом процессов. Подобные же два крайние метода были возможны и в случае решения проблемы разделения изотопов. В действительности в обоих случаях применялся компромиссный способ.

 

ЭНЕРГИЯ ИЛИ БОМБА?

2.34. Предполагавшиеся военные преимущества урановых бомб внешне значительно эффектнее, чем преимущества использования урана в качестве источника энергии. Очевидно, что небольшое число урановых бомб может сыграть решающую роль в выигрыше войны стороной, впервые их применившей. Это очень хорошо понимали люди, работавшие в данной области; однако необходимым предварительным этапом развития наших знаний, казалось, было достижение цепной реакции с медленными нейтронами, и оно стало первоочередной задачей группы заинтересованных работников. Решение этой задачи казалось необходимым также для того, чтобы убедить военные власти и более скептически настроенных ученых в том, что вся идея не является просто фантастическим сном. Частью по этим соображениям, частью из-за чрезвычайной секретности идея атомной бомбы не появлялась более в письменных материалах между летом 1940 г. и осенью 1941 г.

 

ВОЕННОЕ ПРИМЕНЕНИЕ

2.35. Если все атомы килограмма U-235 подвергнутся делению, то освобожденная при этом энергия будет эквивалентна энергии, получающейся при взрыве 20 000 тонн тринитротолуола. Если критические размеры бомбы окажутся практически осуществимыми — в пределах, скажем, от одного до сотни килограммов — и все другие проблемы могут быть разрешены, останутся еще два вопроса. Первый, — какой процент способных к делению ядер успеет испытать деление прежде, чем реакция закончится. т. е. какова будет эффективность взрыва? Второй, — каково действие столь мощной концентрации освобождаемой энергии? Если даже будет освобожден только один процент теоретически возможной энергии, то порядок величины взрыва будет совершенно отличным от взрыва, происходящего при действии любых известных до настоящего времени бомб. Таким образом военные эксперты должны были весьма обстоятельно изучить вопрос о значении такой бомбы.

 

КРАТКОЕ СОДЕРЖАНИЕ ГЛАВЫ

2.36. Было установлено, (1) что деление урана происходит с освобождением большого количества энергии и (2) что в этом процессе освобождаются избыточные нейтроны, благодаря чему может начаться цепная реакция. То, что такая реакция должна будет происходить и что она может иметь важное военное применение в бомбах, не противоречило никакому из известных до того времени принципов. Однако, идея эта была новой и поэтому казалась сомнительной. Одно было несомненно — что изготовлению такой бомбы должно предшествовать разрешение ряда технических вопросов большой трудности. Вероятно, единственными материалами, пригодными для этих бомб, являются либо U-235, который должен быть отделен от в 140 раз более распространенного изотопа U-238, либо Pu−239, — изотоп совершенно неизвестного до тех пор элемента — плутония, который сам получается в управляемом процессе цепной реакции, также до того времени неизвестном. Было очевидно, что для получения управляемой реакции могла появиться необходимость производства металлического урана и тяжелой воды, бериллия или углерода и притом в больших количествах и высокой чистоты. Коль скоро материал для бомбы получен, необходимо технически разработать способ его безопасного и эффективного использования. В ряде процессов придется встретиться с необходимостью техники безопасности нового типа.

 

ОРГАНИЗАЦИОННАЯ ПРОБЛЕМА

2.37. Организованный летом 1940 г. Комитет Исследований Национальной Обороны (National Defense Research Committee — NDRC) предложил многим ученым страны работать над различными важными военными проблемами. Количество ученых было ограниченное (хотя в то время это еще не было полностью осознано). Поэтому возникли значительные трудности при решении вопроса о масштабах, в которых должна вестись работа по атомной бомбе. В течение последующих четырех лет решения приходилось часто пересматривать. Обзор того, как осуществлялись эти решения, сделан в главах III и V.