Случайные события – от большого взрыва до рождения человека как вида
Начнем наше изучение случайности с рассмотрения цепочки случайных событий от образования Вселенной к возникновению человеческих существ вроде нас с вами. Разумеется, нет никого, кто бы в точности на вас походил. Вы когда-нибудь, глядя на сестру или брата, задумывались над тем, откуда взялась разница между вами? Возможно, вы и обладаете общими генетическими корнями, но вы не полностью идентичны, даже если вы близнецы. Разного рода случайные повороты привели к тому, что вы совершенно уникальны. Похоже, то же самое верно и в отношении эволюции человека и человеческой жизни. Речь идет о необычайном путешествии, полном поразительных флуктуаций. Вселенная не обязана была производить материю, не говоря уж о создании планеты с достаточно стабильным климатом, подходящим для появления жизни. Более того, жизнь (особенно сложная, многоклеточная) тоже не должна была появиться. То же самое касается и биологических видов. И когда мы доберемся до рассказа о случайных мутациях, которые сделали человека таким, каким он стал, вы наверняка будете лишь тихо изумляться: как же нам всем повезло оказаться в числе существующих на Земле объектов.
Космическая лотерея
Начнем с самого начала. Стивен Баттерсби и Дэвид Шига как раз готовы объяснить наше космологическое везение. Оказывается, вся наша Вселенная – просто выверт судьбы, флуктуация!
Можно лишь гадать, какие космические совпадения предшествовали зарождению нашей Вселенной. Достаточно сказать, что примерно 13,82 миллиарда лет назад (плюс-минус иоктосекунда) космос решал, каким он станет, когда вырастет.
«Я стану гораздо больше»: видимо, он подумал именно так, если верить самой популярной модели ранних стадий существования Вселенной. Согласно теории расширяющейся Вселенной (инфляционной модели), новорожденную Вселенную пронизывало так называемое инфляционное поле. Оно вызвало экспоненциальное расширение космоса в течение примерно 10–32 с, сделав его плоским и однородным.
Это неплохо объясняет некоторые характеристики нашей Вселенной, которые плохо поддавались трактовке. Но самое любопытное здесь то, что инфляционное поле, пусть и практически однородное, не было совершенно идентичным для каждого кусочка пространства. Причина этого – случайные квантовые флуктуации: они делали пространство чуть более плотным в одном месте и чуть менее плотным – в другом. Тут нам повезло: полная однородность сделала бы Вселенную совсем другой, неинтересной и почти наверняка безжизненной. Случилось так, что один из этих случайных микроскопических квантов шума, усиленных гравитацией, в итоге вырос в гигантское сообщество галактик и их скоплений, именуемое Сверхскоплением Девы. Среди множества его участков – малопримечательный всклокоченный куст, который мы именуем локальной группой. В ней-то и располагается Млечный Путь – наш дом.
Мы знаем все это благодаря тому, что астрономы, вглядываясь в глубины космоса, способны различить пестрый узор космического фонового микроволнового излучения. Это своего рода моментальный снимок процесса роста и объединения, в ходе которого первые стабильные атомы образовались спустя примерно 380 тысяч лет после Большого взрыва. Вариации в этом узоре кажутся совершенно случайными и произвольными. Большинство физиков полагают, что породившие сей узор квантовые флуктуации не имели под собой вообще никакой причины. Иными словами, среди всех счастливых случаев этот – наиболее случайный.
Потом появилась материя. Весьма необычайным кажется уже то, что она вообще существует: космос легко мог бы обойтись без нее. Тогда он просто представлял бы собой скучный океан излучения. Дело в том, что после первоначального расширения Вселенная все же продолжала оставаться невообразимо горячей и плотной. Она была наполнена частицами материи и антиматерии – электронами, позитронами, кварками, антикварками и другими. И все они сновали в ней без всякой определенной цели. Стабильные союзы между частицами, способные порождать звезды, планеты и жизнь, возникнут лишь где-то в отдаленном будущем. И, что тревожнее всего, частицы материи и антиматерии присутствовали в этой смеси в равных количествах (как могло бы показаться проходящему мимо наблюдателю). А значит, ситуация была очень опасная.
Если верить стандартным теориям, вещество и антивещество появились после Большого взрыва в одинаковых количествах. Поскольку при контакте они взаимно аннигилируют, порождая пары фотонов высокой энергии, в сегодняшнем космосе должно было бы существовать лишь одно совершенно неинтересное излучение. Для того чтобы мы с вами могли существовать, что-то – материя или антиматерия – должно было победить: нельзя создать планету или человека из света.
К счастью, было нечто, которое, судя по всему, благоприятствовало созданию материи в самый критический момент – в первые мгновения после Большого взрыва. Небольшого избытка материи по отношению к антиматерии (всего одной лишней частицы вещества на миллиард) было достаточно, чтобы в конце концов привести к сегодняшнему положению дел, когда во Вселенной так много материи. Но как же мог возникнуть такой дисбаланс?
Хотя в некоторых взаимодействиях элементарных частиц и наблюдается своего рода диспропорция в пользу материи, она все же слишком незначительна, чтобы создать даже столь небольшое преимущество. Поэтому физики предполагают, что в ранней Вселенной должен был возникнуть какой-то более сильный дисбаланс (как следствие пока неведомых процессов, лежащих за пределами Стандартной модели физики частиц), где доминировали частицы с высокими энергиями.
Сейчас многие учение все больше подозревают, что такая сверхфизика могла быть изменчивой, различной в разных вселенных, и, похоже, нашей с вами маленькой Вселенной здорово посчастливилось – ей удалось-таки приобрести запасец материи, тогда как многие другие миры превратились в безжизненные пустыни, где царит лишь излучение.
Материя – не единственная потенциальная жертва столь изменчивой и прихотливой физики. Такие процессы могут приводить и к формированию сверхплотных вселенных, схлопывающихся в черные дыры, и к возникновению миров, пронизанных темной энергией, которая быстро разрывает все существующие структуры. С этой точки зрения кажется действительно очень редким событием появление вселенной, где в конце концов возникли условия, благоприятные для жизни человека.
Следующее космическое событие – пришествие небесного огня. Итак, в нашей Вселенной материя победила, и наш мир стал остывать. Вскоре начали формироваться стабильные атомы и молекулы. Спустя 100 миллионов лет возникли первые звезды – гиганты из водорода и гелия. Они жили быстро и умирали молодыми, в мощнейших взрывах, засеивавших космос более тяжелыми элементами, которые, в свою очередь, становились ингредиентами других звезд, а также галактик. Но Солнечная система не возникает сама по себе.
Лишь примерно через 9 миллиардов лет после Большого взрыва в нашем уголке космоса оказалось большое количество водорода, гелия и межзвездной пыли. Но если они планировали не только висеть в пространстве, но и делать что-то еще, требовалось нечто большее: искра, которая воспламенила бы эти облака инертных газов.
В конце концов такая искра вспыхнула. Ключ к ее происхождению таится в метеоритах. В отличие от родных камней нашей планеты, которые часто плавятся и перемешиваются, метеориты остаются практически неизменными после того, как они сконденсировались при формировании Солнечной системы.
Метеориты хранят в себе химические особенности этих далеких тысячелетий.
Так, в метеорите, найденном в 2003 году в индийском Бишунпуре, ученые обнаружили большое количество железа-60 – радионуклида, который в ходе радиоактивного распада превращается через несколько миллионов лет в стабильный никель-60. Поскольку нуклид железо-60 является таким (относительно) короткоживущим, в межзвездном газе обычно содержатся лишь следовые его количества. Высокое содержание этого нуклида в Бишунпурском метеорите позволяет предположить, что Солнечная система сформировалась из гораздо более богатой смеси.
Можно выдвинуть два объяснения. Первое: эту смесь обогатила какая-то сверхновая, находящаяся неподалеку. Вспышки сверхновых – в числе немногих космических процессов, о которых известно, что они порождают большое количество тяжелых радиоактивных изотопов, таких как железо-60. Ударная волна от такого взрыва могла бы запустить процесс образования Солнца и планет, сжимая первичное газовое облако.
Второй вариант: зарождение Солнечной системы происходило по более мягкому сценарию. Красный гигант достаточного размера способен посоперничать со сверхновой по части производства железа-60 и других радиоактивных элементов в соотношении, отвечающем составу исследуемого метеорита. Эти элементы могли образоваться в глубинных слоях звезды; затем конвекционные потоки вынесли бы их на поверхность, после чего они попали бы в пространство как часть могучего звездного ветра, который всколыхнул бы и все газовые облака, оказавшиеся рядом.
По мнению большинства астрономов, вспышка сверхновой – объяснение самое вероятное. Но будь то звездный взрыв или звездный выброс, помните: наше Солнце – просто наиболее очевидная звезда из тех, которым мы должны быть благодарны за наше существование. Однако не следует забывать и о других, менее знаменитых. Они тоже сыграли свою роль.
Далее в нашем списке флуктуаций и возмущений – образование Луны. Она возникла благодаря тому, что Солнечная система, где оказалась новорожденная Земля, являлась средой нестабильной, полной каменных глыб, летавших там и сям по нерегулярным орбитам. Примерно 4,5 млрд лет назад одна из таких громадин, размером примерно с Марс, врезалась в нашу планету. В результате и возникло привычное нам положение вещей. Часть врезавшегося материала присоединилась к Земле, а остальное выбросило на орбиту вместе с кусками Земли, вырванными при столкновении. Там из них и образовалась Луна.
Событие это не кажется таким уж значительным. Однако на самом деле произошла очень важная вещь: возник спутник аномально большого размера по отношению к материнской планете. В Солнечной системе такого больше нет: все прочие спутники планет – сравнительно небольшие тела, либо постепенно слипшиеся из орбитальных обломков, либо захваченные гравитационным полем планеты.
За пределами Солнечной системы это явление тоже встречается редко. Наблюдения, сделанные при помощи космического телескопа «Спитцер», показывают, что масштабные столкновения в других звездных системах порождают огромное количество пыли. И хотя удалось обнаружить несколько таких пылевых систем, столкновения, чьей мощности хватит для того, чтобы породить что-нибудь вроде Луны, происходят, судя по всему, лишь в 5–10 % солнечных систем. А доля случаев, когда такое действительно произошло, значительно меньше даже этой величины.
Почему это вообще важно? Потому что размер Луны позволяет ей служить гравитационным подспорьем, позволяющим стабилизировать угол наклона земной оси. Это предотвращает резкие изменения в характере нагрева Солнцем поверхности нашей планеты. Такие изменения могли бы привести к мощным климатическим скачкам, в том числе и к частым периодам, когда вся планета замерзает. Для нас это не пустяк. Не будь Луны, наклон земной оси претерпевал бы существенные изменения, и тогда вряд ли возникли бы условия для появления сухопутных многоклеточных.
