Тайны чисел: Математическая одиссея

Сотой Маркус дю

Глава 2

Рассказ о неуловимой форме

 

 

Великий ученый XVII в. Галилео Галилей однажды написал:

Вселенная не может быть прочитана, пока мы не выучили язык и не ознакомились с буквами, из которых он состоит. Она написана на математическом языке, а буквами являются треугольники, круги и другие геометрические фигуры, без посредства которых понять одно-единственное слово не в человеческих силах. Несведущий в них блуждает в темном лабиринте [2] .

В этой главе представлен алфавит причудливых и замечательных форм природы: oт шестиконечной снежинки до спирали ДНК, от поворотной симметрии алмаза до сложной формы листка. Отчего пузыри безупречно сферичны? Как в живом теле появляются чрезвычайно сложные формы вроде человеческого легкого? Какая форма у нашей Вселенной? Математика лежит в основе понимания того, как и почему природа порождает подобное разнообразие форм. Она также наделяет нас возможностью создавать новые формы и способностью рассудить, в каком случае новые формы невозможны.

Не только математики интересуются формами: архитекторы, инженеры, ученые и художники – все хотят понять, как действуют формы природы. При этом они опираются на математику геометрии. Древнегреческий философ Платон поместил над входом в свою школу надпись: «Не знающий геометрии да не войдет сюда». В этой главе я постараюсь выдать вам пропуск к Платону, в мир математических форм. А в конце открою вам головоломку, решение которой оценивается в другой миллион долларов.

 

Почему пузыри сферичны?

Возьмите кусок проволоки и согните его в квадрат. Погрузите его в мыльный раствор, выньте и подуйте. Почему у пузыря, который выходит с другой стороны, не будет формы куба? А если проволока согнута в виде треугольника, почему не получается выдуть пирамидальный пузырь? Отчего, какой бы ни была форма рамки, пузырь получается безупречно сферичным? Ответ состоит в том, что природа ленива, а сфера для природы – самая легкая форма. Пузырь стремится приобрести такую форму, которая использует наименьшую энергию, а последняя пропорциональна площади поверхности. В пузыре содержится заданный объем воздуха, который не меняется при преобразованиях формы. А у сферы, содержащей заданное количество воздуха, – наименьшая площадь поверхности. Это делает ее энергетически выгодной, она использует меньше всего энергии.

Промышленники издавна стремились подражать способности природы делать совершенные сферы. Если вы изготавливаете шарикоподшипники или дробь для ружей, получение правильных сфер может быть вопросом жизни и смерти, поскольку небольшое отклонение от сферической формы может привести к поломке машины или разрыву ружья. 1783 год ознаменовался достижением водопроводчика Уильяма Уоттса из Бристоля, который понял, как воспользоваться предрасположенностью природы к сферам.

Когда жидкие капли расплавленного металла падают с верхушки высокой башни, то в своем падении они подобно пузырям приобретают сферическую форму поверхности. Уоттс заинтересовался тем, что будет, если внизу башни поставить чан с водой, – застынут ли капельки с сохранением идеальной формы при попадании в воду. Он решил проверить эту идею в собственном доме в Бристоле. Загвоздка была в том, что требовалась высота более трех этажей, чтобы дать каплям расплавленного свинца достаточное время для приобретения сферической формы.

Тогда Уоттс пристроил к своему дому еще три этажа и проделал в полах отверстия, чтобы свинец падал сквозь все здание. Соседи были слегка шокированы неожиданным появлением башни, хотя владелец и пытался придать ей готический флер, добавив сверху архитектурные украшения, как у замка. Эксперименты Уоттса оказались настолько успешны, что подобные башни стали появляться по всей Англии и Америке. Его башня по отливу дроби продолжала работать до 1968 г.

Рис. 2.01. Умное использование Уильямом Уоттсом свойств природы для производства дроби

Хотя природа и использует сферу столь часто, как мы можем быть уверены, что не существует какой-то более странной формы, которая окажется энергетически более эффективной, чем сфера? Великий греческий математик Архимед первым предположил, что у сферы на самом деле наименьшая площадь поверхности, когда содержащийся внутри объем фиксирован. Чтобы попытаться доказать это, Архимед начал с выведения формул для площади сферы и для объема, содержащегося в ней.

Вычисление объема, ограниченного изогнутой формой, представляло немалый вызов. Но Архимед применил хитрый прием: необходимо рассечь сферу параллельными разрезами на множество тонких слоев и затем приближенно заменить слои дисками. Он знал формулу для объема диска: нужно было умножить площадь круга на толщину диска. Сложив вместе объемы всех этих дисков разного размера, Архимед получил приближение для объема шара.

Рис. 2.02. Шар может быть приближен положенными друг на друга дисками разного размера

Затем последовала по-настоящему умная часть. Если он будет делать диски тоньше и тоньше, пока они не станут бесконечно тонкими, то их суммарный объем даст в точности объем шара. Это был один из первых случаев использования идеи бесконечности в математике. Подобная техника стала впоследствии основой математического анализа, развитого Исааком Ньютоном и Готфридом Лейбницем спустя почти две тысячи лет.

Архимед продолжал использовать этот метод для вычисления объемов, ограниченных различными формами. Особенно он был горд открытием того, что объем воздуха в цилиндре, высота которого равна диаметру вписанного в него шара, составляет половину объема шара. Он был так взволнован этим фактом, что завещал, чтобы на его надгробии были высечены цилиндр и шар.

Хотя Архимед нашел успешный метод для вычисления площади сферы и объема ограниченного ею шара, ему не хватило умения для доказательства предположения, что сфера – самая эффективная форма в природе. Поразительно, но лишь к 1884 г. математика была достаточно разработана для того, чтобы немец Герман Шварц сумел доказать, что не имеется таинственных форм, которые могут побить энергетическую эффективность сфер.

 

Как сделать самый круглый в мире футбольный мяч

Во многих видах спорта используются шары и сферические мячи: теннис, крикет, бильярд, футбол. Хотя природе с легкостью удаются сферы, людям изготавливать их особенно сложно. Это обусловлено тем, что в большинстве случаев мы вырезаем формы из плоских листов материала, которые впоследствии сшиваются либо подвергаются термосклейке. В некоторых состязаниях упор делается на трудности изготовления сфер. Крикетный мяч состоит из четырех кусков формованной кожи, которые сшиваются вместе, поэтому он не вполне сферический. Наличие шва может быть использовано боулерами, подающими мячи, чтобы мяч непредсказуемым образом отскакивал от поля.

В противоположность этому игрокам в настольный теннис необходимы идеально круглые мячи. Мячи изготавливаются склеиванием двух целлулоидных полусфер, но этот метод не слишком-то успешен: более 95 % изделий отбраковываются. Изготовители мячей для пинг-понга немало развлекаются, когда отсортировывают сферы от деформированных мячей. Специальное ружье запускает мячи в воздух, и неровные отклоняются влево либо вправо. Только идеальные сферы летят по прямой линии, и их собирают на другом конце стрельбища.

Рис. 2.03. Ранние дизайны футбольных мячей

Как же мы можем сделать совершенную сферу? При подготовке к чемпионату мира по футболу 2006 г. в Германии производители заявляли об изготовлении самого круглого футбольного мяча. Футбольные мячи часто получают путем сшивки нескольких кусков кожи. Многие из футбольных мячей, изготавливавшиеся на протяжении поколений, собираются из форм, которыми играли еще в древние времена. Чтобы узнать, как сделать самый симметричный футбольный мяч, исследуем сначала те «мячи», которые собираются из копий одного симметричного куска кожи. Эти копии расположены таким образом, чтобы у их объединения была симметричная форма, для чего в каждой вершине должно сходиться одинаковое количество граней. Данные формы были исследованы Платоном в диалоге «Тимей», написанном в 360 г. до н. э.

Каковы же различные возможности для Платоновых футбольных мячей? Меньше всего компонентов требуется для пирамиды с треугольным основанием, называемой тетраэдром. Он получается сшивкой четырех равносторонних треугольников, но результатом этого не будет хороший футбольный мяч, потому что у него слишком мало граней. Как мы увидим в главе 3, такая форма хотя и не подходила для футбольного поля, но была задействована в других играх Древнего мира.

Другой конфигурацией является куб, состоящий из шести квадратных граней. На первый взгляд эта форма кажется слишком стабильной для футбола, тем не менее эта структура послужила основой многим ранним футбольным мячам. Мяч для самого первого чемпионата мира 1930 г. состоял из 12 прямоугольных полосок кожи, сгруппированных в шесть пар и расположенных таким же образом, как при сборке куба. Один из таких мячей находится в экспозиции Национального музея футбола в Престоне, на севере Англии. Сейчас он ссохшийся и несимметричный. Другой весьма необычный футбольный мяч, также использовавшийся в 1930-х гг., опять-таки основывается на кубе и состоит из 6 хитро соединенных между собой кусков, каждый из которых имеет форму буквы Н.

Вы можете посетить веб-сайт «Тайн 4исел» и загрузить PDF-файлы с инструкциями по изготовлению пяти Платоновых футбольных мячей.

Но давайте вернемся к равносторонним треугольникам. Восемь из них могут быть расположены симметрично, составляя октаэдр. По существу, он представляет две соединенные между собой пирамиды с квадратными основаниями. После надлежащего объединения невозможно сказать, где был стык.

Чем больше граней, тем более круглыми становятся Платоновы футбольные мячи. Следующей после октаэдра формой является додекаэдр, состоящий из 12 пятиугольных граней. Это вызывает ассоциации с 12 месяцами года. Были найдены изготовленные в древности додекаэдры, на гранях которых вырезаны календари. Из всех Платоновых форм лучшим приближением к сферичному футбольному мячу служит икосаэдр, состоящий из 20 правильных треугольников.

Рис. 2.04. Платоновы тела ассоциировались со строительными кирпичиками природы

Платон полагал, что эти пять форм настолько фундаментальны, что связывал их с четырьмя стихиями, из которых строится весь мир: тетраэдр, обладающий самой заостренной формой, сопоставлялся с огнем, стабильный куб – с землей, октаэдр – с воздухом. Икосаэдр, имеющий самую округлую форму, олицетворял скользкую воду. Платон решил, что пятая форма, додекаэдр, представляла форму Вселенной.

Но как мы можем быть уверены, что Платон не упустил какую-то форму, шестой футбольный мяч? Другой греческий математик, Евклид, в кульминационной части одной из величайших когда-либо написанных математических книг доказал, что невозможно сшить вместе какую-то другую комбинацию, основанную на одной симметричной форме, чтобы получить шестой футбольный мяч и расширить список Платона.

Книга Евклида называется просто – «Начала»; возможно, она несет ответственность за становление аналитического искусства логического доказательства в математике. Сила математики в том, что она может гарантировать стопроцентную уверенность в свойствах мира. Доказательство Евклида говорит нам, что в отношении этих форм мы рассмотрели все возможности и что действительно исключены сюрпризы, которые мы могли упустить.