Своим возникновением жизнь обязана и еще одному случайному астрономическому событию – бомбардировке планеты небесными камнями. Это событие произошло около 3,9 млрд назад и впоследствии получило название поздней тяжелой бомбардировки (последней метеоритной бомбардировки). Причины этого неожиданного космического бильярда до сих пор не вполне ясны. Вероятнее всего, его спровоцировало сложное гравитационное взаимодействие между четырьмя гигантскими планетами Солнечной системы – Юпитером, Сатурном, Ураном и Нептуном. Небольшие сдвиги орбит Сатурна и Юпитера постепенно привели к тому, что период обращения Сатурна вокруг Солнца стал ровно вдвое больше периода обращения Юпитера. Этот «гравитационный резонанс» перетряхнул орбиты всех четырех громадных планет и заставил оказавшиеся поблизости кометы и астероиды устремиться во внутренние области Солнечной системы.
Поздняя тяжелая бомбардировка создала на Земле чрезвычайно негостеприимные условия. «Представьте себе озера расплавленной породы площадью с нынешнюю Африку», – говорит Стивен Мойжис, геолог из Колорадского университета в Боулдере. Но после остывания кратеры от этих столкновений стали бы идеальными местами для зарождения жизни, замечает Чарлз Кокелл, астробиолог из Эдинбургского университета. Остаточное тепло стимулировало бы химические реакции в теплой воде, окружавшей камни.
А если жизнь к этому времени уже зародилась, такое событие изменило бы весь ход эволюции, уничтожив все микроорганизмы, кроме наиболее жаростойких, говорит Мойжис. Он добавляет: «Такова уж история всего живого – массовое вымирание приводит к новым моделям поведения».
Вот мы с вами кто – маленькие существа на маленькой планете, которая вращается вокруг неприметной звездочки в довольно заурядной галактике на ничем не выдающемся участке невероятно обширной вселенной. Как мы появились? Благодаря случайности.
Алгоритм жизни
После всех этих событий Земля оказалась готова для появления жизни. Но тут встает другой вопрос: а должна ли была жизнь появиться? Пол Дэвис занимается этим вопросом на протяжении почти всей своей научной карьеры. Он полагает, что ответ кроется в неожиданной сфере – информатике.
Одни ли мы во Вселенной? Иными словами, широко ли в ней распространена жизнь? Для науки этот вопрос очень важен. Специалисты (с переменным успехом) ищут подобные Земле планеты, вращающиеся вокруг других звезд, главным образом как раз потому, что надеются обнаружить там инопланетную жизнь. Многие предполагают, что жизнь в землеподобных условиях неизбежно должна возникнуть: эта позиция называется биологическим детерминизмом. Впрочем, нелегко отыскать аргументы в ее поддержку, исходя из известных нам законов физики, химии или биологии. Если полагаться лишь на эти законы в попытке объяснить устройство и работу Вселенной, логично заключить, что жизнь могла возникнуть лишь благодаря удачному стечению обстоятельств, а значит, крайне маловероятно найти ее где-то еще.
Однако тем, кто надеется когда-нибудь встретиться с инопланетянами, отчаиваться не следует. Исследования все-таки могут подтвердить теорию биологического детерминизма, тем самым резко повысив наши шансы отыскать соседей по космосу – хоть где-нибудь.
В 1953 году Гарольд Ури и Стэнли Миллер из Чикагского университета попытались воссоздать в пробирке то, что они считали условиями первозданной Земли. Они обнаружили, что аминокислоты (строительные блоки белков) – часть химического месива, которое образуется, когда электрический разряд пропускают через смесь газообразного метана, аммиака, паров воды и водорода. Эксперимент Миллера – Ури провозгласили первым шагом на пути создания жизни в лаборатории. Многие химики считали, что жизнь – конечный пункт долгой дороги, по которой на протяжении длительного времени неутомимо движется химический суп, пронизываемый потоками энергии.
Однако эта идея быстро натолкнулась на ряд проблем. Построить кирпичики жизни легко – аминокислоты обнаруживали в метеоритах и даже в космосе. Но сами по себе кирпичи еще не составляют дом. Точно так же и случайный набор аминокислот не составляет живое существо. Подобно кирпичам дома, строительные компоненты жизни нужно собирать в целое весьма определенным и чрезвычайно сложным образом, прежде чем они обретут нужную функцию. Чтобы образовать белки, множество аминокислот должны соединяться в длинные цепочки в определенном порядке. С энергетической точки зрения это процесс движения «в горку».
Само по себе это еще не проблема: на древней Земле протекало множество различных энергетических процессов. Штука в том, что подрыв кучи кирпичей динамитом не даст в результате дом. Точно так же и простое глупое вбрасывание энергии в кучу аминокислот не приведет к образованию сложно устроенных молекулярных цепочек со строго определенной последовательностью звеньев. Скорее всего, мы получим просто какую-то смолистую жижу.
Систему необходимо подпитывать энергией каким-то особым и изощренным образом. В живом организме этот процесс контролируется молекулярной аппаратурой клетки, и специфика здесь чрезвычайно сложна. Однако в первичном химическом супе, где намешана масса всего, аминокислотам пришлось бы полагаться исключительно на удачу. Сами аминокислоты могли появиться на ранних этапах развития природы, но этого явно нельзя сказать о крупных и высокоспециализированных молекулах, таких как белки.
Теперь-то мы понимаем, что тайна жизни кроется не в базовых химических ингредиентах как таковых, а в логической структуре и организации молекул. Поэтому ДНК можно представить себе как генетическую базу данных, а гены – как инструкции по производству белков (оптимизированных для выполнения конкретных задач) и, косвенным образом, других биомолекул. Подобно суперкомпьютеру, жизнь является системой обработки информации, а это подразумевает особый тип организованной сложности. Главная загадка – не «железо», а «софт», то есть информационное содержание живой клетки.
Лучшая иллюстрация вычислительной мощи живого – генетический код. В основе всей известной нам жизни лежит своего рода соглашение между нуклеиновыми кислотами и белками – двумя классами молекул, которые с химической точки зрения – лишь дальние родственники, едва знакомые друг с другом. Нуклеиновые кислоты ДНК и РНК хранят в себе инструкции, а белки выполняют основную часть работы. Совместно эти молекулы творят множество чудес жизни, но сами по себе они беспомощны. Для выработки белков нуклеиновые кислоты привлекают умного посредника, дабы сформировать канал передачи зашифрованной информации.
Вот как это делается. ДНК, знаменитая двойная спираль, построена как веревочная лестница с четырьмя различными типами ступенек. Информация хранится в последовательностях этих звеньев, подобно тому, как привычные нам инструкции хранят информацию в виде цепочек букв. Белки строятся из 20 различных аминокислот, причем для создания каждого определенного белка нужно, чтобы определенные аминокислоты соединились друг с другом в определенном порядке.
Для перевода информации, изложенной при помощи четырехбуквенного алфавита ДНК, в 20-буквенную систему, используемую белками, все известные нам живые существа Земли применяют один и тот же код. Когда мы говорим о неизбежности (или, наоборот, о случайности) возникновения жизни, ключевой вопрос – каким образом появилась столь изобретательная система шифрования. Как безмозглые атомы сумели спонтанно написать собственный софт? И откуда взялась эта весьма особенная форма информации, нужная для того, чтобы запустить первую живую клетку на Земле?
Ответа никто не знает. Традиционно ученые, занимающиеся этой проблемой, делятся на два лагеря. В одной группе – те, кто верит, что все произошло случайно: иными словами, жизнь возникла в результате изумительной химической флуктуации. Нетрудно прикинуть, какова вероятность того, что в химической смеси, составившейся произвольным образом, определенные молекулы случайно выстроились в сложную структуру, необходимую для появления жизни. Вероятность этого процесса ничтожна мала. Если жизнь, какой мы ее знаем, возникла благодаря случайности, такое могло произойти лишь один раз во всей наблюдаемой Вселенной.
Напротив, биодетерминисты полагают, что фактор случайности здесь вторичен и нужные виды молекул послушно возникают в результате действия законов природы. Так, Сидни Фокс, американский пионер биогенеза, утверждал, что химия предпочитает соединять аминокислоты точно в тех комбинациях, какие нужны для того, чтобы они приобрели биологические функции. Если это так, значит, в природе словно существует некая изначальная предвзятость (или даже заговор), направленная на создание веществ, которые благоприятствуют возникновению жизни. Но можно ли всерьез полагать, будто законы физики и химии содержат в себе наброски жизни? И каким образом ключевая для всего живого информация может быть зашифрована в этих законах?
Чтобы попытаться ответить на сей вопрос, необходимо углубиться в размышления о самой природе той информации, которая лежит в основе всего живого. Вот одно важное наблюдение: богатая информацией структура обычно лишена четкого рисунка. Наиболее ясно это свойство иллюстрирует одна из отраслей математики – алгоритмическая теория информации. Ее задача – количественная оценка сложности информации с помощью подхода, при котором информацию воспринимают как результат работы компьютерной программы или алгоритма.
Представим себе такую бинарную последовательность: 1010101010101010101010… Ее можно получить, дав простую команду: «Печатать 10 n раз». Инструкции на входе значительно короче цепочки, которую мы получаем на выходе. Это служит отражением того факта, что результат содержит повторяющийся узор, который легко описать компактно. Поэтому данный результат содержит чрезвычайно мало информации.
Однако случайную с виду последовательность (к примеру, 110101001010010111…) нельзя свести к простому набору инструкций, содержание информации в ней велико. Если работа ДНК заключается в эффективном хранении информации, будет лучше, если последовательность «ступенек» не будет содержать слишком уж много «узоров», ибо они отражают информационную избыточность. Биохимики подтверждают такое ожидание. Геномы организмов, которые уже удалось секвенировать, по большей части выглядят как произвольные наборы знаков, случайным образом составленные с использованием четырех генетических букв.
Такая беспорядочная природа геномных последовательностей идет вразрез с принципами биологического детерминизма. Законы физики можно использовать для предсказания упорядоченных структур, но не структур случайных. К примеру, кристалл – просто определенный набор определенных атомов с периодичной структурой, подобный повторяющейся бинарной последовательности, которую мы приводили выше. А значит, он не несет в себе практически никакой информации. Конструкция кристаллов встроена в законы физики, поскольку их периодические формы определяются математическими симметриями, присущими этим законам. Однако случайные последовательности аминокислот в белках или звеньев лесенки ДНК не могут быть «встроены» в законы физики – как и возводимые нами здания не могут быть жестко встроены лишь в эти законы.
И в законы химии они не могут быть встроены. Простую иллюстрацию этого факта можно вывести непосредственно из рассмотрения структуры ДНК. Каждое звено этой веревочной лестницы состоит из двух сегментов, которые, подобно ключу и замку, плотно соединяются друг с другом. В конечном счете именно химия определяет и природу связей, удерживающих вместе эти сегменты, и те силы, которые прикрепляют их к боковинам лестницы. Однако между ступеньками лестницы, следующими друг за другом, химических связей нет. Химии нет дела до порядка следования этих звеньев, и жизнь вольна менять этот порядок как ей заблагорассудится. Подобно тому, как последовательность букв в руководстве по эксплуатации не зависит от химии бумаги и чернил, «буквы» ДНК (из которых и слагается информация) не зависят от химических свойств нуклеиновой кислоты. Именно эта способность жизни освобождаться от строгих химических ограничений придает ей такую силу, гибкость и изменчивость. Биологический детерминизм подразумевает существование химической смирительной рубашки, которая не усиливала бы творческий потенциал жизни, а лишь сдерживала бы его развитие.
Если жизнь, по сути, отражает такой вот побег от химии, явно не следует обращаться к химии, пытаясь объяснить жизнь. Но где же еще может таиться объяснение? В основе жизни лежит в конечном счете сложный и комплексный процесс обработки информации, так что имеет смысл поискать ответ в области теории информации и теории сложности.
Раз уж биологическая информация не зашифрована в законах физики и химии (по крайней мере, в тех, что сейчас нам известны), откуда она вообще берется? Похоже, все специалисты сходятся во мнении, что информация не может возникать спонтанно (возможно, за исключением особого случая – Большого взрыва). А значит, информационное содержание живых систем должно каким-то образом браться из окружающей их среды. Хотя нам не известны законы физики, способные создавать информацию из ничего, мог бы иметься некий принцип, позволяющий объяснить, как информацию можно брать из среды и накапливать в макромолекулах.
Один из способов сделать это – дарвиновская эволюция. Жизнь на Земле начиналась с простых организмов, обладающих короткими геномами с относительно низким содержанием информации. Более сложные организмы обладают более длинными геномами, где хранится больше информации. Эта дополнительная информация перетекала из среды в геномы благодаря процессу естественного отбора: когда идет отбор среди различных геномов (по степени «приспособленности», которую они дают своим носителям), приобретается информация. Так что дарвинизм может объяснить, каким образом организмы приобретают информацию. Но дарвинизм вступает в дело, лишь когда жизнь уже появилась. Как апеллировать к естественному отбору на пребиотической стадии развития Земли?
По мнению некоторых биохимиков, ответом служит нечто вроде молекулярного дарвинизма. Представьте себе молекулы, которые копируются в своего рода химическом супе. Хотя такие простодушно множащиеся молекулы могут не соответствовать интуитивному определению живого, имеющемуся у большинства людей, они все же могут проходить некую разновидность дарвиновской эволюции, если им свойственна изменчивость и если они проходят отбор. Сторонники этой теории (насквозь дарвиновской) полагают, что первая такая реплицируемая молекула была достаточно проста, чтобы образоваться по чистой случайности.
Загвоздка в том, что знакомые нам крупные самовоспроизводящиеся молекулы – лишь те, которые использует живое. Крайне маловероятно, чтобы ДНК могла образоваться лишь благодаря случаю. Даже РНК, ее более простую родственницу, трудно заставить образовывать достаточно длинные цепочки, обладающие биологической действенностью. А более короткие молекулы нуклеиновых кислот склонны давать больше погрешностей при репликации. Если доля ошибок становится чересчур высокой, утечка информации происходит быстрее, чем ее приобретение путем отбора, и эволюция буксует. Молекула, склонная к ошибкам при копировании, будет не накапливать информацию, а терять ее.
А значит, для того чтобы молекулярный дарвинизм заработал, природа должна ухитриться предоставить молекулы-репликаторы достаточно простые, чтобы они могли образоваться случайно, но при этом достаточно хитро устроенные, чтобы воспроизводиться достаточно точно и при этом с огромным набором вариаций (также представляющих собой хорошие репликаторы): только на таких условиях с ними сможет иметь дело естественный отбор. Это не обязательно должны быть нуклеиновые кислоты. Но для объяснения жизни, какой мы ее знаем, они должны в конце концов породить нуклеиновые кислоты и передать им функцию самовоспроизводства.
Получается, молекулярный дарвинизм все-таки протаскивает элементы биологического детерминизма. Мало того что законы природы должны допускать существование молекул, обладающих всеми перечисленными свойствами, вдобавок эволюционный маршрут, по которому идет популяция репликаторов, должен приводить к созданию нуклеиновых кислот. А иначе жизнь, какой мы ее знаем, оставалась бы чудовищно маловероятной флуктуацией.
Значит, приходится сделать вывод, что жизнь – результат чрезвычайно маловероятного химического происшествия, случайного события, уникального для нашей Вселенной? Не обязательно. Какая-то разновидность биологического детерминизма все-таки может оказаться справедливой, даже если жизнь не вписана в известные нам законы физики, химии и эволюционной теории. Не исключено, что эти законы отвечают за жизненное «железо» (то есть за ее сырье), но необходимый для нее «софт», то есть информационная составляющая, берет начало в законах информационной теории.
Само понятие «информация», пожалуй, довольно-таки расплывчато, хотя это обычное дело для молодых наук. Два столетия назад столь же туманным понятием была энергия. Ученые интуитивно признавали ее как нечто существенное для физических процессов, но этим представлениям недоставало математической четкости. Сегодня мы рассматриваем энергию как реальную и фундаментальную количественную величину, поскольку наука в ней хорошо разобралась. А вот информация продолжает нас озадачивать – отчасти из-за того, что она предстает в разных обличьях в великом множестве областей науки. В теории относительности, например, информации запрещено распространяться быстрее света. В квантовой механике состояние системы описывается по максимуму содержащейся в ней информации. В термодинамике количество информации падает при возрастании энтропии. В биологии ген рассматривается как набор инструкций, содержащих информацию, которая необходима для выполнения определенной задачи.
То, что нам известно об информации, берет начало главным образом в царстве наук о человеческом общении. Важной вехой в развитии информационной теории стал анализ коммуникаций с помощью наполненных шумами радиоканалов, сделанный американским инженером-электротехником Клодом Шенноном во время Второй мировой войны. Однако пока никто не вывел эквивалент законов Ньютона применительно к информационной динамике. Ученые даже не могут прийти к согласию по поводу того, всегда ли информация сохраняется в физических процессах. Годами бушуют споры о том, что происходит с информацией, хранящейся в звезде, когда та схлопывается в черную дыру, которая затем испаряется. Теряется ли эта информация безвозвратно? Или она потом каким-то образом возвращается?
Одна из сфер исследования таит в себе заманчивый путь для грядущих изысканий. До сравнительно недавнего времени биологи рассматривали молекулы живого как маленькие строительные блоки, которые слипаются вместе. На самом деле строение молекул и связи между ними – предмет квантовой механики. В наши дни физики расширили понятие информации, включив в него и квантовый мир. При этом удалось совершить ряд необычайных открытий. В частности, выявить способность квантовых систем обрабатывать информацию экспоненциально быстрее по сравнению с системами классическими. Именно это свойство лежит в основе действия квантовых компьютеров.
В сущности, загадка биогенеза по природе своей – вычислительная. Требуется найти весьма особенный тип молекулярных систем на чрезвычайно раскидистом древе химических альтернатив, большинство ветвей которого представляют собой биологические тупики. Как наделить материю информацией и вывести ее на дорогу к возникновению жизни? Может статься, первые, и важнейшие, шаги здесь как раз были сделаны в странном и загадочном царстве квантовой механики? Вопрос остается открытым. Но если ответ на него окажется положительным, биологический детерминизм наконец обретет убедительное теоретическое обоснование широко распространенной гипотезе, утверждающей: мы живем в биологически дружественной Вселенной, и мы тут не одиноки.
Чудесное слияние
Может быть, возникновение жизни как таковой некогда и стало неизбежным, но этого явно нельзя сказать о жизни сложной. Легко себе представить, что самые простые формы жизни на Земле (в общем-то, не более чем крошечные мешочки с химическими веществами) могли бы всегда оставаться неизменными. Наши сложно устроенные клетки с их различными внутренними отсеками и изощренными системами поддержки, с их бесчисленными транспортными средствами и тончайшей аппаратурой могли бы никогда не появиться. Но вдруг в один прекрасный день два миллиарда лет назад произошла эта флуктуация. Ее результатом в конце концов и стали мы с вами, объясняет Ник Лейн .
Мы, сложно устроенные существа, являем собой редкостную и везучую разновидность живого. Было бы странно, если бы такие простые одноклеточные, как бактерии, не были широко распространены по всей Вселенной. Органические молекулы образуются в ходе реакций между самыми вездесущими материалами (водой, камнем, углекислым газом), и с точки зрения термодинамики такие реакции почти неизбежны. Так что раннее появление простых бактериальных клеток на Земле – отнюдь не статистический выброс: это в точности то, чего и следовало бы ожидать. Однако если мои выкладки справедливы, возникновение сложно устроенной (многоклеточной) жизни отнюдь не является неизбежным. За 4 миллиарда лет она возникла здесь лишь однажды, благодаря редкостному случайному событию.
Тут все сводится к энергии. Живые существа потребляют невообразимое количество энергии – просто для того, чтобы продолжать жить дальше. Пища, которую мы едим, превращается в топливо для всех живых клеток – АТФ (аденозинтрифосфат). Это горючее проходит непрерывный цикл переработки: за день организм каждого из нас обрабатывает от 70 до 100 кг этой штуки. Столь гигантское количество топлива производится благодаря ферментам – биологическим катализаторам, на протяжении тысячелетий тонкой настройки постепенно обучившимся извлекать из реакций всю полезную энергию, всю до последней капли.
Ферменты, дававшие питание первым живым существам, не могли обладать столь высокой эффективностью, поэтому первым клеткам наверняка требовалось гораздо больше энергии для роста и деления – вероятно, в тысячи или даже миллионы раз, чем клеткам современным. То же самое должно быть верно и для всей Вселенной.
Эти колоссальные энергетические потребности часто упускают из виду, когда речь идет о происхождении жизни. Что могло бы выступать в качестве первичного источника энергии здесь, на Земле? Старые идеи о молниях или об ультрафиолетовом излучении тут явно не годятся. Даже если оставить в стороне тот факт, что никакие живые клетки не получают энергию таким манером, следует помнить: у первых клеток не было ничего, что позволяло бы сосредоточить энергию в одном месте. Первые живые существа не могли отправиться на поиски энергии, а значит, они должны были возникнуть там, где энергии много. К примеру, там, где много солнечного света? Да, сегодня основная часть живых существ получает энергию от Солнца, прямо или косвенно. Но фотосинтез – процесс сложный, и он едва ли питал собой первых живых существ.