 

Как Архимед улучшил Платоновы футбольные мячи

А что будет, если попытаться сгладить некоторые углы у пяти Платоновых футбольных мячей? Если вы возьмете икосаэдр с 20 гранями и отсечете все углы, то есть надежда получить мяч, чья форма будет более близка к круглой. В каждой вершине икосаэдра сходятся пять треугольников, так что если вы срежете угол, то получите пятиугольник вместо вершины. А треугольник с тремя отсеченными углами превращается в шестиугольник. Получившийся многогранник называется усеченным икосаэдром. Именно эта форма используется для футбольных мячей с того времени, как она была представлена на чемпионате мира по футболу 1970 г. в Мексике. Но есть ли возможность сделать из набора симметричных кусков другие формы, которые еще лучше подойдут для футбольного мяча на следующем чемпионате мира?

В III в. до н. э. греческий математик Архимед вознамерился улучшить Платоновы тела. Он начал с изучения того, что произойдет, если вы используете два или более строительных кирпичика в качестве граней вашей формы. Составные части должны хорошо состыковываться, поэтому у их краев должны быть одинаковые длины. Таким образом вы добьетесь точного совпадения на границе. Архимед также хотел как можно большей симметричности, поэтому все вершины – углы, где сходятся грани, – должны выглядеть одинаково. Если в одной вершине сходятся два треугольника и два квадрата, то такая структура должна повторяться.

Мир геометрии всецело овладел сознанием Архимеда. Даже когда слуги отрывали упирающегося Архимеда от занятий математикой и уводили к ванне для омовения, он проводил время, рисуя геометрические формы на золе, либо наносил их маслом на свое обнаженное тело. Плутарх описывает, как «наслаждение от занятий геометрией уносило его так далеко, что он оказывался в состоянии исступленного восторга».

Во время этих геометрических трансов Архимеда и возникла полная классификация лучших форм для футбольных мячей: он придумал 13 других способов создания многогранников. Рукопись, в которой Архимед написал о своих формах, не дошла до нас. Лишь в трудах Паппа Александрийского, который жил пятью веками позже Архимеда, встречается письменное свидетельство об открытии этих 13 форм. Тем не менее они называются Архимедовыми телами.

Некоторые из них он создал, отрезая кусочки от Платоновых тел, словно сглаживая футбольный мяч. Например, отсеките четыре угла у тетраэдра. Тогда треугольные грани превращаются в шестиугольники, а на месте разрезов появляются четыре новых треугольника. Итак, четыре шестиугольника и четыре треугольника можно объединить и сделать то, что называется усеченным тетраэдром (рис. 2.05).

Рис. 2.05

Рис. 2.06

Действительно, семь из 13 Архимедовых тел могут быть получены отрезанием кусочков от Платоновых тел – среди этих многогранников и классический футбольный мяч из пятиугольников и шестиугольников. Но более примечательным было открытие некоторых других форм. Оказывается, возможно объединение 30 квадратов, 20 правильных шестиугольников и 12 правильных десятиугольников в симметричную форму, которая называется ромбоусеченный икосододекаэдр (рис. 2.06).

Именно одно из 13 Архимедовых тел послужило основой новому футбольному мячу Teamgeist, представленному на чемпионате мира 2006 г. в Германии. Этот мяч, слывущий самым круглым, состоит из 14 фигурных кусков, но структурно он соответствует усеченному октаэдру. Возьмите октаэдр, состоящий из восьми равносторонних треугольников, и обрежьте шесть его вершин. Восемь треугольников становятся шестиугольниками, а на месте шести вершин появляются квадраты (рис. 2.07).

Рис. 2.07

Вы можете посмотреть изображения всех 13 Архимедовых тел, если зайдете на http://bit.ly/Archimedean .

Возможно, будущие чемпионаты мира отличатся более экзотическими Архимедовыми футбольными мячами. Мои предпочтения связаны с плосконосым додекаэдром, состоящим из 92 симметричных компонентов: 12 правильных пятиугольников и 80 равносторонних треугольников (рис. 2.08).

Рис. 2.08

До самого последнего мгновения ум Архимеда был сосредоточен на математике. В 212 г. до н. э. римляне вторглись в его родной город Сиракузы. Но Архимед с головой углубился в рисование чертежей, которые помогли бы ему решить математическую головоломку, и совершенно не осознавал, что город пал. Когда к нему подбежал римский солдат с обнаженным мечом, Архимед умолял, чтобы тот позволил ему закончить вычисления. «Как я могу оставить свою работу в таком незавершенном состоянии?!» – вскричал он. Но солдат не был готов ожидать QED и зарубил Архимеда посередине доказательства теоремы.

 

Какую форму вы предпочитаете для чая?

Формы стали горячей темой не только у производителей футбольных мячей, но и у английских любителей чая. На протяжении поколений мы довольствовались простыми квадратиками, но теперь нация поголовно стремится заварить совершенную чашку чая, для чего окунает в нее круги, сферы и даже чайные пакетики в форме пирамидок.

Чайный пакетик был изобретен по ошибке нью-йоркским чаеторговцем Томасом Салливаном в начале XX в. Он разослал своим клиентам образцы чая в маленьких шелковых мешочках, но получатели, вместо того чтобы высыпать чай из мешочков, погружали их в воду целиком. Британцы убедились в необходимости радикального изменения своих привычек чаепития лишь в 1950-х гг. По оценкам нашего времени, около 100 миллионов пакетиков чая ежедневно погружаются в чашки с горячей водой в Великобритании.

Многие годы надежный квадратик позволял любителям чая приготовить свой напиток без хлопот, связанных с очищением и мытьем заварочных чайников. Квадрат – очень эффективная форма, такие пакетики легко делать, кроме того, нет излишних расходов упаковочного материала. PG Tips, ведущий производитель пакетированного чая, ежегодно на протяжении 50 лет штамповал миллиарды пакетиков на своих фабриках по всей стране.

Но в 1989 г. компания Tetley, его главный конкурент, сделала смелый шаг для передела рынка и представила круглые пакетики. Хотя такое изменение мало отличалось от эстетического ухищрения, оно сработало. Продажи новой формы взмыли вверх. В PG Tips понимали, что необходимо превзойти конкурента, для того чтобы удержать покупателей. Хотя круг и понравился клиентам, он по-прежнему оставался плоской, двумерной фигурой. Тогда команда PG Tips решила совершить скачок в третье измерение.

Разработчики PG Tips знали, что нам не хватает терпения, когда дело доходит до чая. В среднем пакетик находится в чашке лишь 20 секунд, а потом его вытаскивают. Если вы разрежете обычный двумерный пакет, который окунали на 20 секунд, то обнаружите, что чай посередине остался сухим: у него было недостаточно времени для контакта с водой. Команда PG Tips полагала, что трехмерный пакетик будет своего рода заварочным чайником в миниатюре, который даст возможность всем чайным листьям провзаимодействовать с водой. Был даже привлечен эксперт по теплотехнике из Имперского колледжа Лондона: он занимался расчетом компьютерных моделей, чтобы подтвердить уверенность в том, что третье измерение способно улучшить аромат чая.

Но затем в разработке пришла очередь следующего шага: а какая же форма? Были подготовлены различные трехмерные формы для тестирования потребителями. Эксперименты шли с цилиндрами и чайными пакетиками, напоминавшими китайские фонарики. Также испытывались правильные сферы. Сфера выглядит довольно привлекательно, ведь, как и в случае пузыря, это такая форма, которая при заданном объеме требует минимума материала для изготовления пакетика. Но сфера крайне неудобна для производства, особенно если вы стартуете с плоского листа муслина – всякий, кто пытался завернуть футбольный мяч на Рождество, может засвидетельствовать это.

Если дан плоский лист бумаги, то естественно рассмотреть трехмерные формы с плоскими гранями. В PG Tips начали с исследования тех форм, которые описали Платон и Архимед более двух тысяч лет назад. В отличие от производителей спортивного снаряжения, понявших, что футбольный мяч, сделанный из пятиугольников и шестиугольников, хорошо приближает сферу, изготовители чая заинтересовались формой на другом конце спектра. Хотя тетраэдр с четырьмя гранями (пирамида с треугольным основанием) охватывает наименьший объем при заданной площади поверхности, для его изготовления требуется минимальное количество граней. Невозможно объединить три плоские грани, чтобы создать трехмерную замкнутую форму.

В компании PG Tips, очевидно, были заинтересованы и в том, чтобы как можно меньше упаковочного материала шло в отход. Форма должна быть не только визуально привлекательна, но и эффективна. Сверх того, поскольку требовалось наладить снабжение нации, которая выпивает более 100 миллионов чашек в день, обязательным условием было, чтобы производство шло с большой скоростью. Недопустимо было заполнять чайные фабрики рабочими, сшивающими вместе четыре маленьких треугольничка, чтобы получилась пирамидка. Прорыв произошел, когда кто-то предложил замечательно красивый и элегантный способ производства чайного пакетика в виде пирамидки.

Подумайте, как делается пакетик с чипсами. Цилиндрическая трубка запечатывается швом снизу, наполняется чипсами, а затем сверху делается шов в том же направлении. Но посмотрите, что будет, если шов наверху делать не в том же направлении, а сначала повернуть пакетик на 90° и лишь потом запечатывать его. Неожиданно у вас в руках оказывается упаковка в виде тетраэдра. У тетраэдра шесть ребер: два из них совпадают со швами и четыре соединяют два шва, от конца каждого шва идут по два ребра к каждому из концов противоположного шва. Это замечательно эффективный способ изготовления пирамидок. Замените чипсы чаем, запечатывайте упаковку с поворотом, и у вас получатся пирамидальные чайные пакетики. Не будет лишнего расходования материала, а машина может запечатывать их со скоростью 2000 штук в минуту, достаточно быстро, чтобы удовлетворить спрос нации любителей чая. Эта машина была настолько инновационной, что попала в топ-лист 100 патентов, зарегистрированных в XX в.

После четырех лет разработки производство пирамидальных чайных пакетиков было запущено в 1996 г. Оно оказалось эффективным, а потребители сочли новую форму современной и стильной. Новая рекламная кампания оказалась долгожданной заменой труппы одетых обезьян, на которых PG Tips полагалась на протяжении ряда лет для поддержки своей продукции. Компания возвратила себе первое место по продажам чая в пакетиках.

Но в то время как тетраэдры позволили подчеркнуть вкус чая, за обликом другого Платонова тела скрывается нечто зловещее.

 

Почему вы можете умереть, если подхватите икосаэдр

В 1918 г. пандемия «испанского гриппа» погубила не менее 50 миллионов человек, что значительно превосходило число жертв Первой мировой войны. Из-за смертельных последствий многие ученые поставили перед собой задачу определить механизм данного опасного заболевания. Вскоре они поняли, что причиной были не бактерии, а нечто меньшее, недоступное для наблюдения в микроскопы того времени. Они назвали новых переносчиков «вирусами» – от латинского слова virus, обозначающего яд.