Что же тогда их питало? Реконструкция истории жизни путем сравнения геномов простых клеток сопряжена с целым рядом проблем, однако все эти исследования указывают в одну сторону. Судя по всему, самые первые клетки получали энергию и углерод из газов – водорода и диоксида углерода. Реакция между H2 и CO2 непосредственно дает органические молекулы. При этом выделяется энергия. Это важно: ведь недостаточно построить простые молекулы, нужно еще и затратить море энергии, чтобы соединить их в длинные цепочки, которые и служат строительными блоками живого.
Еще один ключ к пониманию того, как первая жизнь получала энергию, кроется в механизме сбора энергии, который можно обнаружить у всех известных нам форм жизни. Этот механизм оказался столь неожиданным и необычным, что после того, как в 1961 году его предложил британский биохимик Питер Митчелл, ученые еще два десятка лет ожесточенно спорили.
Митчелл выдвинул гипотезу, согласно которой питают клетки не химические реакции, а своего рода электричество. А конкретнее – различная концентрация протонов (заряженных ядер атомов водорода) по разные стороны мембраны. Поскольку протоны имеют положительный заряд, различие в их концентрации создает разность электрических потенциалов между двумя сторонами мембраны, и эта разность потенциалов составляет около 150 милливольт. Мало? Но учтите, что она создается на расстоянии всего лишь 5 миллионных миллиметра, а значит, напряженность электрического поля на столь ничтожном расстоянии колоссальна – около 30 миллионов В/м. Примерно такая же напряженность поля порождает разряд молнии.
Митчелл назвал эту электрическую силу протон-движущей. Напоминает термин из «Звездных войн», и это вполне уместная аналогия. В сущности, все клетки питает силовое поле, такое же универсальное для жизни на Земле, как и генетический код. Этот гигантский электрический потенциал можно использовать напрямую (именно благодаря ему одноклеточные двигают своим жгутиком), а можно запрячь для выработки АТФ – топлива, богатого энергией.
Живые существа вырабатывают и используют это силовое поле чрезвычайно изощренным способом. Фермент, отвечающий за создание АТФ, можно уподобить роторному двигателю, питаемому потоком протонов, который направлен внутрь клетки. Еще один белок, помогающий создавать мембранный потенциал, NADH-дегидрогеназа, работает как паровая машина, где поршень выкачивает протоны. Эти удивительные наномашины должны являться продуктами долгого естественного отбора. Они не могли питать жизнь с самого начала. И здесь возникает парадокс.
Жизнь сжирает огромное количество энергии, и неэффективные первобытные клетки должны были требовать не меньше энергии, а гораздо больше, чем их нынешние собратья. Скорее всего, эти несметные количества энергии брали начало в протонном градиенте, поскольку повсеместность и универсальность этого механизма означает, что он появился рано. Но каким образом первая жизнь умудрялась проделывать то, для чего сегодня нужна столь сложная аппаратура?
Существует простой способ для получения колоссального количества энергии таким путем. Более того, сама среда, где идут такие процессы, заставляет предположить, что жизни было не так-то трудно появиться.
Ответ, который мне очень нравится, 25 лет назад предложил геолог Майкл Рассел, ныне работающий в Лаборатории реактивного движения НАСА (Пасадена, штат Калифорния). Рассел занимался изучением глубоководных гидротермальных источников. Скажите «глубоководный источник», и большинство сразу подумает о знаменитых и очень впечатляющих «черных курильщиках», окруженных гигантскими трубчатыми червями. Рассел изучал нечто куда более скромное – щелочные гидротермальные источники. Они совершенно не вулканические, и они не курятся. Они образуются, когда морская вода просачивается в электронно-плотные породы земной мантии, такие как железо-магниевый минерал оливин.
Оливин и вода при взаимодействии образуют серпентинит (змеевик). При этом порода расширяется и трескается, благодаря чему в нее проникает больше воды, что лишь способствует реакции. В ходе серпентинизации вырабатываются щелочные (то есть характеризующиеся нехваткой протонов) жидкости с высоким содержанием газообразного водорода. Теплота, которая при этом выделяется, направляет эти жидкости вверх, к дну океана. При соприкосновении с океанскими водами (имеющими более низкую температуру) минералы осаждаются, постепенно образуя башнеобразные жерла до 60 метров высотой.
Такие жерла, догадался Рассел, предоставляют все необходимое для зарождения жизни. Или, вернее, предоставляли – четыре миллиарда лет назад. Тогда на Земле было очень мало кислорода (если он вообще имелся), так что в океанах было много растворенного железа. Вероятно, тогда было гораздо больше CO2, чем сейчас, а значит, в океанских водах существовала слабокислая среда, то есть некоторый избыток протонов.
Представьте себе, что происходит в такой ситуации. Внутри пористых жерл находятся связанные между собой крошечные, напоминающие клетки, отсеки, которые окружены тонкими стенками из минералов. Эти стенки содержат такие же катали заторы (особенно отметим различные сульфиды железа, никеля и молибдена), какие используются нынешними клетками для превращения CO2 в органические молекулы.
Жидкости, богатые водородом, просачиваются сквозь этот лабиринт каталитических микропор. В обычных условиях трудно заставить CO2 и H2 прореагировать между собой: именно с этой проблемой сталкиваются ученые, пытающиеся улавливать углекислый газ, чтобы уменьшить глобальное потепление. Самих по себе катализаторов тоже может быть недостаточно. Но живые клетки захватывают углерод при помощи не одних только катализаторов: для запуска реакции они используют еще и протонные градиенты. А между щелочными жидкостями гидротермального жерла и содержащейся там же кислотной водой существует естественный протонный градиент.
Могла ли эта естественная протон-движущая сила привести к образованию органических молекул? Пока еще слишком рано утверждать что-то определенное. Сейчас я работаю именно над этим вопросом, и впереди очень интересные исследования. Но давайте на минутку представим, что ответ – да. Какие загадки он позволит разрешить? Очень многие. Как только убран барьер, мешающий реакции между CO2 и H2, это взаимодействие может протекать весьма бодро. Важно отметить, что при условиях, типичных для щелочных гидротермальных источников, взаимодействие между H2 и CO2, дающее молекулы, которые присутствуют в живых клетках (аминокислоты, липиды, сахара, нуклеотидные основания), приводит к выделению энергии.
А значит, жизнь отнюдь не является каким-то таинственным исключением из второго начала термодинамики: напротив, с этой точки зрения жизнь как раз и управляется этим законом. Она – неизбежное следствие планетарного дисбаланса, при котором богатые электронами породы отделены от бедных электронами кислотных океанов тонкой коркой, пронизанной системой клеткоподобных отверстий, где фокусируется эта электрохимическая движущая сила. Нашу планету можно уподобить гигантской батарее, а клетку – крошечной батарейке, построенной практически на тех же принципах.
Я готов первым признать, что в такой теории есть масса пробелов, которые еще предстоит заполнить. Между электрохимическим реактором, вырабатывающим органические молекулы, и живой, дышащей клеткой – множество промежуточных стадий. Но представьте себе, хотя бы ненадолго, более масштабную картину. Возможно, для возникновения жизни требуются лишь немногочисленные исходные компоненты – камень, вода и углекислый газ.
Вода и оливин – среди наиболее распространенных веществ во Вселенной. Атмосфера многих планет Солнечной системы богата углекислым газом, поэтому можно предположить, что он столь же часто встречается и в других уголках Вселенной. Серпентинизация – спонтанная реакция, и она должна происходить в широких масштабах на любой влажной, каменистой планете. С этой точки зрения Вселенная должна просто кишеть простыми клетками: возникновение жизни может и в самом деле оказаться неизбежным, если существуют нужные условия. Неудивительно, что на Земле жизнь, судя по всему, появилась почти сразу же, как только ей представилась такая возможность.
А что дальше? Общепризнано, что после возникновения простых форм жизни они постепенно эволюционируют, превращаясь в более сложные, опять же, если для этого существуют подходящие условия. Однако на Земле вышло иначе. После первого появления простых клеток наступила невероятно долгая пауза (почти половина всей жизни планеты), и лишь затем возникли клетки сложные. Более того, простые клетки породили сложные лишь единожды за все четыре миллиарда лет эволюции: безумно редкая аномалия, предполагающая какую-то безумную случайность.
Если бы простые клетки медленно эволюционировали до более сложных на протяжении миллиардов лет, существовали бы всевозможные промежуточные клетки, причем некоторые из них – и сейчас. Но таких нет, и мы наблюдаем этот гигантский разрыв, непонятную пропасть, странную паузу. С одной стороны, есть бактерии, очень маленькие и по объему клетки, и по размеру генома. Естественный отбор как бы отсек у них все лишнее, свел их структуру к необходимому минимуму: это своего рода самолеты-истребители среди клеток. С другой стороны, существуют огромные и неуклюжие эукариотические клетки, больше напоминающие авианосцы, чем истребители. Типичная одноклеточная эукариота примерно в 15 тысяч раз крупнее бактерии, и геном у нее под стать размеру.
Вся сложная жизнь на Земле – животные, растения, грибы и т. д. – это эукариоты. Все они в ходе эволюции произошли от общего предка. Так что без единичного события, породившего предка эукариотических клеток, не было бы растений и рыб, динозавров и обезьян. У простых клеток вообще нет клеточной архитектуры, необходимой для эволюционного превращения в более сложные формы.
Почему это так? В 2010 году я рассмотрел данный вопрос совместно с Биллом Мартином из Дюссельдорфского университета, одним из пионеров современной биологии клетки. Основываясь на данных о скорости метаболизма и размере генома различных клеток, мы рассчитали, сколько энергии оказалось бы доступно простым клеткам по мере того, как они становились бы всё крупнее и крупнее.
Как мы обнаружили, за такой рост приходится платить огромный энергетический штраф. Если увеличить бактерию до размеров эукариоты (одноклеточной), для нее будет доступно в десятки тысяч раз меньше энергии в пересчете на один ген, чем для аналогичной эукариоты. А клеткам требуется много энергии на каждый ген, поскольку процесс создания белка на основе гена требует больших энергетических затрат. Основная часть энергии клетки как раз и тратится на синтез белков.
На первый взгляд, идея о том, что бактерии ничего не приобретают, увеличиваясь в размерах, кажется не совсем верной: существуют некоторые гигантские бактерии, которые по своим размерам крупнее многих сложных клеток: показательный пример – Epulopiscium, процветающая в кишечнике рыбы-хирурга. Но у Epulopiscium до 200 тысяч копий ее полного генома. Если учесть все эти многочисленные геномы, окажется, что энергия, доступная для каждой копии каждого гена, почти в точности равна такой энергии для нормальной бактерии, несмотря на гигантское общее количество ДНК у Epulopiscium. Возможно, лучше рассматривать их как ансамбли клеток (слившихся воедино), чем как гигантские клетки.
Почему же гигантским бактериям требуется так много копий генома? Вспомним, что клетки добывают энергию из силового поля, создающегося на их мембранах, и что потенциал на них равен, в сущности, потенциалу молнии. Если клетки обращаются с ним неумело, это приводит к тяжелым последствиям: утратив контроль над своим мембранным потенциалом, они погибнут. Лет двадцать назад биохимик Джон Аллен (ныне – мой коллега по Лондонскому университетскому колледжу) предположил, что геномы играют ключевую роль в контроле мембранного потенциала, поскольку они способны управлять выработкой белков. Геномы должны располагаться поблизости от контролируемой мембраны, чтобы быстро откликаться на локальные изменения условий. Аллен и другие ученые собрали большое количество данных, подтверждающих, что это верно для эукариот. Есть веские основания считать, что так обстоит дело и в простых клетках.
Итак, перед простыми клетками возникает следующая проблема. Чтобы стать крупнее и сложнее, им нужно вырабатывать больше энергии. Они могут сделать это единственным способом – расширить ту область мембраны, которую они используют для добывания энергии. Но для поддержания контроля над мембранным потенциалом при расширении этой области им нужно произвести дополнительные копии всего генома – а значит, на самом деле они не получают никакой дополнительной энергии в пересчете на каждый ген.
Иными словами, чем больше генов у простой клетки, тем меньше от них проку. Геном, полный генов, которые невозможно использовать, не дает никаких эволюционных преимуществ. Это колоссальный барьер, мешающий клеткам становиться более сложными. Ведь для того, чтобы сделать рыбу или дерево, требуется гораздо больше генов, нежели имеется у бактерии, – тысячи и тысячи дополнительных генов.
Как же эукариоты обошли эту проблему? Они обзавелись митохондриями.
Около двух миллиардов лет назад одна простая клетка вдруг очутилась внутри другой. Не очень ясно, что представляла собой клетка-хозяин, но мы знаем, что она приняла в себя бактерию, которая затем стала делиться у нее внутри. Эти внутриклеточные клетки конкурировали друг с другом. Для тех, кто воспроизводил себя быстрее всех, не теряя способности вырабатывать энергию, оказалась выше вероятность быть представленными в следующем поколении.
И так далее, и так далее, поколение за поколением. В ходе эволюции эти эндосимбиотические бактерии постепенно превратились в миниатюрные энергогенераторы, содержащие и мембрану, необходимую для создания АТФ, и геном, необходимый для контроля мембранного потенциала. Однако важнее всего то, что в процессе развития их структура свелась к необходимому минимуму. Все ненужное – долой: так поступают истинные бактерии. Изначально геном митохондрий, по-видимому, состоял примерно из 3 тысяч генов. Сегодня у них около 40.
Для клетки-хозяина дело обстояло иначе. По мере того как съеживался митохондриальный геном, возрастало количество энергии, доступной для каждой копии хозяйского гена, поэтому геном хозяина мог расти. Пользуясь несметным количеством АТФ, организм, обслуживаемый целыми эскадронами митохондрий, мог преспокойно накапливать ДНК и укрупняться. Можно представить себе митохондрии как большой отряд вертолетов, несущих ДНК в ядро клетки. Митохондриальные геномы, освобождаясь от собственной ненужной ДНК, становятся легче и могут нести более тяжелый груз, тем самым позволяя увеличиваться ядерному геному.
Эти огромные геномы послужили генетическим сырьем, которое и привело в ходе эволюции к появлению сложной жизни. Митохондрии не предписывали сложность, но позволили ей возникнуть. Трудно вообразить какой-то иной путь обхода этой энергетической проблемы. И мы знаем, что на Земле такое произошло лишь один-единственный раз, поскольку все эукариоты происходят от одного общего предка.
Итак, толчком к возникновению сложной жизни, похоже, послужило единичное событие-флуктуация – встраивание одной простой клетки в другую. Такие ассоциации, может, и широко распространены среди сложных клеток, но у простых они крайне редки. К тому же положительный результат этого сотрудничества отнюдь не был предопределен. Двум партнерам пришлось пройти через множество стадий нелегкой взаимной адаптации, прежде чем их потомки стали получать удовольствие от сей кооперации.
А стало быть, нет какой-то неизбежной эволюционной траектории, которая вела бы от простой жизни к сложной. Непрестанный естественный отбор, который проходят бесчисленные популяции бактерий на протяжении миллиардов лет, может так никогда и не породить сложность. У бактерий нет нужной для этого архитектуры, вот и все. У них нет энергетических ограничений, пока они остаются небольшими по размерам генома и по объему клетки. Проблема становится очевидной, лишь когда мы пытаемся выяснить, что понадобилось бы для увеличения их объема и размеров их генома. И тогда мы понимаем, что бактерии занимают глубокую расщелину в энергетическом пейзаже, и выбраться из нее они не в силах.
Из этого рассуждения можно заключить следующее: хотя землеподобные планеты могут кишеть живностью, лишь на очень немногих появляются сложные клетки. А значит, вероятность возникновения растений и животных, не говоря уж о разумной жизни, весьма невелика. И если бы мы даже выяснили, что на Марсе появились простые клетки, это мало что сказало бы нам о том, насколько распространена сложная жизнь вне Земли.
Все это помогает объяснить, почему мы пока не нашли никаких следов инопланетян. Разумеется, некоторые из других предложенных объяснений тоже способны оказаться верными (скажем, что жизнь на других планетах обычно уничтожается катастрофическими событиями вроде вспышек гамма-излучения задолго до того, как разумные инопланетяне получают шанс возникнуть). Если это так, в нашей галактике, видимо, очень мало других разумных видов.
Но, опять-таки, а вдруг некоторые из них проживают где-то рядом. Если мы когда-нибудь с ними встретимся, готов заранее биться об заклад, что у них тоже имеются митохондрии.
Случай с видами
Какая-то клетка случайно поглощает другую, и зарождается сложная жизнь. Впрочем, даже тогда вы отнюдь не являетесь неизбежным результатом процесса. На Земле великое множество видов животных и растений, и это разнообразие обусловлено случайностью в гораздо большей мере, чем хотелось бы биологам. Рассказывает Боб Холмс.
Одна антарктическая рыба вырабатывает белки-антифризы, помогающие ей выжить в холодной воде. Бабочка под названием «вице-король» маскируется под ядовитую бабочку-монарха и благодаря этому избегает врагов, которые не прочь ею лакомиться. Болезнетворные бактерии становятся устойчивыми к действию антибиотиков. Повсюду в природе можно встретить свидетельства работы естественного отбора, направленного на адаптацию вида к той среде, где он обитает. Но, как ни удивительно, естественный отбор, возможно, играет незначительную роль в одной из ключевых стадий биологической эволюции – в возникновении новых видов. Может показаться даже, что видообразование – результат действия случайности, прихоти судьбы.
Во всяком случае, так утверждает Марк Пейджел, эволюционный биолог из британского Университета Рединга. Если его спорное мнение окажется верным, тогда получится, что широчайшая панорама жизни – изобилие разнообразнейших жуков и грызунов при сравнительно малом количестве видов приматов и т. п. – может иметь больше общего со склонностью вида к эволюционным случайностям, чем с направляющей десницей естественного отбора.
Конечно же, естественный отбор имеет ключевое значение в эволюции, тут нет никаких сомнений. Полтора века назад Дарвин убедительно показал это в своем «Происхождении видов», и бесчисленные исследования, проведенные позже, лишь подтвердили его идеи. Но в дарвиновском заглавии кроется невольная ирония: собственно говоря, в книге не рассматривается, что же именно запускает процесс образования нового вида. С тех пор многие брались за выяснение того, как один вид превращается в два. Вы, наверное, подумали, что теперь-то, когда нам доступно столько генетической информации, неведомой Дарвину, этот вопрос наверняка удалось разрешить. Однако нет, не удалось. Видообразование по-прежнему остается одной из главных загадок эволюционной биологии.
Даже определения здесь не очень-то просты и прямолинейны. Большинство биологов рассматривают вид как группу организмов, которые могут скрещиваться между собой, но не скрещиваются с представителями других групп. У этого определения (как и почти у всякой биологической дефиниции) есть свои исключения, но обычно оно работает довольно-таки неплохо. В частности, оно подчеркивает важное свойство видообразования: для того, чтобы один вид превратился в два, некоторая подгруппа исходного вида должна утратить способность размножаться при помощи своих собратьев по виду.
Серьезные ученые и сегодня спорят, как же это происходит. К середине ХХ века выяснилось, что такая репродуктивная изоляция иногда возникает, когда несколько организмов переносятся в недавно образовавшиеся озера или на отдаленные острова. Причиной других видообразовательных явлений, похоже, служат масштабные хромосомные изменения, которые внезапно делают некоторых особей неспособными спариваться со своими соседями.
Впрочем, представляется маловероятным, чтобы подобные резкие изменения сами по себе обуславливали появление всех или хотя бы большинства новых видов. Здесь-то и вступает в дело естественный отбор. Будем рассматривать виды как более или менее отдельные популяции, проживающие на различных территориях. Идея состоит в том, что две популяции могут постепенно отдалиться друг от друга (как два приятеля, которые больше не хотят тратить время на разговоры между собой) по мере того, как каждая из них приспосабливается к своему набору локальных условий среды. Пейджел замечает: «На мой взгляд, большинство неспециалистов считают видообразование каким-то постепенным накоплением множества изменений путем естественного отбора – и так до тех пор, пока не появится группа особей, которая больше не может спариваться с исходной популяцией».
Долгое время никто не мог придумать, как проверить эту догадку: действительно ли основная часть событий видообразования происходит именно так? Но десять с лишним лет назад Пейджел предложил способ решения проблемы. Он рассуждал так: если новый вид представляет собой как бы сумму большого количества малых изменений, тогда этот процесс должен оставить статистически значимый отпечаток на эволюционном прошлом вида.
Когда большое число малых факторов складывается, давая результат (будь то сочетание питания и происхождения, определяющее рост человека, или экономические силы, задающие цены акций, или причуды погоды, формирующие температуру воздуха), достаточно большая выборка таких результатов всегда стремится дать знакомую многим колоколообразную кривую (гауссиану), которую статистики называют нормальным распределением. К примеру, рост человека варьируется в широких пределах, но большинство величин теснится вокруг средних значений. Пейджел понял: если видообразование является результатом множества малых эволюционных изменений, то временной интервал между последовательными эпизодами видообразования (то есть длина каждой ветви эволюционного древа) тоже должен укладываться на колоколообразную кривую (см. схему). Но эта идея, при всей своей простоте, столкнулась с препятствием: у нас попросту нет достаточного количества подходящих эволюционных деревьев, чтобы получить статистически корректные сведения о длине ветвей. Так что Пейджел забросил свою гипотезу и перешел к другим делам.