Раскрытие истинной природы вирусов стало возможно позднее, когда была разработана новая методика исследований, называемая рентгеновской дифрактометрией. Она позволила ученым разглядеть молекулярную структуру, лежащую в основе этих организмов, которые нанесли такой урон. Молекулу можно представить как набор шариков для пинг-понга, соединенных между собой палочками. Хотя это и является чрезмерным упрощением настоящей науки, в каждой химической лаборатории имеются коллекции шариков и палочек, чтобы помочь студентам и научным сотрудникам исследовать структуру молекулярного мира. Когда пучок рентгеновских лучей проходит через исследуемое вещество, то часть лучей рассеивается встреченными молекулами на различные углы. Это явление называется дифракцией рентгеновских лучей. Получающиеся изображения в чем-то схожи с тенями, которые образуются, если осветить упомянутые структуры из шариков и палочек.

Математика стала могучим союзником в сражении за расшифровку информации, содержащейся в этих тенях. Цель состоит в том, чтобы определить, какие трехмерные формы могли дать двумерные тени, полученные при рентгеновской дифракции. Довольно часто успех связан с нахождением оптимального угла, под которым нужно направить свет, чтобы раскрыть истинное молекулярное строение. Силуэт головы, получающийся, если кому-то направить свет прямо в лицо, содержит мало информации, разве что покажет, насколько торчат уши. Но профиль позволит сказать значительно больше. То же самое касается и молекул.

После того как Фрэнсис Крик и Джеймс Уотсон открыли структуру ДНК, они совместно с Дональдом Каспаром и Аароном Клугом обратили внимание на двумерные картинки, получающиеся при дифракции рентгеновских лучей на вирусах. К своему удивлению, они увидели изображения, полные симметрии. На первых картинках были видны точки, упорядоченные в треугольники. Это подразумевало, что у вирусов была трехмерная форма, которая переходит в себя при повороте на треть полного оборота: значит, имелась симметрия. Когда биологи заглянули в математический кабинет теней, они решили, что Платоновы тела были наилучшими кандидатами на форму вирусов.

Воображая формы

Представьте, что на рождественской елке висит украшение в форме кубика, причем веревочка прикреплена к одному из его углов. Если вы разрежете куб горизонтально между верхней и нижними точками, то получите два тела, у каждого из которых будет новая грань. Какова форма новой грани? Ответ приведен в конце главы.

Но проблема была в том, что у всех пяти Платоновых тел имеется ось симметрии третьего порядка, при повороте на треть полного оборота вокруг которой тело переходит в себя. Лишь когда биологи получили другие дифракционные изображения, возникла возможность более точно определить структуру вирусов. Неожиданно появились точки, сгруппированные в пятиугольники. Это позволило сфокусировать внимание на одном из более интересных Платоновых тел – на икосаэдре, у которого 20 треугольных граней, причем в каждой вершине сходятся пять граней.

Вирусы любят симметричные формы, потому что симметрия позволяет им лучше размножаться, что и делает вирусные заболевания настолько заразными. Именно это значит слово «вирулентный». Обычно люди считают симметрию эстетически привлекательной, идет ли речь о бриллианте, цветке или лице супермодели. Но симметрия не всегда так желанна. Некоторые из самых смертоносных вирусов по медицинской статистике, от гриппа до герпеса, от полиомиелита до вируса иммунодефицита человека, в своем строении используют форму икосаэдра.

 

Стабилен ли пекинский олимпийский плавательный комплекс?

Плавательный комплекс, построенный к пекинской Олимпиаде, – необычайно красивое сооружение, в особенности когда включается ночная подсветка и он кажется прозрачной коробкой, наполненной пузырями. Проектировавшая его компания Arup стремилась к тому, чтобы совместить дух водных состязаний, проводимых внутри, с естественным и органичным внешним видом комплекса.

В компании начали с того, что принялись изучать формы, которыми можно замостить плоскость, наподобие квадратов, равносторонних треугольников и правильных шестиугольников. Но разработчики решили, что они слишком регулярны и не позволяют создать желаемый органичный вид. Тогда проектировщики решили изучить другие возможности, которые использует природа для упаковки многих предметов, например кристаллы и клеточные структуры в тканях растений. Во всех этих структурах встречаются примеры тех форм, которые, согласно открытию Архимеда, позволяют сделать хорошие футбольные мячи. Но команду Arup в особенности привлекло то, как множество пузырей группируется вместе и создает пену.

Поскольку лишь в 1884 г. было доказано, что сфера – самая эффективная форма для единичного пузыря, становится неудивительно, что слипание множества пузырей для образования пены поставило перед математиками нелегкие вопросы, которые мучают их по сегодняшний день. Если у вас два пузыря, содержащие одинаковый объем воздуха, какую форму они примут при объединении? Неизменное правило состоит в том, что пузыри ленивы и предпочитают формы с наименьшей площадью поверхности мыльной пленки. Поскольку у объединившихся пузырей есть общая граница, они могут трансформироваться так, чтобы не просто касаться в точке, а сделать меньше площадь поверхности.

Если вы выдуваете пузыри и два пузыря одинакового объема слипаются, их комбинация выглядит так (рис. 2.09):

Рис. 2.09

Рис. 2.10

Две неполные сферы пересекаются под углом 120°, кроме того, их разделяет плоская мембрана. Разумеется, это состояние стабильно, в противном случае природа не позволила бы сохранять его. Но вопрос в том, возможна ли другая форма, у которой еще меньше площадь поверхности и, соответственно, энергия, что сделало бы ее более эффективной? Вероятно, потребуется потратить энергию, чтобы вывести пузыри из данного стабильного состояния, но энергия нового результирующего состояния двух пузырей может быть еще ниже. Например, вдруг более эффективна причудливая конфигурация двух слипшихся пузырей, когда один из них принимает форму бублика и обертывается вокруг другого, поджимая тот до формы арахиса (рис. 2.10)?

О первом доказательстве того, что невозможно улучшить обычную конфигурацию слипшихся пузырей, было объявлено в 1995 г. Хотя математики не особенно любят прибегать к помощи компьютера, поскольку это вступает в противоречие с их понятиями красоты и элегантности, авторам пришлось воспользоваться им, чтобы проверить свои длинные численные расчеты, вовлеченные в доказательство.

Пять лет спустя было заявлено о доказательстве предположения о двойном пузыре, которое использовало лишь ручку и бумагу. В действительности было доказано более общее предположение: если объем заключенного воздуха неодинаков, то есть один пузырь меньше другого, то они слипаются таким образом, что разделяющая их мембрана уже не плоская, а выгибается в сторону большего пузыря. Эта мембрана является частью третьей сферы, она пересекается с двумя сферическими пузырями таким образом, что получающиеся углы между тремя мыльными пленками равны 120° (рис. 2.11 и 2.12).

Рис. 2.11

Рис. 2.12

По сути, это свойство 120° оказывается общим правилом для слипания мыльных пузырей. Впервые оно было открыто бельгийским ученым Жозефом Плато, родившимся в 1801 г. Когда Плато желал изучить влияние света на сетчатку, он полминуты смотрел на полуденный солнечный диск, из-за чего временно ослеп. К 40 годам он окончательно потерял зрение. Затем, опираясь на помощь родственников и коллег, он переключился на исследование формы пузырей.

Плато начал с того, что погружал в мыльный раствор разнообразные проволочные каркасы и исследовал получающиеся формы. Например, если ваш каркас сделан в форме куба, результатом будет 13 мембран внутри его, причем в центре образуется квадрат (рис. 2.13).

Рис. 2.13

Правда, это не совсем квадрат, его стороны несколько выпирают наружу. По мере того как Плато исследовал множество пленок, получающихся в разных каркасах, он начал формулировать набор правил для объединения пузырей. Первое из них состояло в том, что пленки всегда пересекаются тройками, образуя между собой углы в 120°. Край, образующийся при пересечении этих трех пленок, называется в его честь границей Плато. Второе правило касается пересечения этих границ. Границы Плато пересекаются четверками, образуя между собой угол в 109,47° (если точнее, arccos(−⅓)). Если вы возьмете тетраэдр и проведете из его центра масс линии к четырем вершинам, то получите конфигурацию четверки границ Плато в пене (рис. 2.14). Итак, выпирающие наружу стороны квадрата, находящегося в центре кубического проволочного каркаса, в действительности пересекаются под углом 109,47°.

Рис. 2.14

Полагается, что если какой-либо пузырь не подчиняется правилам Плато, то он нестабилен, следовательно, должна произойти перестройка конфигурации в стабильную, подчиняющуюся этим правилам. Лишь в 1976 г. Джин Тейлор окончательно доказала, что форма пузырьков в пене должна подчиняться правилам, установленным Плато. Ее работа говорит нам о том, как пузыри объединяются, но какова же фактическая форма пузырей в пене? Поскольку пузыри ленивы, появляется возможность ответить на этот вопрос, если найти формы пузырей в пене, каждая из которых охватывает заданный объем воздуха и при этом минимизирует площадь мыльной пленки.

Медоносные пчелы уже решили эту задачу в двух измерениях. Причина, по которой они сооружают соты, используя шестиугольники, состоит в том, что при этом требуется наименьшее количество воска при фиксированном количестве меда в каждой ячейке. Но опять-таки лишь благодаря недавнему прорыву удалось доказать теорему о медовых сотах: никакая другая двумерная структура не превзойдет шестиугольные соты по эффективности.

Тем не менее, когда мы переходим к трехмерным структурам, положение вещей становится менее очевидным. В 1887 г. знаменитый британский физик лорд Кельвин предположил, что один из Архимедовых футбольных мячей играет ключевую роль в минимизации площади поверхности в пене. В то время как шестиугольник является строительным кирпичиком при сооружении эффективных пчелиных сот, усеченный октаэдр определяет построение пены. Усеченный октаэдр получается срезанием шести углов обычного октаэдра:

Рис. 2.15

Правила, которые установил Плато для пересечения пузырей, показывают, что грани и ребра должны быть не плоскими, а изогнутыми. Например, стороны квадрата образуют угол 90°, но по второму правилу Плато это недопустимо. Вместо этого края квадрата должны немного выгибаться наружу, как в случае кубического проволочного каркаса, тогда между ними образуется необходимый угол 109,47°.

Рис. 2.16. Пена из усеченных октаэдров

Многие считали, что структура Кельвина является ответом на вопрос, как получить пену с минимальной поверхностной энергией, но никто не мог доказать этого. Но в 1993 г. Денис Уэйр и Роберт Фелан из Дублинского университета обнаружили две формы, которые при совместной упаковке превосходят структуру Кельвина на 0,3 % (пусть это послужит предупреждением тем, кто полагает, что доказательство в математике – напрасная трата времени).

Использованные ими формы не были в списке Архимеда. Гранями первой из них являются неправильные пятиугольники, они объединены в искаженный додекаэдр (пентагондодекаэдр). Вторая форма называется тетракаидекаэдр, ее грани – два удлиненных шестиугольника и 12 неправильных пятиугольников двух видов. Уэйр и Фелан выяснили, что они могут упаковать эти формы вместе, так что получится более эффективная пена, чем предложенная Кельвином. Опять-таки, чтобы удовлетворить правилам Плато, нужно немного искривить ребра и грани. Оказывается, довольно трудно проникнуть внутрь настоящей пены, чтобы посмотреть, что происходит на самом деле. Двое ученых проводили численные эксперименты, использовали компьютеры для моделирования пены и обнаружили новую структуру.