О происхождении видов
Какие из процессов запускают видообразование?
Подрежем эволюционное древо.
Отметим на графике число ветвей разной длины.
Это даст нам характерные кривые для различных видов.
Филогенетическое древо, отражающее процесс видообразования внутри определенной группы организмов
А потом, несколько лет назад, Пейджел осознал, что подходящие эволюционные деревья, дающие надежную информацию, вдруг стали доступны в огромных количествах – благодаря дешевым и быстрым методикам секвенирования ДНК. Он заметил: «Впервые у нас появился большой набор филогенетических деревьев, по-настоящему годящихся для того, чтобы проверить эту идею», – писал он. И тогда он и его коллеги Крис Вендитти и Эндрю Мид, засучив рукава, приступили к работе.
Команда обнаружила в научных публикациях более 130 эволюционных деревьев, полученных на базе анализа ДНК. Эти данные относились к самым разным представителям царств растений, животных и грибов. После отсева эволюционных деревьев сомнительной точности ученые получили список из 101 позиции, куда входили сведения о многообразных кошках, шмелях, соколах, розах и т. д.
Работая с каждым древом отдельно, они измерили длину ветвей между последовательными эпизодами видообразования – то есть, по сути, между развилками. Затем подсчитали число веток, имеющих ту или иную длину, и стали смотреть, какая получается картина. Если видообразование происходит путем естественного отбора через множество мелких изменений, можно предполагать, что длины ветвей лягут на колоколообразную кривую. Это будет либо кривая нормального распределения (если изменения суммируются, чтобы новый вид в конце концов перевалил через некоторый порог несовместимости), либо родственная ей кривая логарифмически-нормального распределения (если изменения «перемножаются», тем самым позволяя виду достичь порога быстрее).
К немалому удивлению исследователей, ни одна из этих кривых не соответствовала изучаемым данным. Логарифмически-нормальное распределение лучше всего описывало лишь 8 % случаев, а нормальное распределение вообще не подошло – оно не годилось ни для одного эволюционного древа. Зато группа Пейджела обнаружила, что для 78 % эволюционных деревьев распределение длин ветвей лучше всего описывается другой хорошо известной кривой – так называемого экспоненциального распределения.
Подобно колоколообразной, экспоненциальная кривая также имеет довольно простое объяснение, но оно несет тревожные вести для биологов-эволюционистов. Экспоненты мы получаем, когда имеем дело с ожиданием какого-то отдельного и нечастого события. Скажем, временные интервалы между последовательными телефонными звонками на ваш номер укладываются как раз на кривую экспоненциального распределения. Такая же история с периодом, который требуется для распада радиоактивного элемента, или с расстояниями между случайно сбитыми на автотрассе животными.
Для Пейджела вывод ясен: «Причина видообразования – не накопление событий, а отдельные редкие события, которые словно падают с неба. Видообразование становится чем-то произвольным. Когда одно из этих событий происходит, считайте, это поистине счастливый случай».
Редкостные события самого разного рода могут спровоцировать эпизод видообразования. И речь здесь не только о физической изоляции или о масштабных генетических изменениях, но и о случаях, напрямую связанных с окружающей средой, генетикой, психологией. Может сыграть роль, например, постепенное поднятие горного хребта, географически разделяющее вид надвое. Может сыграть роль мутация, заставляющая рыб размножаться близ поверхности, а не у дна. Может сыграть роль изменение в предпочтениях среди самок ящериц: вдруг им начинают нравиться самцы не с красными, а с голубыми пятнами.
Как подчеркивает Пейджел, главная идея, на которую указывают эти статистические данные, сводится к тому, что запускать видообразование должен какой-то единичный резкий поворот судьбы, непредсказуемый с точки зрения эволюции.
Пейджел добавляет: «Мы не утверждаем, будто естественного отбора не бывает или что Дарвин понял его неправильно». Как только вид расщепится надвое, естественный отбор должен позволить каждому из получившихся видов адаптироваться к тем конкретным условиям, в которых он оказался. Главное в том, что эта адаптация является следствием видообразования, а не одной из его причин. Ученый отмечает: «Полагаю, наша статья (и для многих других ученых было бы лицемерием утверждать, будто они когда-либо писали о том же) указывает на то, что видообразование зачастую может носить совершенно произвольный характер. Теперь можно не рассматривать видообразование как процесс постепенного втягивания в новую экологическую нишу при помощи естественного отбора».
Эта идея бросает свет на один из самых спорных аспектов эволюции – на ее предсказуемость. Если Пейджел прав, естественный отбор формирует существующие виды постепенно и до какой-то степени предсказуемо, но случайный характер видообразования означает, что громадное количество эволюционных изменений непредсказуемо. Его находки невольно заставляют вспомнить знаменитое высказывание Стивена Джея Гулда: «Если бы мы могли перематывать историю назад и заново запускать эволюцию жизни на Земле, каждый раз мы получали бы иную картину».
Другие эволюционные биологи не очень-то спешили принять идею Пейджела с распростертыми объятиями. Некоторые считают ее любопытной, но нуждающейся в дальнейшей проверке. Вот реакция Арне Мурса из Университета Саймона Фрейзера (Ванкувер): «Эта модель, в центре которой единичные редкие события, превосходна как интерпретация – как возможная интерпретация». А некоторые подозревают, что анализ, проведенный Пейджелом, высветил лишь часть проблемы. «Этот анализ говорит об одной необходимой, но не достаточной составляющей видообразования, – отмечает Дэниэл Рабоски из Мичиганского университета. – Нужны две вещи: что-то вызывающее изоляцию и что-то вызывающее дифференциацию». Второй процесс (посредством которого две изолированные популяции изменяются достаточно сильно, чтобы мы могли рассматривать их уже как два разных вида), скорее всего, подразумевает постепенные адаптивные изменения под руководством естественного отбора.
Гипотеза, согласно которой появление новых видов имеет мало отношения к адаптации, как-то плохо сочетается с основополагающими идеями эволюционной науки. Одно из самых заметных препятствий здесь – то, что биологи-эволюционисты именуют адаптивной радиацией. Когда открываются благоприятные экологические возможности для вида (пример – первое заселение Галапагосских островов вьюрками из континентальной Южной Америки), вид, судя по всему, откликается на это, давая целый ряд новых форм, каждая из которых приспособлена к определенной экологической нише. Такие всплески видообра зования позволяют предположить, что организмам незачем обязательно ждать какого-то редкого события, которое подтолкнет их к видообразованию: их может побудить к нему естественный отбор.
В ходе своего исследования Пейджел намеренно искал признаки подобного эволюционного изобилия. Всплески видообразования проявили бы себя на эволюционных деревьях как обильное ветвление с нерегулярными промежутками – иными словами, наблюдалась бы чрезвычайно изменчивая во времени скорость трансформаций, порождающая несколько иную кривую. «Изначально я считал, что именно такая модель объяснит почти все эволюционные деревья», – вспоминает Пейджел.
Как выяснилось, он ошибался. «Когда это и правда работает, результаты впечатляющие, – отмечает он. – Но работает это лишь примерно в 6 % случаев. Похоже, это далеко не самый распространенный способ, каким группы видов распространяются по экологическим нишам».
У этой находки есть независимое подтверждение. Люк Хармон из Университета Айдахо в Москау и его коллеги изучили 49 эволюционных деревьев, чтобы выявить, случались ли всплески эволюционных изменений на ранней стадии истории той или иной биологической группы, когда незаполненные экологические ниши должны были бы встречаться чаще всего. Такая картина мало где наблюдается, отмечают ученые в статье, которую опубликовал журнал Evolution.
Если видообразование действительно представляет собой счастливую случайность, как это скажется на способах, которыми биологи его изучают? Фокусируясь на силах отбора, побуждающих два вида занять две разные экологические ниши (как это делают нынешние биологи), можно, по-видимому, многое узнать об адаптации, но не о видообразовании. Пейджел замечает: «Если вам действительно хочется понять, почему на свете так много грызунов по сравнению с другими видами млекопитающих, следует обратиться к списку потенциальных причин видообразования в той среде, которая окружает животное, а не исходить из мнения, что существуют бесчисленные ниши, в которые постоянно заталкиваются животные».
К примеру, грызуны, адаптировавшиеся к прохладному климату, будут иметь тенденцию к изоляции на высокогорьях при потеплении климата. Это может сделать их более склонными к видообразованию по сравнению с теми млекопитающими, которые адаптированы к более теплой среде. Точно так же и обитатели морей, чьи личинки живут на дне, могут быть более склонны к расщеплению на отдельные изолированные популяции, а значит, и к более частому видообразованию по сравнению с теми, чьи личинки – свободно плавающие. Именно это и обнаружил палеонтолог Дэвид Яблонски из Чикагского университета, изучая морских брюхоногих моллюсков. Подобным же образом виды, требующие сравнительно узкого диапазона условий среды или имеющие очень изощренные ритуалы выбора партнера, возможно, более склонны к случайному расщеплению на новые виды.
Какими могут быть другие подобные случаи? Пока неизвестно. Пейджел дает совет: «Хорошо бы составить списки всего, что могло бы приводить к видообразованию, и затем прогнозировать, у кого скорость видообразования будет высокой, а у кого – низкой». Если эти перечни помогут нам лучше понять размах эволюционной истории и ее особенности (как появились млекопитающие, почему на Земле так много видов жуков, отчего цветковые растения добились столь впечатляющего успеха), тогда мы убедимся, что Пейджел набрел на нечто фундаментальное.
Пока же его взгляды на видообразование, вероятно, помогут объяснить еще одно странное свойство живых существ. Секвенируя ДНК все новых и новых представителей дикой природы, биологи зачастую обнаруживают: то, что при поверхностном изучении представлялось одним видом, на самом деле являет собой два, несколько или даже много видов. Так, в мадагаскарских лесах живут 16 различных видов карликовых лемуров, причем все – в сходных местах обитания. Они делают схожие вещи и внешне очень похожи. Трудно объяснить существование этих таинственных видовых комплексов, если считать, будто видообразование – конечный результат естественного отбора, вызывающего постепенное распределение по различным экологическим нишам. Но если появление новых видов – результат счастливых случайностей, тогда нет никакой необходимости в экологических различиях между видами.
Эта идея явилась Пейджелу в Танзании, когда он сидел под деревом с твердой древесиной, наблюдая, как два вида мартышек-колобусов резвятся в кроне – примерно в 40 метрах над его головой. «Одни черно-белые, другие – красные, но больше между ними особых различий нет. Все они делают одни и те же вещи, – замечает Пейджел. – Помню, я подумал: видообразование – очень произвольная штука. А теперь наши модели подтверждают это».