Рис. 2.17. Формы, которые нашли Уэйр и Фелан

Это – лучшее, на что способны пузыри? Мы не знаем. Мы считаем, что данная структура наиболее эффективна. Но ведь и Кельвин полагал, что нашел ответ.

Дизайнеры Arup в своем поиске интересных природных форм, напоминающих о состязаниях, проходящих в олимпийском плавательном комплексе, изучали туман, айсберги и волны. Они случайно натолкнулись на пену Уэйра – Фелана и поняли, что у нее был потенциал к созданию совершенно новых архитектурных форм. Чтобы избежать чрезмерной регулярности, решили разрезать пену под углом. Внешние стены «Водяного куба», как неформально называется плавательный центр, представляют ту структуру пузырей, которую вы увидите, если вставите лист стекла в пену под углом.

Хотя структура, созданная Arup, кажется вполне случайной, она начинает повторяться на протяжении здания. Тем не менее она вызывает именно то органичное ощущение, к которому стремились дизайнеры. Однако если вы получше приглядитесь, то заметите пузырь, который противоречит правилам Плато, ведь в его очертаниях заметны прямые углы вместо предписанных Плато 120° и 109,47°. Так стабилен ли «Водяной куб»? Будь он сделан из пузырей, ответом было бы «нет». Данный прямоугольный пузырь изменил бы свою форму, чтобы прийти в соответствие тем математическим правилам, которым должны подчиняться все пузыри. И все-таки у китайских властей нет повода для беспокойства. Насколько можно ожидать, «Водяной куб» будет стоять благодаря математике, которая была задействована при создании этого прекрасного сооружения.

Рис. 2.18. На поверхности олимпийского плавательного центра в Пекине есть нестабильный пузырь

Но не только Arup и китайские власти интересуются формой, которую приобретают пузыри, когда их прижимают друг к другу. Понимание строения пены помогает нам разобраться во многих других природных структурах, например в структуре органических клеток в шоколаде, взбитых сливках или в шапке над пинтой пива. Пена используется при тушении пожаров, в защите водных ресурсов от радиоактивных утечек и при переработке минералов. Интересуетесь ли вы борьбой с пожарами или тем, как добиться, чтобы пенная шапка над вашим «Гиннессом» не оседала слишком быстро, ключ к ответу определяется пониманием математической структуры пены.

 

Почему у снежинки шесть лучей?

Одним из первых, кто попытался дать математический ответ на этот вопрос, был астроном и математик XVII в. Иоганн Кеплер. Его понимание того, почему у снежинки шесть лучей, возникло после изучения плода граната. Зернышки граната начинают свой рост с маленьких шариков. Как знает любой продавец фруктов, наиболее эффективный способ заполнить пространство шарами состоит в расположении их слоями шестиугольников. Слои хорошо подгоняются друг к другу, когда каждый шар из последующего слоя находится между тремя шарами слоя под ним. Совместно эти четыре шара расположены так, что являются вершинами тетраэдра.

Кеплер предположил, что это самый эффективный способ заполнить пространство – другими словами, при таком размещении у промежутков между шарами будет минимальный объем. Но как можно быть уверенным, что не существует какого-то более сложного расположения шаров, способного улучшить данную упаковку шестиугольников? Гипотеза Кеплера, как стало называться его невинное утверждение, овладевала умами поколений математиков. Ее доказательство появилось в конце XX в., когда математики объединили свои силы с мощью компьютеров.

Но вернемся к плоду граната. По мере его роста зернышки начинают сдавливать друг друга, их поверхность превращается из сфер в формы, полностью заполняющие пространство. Каждое зернышко внутри плода находится в контакте с 12 другими, поэтому когда они сдавливают друг друга, получается форма с 12 гранями. Вы могли бы подумать, что она будет соответствовать додекаэдру с его 12 пятиугольными гранями, но додекаэдры нельзя сложить вместе, чтобы они заполнили все имеющееся пространство. Единственное Платоново тело, способное идеально состыковаться и заполнить пространство, – это куб. Вместо этого 12 граней зернышка граната приобретают форму ромба. Результирующий многогранник, называемый ромбододекаэдром, часто встречается в природе (рис. 2.19).

Рис. 2.19

Так, у кристалла граната 12 граней в форме ромба. Английское слово garnet, обозначающее минерал гранат, происходит от латинского названия растения гранат, ведь красные зернышки его плода также образуют формы с 12 ромбическими гранями.

Анализ ромбических граней зернышек граната вдохновил Кеплера начать исследование всевозможных симметричных форм, которые можно построить исходя из этой менее симметричной ромбической грани. Платон изучал формы, получающиеся из одной симметричной грани. Архимед пошел дальше и рассмотрел возможность двух или большего числа симметричных граней. Исследования Кеплера породили целую индустрию, посвященную различным формам, развивающим идеи Платона и Архимеда. Теперь у нас есть Каталановы тела и тела Кеплера – Пуансо, многогранники Джонсона и «шаткие» многогранники, зоноэдры – и множество других экзотических объектов.

Кеплер считал, что шестиугольники, определяющие то, как происходит совместная упаковка шаров, также обуславливают наличие шести лучей у снежинок. Его анализ лег в основу книги, которую он посвятил императорскому советнику Иоганну Маттею Вакеру фон Вакенфельсу и преподнес в качестве новогоднего подарка – что было прозорливым поступком со стороны ученого, всегда ищущего источники финансирования исследований. Кеплер полагал, что капли воды, замерзая в облаках и превращаясь в шарики, заполняют пространство подобно зернышкам граната. Его идея, хотя и была красивой, оказалась неверной. Подлинная причина шестилучевой формы снежинки связана с молекулярной структурой льда, которую было возможно исследовать лишь после изобретения рентгеноструктурного анализа в 1912 г.

Молекула воды состоит из одного атома кислорода и двух атомов водорода. Когда молекулы связываются вместе и образуют кристалл, каждый атом кислорода разделяет свои атомы водорода с соседними атомами кислорода и, в свою очередь, заимствует два дополнительных атома водорода у других молекул воды. Итак, в кристалле льда каждый атом кислорода соединен с четырьмя атомами водорода. В модели шариков и палочек четыре шарика, представляющие атомы водорода, расположены вокруг атома кислорода так, чтобы каждый атом водорода находился от трех других атомов водорода на как можно большем расстоянии. Математика дает решение, удовлетворяющее этому требованию, и оно состоит в том, что атомы водорода находятся в вершинах тетраэдра, Платоновой формы, состоящей из четырех равносторонних треугольников. При этом атом кислорода находится в центре тетраэдра (рис. 2.20).

Рис. 2.20

Получающаяся кристаллическая структура в чем-то соответствует укладке апельсинов продавцом фруктов, когда над тремя апельсинами одного слоя находится апельсин из следующего слоя. Но если вы приглядитесь к отдельному слою, будь то апельсины или кристалл льда, то всюду увидите шестиугольники. Именно они играют ключевую роль в форме снежинки. Итак, у Кеплера была верная интуиция – укладка апельсинов и шесть лучей снежинки действительно связаны, но, лишь когда мы сумели рассмотреть атомную структуру снега, мы поняли, где скрываются шестиугольники. При росте снежинки молекулы воды прикрепляются к вершинам шестиугольника, в результате чего у нее и образуются шесть лучей.

При переходе от молекулярного уровня к большим снежинкам начинает проявляться индивидуальность каждой из них. В то время как симметрия лежит в основе строения кристалла льда, другая важнейшая математическая форма контролирует эволюцию всех снежинок: фрактал.

 

Какова длина береговой линии Британии?

Чему равна длина британской береговой линии? 18 000 км? Или же 36 000? А может быть, еще больше? Как ни удивительно, ответ на этот вопрос вовсе не очевиден, и он связан с математической формой, открытой лишь в середине XX в.

Конечно, из-за приливов и отливов, происходящих дважды в день, длина британской береговой линии постоянно меняется. Но, даже если зафиксировать уровень воды, по-прежнему неясно, какова протяженность береговой линии. Тонкость состоит в том, с насколько малым масштабом вы измеряете длину побережья. Вы можете начать укладывать метровые линейки, одну за другой, и сосчитать, сколько их вам понадобится, чтобы обойти вокруг страны. Но использование жестких линеек упустит множество деталей меньшего масштаба.

Рис. 2.21. Измерение береговой линии Британии

Если вы используете длинный кусок веревки вместо жестких линеек, то сможете лучше отследить сложные формы на побережье. Измерение с помощью веревки даст значительно больший результат для береговой линии по сравнению с жесткими линейками. Но и у гибкости веревки есть предел – вам будут недоступны контуры на побережье сантиметрового масштаба. Если вы используете тонкую нитку, то сможете уловить еще больше деталей, и оценка длины береговой линии снова возрастет.

Согласно данным Картографического управления Великобритании, протяженность ее береговой линии составляет 17 819,88 км. Но измерьте эту длину с учетом более мелких деталей, и вы удвоите ее. В качестве иллюстрации того, насколько трудно точно установить географические длины, упомяну, что в 1961 г. Португалия заявила, что протяженность ее границы с Испанией составляет 1220 км, а по мнению Испании, она была лишь 990 км. Такую же степень расхождения можно найти у границы между Голландией и Бельгией. В общем случае – чем меньше страна, тем длиннее у нее получается граница…

Но можно ли положить предел этому процессу? Или же чем более мы отслеживаем детали, тем длиннее получается побережье? Чтобы показать, как такое возможно, давайте построим часть математической береговой линии. Для этого вам понадобится моток бечевки. Начните с того, что размотайте 1 метр бечевки и положите ее на пол.

Рис. 2.22

Но такая линия слишком прямая, чтобы быть береговой, поэтому давайте сделаем большой залив в этом прямом участке побережья. Размотайте еще бечевки – так, чтобы средняя треть заменялась двумя вдающимися отрезками той же длины:

Рис. 2.23

Но сколько бечевки потребовалось дополнительно размотать, чтобы сделать залив? Первая береговая линия состояла из трех отрезков по ⅓ м, в то время как новая линия состоит из четырех отрезков по ⅓ м. Итак, новая длина в 4/3 раза превосходит старую и составляет 4/3 м.

Но и новое побережье все еще слишком простое. Поэтому снова разделим каждый из меньших отрезков на три и заменим среднюю часть двумя сторонами той же длины. Вот какое у нас получится побережье:

Рис. 2.24

Какая у него длина? Что же, длина каждой из четырех частей была увеличена множителем 4/3. Итак, длина побережья теперь составляет 4/3 × 4/3 м =(4/3)² м.

Вы, наверное, догадались, как мы поступим дальше. Мы будем повторять процедуру разбиения прямых отрезков на три части и замены средней секции двумя линиями той же длины. Каждый раз, когда мы делаем это, происходит увеличение длины нашего побережья благодаря множителю 4/3. Повторение процедуры 100 раз приведет к удлинению береговой линии в (4/3)100 раз, и она превысит 3 миллиарда километров. Если распрямить эту бечевку, то она протянется от Земли до Сатурна.