Везет тебе!
От квантовых флуктуаций в космической пустоте через кометные бомбардировки и случайное создание множества видов обитателей Земли мы наконец пришли к нам самим. Даже на этом этапе слепой случай отвечает за многое из того, что делает человека особым видом. Клэр Уилсон исследует этот финальный поворот нашего эволюционного колеса фортуны, рассматривая целый спектр случайных мутаций, которые в конечном итоге и породили людей.
Земля несколько миллионов лет назад. Космический луч врывается в атмосферу едва ли не со скоростью света. Сталкивается с атомом кислорода, порождая целый ливень энергетических частиц. Одна из них попадает в молекулу ДНК, находящуюся в каком-то живом существе.
Волею случая оказывается, что эта молекула ДНК располагается в развивающейся яйцеклетке животного, напоминающего человекообразную обезьяну и обитающего где-то в Африке. Столкновение приводит к изменению ДНК – к мутации. В результате потомство данной самки несколько отличается от нее. Эта мутация дает ее детенышам конкурентное преимущество по сравнению с другими такими же обезьянами в борьбе за еду и партнеров. А значит, в новых поколениях эту мутацию несет в себе все большая и большая доля популяции. В конце концов она оказывается в геноме почти всех обезьян, а потому измененный когда-то ген уже незачем называть мутацией. Теперь это просто один из примерно 23 тысяч генов, составляющих геном человека.
Да, космические лучи считаются одним из источников мутаций, но куда более распространенной их причиной могут быть ошибки при копировании ДНК в ходе образования яйцеклеток и сперматозоидов. Однако каковы бы ни были их истоки, эти эволюционные инциденты позволили нашим предкам начать путешествие длиной в 6 миллионов лет – от существ, похожих на больших человекообразных обезьян, до нас, вида Homo sapiens.
Это была очень примечательная трансформация, однако мы лишь недавно начали по-настоящему разбираться в мутациях, которые могли быть здесь задействованы. Долгое время сведения об эволюции человека ученые в основном получали, изучая фрагменты костей, извлекаемых из земли: это напоминает попытки воссоздать картинку пазла, когда почти все фрагменты утеряны. Можно лишь гадать, какова доля останков животного происхождения, по чистой случайности погребенных в земле при условиях, подходящих для образования окаменелостей. Скорее всего, она исчезающе мала.
Вот почему в палеоантропологии произошел такой бум благодаря массированному появлению и применению новейших технологий генетического секвенирования. В 2003 году была опубликована полная расшифровка человеческого генома. На этот проект ушло 13 лет. С тех пор эта технология становится все быстрее и дешевле, поэтому практически каждый год ученые выдают расшифровку очередного генома. Уже секвенированы геномы шимпанзе, гориллы и орангутана, а также неандертальца и денисовского человека – наших дальних родичей, покинувших Африку еще до того, как это сделал Homo sapiens. До составления полного перечня еще далеко, но даже первые несколько геномов, принадлежащих вероятным кандидатам на звание нашего предка, проливают свет на происхождение человека. «Теперь мы можем по-новому оценить, что же нужно, дабы стать человеком», – отмечает Джон Хоукс, палеоантрополог из Висконсинского университета в Мэдисоне.
Сопоставление этих геномов дает массу информации. К примеру, если один из генов, активных в мозгу, различается у человека и шимпанзе, это может указывать на некую мутацию, которая когда-то сделала нас сообразительнее. Собственно, сравнение двух этих геномов выявило около 15 миллионов замен «букв», составляющих генетический код. Наблюдаются также утраты больших фрагментов ДНК или же их удвоение. На основании того, что нам уже известно о ДНК, подавляющее большинство таких перемен не могли сказаться на наших физических чертах и особенностях. Вероятно, так произошло либо из-за того, что изменение в ДНК слишком незначительно и не способно повлиять на функционирование гена, либо из-за того, что мутация затронула лишь область ДНК, именуемую «мусорной». По оценкам ученых, из этих 15 миллионов изменений, по-видимому, лишь около 10 тысяч относились к генам, влиявших на наше тело и, следовательно, подлежавшх естественному отбору.
Но и такое количество все равно выглядит устрашающе. Мы ведь еще не учитываем здесь мутаций в регуляторных областях ДНК, которые действуют как своего рода выключатели для генов. Пока невозможно рассчитать, сколько мутаций такого типа произошло у предков человека, хотя уже сейчас многие ученые полагают, что именно они, эти мутации, и сыграли ключевую роль в эволюции.
Пока удалось выявить несколько сотен мутаций, которые напрямую нас затронули. Наверняка в этой сфере скоро последуют новые открытия. Но документировать изменения ДНК гораздо проще, чем выяснить функции этих изменений. «Установление их эффекта требует чрезвычайно масштабных и многочисленных экспериментов. Иногда попутно приходится даже создавать трансгенных животных, – говорит Хоукс. – Это сложная научная работа. И пока мы находимся лишь на самых ранних ее этапах».
И все равно мы уже сейчас можем бегло взглянуть на некоторые поворотные моменты человеческой эволюции. В их числе – быстрое увеличение объема нашего мозга, появление речи, возможные причины отделения большого пальца руки от остальных. Поговорим о шести эволюционных эпизодах, благодаря которым вы – именно то, чем вы сейчас являетесь.
1. Стиснув зубы
У шимпанзе очень мощные челюсти: животное способно одним движением откусить человеку палец. И это не какой-то там теоретический расчет: не один приматолог именно таким образом лишился части руки.
У человека по сравнению с шимпанзе челюстные мышцы слабенькие. Возможно, причина в единичной мутации гена MYH16, кодирующего один из мышечных белков. Данная мутация инактивирует этот ген, вот почему наши челюстные мышцы строятся на основе другого варианта белка. В результате они значительно меньше по размеру.
Это открытие, сделанное в 2004 году, вызвало среди ученых настоящий ажиотаж. Некоторые утверждали, что челюстные мышцы меньших размеров могли бы позволить черепу стать крупнее. У приматов с большими челюстными мышцами утолщенная поддерживающая кость в задней части черепа: возможно, она-то и сдерживает расширение черепа, а значит, и рост объема мозга. «Как мы предполагаем, эта мутация служит причиной уменьшения мышечной массы и, следовательно, уменьшения соответствующей кости, – говорит Хэнсел Стедман, исследователь мышц из Пенсильванского университета в Филадельфии, возглавляющий эти исследования. – Лишь тогда снимается эволюционное ограничение, мешающее другим мутациям, которые позволяют вашему мозгу расти дальше».
По датировке научной группы Стедмана, эта мутация произошла 2,4 миллиона лет назад – незадолго до того, как начался рост мозга наших эволюционных предков. Впрочем, другое исследование, в рамках которого секвенировали более длинный фрагмент мышечного гена, дает оценку, согласно которой мутация случилась значительно раньше – 5,3 миллиона лет назад.
Так или иначе, получается, что эта мутация все-таки случилась уже после того, как на эволюционном древе ветвь человека отделилась от ветви шимпанзе (у нас есть общий предок). Почему наши прародители перешли на более слабый прикус? По мнению Стедмана, катализатором здесь послужило скорее не изменение рациона, а то, что наши предки больше не использовали укусы как оружие нападения. Он замечает: «В какой-то момент (вероятно, благодаря социальной организации) этот вид вооружений стал для наших пращуров менее необходимым».
2. Чем больше мозгов, тем лучше
Исключительная мозговитость – одно из определяющих свойств нашего вида. При объеме 1200–1500 см³ наш мозг втрое больше, чем у наших ближайших родичей – шимпанзе. Возможно, расширение шло по принципу снежного кома: первоначальные мутации приводили к изменениям, которые не только оказались благотворны сами по себе, но и позволили произойти дальнейшим мутациям, еще сильнее улучшившим мозг. «Происходят некоторые изменения, и они открывают возможности для новых изменений, которые способны оказаться полезными», – говорит Хоукс.
По сравнению с шимпанзе человек обладает гораздо большей по размерам корой головного мозга – складчатой поверхностью, где происходят наши самые сложные мыслительные процессы – планирование и логическое рассуждение; там же гнездятся и языковые способности. Один из способов отыскания генов, вовлеченных в расширение мозга, сводится к исследованию причин первичной микроэнцефалии – отклонения, при котором ребенок появляется на свет с мозгом втрое меньше нормального, причем сильнее всего это уменьшение размеров затрагивает именно кору. У страдающих микроэнцефалией обычно в той или иной степени ослаблены мыслительные способности.
Генетическое обследование семей, где проявляется первичная микроэнцефалия, пока позволило выявить 7 генов, которые могут при мутации вызывать такую особенность. Любопытно, что все они играют роль в делении клеток – процессе, посредством которого, в частности, незрелые нейроны множатся в мозгу эмбриона перед тем, как мигрировать к своему окончательному пункту назначения. Рассуждая теоретически, если возникнет одна-единственная мутация, приводящая к тому, что несозревшие нейроны пройдут один-единственный лишний цикл клеточного деления, это может привести к удвоению окончательных размеров коры.
Возьмем ген ASPM (abnormal spindle-like microcephaly-associated – аномальный веретенообразный ген микроэнцефалии). Он кодирует белок, содержащийся в незрелых нейронах и являющийся частью веретена – молекулярной подпорки, разводящей хромосомы в стороны при клеточном делении. Мы знаем, что этот ген подвергался серьезным изменениям, как раз когда мозг наших предков быстро увеличивался в размерах. Сравнение нуклеотидной последовательности ASPM человека и 7 других приматов, а также 6 других млекопитающих, выявило несколько признаков стремительной эволюции, которая происходила после того, как наши предки отделились на эволюционном древе от шимпанзе.
Другие находки удалось сделать, сравнивая геномы человека и шимпанзе в попытке определить, какие области эволюционировали быстрее всего. Этот процесс позволил выявить регион под названием HAR1 (human accelerated region, регион эволюционно ускоренного развития человека). Его длина – 118 пар нуклеотидных оснований. Мы пока не знаем, чем занимается HAR1, но нам известно, что он включен в мозгу эмбриона на протяжении 7–19 недели беременности, причем в клетках, которые затем образуют кору. «Все это очень интригует», – отмечает Кэтрин Поллард, биостатистик Гладстоновского института Сан-Франциско, руководившая этим исследованием.
Столь же многообещающим представляется открытие двух удвоений гена SRGAP2, который влияет на внутриутробное развитие мозга двумя путями: ускоряя миграцию нейронов от места их выработки к их конечной цели и увеличивая число нейронных шипиков, которые как раз и позволяют осуществлять межнейронные связи. По словам еще одного участника работы, Ивена Эйхлера, генетика из Вашингтонского университета в Сиэтле, эти перемены «могли позволить осуществить радикальные изменения в функционировании мозга».