Если бы мы могли поступить так бесконечно много раз, то получили бы бесконечно длинное побережье. Конечно, физика не позволяет нам уходить делением отрезков в бесконечно малые размеры, ограничивая нас планковской длиной. Это происходит потому, что, как считают физики, мы не можем измерить длины менее 10–35 м, не создав при этом черную дыру, которая поглотит измерительную аппаратуру. Но повторение нашего приема добавления все меньших и меньших заливов к нашей береговой линии после 74-го шага приведет к линиям, меньшим 10–35 м. Но математики – вовсе не физики: мы живем в мире, где отрезок можно разделить бесконечно много раз и при этом не исчезнуть в черной дыре.

Другой способ увидеть, что у береговой линий бесконечная длина, состоит в рассмотрении сегмента фрактала между точками А и B на рис. 2.25. Обозначим его длину L. Если мы увеличим этот сегмент побережья в три раза, то результатом будет точная копия всего побережья от А до Е. Тогда длина всей береговой линии будет 3L. С другой стороны, мы можем взять четыре копии меньшего сегмента и составить из них, располагая друг за другом, все побережье: от А до B, от B до C, от C до D и от D до E. С этой точки зрения длина всей береговой линии будет 4L, потому что для ее построения потребовались четыре копии меньшего сегмента. Но длина должна быть одинаковой, как бы мы ее ни измеряли. Каким же образом совместить 4 L = 3 L? Это уравнение может разрешить только L, равная либо нулю, либо бесконечности.

Рис. 2.25. Увеличьте меньший сегмент, идущий от A до B, в три раза, и вы получите больший фрактал. Но больший фрактал также можно получить, располагая друг за другом четыре копии меньшего сегмента

На самом деле бесконечная береговая линия, которую мы нарисовали, – это часть формы, называемой снежинкой Коха в честь ее изобретателя, шведского математика Хельге фон Коха. Он построил ее в начале XX в. (рис. 2.26).

Рис. 2.26

У этой математической формы слишком много симметрии, чтобы походить на настоящее побережье, она не выглядит слишком естественно или органично. Но вы можете добавить элемент случайности, касающийся того, идет ли добавляемая линия на сушу либо в море. И тогда все смотрится значительно убедительнее. Вот картинки (рис. 2.27), полученные той же самой процедурой, что и ранее, за одним исключением.

Рис. 2.27

Всякий раз перед добавлением линий вы бросаете монетку, чтобы решить, разместите ли вы их под удаляемой линией или над ней. Если объединить несколько подобных участков побережья вместе, то результат будет удивительно походить на средневековую карту Британии:

Рис. 2.28

Итак, если вам когда-либо зададут вопрос о длине береговой линии Британии, вы можете выбрать любой нравящийся вам ответ. Не о таких ли вопросах по математике мечтает каждый школьник?

 

Что общего у молнии, брокколи и фондового рынка?

В 1960 г. французского математика Бенуа Мандельброта пригласили выступить с докладом на экономическом факультете Гарвардского университета, чтобы рассказать о его недавней работе по распределению больших и малых доходов. Когда Мандельброт вошел в кабинет организатора выступления, то был немало озадачен, увидев, что те графики, которые он подготовил для своего рассказа, были нарисованы на доске. «Как вы сумели получить мои данные заранее?» – спросил он. Однако, как ни удивительно, нарисованные графики не имели никакого отношения к доходам, а представляли изменения цен на хлопок, которые анализировались на предыдущей лекции.

Это подобие пробудило любопытство Мандельброта и привело его к открытию, что у графиков различных несвязанных наборов экономических данных будет сходство в форме. Сверх того, формы будут сохраняться независимо от временного масштаба. Например, изменения цен на хлопок за восемь лет напоминают изменения за восемь недель, а последние сильно походят на изменения за восемь часов.

То же самое явление наблюдается и при измерении побережья Британии. Возьмите, например, изображения, приведенные ниже. На каждом из них показаны участки береговой линии Шотландии. Одно взято с карты масштаба 1: 1 000 000. Другие представляют значительно более детальные карты, масштаба 1: 50 000 и 1: 25 000 соответственно. Но удастся ли определить по изображению на карте ее масштаб? Сколь бы вы ни увеличивали или, напротив, ни уменьшали масштаб, у этих форм сохранится тот же уровень сложности. Подобное утверждение несправедливо в отношении всех форм. Если вы нарисуете волнистую линию и будете увеличивать какую-то ее часть, то с некоторого момента она будет выглядеть довольно просто. В отличие от этого береговая линия или графики Мандельброта при сколь угодно большом увеличении сохраняют сложность своей формы.

Рис. 2.29. Береговая линия Шотландии при разных увеличениях. Используются исходные карты масштаба 1: 1 000 000, 1: 50 000 и 1: 25 000 (слева направо)

Когда Мандельброт продолжил свои изыскания, он обнаружил, что эти странные формы, сохраняющие крайнюю сложность независимо от степени увеличения, с которой вы разглядываете их, встречаются во всей природе. Если вы отломите соцветие от цветной капусты и увеличите его, оно будет замечательно походить на исходную головку цветной капусты. Если вы поглядите на увеличенный участок извилистой молнии, то, вместо того чтобы быть прямым, он будет выглядеть как копия молнии в целом. Мандельброт назвал эти формы фракталами и отнес их к «геометрии природы», поскольку они представляют подлинно новый вид, осознанный в полной мере лишь в XX в.

У эволюции этих фрактальных форм в природе имеются практические причины. Фрактальное устройство человеческих легких означает, что, хотя они помещаются внутри ограниченного объема грудной клетки, их поверхностная площадь огромна, следовательно, они могут поглощать большое количество кислорода. То же относится и к другим органическим объектам. Папоротники, к примеру, стремятся увеличить свою освещенность солнцем, не занимая при этом слишком много места. Все это обусловлено способностью природы находить формы с величайшей эффективностью. Подобно тому как пузырь обнаружил, что сфера – это то, что лучше всего подходит его нуждам, живые организмы, напротив, пошли в другой конец спектра, выбрав фрактальные формы с бесконечной сложностью.

Поразительно, что, несмотря на эту бесконечную сложность фракталов, их можно генерировать с помощью очень простых математических правил. С первого взгляда крайне трудно поверить, что причудливость природного мира может быть основана на простой математике, но теория фракталов обнаружила, что даже самые сложные структуры природного мира могут быть созданы нехитрыми математическими формулами.

Рис. 2.30. Фрактальный папоротник

Рисунок 2.30 похож на папоротник, но в действительности это компьютерное изображение, полученное с помощью простого математического правила, напоминающего то, которое мы использовали, чтобы изготовить снежинку Коха. Компьютерная промышленность воспользовалась этой идеей для создания сложного естественного фона в компьютерных играх. Хотя у игровой приставки может быть весьма ограниченный объем дискового пространства, простое правило из математики фракталов помогает ей сгенерировать необычайно сложную окружающую среду.

 

Каким образом у формы может быть размерность 1,26?

Формы, с которыми математики сталкивались до того, как на сцену вышли фракталы, были одно-, дву– или трехмерными: одномерная линия, двумерный шестиугольник, трехмерный куб. Но одно из самых поразительных открытий в теории фракталов состояло в том, что размерность этих новых форм больше 1, но меньше 2. Если вы достаточно отважны, я предлагаю вам объяснение того, как у формы может быть размерность между 1 и 2.

Трюк состоит в том, чтобы предложить умный способ, позволяющий понять, почему линия одномерна, а квадрат двумерен. Представьте, что вы взяли прозрачный лист клетчатой бумаги, положили его на исследуемую форму и сосчитали, сколько квадратиков содержат часть формы. Затем возьмите лист клетчатой бумаги, стороны квадратиков которой в два раза меньше, чем у первоначальной.

Рис. 2.31. Как вычислить размерность фрактала, используя клетчатую бумагу. Размерность характеризует увеличение количества пикселей при уменьшении их размера

Если эта форма – линия, количество клеток на бумаге возрастает в 2 раза. Если форма – квадрат, то число клеток увеличится в 4 раза, или в 2². Каждый раз, когда мы уменьшаем размеры клеток на бумаге в 2 раза, число квадратиков, содержащих часть одномерной формы, увеличивается в 2 раза, в то время как для двумерной формы увеличение характеризуется множителем 2². Размерность соответствует степени 2.

Любопытно, что, если вы примените данную процедуру к фрактальной береговой линии, которую мы построили ранее в главе, то увеличение количества клеток при уменьшении их размеров в 2 раза описывается приблизительным множителем 21,26. Итак, с этой точки зрения у нас есть все основания сказать, что размерность равна 1,26. Таким образом, мы создали новое определение размерности.

Вместо клетчатой бумаги вы можете анализировать эти формы с помощью пикселей компьютерного дисплея. Пусть пиксель будет черным, если он содержит часть исследуемой формы, и белым в противном случае. При увеличении разрешения экрана размерность характеризует увеличение количества черных пикселей. Например, если вы переходите от разрешения 16 × 16 пикселей к разрешению 32 × 32, то для линии количество черных пикселей удваивается. Для квадрата увеличение количества черных пикселей описывается множителем 4, или 2². Для количества черных пикселей в компьютерном изображении снежинки Коха соответствующий множитель равен 21,26.

В каком-то смысле фрактальная размерность говорит нам, в какой мере эта бесконечная фрактальная линия стремится заполнить пространство, в котором она находится. Давайте построим несколько вариантов нашей фрактальной береговой линии, в которых мы будем делать угол между сторонами, добавляемыми к побережью, все меньше и меньше. При этом результат занимает все больше и больше пространства. Когда мы вычислим размерность каждой из береговых линий в этой последовательности, мы обнаружим, что она все ближе и ближе подходит к 2 (рис. 2.32).

Рис. 2.32. При изменении угла треугольника получающийся фрактал занимает все больше пространства, и его фрактальная размерность возрастает

Если проанализировать фрактальные размерности форм, встречающихся в природе, то обнаружатся некоторые интересные обстоятельства. Фрактальная размерность береговой линии Британии оценивается в 1,25, что довольно близко к показателю построенного нами математического побережья. Мы можем представить себе, что фрактальная размерность говорит нам, как быстро возрастает длина побережья, когда мы используем все более короткие линейки для ее измерения. Фрактальная размерность побережья Австралии оценивается в 1,13, что указывает в каком-то смысле на его менее сложную форму, чем у побережья Британии. Довольно поразительно, что фрактальная размерность береговой линии Южной Африки составляет лишь 1,04, это свидетельствует, что она весьма гладкая. Вероятно, самое фрактальное из всех побережий – у Норвегии с ее фьордами, оно характеризуется размерностью 1,52.

Рис. 2.33. Какова размерность береговой линии Британии?

Для предметов в трех измерениях мы также можем воспользоваться этим трюком, но клетчатую бумагу нужно заменить ячеистой структурой из кубиков. Нужно проследить, как изменяется количество кубиков, с которыми пересекается изучаемая форма, когда их размеры становятся все меньше и меньше. У цветной капусты при этом получается размерность 2,33, у листа бумаги, смятого в шар, будет 2,5, брокколи довольно замысловата с ее 2,66, и поразительно, что фрактальная размерность поверхности человеческого легкого равна 2,97.

 

Можно ли подделать Джексона Поллока?

Осенью 2006 г. картина, написанная художником XX в. Джексоном Поллоком, стала самой дорогой из когда-либо проданных. По сообщениям прессы, мексиканский финансист Дэвид Мартинес заплатил 140 миллионов долларов (что тогда соответствовало 75 миллионам фунтов) за картину с простым названием «№ 5, 1948».

Картина была создана с использованием фирменной техники Поллока – разбрызгивания краски по холсту. За свою манеру письма он был прозван «Джеком-оросителем». Критики были шокированы ценой, которая была уплачена за подобное произведение, заявляя: «Что же, я сам мог бы нарисовать такую картину!» На первый взгляд действительно кажется, что любой мог бы разбрызгать краску и надеяться стать миллионером. Но математики обнаружили, что Поллок действовал значительно тоньше, чем можно было бы подумать.

В 1999 г. группа математиков, возглавляемая Ричардом Тейлором из Орегонского университета, проанализировала картины Поллока и открыла, что используемая им прерывистая техника воссоздает фрактальные формы, столь возлюбленные природой. Увеличенные участки картин Поллока сильно напоминают полотна в целом и обладают характерной бесконечной сложностью фрактала. (Разумеется, все большее и большее увеличение в конечном счете приведет к отдельным пятнам краски, но это случится, лишь когда вы увеличите холст в 1000 раз.) Для анализа техники, развитой Поллоком, можно даже привлечь понятие фрактальной размерности.

Поллок начал создавать фрактальные полотна в 1943 г. Фрактальная размерность его ранних картин была в районе 1,45, близко к значениям норвежских фьордов, но при дальнейшем развитии техники фрактальная размерность стала ползти вверх, что свидетельствовало о растущей сложности его произведений. Для завершения одной из последних картин Поллока в технике разбрызгивания, «Синие столбы», потребовалось шесть месяцев. Ее фрактальная размерность равна 1,72.

Рис. 2.34. Фрактальная размерность картины возрастает, когда вы разбрызгиваете все больше краски

Психологи исследовали формы, которые люди находят эстетически привлекательными. Нас постоянно притягивают изображения с фрактальными размерностями между 1,3 и 1,5, что соответствует размерностям многих форм, встречающихся в природе. На самом деле у этого могут быть веские эволюционные причины. Вероятно, так устроен наш мозг, чтобы можно было приспособиться к джунглям вокруг нас. Либо, подобно тому как лучшая музыка находится где-то между крайностями скучных звуков, издаваемых лифтом, и случайным белым шумом, эти формы притягательны для нас, потому что их сложность находится между слишком регулярными и слишком случайными объектами.

Если Поллок создавал фракталы, то насколько трудно воспроизвести его технику? В 2001 г. один техасский коллекционер произведений искусства был немало обеспокоен тем, что на его «Поллоке» не было подписи либо даты. Тогда он обратился к математикам, которые ранее открыли фрактальную размерность, присущую стилю Поллока. Их исследование показало, что у данной картины не было специальных фрактальных свойств, характерных для работ Поллока, то есть она, вероятно, была подделкой. Пятью годами позже комиссия по аутентификации, созданная фондом Поллока – Краснер для вынесения заключения по оспариваемым работам, попросила Ричарда Тейлора и его команду применить фрактальный анализ к коллекции из 32 картин, недавно найденных в камере хранения, которые якобы принадлежали кисти Джексона Поллока. Согласно фрактальному анализу, все они также были подделками.

Это вовсе не значит, что полотна Поллока невозможно подделать, – Тейлор даже создал приспособление, названное им «Поллокайзером», которое рисует подлинно фрактальные картины. Баночки с краской, висевшие на веревках, приводились в движение катушкой индуктивности, запрограммированной на воспроизведение хаотического движения, в результате чего получались вполне убедительные «Поллоки». Поэтому, хотя математика и помогает разоблачать подделки, она способна также сама создавать изображения, которые будут убедительны даже для экспертов.

У фракталов, несомненно, странные формы, ведь их размерности, вроде 1,26 или 1,72, не являются целыми числами. Но мы, по крайней мере, способны нарисовать их изображения. Но теперь положение вещей станет еще более необычным, потому что нам предстоит сделать шаг в гиперпространство, чтобы исследовать формы, которые существуют вне нашего трехмерного мира.

 

Как видеть в четырех измерениях?

Я все еще помню возбуждение, охватившее меня в тот день, когда я впервые «увидел» в четырех измерениях благодаря выученному языку, который позволял создавать эти формы в сознании. Изобретенный Рене Декартом словарь, преобразующий формы в числа, дает нам возможность видеть в четырех измерениях. Декарт понял, что зачастую видимый мир крайне трудно подвергнуть точному описанию, и ему захотелось создать четкое математическое подспорье для этого.

Головоломка на рис. 2.35 показывает, что не всегда можно доверять глазам. Как говорил Декарт, чувственное ощущение обманчиво.

Рис. 2.35. После расположения фигур в другом порядке кажется, что их суммарная площадь уменьшилась на одну клетку

Хотя на второй картинке лишь переместили формы с первой картинки, создается ощущение, что общая площадь уменьшилась на одну клетку. Как такое возможно? Дело в том, что, хотя и кажется, будто гипотенузы двух треугольников выстраиваются в одну линию, на самом деле они направлены под несколько отличающимися углами. Этого достаточно, чтобы при ином расположении фигур показалось, что потеряна единица площади.

Чтобы обойти проблему чувственного восприятия, Декарт создал эффективный словарь, который переводит геометрию в числа. Сейчас мы с ним хорошо знакомы. Когда мы смотрим на расположение какого-то города на карте, мы определяем его с помощью двух чисел координатной сетки. Эти числа фиксируют положение города относительно точки на экваторе, находящейся точно к югу от лондонского района Гринвич. Они определяют смещение от этой точки в направлении север – юг и восток – запад.

Например, Декарт родился во французском городе под названием… Декарт (впрочем, при его рождении город назывался Ла-Э-ан-Турен), расположенном на 47° северной широты и 0,7° восточной долготы. В словаре Декарта его родной город можно описать двумя координатами следующим образом: (0,7; 47).

Мы можем использовать схожую процедуру и для описания математических форм. Например, если я хочу описать квадрат, используя Декартов словарь координат, то скажу, что это форма с вершинами, расположенными в точках (0; 0), (1; 0), (0; 1) и (1; 1). Каждая сторона квадрата определяется выбором двух вершин, отличающихся одной координатой. Так одна из сторон соединяет вершины (0; 1) и (1; 1).

Для плоского двумерного мира достаточно двух координат, чтобы задать положение любой точки, но если мы хотим дополнительно включить нашу высоту над уровнем моря, то понадобится третья координата. Она также необходима для описания трехмерного куба в терминах координат. Восемь вершин куба задаются координатами (0; 0; 0), (1; 0; 0), (0; 1; 0), (0; 0; 1), (1; 1; 0), (1; 0; 1), (0; 1; 1) и, наконец, (1; 1; 1), которые соответствуют вершине, наиболее удаленной от первой.

Опять-таки, ребро проходит между двумя вершинами, отличающимися только одной координатой. Конечно, если вы взглянете на куб, то легко сосчитаете, сколько у него ребер. Но, если у вас нет куба или его зарисовки, вы можете сосчитать количество пар вершин, отличающихся одной координатой. Это нужно иметь в виду, когда мы переходим к формам, изображений которых у нас нет.

В словаре Декарта с одной стороны находятся формы и геометрия, с другой – числа и координаты. Беда в том, что иллюстративная сторона словаря не может идти далее трехмерных форм, потому что отсутствует четвертое физическое измерение, в котором мы могли бы видеть формы более высоких размерностей. Но красота словаря Декарта в том, что другая его сторона может продолжаться дальше и дальше. Чтобы описать четырехмерный объект, мы просто добавляем четвертую координату, которая фиксирует, насколько далеко мы заходим в этом новом направлении. И, хотя я не могу физически соорудить четырехмерный куб, я могу в точности описать его посредством чисел. У него 16 вершин: начинаясь с точки (0; 0; 0; 0), он доходит до точек (1; 0; 0; 0) и (0; 1; 0; 0) и простирается до самой удаленной точки (1; 1; 1; 1). Числа служат кодом для описания формы, и, пользуясь этим кодом, я могу исследовать данную форму без необходимости видеть ее физически.

Например, сколько ребер у этого четырехмерного куба? Каждому ребру соответствует пара точек, отличающихся одной координатой. Из каждой вершины выходят четыре ребра, отвечающие поочередному изменению одной из координат. Итак, у нас получается 16 × 4 ребер – или нет? Нет, потому что мы сосчитали каждое ребро дважды: один раз как исходящее из вершины на одном его конце и второй раз как исходящее из вершины на другом его конце. Значит, правильное выражение для количества ребер четырехмерного куба будет 16 × 4/2 = 32. И мы можем не останавливаться, а перейти в пять, шесть или даже большее число измерений и построить гиперкубы во всех этих мирах. Так, у гиперкуба в N измерениях будет 2N вершин. Из каждой вершины выходят N ребер, каждое из которых считается дважды. Поэтому у N-мерного куба будет N × 2N  – 1 ребер.

Математика наделяет вас шестым чувством, позволяя играть с этими формами, существующими за пределами нашей трехмерной Вселенной.

 

Где в Париже можно увидеть четырехмерный куб?

Чтобы отпраздновать двухсотлетие Великой французской революции, президент Франции Франсуа Миттеран дал заказ датскому архитектору Йохану Отто фон Спрекельсену на воздвижение чего-то особенного в Ла-Дефанс, деловом квартале Парижа. Строение должно было находиться на одной линии с другими знаковыми зданиями и памятниками Парижа – Лувром, Триумфальной аркой и Луксорским обелиском, что стало называться перспективой Миттерана.

Разумеется, архитектор не разочаровал. Он соорудил Большую арку (La Grande Arche), которая настолько огромна, что внутри ее поместились бы башни собора Парижской Богоматери. Вес Большой арки составляет ошеломительные 300 000 тонн. К несчастью, фон Спрекельсен умер за два года до завершения работ над сооружением, ставшим достопримечательностью Парижа. Но, возможно, не все парижане, которые видят Большую арку каждый день, осознают, что в действительности фон Спрекельсен воздвиг посреди их города четырехмерный куб.

Рис. 2.36. Большая арка в Париже является тенью четырехмерного куба

Впрочем, это не совсем четырехмерный куб, потому что мы живем в трехмерной Вселенной. Но подобно тому, как художники эпохи Возрождения отваживались на отображение трехмерных форм на плоском двумерном холсте, так и архитектор в Ла-Дефанс зафиксировал тень четырехмерного куба в нашей трехмерной Вселенной. Чтобы создать иллюзию того, что мы видим трехмерный куб, когда глядим на двумерное полотно, художник мог бы нарисовать меньший квадрат внутри большего квадрата и затем соединить их вершины для окончания картины куба. Опять-таки это не совсем куб, но изображение наделяет зрителя достаточной информацией: мы видим все ребра и можем представить куб. Фон Спрекельсен воспользовался той же идей, чтобы построить проекцию четырехмерного куба в трехмерном Париже, состоящую из меньшего куба внутри большего куба, причем их вершины соединены ребрами. Если вы посетите Большую арку и тщательно сосчитаете их, то у вас получатся те же 32 ребра, что и в предыдущем разделе, где мы использовали Декартовы координаты.