3. Энергетический апгрейд
Не так-то просто разобраться, каким образом наш мозг стал таким большим. Ясно одно: наше мышление требует дополнительной энергии. Даже когда мы находимся в состоянии покоя, мозг расходует около 20 % всей энергии нашего организма. Для других приматов эта величина составляет всего 8 %. «Мозг – ткань очень требовательная с метаболической точки зрения», – отмечает Грег Рэй, биолог-эволюционист из Университета Дьюка (Дарем, Северная Каролина).
Удалось выявить три мутации, которые могли бы помочь удовлетворить эти потребности. Одну из них обнаружили после публикации генома гориллы: оказывается, примерно 10–15 миллионов лет назад некая область ДНК древнего примата – общего предка человека, шимпанзе и гориллы – стала ускоренно развиваться.
Эта область относилась к гену RNF213, участку мутации, вызывающей болезнь мойя-мойя, при которой, в частности, происходит сужение артерий головного мозга. Возможно, этот ген некогда сыграл роль в резком увеличении интенсивности мозгового кровоснабжения в ходе нашей эволюции. «Мы знаем, что повреждение RNF213 способно повлиять на кровоснабжение, так что можно предположить, что другие изменения способны благотворно сказаться на этом процессе», – говорит Крис Тайлер-Смит, специалист по эволюционной генетике из Сэнджеровского центра (Кембридж, Великобритания), входивший в группу, которая секвенировала геном гориллы.
Есть и другие способы резко улучшить энергоснабжение мозга: это достигается не только простым изменением диаметра сосудов. Основная пища для нашего органа мышления – глюкоза. Ее приносит в мозг специальная транспортная молекула, содержащаяся в стенках кровеносных сосудов.
По сравнению с шимпанзе, орангутанами и макаками у человека несколько иные «выключатели» для двух генов, кодирующих переносчики глюкозы, соответственно, в мозгу и мышцах. Определенные мутации приводят к увеличению числа переносчиков глюкозы в капиллярах нашего мозга и к уменьшению их числа в капиллярах наших мышц. «Щелчок этого выключателя позволяет перебросить в мозг более значительную долю [доступной глюкозы]», – говорит Рэй. Короче говоря, похоже, атлетизмом некогда пришлось пожертвовать ради ума.
4. Дар речи
Воспитайте шимпанзе с самого рождения так, словно это человек. Животное освоит массу моделей поведения, не свойственных обезьяньему племени: к примеру, будет носить одежду и даже есть при помощи ножа и вилки. Но одного оно делать не будет – говорить.
Вообще-то, шимпанзе попросту физически не способен разговаривать, как мы, – из-за различий в строении гортани и носовой полости. Существуют и нейрофизиологические различия. Некоторые из них – результат изменений в так называемом гене речи.
История началась с одной британской семьи, где 16 человек на протяжении трех поколений имели серьезные проблемы с речью. Обычно такие проблемы – лишь часть более широкого спектра затруднений при обучении, но семейство KE (так их условно назвали), похоже, обладало более специфичными особенностями. Их речь была неразборчива, и они испытывали огромные трудности, пытаясь понять речь других, особенно когда для этого требовались правила грамматики. Кроме того, им трудно было выполнять сложные движения ртом и языком.
В 2001 году выяснилось, что корень проблемы – мутация гена FOXP2. По его структуре можно заключить, что он помогает регулировать деятельность других генов. К сожалению, мы пока не знаем, какие именно гены контролирует FOXP2. Но нам известно, что у мышей (а значит, вероятно, и у людей) FOXP2 активен в мозгу при эмбриональном развитии.
Вопреки первоначальным предположениям, в семействе КЕ не произошло возврата к «шимпанзеподобному» варианту данного гена: у них возникла новая мутация, которая и препятствовала развитию языковых навыков. Так или иначе, у шимпанзе, мышей и большинства других видов млекопитающих имеется версия гена FOXP2, необычайно сходная с человеческой. Но с тех пор, как на эволюционном древе мы отделились от шимпанзе, человеческий вариант этого гена претерпел еще две мутации, каждая из которых в результате меняла всего одну из многих аминокислот, составляющих белок, за выработку которого отвечает FOXP2.
Заманчиво было бы ввести человеческий вариант гена FOXP2 в организм шимпанзе, чтобы посмотреть, улучшит ли он их речевые способности. Но мы не можем этого сделать как по техническим соображениям, так и по соображениям этическим. Впрочем, в мышиный геном этот ген встроили. Любопытная вещь: по наблюдениям ученых, генетически модифицированные мыши стали пищать чуть иначе, чем их собратья (высота тона их ультразвуковых воплей чуть снизилась).
Но это, возможно, менее значимо, чем те изменения, которые ученые увидели в мышином мозгу. В частности, удалось выявить изменения в структуре и поведении нейронов, расположенных в области, именуемой кортико-базальной ганглиальной цепью. Она именуется также мозговой «цепью вознаграждения». Известно, что она участвует в освоении новых умственных навыков. «Если вы что-то делаете и вдруг получаете награду, происходит обучение: вы понимаете, что вам следует это повторить», – объясняет Вольфи Энард, специалист по эволюционной генетике из Института эволюционной антропологии Общества Макса Планка (Лейпциг), руководивший этими исследованиями.
Основываясь на том, что нам уже известно об этих цепях, Энард предполагает, что у человека FOXP2 играет роль в освоении правил речи (например, когда определенные движения голосового аппарата порождают определенные звуки) или даже правил грамматики: «Можно представить себе это как обучение последовательностям движений речевых мышц, но еще и как обучение выстраивать слова в предложении типа „Кошка, за которой вчера гонялась собака, была белая“».
По мнению Энарда, пока это самый показательный пример мутации, ставшей движущей силой эволюции человеческого мозга. Он отмечает: «Тут мы яснее всего представляем себе, что произошло».
5. Дайте руку
На пути от первых примитивных каменных орудий до управления огнем и развития письменности наш прогресс всегда зависел от ловкости наших рук. И не зря в фильме «2001. Космическая одиссея», этой классике научной фантастики, Артур Кларк показал день, когда человек-обезьяна начинает все молотить костью животного, как поворотный момент в нашей эволюции.
Исключим влияние инопланетян. Может ли наша ДНК пролить свет на наше несравненное владение инструментами? Ключ к решению вопроса кроется в области ДНК, именуемой HACNS1 (human-accelerated conserved non-coding sequence 1, эволюционно ускоренная у человека консервативная некодирующая последовательность 1). С тех пор как мы отделились от шимпанзе, она мутировала 16 раз. Эта область – выключатель, активирующий, судя по всему, определенный ген, что располагается в некоторых частях эмбриона, в том числе и в развивающихся конечностях. Встраивание человеческой версии HACNS1 в мышиные эмбрионы показывает, что эта мутировавшая вариация сильнее активируется в передних лапках – как раз на тех участках, которые соответствуют запястью и большому пальцу руки человека.
Некоторые ученые считают, что эти мутации внесли свой вклад в эволюционный процесс, позволивший нам обзавестись большим пальцем, который отделен от остальных. Такое расположение очень важно для осуществления ловких движений, необходимых при использовании орудий. Вообще-то у шимпанзе большой палец тоже отделен от прочих, но не столь сильно, как у нас. «У нас тоньше мышечный контроль, – замечает Поллард. – Мы можем держать карандаш, зато не можем спокойно висеть на ветке дерева, как это делает шимпанзе».
6. Как полюбить крахмал
Шимпанзе и другие крупные приматы едят главным образом фрукты и листья. Это настолько низкокалорийные продукты, что бедняги вынуждены кормиться на протяжении почти всего периода бодрствования. Современный человек получает основную долю энергии из крахмалсодержащих зерновых и корнеплодов. За последние 6 миллионов лет наш рацион наверняка претерпел несколько существенных изменений – когда мы начали использовать каменные орудия, когда научились готовить при помощи огня и когда перешли к оседлому земледелию.
Некоторые из этих перемен трудно датировать. Не утихают споры, что же считать первым свидетельством существования очага для приготовления пищи. А палки-копалки, которыми наши предки пользовались для того, чтобы извлекать из земли всякие луковицы и клубни, не превращаются в окаменелости, а значит, не доходят до археологов. Есть альтернативный способ проследить за изменениями в меню. Для этого нужно взглянуть на гены, вовлеченные в процесс пищеварения.
Пищеварительный фермент под названием слюнная амилаза играет ключевую роль в расщеплении крахмала на простые сахара, которые могут абсорбироваться кишечником. Содержание амилазы в слюне у человека значительно выше, чем у шимпанзе: у этих животных всего лишь пара копии гена, отвечающего за синтез слюнной амилазы (по одной на каждой паре соответствующих хромосом), а у человека – в среднем по 6, причем у некоторых людей их даже по 15. По-видимому, ошибки при копировании ДНК в ходе образования сперматозоидов и яйцеклеток привели к неоднократному дублированию этого гена.
Чтобы выяснить, когда произошли эти удвоения, провели секвенирование этого гена у людей из разных стран, а также у шимпанзе и бонобо. «Мы надеялись увидеть характерные признаки отбора, который произошел около двух миллионов лет назад», – говорит Натаниэл Домини, биолог-антрополог из Дартмутского колледжа (Хановер, штат Нью-Гэмпшир), возглавивший эту работу с геном амилазы. Примерно в это время наш мозг существенно увеличился в размерах. Согласно одной из гипотез, этому способствовало переключение на более крахмалистый рацион.
Однако группа Домини обнаружила, что удвоения данного гена произошли гораздо позже – 100 тысяч лет назад или более. Самым крупным изменением в период «100 тысяч лет назад – наше время» стало зарождение сельского хозяйства, так что, по мнению Домини, эти удвоения произошли, когда люди начали выращивать злаковые культуры. «Освоение земледелия – знаковое событие в эволюции человека, – отмечает он. – Мы полагаем, что амилаза внесла тут свой вклад».
Именно появление сельского хозяйства позволило человечеству жить в более крупных поселениях, что, в свою очередь, породило целый ряд инноваций, культурный взрыв и в конечном счете современную жизнь. Если учесть все мутации, которые привели к этим поворотным моментам в нашей эволюции, появление человека и его эволюция выглядят как результат маловероятных совпадений. Но это лишь из-за того, что мы не видим опасных мутаций, которые при этом отбраковывались, подчеркивает Хоукс: «Нам остались только те, что давали нам конкурентные преимущества». Лишь с сегодняшней точки зрения мутации, обеспечившие нам теперешнюю физическую форму, кажутся «правильными». Хоукс замечает: «Это взгляд ретроспективный. Задним числом весь этот процесс в целом кажется ошеломляющей чередой совпадений».