Всякий раз, когда я навещаю Большую арку, у меня возникает жутковатое чувство из-за воющего ветра, который стремится протащить вас через центр арки. Ветер стал настолько заметной проблемой, что дизайнерам пришлось сделать навес посреди арки для воспрепятствования потоку воздуха, словно строительство тени гиперкуба в Париже открыло портал в другое измерение.

Есть и другие способы представить четырехмерный куб в нашем трехмерном мире. Подумайте, как бы вы сделали трехмерный куб из куска двумерного картона. Сначала вы бы нарисовали шесть квадратов, объединенных в крестообразную форму, причем каждый из квадратов представляет грань куба. Затем вы свернете крестообразную форму в куб. Двумерная заготовка из картона называется разверткой трехмерной формы. Подобным образом в нашем трехмерном мире можно построить развертку, которую в четырех измерениях удалось бы сложить в четырехмерный куб.

Вы можете приняться за изготовление четырехмерного куба с того, что вырежете и сложите восемь трехмерных кубов. Они будут «гранями» вашего четырехмерного куба. Чтобы сделать его развертку, нужно соединить восемь кубов вместе. Сначала склейте в колонну первые четыре куба, один поверх другого. Теперь возьмите оставшиеся четыре куба и приклейте их к граням одного из четырех кубов в колонне. Ваш развернутый гиперкуб теперь должен выглядеть как два пересекающихся креста, что показано на рис. 2.37.

Рис. 2.37. Как сделать четырехмерный куб из восьми трехмерных кубов

Чтобы сложить развертку, вам необходимо начать с соединения верхнего и нижнего кубов в колонне. Следующим шагом стало бы соединение с нижним кубом обращенных наружу граней двух кубов, прикрепленных к противоположным сторонам колонны. Далее надо приклеить грани двух других боковых кубов к двум оставшимся граням нижнего куба. Разумеется, как только вы начнете сворачивать развертку, вы столкнетесь с проблемой: в нашем трехмерном пространстве не хватает места для выполнения этих действий. Вам необходимо четвертое измерение, чтобы собрать гиперкуб в соответствии с моим описанием.

Подобно тому как архитектора вдохновила тень четырехмерного куба, художник Сальвадор Дали был заинтригован идеей о развертке гиперкуба. На своей картине «Распятие, или Гиперкубическое тело» Дали изображает Христа распятым на трехмерной развертке четырехмерного куба. Для Дали понятие четвертого измерения как чего-то лежащего вне нашего материального мира, резонировало с представлением о духовном мире, находящемся вне нашей физической Вселенной. Его развернутый гиперкуб состоит из двух пересекающихся крестов, и картина наводит на мысль, что вознесение Христа на небо связано с попыткой сложить эту трехмерную структуру в дополнительном измерении, выходящем за пределы физической реальности.

Все наши попытки изобразить четырехмерную форму в трехмерной Вселенной не дадут полной картины, подобно тому как тень или силуэт в двумерном мире предоставляет лишь частичную информацию. Когда мы двигаем и поворачиваем предмет, тень изменяется, но мы никогда не видим все разом. Эта тема была подхвачена писателем Алексом Гарлендом в книге «Тессеракт» (другое название четырехмерного куба). Повествование передает взгляды различных персонажей на главные события, происходящие в преступном мире Манилы. Никакое отдельно взятое суждение не дает полной картины, но, сводя воедино все нити, что подобно разглядыванию множества различных теней, отбрасываемых предметом, читатель начинает понимать возможный сюжет. Но четвертое измерение важно не только для создания строений, картин и романов. Оно также может быть ключом к форме самой Вселенной.

 

Какова форма вселенной в видеоигре «Астероиды»?

В 1979 г. компьютерная компания Atari выпустила свою самую популярную видеоигру «Астероиды». Ее целью было подбить и уничтожить астероиды и летающие тарелки, одновременно уклоняясь от пролетающих астероидов и ответного огня летающих тарелок. Аркадная версия игры была настолько успешна, что в США потребовалось устанавливать в игровые автоматы бо́льшие контейнеры, чтобы вместить возросший поток 25-центовых монет.

Но с математической точки зрения интерес представляет геометрия игры: как только космический корабль пересекает верх экрана, он волшебным образом появляется внизу. Подобным образом при пересечении экрана слева космический корабль снова появляется на экране справа. Получается так, что наш космонавт заперт в двумерном мире, и вселенная целиком видна на экране. Хотя эта вселенная конечна, у нее нет границ. Поскольку космонавт никогда не доходит до края, он живет не внутри прямоугольника, а перемещается в более интересной вселенной. Можем ли мы понять, какова ее форма?

Если космонавт выходит с экрана наверху и снова появляется внизу, то эти части вселенной должны быть соединены. Представьте, что компьютерный экран сделан из гибкой резины, так что мы можем согнуть его и соединить верх с низом. Теперь мы видим, что, когда космонавт летит по экрану вертикально, он на самом деле кружится и кружится по цилиндру.

А что происходит в другом направлении? После того как космонавт исчезает с экрана слева, он снова появляется справа, поэтому два конца цилиндра также должны быть соединены. Если мы отметим точки, где они соединяются, то поймем, что цилиндр нужно согнуть и совместить его основания. Итак, в действительности наш космонавт живет на поверхности бублика, или на торе, как называем ее мы, математики.

С помощью этого куска резины я проиллюстрировал новый способ глядеть на формы, который появился в математике примерно сто лет назад. Для древних греков смысл геометрии (что буквально означает на греческом «измерение земли») состоял в определении углов и расстояний между точками. Но при анализе формы вселенной космонавта из игры «Астероиды» главными для нас были не расстояния, а то, как части формы соединены друг с другом. Этот новый взгляд на формы, когда разрешается сжимать и растягивать их, словно они сделаны из резины или пластилина, называется топологией.

Многие люди используют топологические карты каждый день. Узнаёте карту, показанную ниже? Это геометрическая карта лондонского метро, но она не слишком удобна для ориентирования, хотя и точна географически. Вместо нее лондонцы используют топологическую карту. Ее придумал Гарри Бек в 1933 г. – он сжимал и растягивал геометрическую карту, чтобы получить удобную в пользовании схему метро. Ее аналоги теперь распространены по всему миру.

Рис. 2.38. Геометрическая карта лондонского метро

Вопрос о том, можно ли развязать узел, также является топологическим, потому что при этом мы можем тянуть за веревки, но не разрезать их. Данный вопрос имеет фундаментальное значение для биологов и химиков, потому что человеческая ДНК стремится образовывать странные узлы. Некоторые болезни, например болезнь Альцгеймера, возможно, связаны с тем, как запутывается ДНК, и у математиков есть потенциал для разгадки их тайн.

В начале XX в. французский математик Анри Пуанкаре задался вопросом о том, сколько имеется топологически различных поверхностей. Это соответствует нахождению всех возможных форм, на которых мог бы жить наш двумерный космонавт из игры «Астероиды». Пуанкаре интересовался этими вселенными с топологической точки зрения, поэтому две вселенные должны считаться одинаковыми, если одну из них можно деформировать в другую непрерывным образом, не делая разрезов. Например, двумерная сфера топологически эквивалентна двумерной поверхности мяча для игры в регби, потому что одну можно преобразовать в другую. Но эта сферическая вселенная топологически отлична от тора, по которому летает двумерный космонавт, потому что сферу нельзя деформировать в бублик, не делая в ней разрезов или склеек. Но какие другие формы имеются?

Рис. 2.39. Первые четыре формы в топологической классификации двумерных поверхностей, предложенной Анри Пуанкаре

Пуанкаре сумел доказать, что, какой бы сложной ни была форма, ее всегда возможно деформировать непрерывным образом в одну из следующих форм: сферу, тор с одной дыркой, тор с двумя дырками либо тор с любым конечным числом дырок. С топологической точки зрения это полный список всех возможных вселенных для нашего двумерного космонавта. Именно количество дырок – которое математики называют родом поверхности – характеризует форму. Так, чайная чашка топологически эквивалентна бублику, потому что у них по одной дырке. У чайника же две дырки, одна в носике, а другая в ручке, и его можно преобразовать так, чтобы он выглядел как брецель с двумя дырками. Наверное, необходимы большие усилия, чтобы понять, почему форма на рис. 2.40, в которой также две дырки, может быть деформирована в брецель с двумя дырками. Кажется, что из-за зацепления бубликов потребуется разрезать форму, чтобы успешно деформировать ее, но это не так.

Рис. 2.40. Как расцепить два кольца, непрерывно деформируя их, но не делая разрезов?

В конце главы я объясню, как расцепить кольца, не разрезая.

 

Откуда мы знаем, что не живем на планете в форме бублика?

В древние времена люди полагали, что Земля плоская. Но, как только они начали путешествовать на большие расстояния, вопрос крупномасштабной формы Земли стал особенно важен. В плоском мире, как считалось, при достаточно долгом странствии можно дойти до края и упасть с него – если, разумеется, мир не бесконечный и тогда нельзя достичь края.

Во многих культурах начали осознавать, что Земля, скорее всего, изогнута и конечна. Самое очевидное предположение для ее формы, несомненно, шар, и несколько древних математиков сделали невероятно точные расчеты его размера, основываясь только на анализе того, как изменяется тень на протяжении дня. Но почему ученые могли быть уверены, что поверхность Земли не сложена в какую-то более интересную форму? Откуда они знали, что мы не живем, скажем, на поверхности гигантского бублика, подобно космонавту из «Астероидов», запертому в своей бубличной двумерной вселенной?

Чтобы найти ответ, отправимся в воображаемое путешествие в этих альтернативных мирах. Давайте поместим исследователя на поверхность планеты и скажем ему, что он находится либо на идеальной сфере, либо на идеальном бублике. Как он сумеет различить эти две возможности? Мы предложим ему взять ведерко белой краски и кисть и идти по прямой линии по поверхности планеты, отмечая свой путь. В конечном счете исследователь вернется на то место, с которого начал движение, прочертив при этом гигантский белый круг вокруг планеты.

Теперь мы дадим ему ведерко с черной краской и скажем идти в другом направлении. На сферической поверхности Земли, какое бы новое направление он ни выбрал, черный путь всегда пересечет белый путь до того, как исследователь вернется к старту. Помните, что он всегда путешествует по прямой линии на поверхности. Точкой, где два пути пересекутся, будет «полюс», противоположный точке, с которой исследователь начинает движение.

Рис. 2.41. Два пути на сфере пересекаются в двух местах

На поверхности планеты, имеющей форму бублика, положение вещей совсем другое. При путешествии с белой краской исследователь мог отправиться к внутренней части бублика, пройти через дырку и выйти на другой стороне. Но если при путешествии с черной краской он отправится по пути, образующему угол 90° с белым путем, то он пройдет вокруг дырки, не заходя внутрь ее. Итак, возможно совершить два путешествия, у которых пересечение происходит лишь в месте начала движения.

Рис. 2.42. На торе есть пути, пересекающиеся один раз

Проблема в том, что поверхность планеты, вообще говоря, не является идеальной сферой либо поверхностью идеального бублика – она искажена. По планете могут ударить метеориты и оставить вмятины, так что исследователь, путешествующий по прямой линии, дойдя до вмятины или нароста, изменит направление своего движения. В действительности вполне может быть такое, что исследователь, начав движение по прямой линии, никогда не вернется в точку старта. Поскольку формы с вмятинами представляют собой лишь слегка искаженные версии сферы или поверхности бублика, возможно, существуют другие способы различить их? Именно здесь проявляется сила топологического подхода, потому что для него не столь важен кратчайший путь между точками, а то, можно ли преобразовать один путь в другой.

Давайте теперь отправим нашего исследователя в путь с белой эластичной веревкой, которую он будет класть на поверхность за собой. Когда путешественник снова вернется к началу, он соединит концы веревки, так что получится петля вокруг планеты. Затем он пойдет в другом направлении с черной эластичной веревкой, пока не вернется к месту старта. Если планета представляет собой шар с несколькими пиками или провалами, то исследователь сможет, не разрезая веревки, переместить черную петлю поверх белой. Но, если у планеты форма бублика, такое не всегда возможно. Если черная веревка обернута вокруг планеты, заходя в дырку бублика, а белая веревка уложена по кругу, проходящему по внешнему краю бублика, то нельзя совместить черную и белую петли, не разрезая их. Итак, путешественник сможет сказать, есть ли в планете дыра, совершив несколько путешествий. Не покидая поверхности планеты, он выяснит, какова ее форма.

Вот два других, более курьезных способа сказать, находитесь ли вы на планете в форме шара или в форме бублика. Представьте, что обе планеты покрыты мехом. Исследователь на бублике сумеет так причесать его, что мех всюду будет лежать гладко. Например, зачесывая мех в дыру с одной стороны и из дыры с другой стороны. Но у исследователя на меховом шаре будут проблемы; как бы он ни старался, обязательно найдется место, где мех будет торчать.

Любопытно, что у этого обстоятельства имеется странное следствие для погоды на этих двух планетах. Можно представить, что направление меха характеризует то направление, в котором дует ветер в этих двух различных мирах. На шаре всегда найдется место, где не дует ветер (там, где торчит мех). Но на бублике ветер может дуть по всей планете.

Другое отличие этих двух планет состоит в картах, которые на них могут быть нарисованы. Поделите каждую из планет на разные страны и затем попытайтесь раскрасить карты так, чтобы любые две страны с общей границей были окрашены в разные цвета. Для сферической поверхности Земли вам всегда будет достаточно лишь четырех красок. Поглядите на фрагмент карты Европы, на то, как Люксембург втиснулся между Германией, Францией и Бельгией, – и становится понятно, что нужны как минимум четыре краски. Но удивительно именно то, что больше и не потребуется – не существует возможности перекроить границы в Европе так, чтобы заставить картографов покупать пятую краску. Но доказать это утверждение нелегко. Для этого математикам пришлось прибегнуть к помощи компьютера – он проверил несколько тысяч карт, чтобы удостовериться, что не существует какой-то патологической, для которой понадобится пятая краска. На рисование всего этого от руки ушло бы слишком много времени.

Рис. 2.43. Для того чтобы раскрасить карту Европы, понадобится четыре краски

А что же у картографов, живущих на планете в форме бублика, – сколько ведерок с краской потребуется им? Оказывается, существуют карты для поверхности бубличной планеты, для которых нужны семь красок. Вспомните, как для игры «Астероиды» мы сворачивали прямоугольный экран, чтобы изготовить бублик. Мы соединяли верх и низ, чтобы сделать цилиндр, а затем соединяли концы цилиндра и получали бублик. На рис. 2.44 представлена карта для поверхности бублика до проведения этих соединений. Для раскрашивания этой карты нужно семь красок.

Теперь, после того как мы совершили путешествие по математике пузырей и бубликов, фракталов и пены, мы готовы взяться за наиглавнейший вопрос математики формы.

Рис. 2.44. Сверните эту карту в форму бублика, для чего сначала совместите верх и низ, а потом соедините концы. Вы обнаружите, что вам понадобится семь красок, чтобы раскрасить ее

 

Какова форма нашей Вселенной?

Над этим вопросом человечество билось на протяжении тысячелетий. Древние греки полагали, что Вселенная ограничена небесной сферой (твердью), на внутренней поверхности которой нарисованы звезды. Эта сфера вращалась, совершая оборот за 24 часа, что объясняло движение звезд. Но эту модель нельзя признать удовлетворительной: если мы отправимся в космическое путешествие, то что же – в конечном счете налетим на стенку? А если так, то что находится по ту сторону стенки?

Исаак Ньютон одним из первых предположил, что у нашей Вселенной, возможно, нет границы – что она бесконечна. Сколь ни привлекательна идея бесконечной Вселенной, она не соотносится с современной теорией возникновения Вселенной при Большом взрыве и ее последующего расширения из концентрированного сгустка материи и энергии. Мы теперь считаем, что в пространстве находится лишь ограниченное количество материи. Но как Вселенная может быть конечна и при этом не иметь границы?

Эта проблема аналогична той, что стояла перед нашими исследователями мира, у которого конечная площадь поверхности, но нет ни краев, ни границ. Правда, вместо того чтобы быть прижатыми к двумерной поверхности, мы находимся внутри трехмерной Вселенной. Существует ли элегантный способ найти форму этой Вселенной и разрешить очевидный парадокс того, что у нее нет границ и при этом она конечна?

Потребовалось открытие четырехмерной геометрии форм в середине XIX в. для того, чтобы у нас появился возможный ответ. Математики поняли, что четвертое измерение дает им достаточно пространства, чтобы сложить нашу трехмерную Вселенную в формы, у которых конечный объем и при этом нет границ. Так же происходит с конечной по площади двумерной поверхностью Земли или поверхностью бублика, у которых нет краев.

Мы уже видели, как конечная двумерная вселенная в игре «Астероиды» в действительности является поверхностью трехмерного бублика. Но мы же трехмерные путешественники, которые могут перемещаться и в третьем измерении. Возможно, Вселенная, в которой мы живем, подобна вселенной из игры «Астероиды»? Начнем с того, что сделаем стоп-кадр Вселенной после Большого взрыва в тот момент, когда она расширилась до размера вашей спальни. Эта Вселенная размером со спальную комнату конечна по объему, но у нее нет границ – потому что различные части спальни соединены между собой довольно любопытным образом.

Представьте, что вы стоите в середине комнаты лицом к стене (я предполагаю, что у вашей спальни форма куба). Когда вы идете вперед, то не ударяетесь в стену перед вами, а проходите через стену, бывшую за вами. Сходным образом когда вы проходите через стену за вами, то появляетесь из стены впереди. Если вы поменяете направление на 90° и направитесь к стене слева, то, пройдя через нее, вы выйдете из стены справа (и наоборот). Итак, части вашей спальни соединены как в игре «Астероиды».

Но мы – трехмерные путешественники в пространстве, которые могут отправиться и в третьем направлении. Когда мы подлетаем к потолку, то не отскакиваем от него, а проходим сквозь него и выходим из пола. При путешествии в противоположном направлении мы проходим через пол и выходим из потолка.

При этом форма Вселенной соответствует поверхности четырехмерного бублика, или гипербублика. Но подобно тому, как космонавт, запертый в игре «Астероиды», не может выйти из своего двумерного мира, чтобы разглядеть, как свернута вселенная, мы не в состоянии увидеть этот гипербублик. И все же, используя язык математики, мы можем испытать его форму и исследовать его геометрию. К настоящему времени наша Вселенная заметно расширилась за пределы спальной комнаты, но, возможно, она по-прежнему устроена как поверхность гипербублика. Подумайте о свете, который распространяется по прямой линии от Солнца. Быть может, он не исчезает на бесконечности, а, образуя петлю, возвращается назад и попадает на Землю. Если это так, одна из наблюдаемых нами далеких звезд – это наше Солнце, потому что его свет распространялся по всему гипербублику и наконец пришел на Землю. Следовательно, мы можем видеть наше Солнце, когда оно было значительно моложе.

Это кажется невероятным, но представьте, что вы сидите в своей спальне, которая соответствует мини-бублику Вселенной, и зажигаете спичку. Когда вы глядите на стену перед собой, то видите пламя спички перед вами. Теперь обернитесь и посмотрите на противоположную стену. Вы снова увидите спичку, но теперь на несколько большем расстоянии, потому что свет от спички сначала идет к стене перед вами, а затем проходит через противоположную стену и попадает вам в глаз.

Возможно, мы живем не на гипербублике, а на поверхности четырехмерного футбольного мяча. Некоторые астрономы полагают, что мы могли бы жить в форме, которая напоминает додекаэдр с 12 гранями, где как в мини-вселенной размером со спальню, когда вы достигаете одной из граней додекаэдра, то возвращаетесь в вашу вселенную через противоположную грань. Вероятно, мы совершили полный круг и вернулись к той модели, которую Платон предложил две тысячи лет назад. Согласно ей наша Вселенная заключена внутрь стеклянного додекаэдра, к поверхности которого прикреплены звезды. Возможно, современная математика наполнила смыслом эту модель, ведь противоположные грани этой формы теперь соединены и более не представляют стеклянных перегородок вселенной.

Но какие другие формы могли бы быть у нашей Вселенной? Вспомните, как Пуанкаре провел классификацию всех возможных форм, которые могли бы быть у двумерных поверхностей, таких как поверхность нашей планеты. Поверхность может быть свернута как футбольный мяч, бублик, брецель с двумя дырками, с тремя дырками или с большим количеством дырок. Пуанкаре доказал, что какие бы другие формы вы ни постарались изготовить, их можно деформировать в сферу или брецель с дырками.

А что же можно сказать о нашей трехмерной Вселенной – какая форма может быть у нее? Эта задача на миллион долларов называется гипотезой Пуанкаре. Она особенна, потому что в 2002 г. появились новости о ее решении российским математиком Григорием Перельманом. Его доказательство гипотезы Пуанкаре было проверено многими математиками, и теперь признано, что он действительно расклассифицировал все возможные формы, которые могла бы принимать наша Вселенная. Это была первая решенная задача на миллион долларов, но, когда в июне 2010 г. Перельману предложили получить премию, он, к общему изумлению, отказался от нее. Для Перельмана приз был не в деньгах, но в найденном решении одной из величайших задач в истории математики. До того Перельман уже отказался от медали Филдса, математического эквивалента Нобелевской премии. В наш век погони за славой и материальным достатком такой поступок человека, которого вдохновляет доказательство теорем, а не получение призов, представляется невероятно благородным.

После того как математики признали доказательство Перельмана, можно утверждать, что они разобрались во всех возможных формах. Теперь дело за астрономами, наблюдающими за ночным небом: определить, какая из них лучше всего описывает неуловимую форму Вселенной.

 

Решения

Воображая формы

Разрез пересекает все шесть граней, и каждая грань добавляет ребро к образовавшейся новой грани. Эта форма должна быть симметрична, так что у вас получится шестиугольник.

Расцепление колец

Вот так можно расцепить два кольца, непрерывно деформируя их в тор с двумя дырками.

Рис. 2.45